1 /*
2  * RTC subsystem, interface functions
3  *
4  * Copyright (C) 2005 Tower Technologies
5  * Author: Alessandro Zummo <a.zummo@towertech.it>
6  *
7  * based on arch/arm/common/rtctime.c
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12 */
13 
14 #include <linux/rtc.h>
15 #include <linux/sched.h>
16 #include <linux/module.h>
17 #include <linux/log2.h>
18 #include <linux/workqueue.h>
19 
20 #define CREATE_TRACE_POINTS
21 #include <trace/events/rtc.h>
22 
23 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer);
24 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer);
25 
rtc_add_offset(struct rtc_device * rtc,struct rtc_time * tm)26 static void rtc_add_offset(struct rtc_device *rtc, struct rtc_time *tm)
27 {
28 	time64_t secs;
29 
30 	if (!rtc->offset_secs)
31 		return;
32 
33 	secs = rtc_tm_to_time64(tm);
34 
35 	/*
36 	 * Since the reading time values from RTC device are always in the RTC
37 	 * original valid range, but we need to skip the overlapped region
38 	 * between expanded range and original range, which is no need to add
39 	 * the offset.
40 	 */
41 	if ((rtc->start_secs > rtc->range_min && secs >= rtc->start_secs) ||
42 	    (rtc->start_secs < rtc->range_min &&
43 	     secs <= (rtc->start_secs + rtc->range_max - rtc->range_min)))
44 		return;
45 
46 	rtc_time64_to_tm(secs + rtc->offset_secs, tm);
47 }
48 
rtc_subtract_offset(struct rtc_device * rtc,struct rtc_time * tm)49 static void rtc_subtract_offset(struct rtc_device *rtc, struct rtc_time *tm)
50 {
51 	time64_t secs;
52 
53 	if (!rtc->offset_secs)
54 		return;
55 
56 	secs = rtc_tm_to_time64(tm);
57 
58 	/*
59 	 * If the setting time values are in the valid range of RTC hardware
60 	 * device, then no need to subtract the offset when setting time to RTC
61 	 * device. Otherwise we need to subtract the offset to make the time
62 	 * values are valid for RTC hardware device.
63 	 */
64 	if (secs >= rtc->range_min && secs <= rtc->range_max)
65 		return;
66 
67 	rtc_time64_to_tm(secs - rtc->offset_secs, tm);
68 }
69 
rtc_valid_range(struct rtc_device * rtc,struct rtc_time * tm)70 static int rtc_valid_range(struct rtc_device *rtc, struct rtc_time *tm)
71 {
72 	if (rtc->range_min != rtc->range_max) {
73 		time64_t time = rtc_tm_to_time64(tm);
74 		time64_t range_min = rtc->set_start_time ? rtc->start_secs :
75 			rtc->range_min;
76 		time64_t range_max = rtc->set_start_time ?
77 			(rtc->start_secs + rtc->range_max - rtc->range_min) :
78 			rtc->range_max;
79 
80 		if (time < range_min || time > range_max)
81 			return -ERANGE;
82 	}
83 
84 	return 0;
85 }
86 
__rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)87 static int __rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
88 {
89 	int err;
90 	if (!rtc->ops)
91 		err = -ENODEV;
92 	else if (!rtc->ops->read_time)
93 		err = -EINVAL;
94 	else {
95 		memset(tm, 0, sizeof(struct rtc_time));
96 		err = rtc->ops->read_time(rtc->dev.parent, tm);
97 		if (err < 0) {
98 			dev_dbg(&rtc->dev, "read_time: fail to read: %d\n",
99 				err);
100 			return err;
101 		}
102 
103 		rtc_add_offset(rtc, tm);
104 
105 		err = rtc_valid_tm(tm);
106 		if (err < 0)
107 			dev_dbg(&rtc->dev, "read_time: rtc_time isn't valid\n");
108 	}
109 	return err;
110 }
111 
rtc_read_time(struct rtc_device * rtc,struct rtc_time * tm)112 int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
113 {
114 	int err;
115 
116 	err = mutex_lock_interruptible(&rtc->ops_lock);
117 	if (err)
118 		return err;
119 
120 	err = __rtc_read_time(rtc, tm);
121 	mutex_unlock(&rtc->ops_lock);
122 
123 	trace_rtc_read_time(rtc_tm_to_time64(tm), err);
124 	return err;
125 }
126 EXPORT_SYMBOL_GPL(rtc_read_time);
127 
rtc_set_time(struct rtc_device * rtc,struct rtc_time * tm)128 int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
129 {
130 	int err, uie;
131 
132 	err = rtc_valid_tm(tm);
133 	if (err != 0)
134 		return err;
135 
136 	err = rtc_valid_range(rtc, tm);
137 	if (err)
138 		return err;
139 
140 	rtc_subtract_offset(rtc, tm);
141 
142 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
143 	uie = rtc->uie_rtctimer.enabled || rtc->uie_irq_active;
144 #else
145 	uie = rtc->uie_rtctimer.enabled;
146 #endif
147 	if (uie) {
148 		err = rtc_update_irq_enable(rtc, 0);
149 		if (err)
150 			return err;
151 	}
152 
153 	err = mutex_lock_interruptible(&rtc->ops_lock);
154 	if (err)
155 		return err;
156 
157 	if (!rtc->ops)
158 		err = -ENODEV;
159 	else if (rtc->ops->set_time)
160 		err = rtc->ops->set_time(rtc->dev.parent, tm);
161 	else if (rtc->ops->set_mmss64) {
162 		time64_t secs64 = rtc_tm_to_time64(tm);
163 
164 		err = rtc->ops->set_mmss64(rtc->dev.parent, secs64);
165 	} else if (rtc->ops->set_mmss) {
166 		time64_t secs64 = rtc_tm_to_time64(tm);
167 		err = rtc->ops->set_mmss(rtc->dev.parent, secs64);
168 	} else
169 		err = -EINVAL;
170 
171 	pm_stay_awake(rtc->dev.parent);
172 	mutex_unlock(&rtc->ops_lock);
173 	/* A timer might have just expired */
174 	schedule_work(&rtc->irqwork);
175 
176 	if (uie) {
177 		err = rtc_update_irq_enable(rtc, 1);
178 		if (err)
179 			return err;
180 	}
181 
182 	trace_rtc_set_time(rtc_tm_to_time64(tm), err);
183 	return err;
184 }
185 EXPORT_SYMBOL_GPL(rtc_set_time);
186 
rtc_read_alarm_internal(struct rtc_device * rtc,struct rtc_wkalrm * alarm)187 static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
188 {
189 	int err;
190 
191 	err = mutex_lock_interruptible(&rtc->ops_lock);
192 	if (err)
193 		return err;
194 
195 	if (rtc->ops == NULL)
196 		err = -ENODEV;
197 	else if (!rtc->ops->read_alarm)
198 		err = -EINVAL;
199 	else {
200 		alarm->enabled = 0;
201 		alarm->pending = 0;
202 		alarm->time.tm_sec = -1;
203 		alarm->time.tm_min = -1;
204 		alarm->time.tm_hour = -1;
205 		alarm->time.tm_mday = -1;
206 		alarm->time.tm_mon = -1;
207 		alarm->time.tm_year = -1;
208 		alarm->time.tm_wday = -1;
209 		alarm->time.tm_yday = -1;
210 		alarm->time.tm_isdst = -1;
211 		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
212 	}
213 
214 	mutex_unlock(&rtc->ops_lock);
215 
216 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
217 	return err;
218 }
219 
__rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)220 int __rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
221 {
222 	int err;
223 	struct rtc_time before, now;
224 	int first_time = 1;
225 	time64_t t_now, t_alm;
226 	enum { none, day, month, year } missing = none;
227 	unsigned days;
228 
229 	/* The lower level RTC driver may return -1 in some fields,
230 	 * creating invalid alarm->time values, for reasons like:
231 	 *
232 	 *   - The hardware may not be capable of filling them in;
233 	 *     many alarms match only on time-of-day fields, not
234 	 *     day/month/year calendar data.
235 	 *
236 	 *   - Some hardware uses illegal values as "wildcard" match
237 	 *     values, which non-Linux firmware (like a BIOS) may try
238 	 *     to set up as e.g. "alarm 15 minutes after each hour".
239 	 *     Linux uses only oneshot alarms.
240 	 *
241 	 * When we see that here, we deal with it by using values from
242 	 * a current RTC timestamp for any missing (-1) values.  The
243 	 * RTC driver prevents "periodic alarm" modes.
244 	 *
245 	 * But this can be racey, because some fields of the RTC timestamp
246 	 * may have wrapped in the interval since we read the RTC alarm,
247 	 * which would lead to us inserting inconsistent values in place
248 	 * of the -1 fields.
249 	 *
250 	 * Reading the alarm and timestamp in the reverse sequence
251 	 * would have the same race condition, and not solve the issue.
252 	 *
253 	 * So, we must first read the RTC timestamp,
254 	 * then read the RTC alarm value,
255 	 * and then read a second RTC timestamp.
256 	 *
257 	 * If any fields of the second timestamp have changed
258 	 * when compared with the first timestamp, then we know
259 	 * our timestamp may be inconsistent with that used by
260 	 * the low-level rtc_read_alarm_internal() function.
261 	 *
262 	 * So, when the two timestamps disagree, we just loop and do
263 	 * the process again to get a fully consistent set of values.
264 	 *
265 	 * This could all instead be done in the lower level driver,
266 	 * but since more than one lower level RTC implementation needs it,
267 	 * then it's probably best best to do it here instead of there..
268 	 */
269 
270 	/* Get the "before" timestamp */
271 	err = rtc_read_time(rtc, &before);
272 	if (err < 0)
273 		return err;
274 	do {
275 		if (!first_time)
276 			memcpy(&before, &now, sizeof(struct rtc_time));
277 		first_time = 0;
278 
279 		/* get the RTC alarm values, which may be incomplete */
280 		err = rtc_read_alarm_internal(rtc, alarm);
281 		if (err)
282 			return err;
283 
284 		/* full-function RTCs won't have such missing fields */
285 		if (rtc_valid_tm(&alarm->time) == 0) {
286 			rtc_add_offset(rtc, &alarm->time);
287 			return 0;
288 		}
289 
290 		/* get the "after" timestamp, to detect wrapped fields */
291 		err = rtc_read_time(rtc, &now);
292 		if (err < 0)
293 			return err;
294 
295 		/* note that tm_sec is a "don't care" value here: */
296 	} while (   before.tm_min   != now.tm_min
297 		 || before.tm_hour  != now.tm_hour
298 		 || before.tm_mon   != now.tm_mon
299 		 || before.tm_year  != now.tm_year);
300 
301 	/* Fill in the missing alarm fields using the timestamp; we
302 	 * know there's at least one since alarm->time is invalid.
303 	 */
304 	if (alarm->time.tm_sec == -1)
305 		alarm->time.tm_sec = now.tm_sec;
306 	if (alarm->time.tm_min == -1)
307 		alarm->time.tm_min = now.tm_min;
308 	if (alarm->time.tm_hour == -1)
309 		alarm->time.tm_hour = now.tm_hour;
310 
311 	/* For simplicity, only support date rollover for now */
312 	if (alarm->time.tm_mday < 1 || alarm->time.tm_mday > 31) {
313 		alarm->time.tm_mday = now.tm_mday;
314 		missing = day;
315 	}
316 	if ((unsigned)alarm->time.tm_mon >= 12) {
317 		alarm->time.tm_mon = now.tm_mon;
318 		if (missing == none)
319 			missing = month;
320 	}
321 	if (alarm->time.tm_year == -1) {
322 		alarm->time.tm_year = now.tm_year;
323 		if (missing == none)
324 			missing = year;
325 	}
326 
327 	/* Can't proceed if alarm is still invalid after replacing
328 	 * missing fields.
329 	 */
330 	err = rtc_valid_tm(&alarm->time);
331 	if (err)
332 		goto done;
333 
334 	/* with luck, no rollover is needed */
335 	t_now = rtc_tm_to_time64(&now);
336 	t_alm = rtc_tm_to_time64(&alarm->time);
337 	if (t_now < t_alm)
338 		goto done;
339 
340 	switch (missing) {
341 
342 	/* 24 hour rollover ... if it's now 10am Monday, an alarm that
343 	 * that will trigger at 5am will do so at 5am Tuesday, which
344 	 * could also be in the next month or year.  This is a common
345 	 * case, especially for PCs.
346 	 */
347 	case day:
348 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "day");
349 		t_alm += 24 * 60 * 60;
350 		rtc_time64_to_tm(t_alm, &alarm->time);
351 		break;
352 
353 	/* Month rollover ... if it's the 31th, an alarm on the 3rd will
354 	 * be next month.  An alarm matching on the 30th, 29th, or 28th
355 	 * may end up in the month after that!  Many newer PCs support
356 	 * this type of alarm.
357 	 */
358 	case month:
359 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "month");
360 		do {
361 			if (alarm->time.tm_mon < 11)
362 				alarm->time.tm_mon++;
363 			else {
364 				alarm->time.tm_mon = 0;
365 				alarm->time.tm_year++;
366 			}
367 			days = rtc_month_days(alarm->time.tm_mon,
368 					alarm->time.tm_year);
369 		} while (days < alarm->time.tm_mday);
370 		break;
371 
372 	/* Year rollover ... easy except for leap years! */
373 	case year:
374 		dev_dbg(&rtc->dev, "alarm rollover: %s\n", "year");
375 		do {
376 			alarm->time.tm_year++;
377 		} while (!is_leap_year(alarm->time.tm_year + 1900)
378 			&& rtc_valid_tm(&alarm->time) != 0);
379 		break;
380 
381 	default:
382 		dev_warn(&rtc->dev, "alarm rollover not handled\n");
383 	}
384 
385 	err = rtc_valid_tm(&alarm->time);
386 
387 done:
388 	if (err) {
389 		dev_warn(&rtc->dev, "invalid alarm value: %d-%d-%d %d:%d:%d\n",
390 			alarm->time.tm_year + 1900, alarm->time.tm_mon + 1,
391 			alarm->time.tm_mday, alarm->time.tm_hour, alarm->time.tm_min,
392 			alarm->time.tm_sec);
393 	}
394 
395 	return err;
396 }
397 
rtc_read_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)398 int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
399 {
400 	int err;
401 
402 	err = mutex_lock_interruptible(&rtc->ops_lock);
403 	if (err)
404 		return err;
405 	if (rtc->ops == NULL)
406 		err = -ENODEV;
407 	else if (!rtc->ops->read_alarm)
408 		err = -EINVAL;
409 	else {
410 		memset(alarm, 0, sizeof(struct rtc_wkalrm));
411 		alarm->enabled = rtc->aie_timer.enabled;
412 		alarm->time = rtc_ktime_to_tm(rtc->aie_timer.node.expires);
413 	}
414 	mutex_unlock(&rtc->ops_lock);
415 
416 	trace_rtc_read_alarm(rtc_tm_to_time64(&alarm->time), err);
417 	return err;
418 }
419 EXPORT_SYMBOL_GPL(rtc_read_alarm);
420 
__rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)421 static int __rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
422 {
423 	struct rtc_time tm;
424 	time64_t now, scheduled;
425 	int err;
426 
427 	err = rtc_valid_tm(&alarm->time);
428 	if (err)
429 		return err;
430 
431 	scheduled = rtc_tm_to_time64(&alarm->time);
432 
433 	/* Make sure we're not setting alarms in the past */
434 	err = __rtc_read_time(rtc, &tm);
435 	if (err)
436 		return err;
437 	now = rtc_tm_to_time64(&tm);
438 	if (scheduled <= now)
439 		return -ETIME;
440 	/*
441 	 * XXX - We just checked to make sure the alarm time is not
442 	 * in the past, but there is still a race window where if
443 	 * the is alarm set for the next second and the second ticks
444 	 * over right here, before we set the alarm.
445 	 */
446 
447 	rtc_subtract_offset(rtc, &alarm->time);
448 
449 	if (!rtc->ops)
450 		err = -ENODEV;
451 	else if (!rtc->ops->set_alarm)
452 		err = -EINVAL;
453 	else
454 		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);
455 
456 	trace_rtc_set_alarm(rtc_tm_to_time64(&alarm->time), err);
457 	return err;
458 }
459 
rtc_set_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)460 int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
461 {
462 	int err;
463 
464 	if (!rtc->ops)
465 		return -ENODEV;
466 	else if (!rtc->ops->set_alarm)
467 		return -EINVAL;
468 
469 	err = rtc_valid_tm(&alarm->time);
470 	if (err != 0)
471 		return err;
472 
473 	err = rtc_valid_range(rtc, &alarm->time);
474 	if (err)
475 		return err;
476 
477 	err = mutex_lock_interruptible(&rtc->ops_lock);
478 	if (err)
479 		return err;
480 	if (rtc->aie_timer.enabled)
481 		rtc_timer_remove(rtc, &rtc->aie_timer);
482 
483 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
484 	rtc->aie_timer.period = 0;
485 	if (alarm->enabled)
486 		err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
487 
488 	mutex_unlock(&rtc->ops_lock);
489 
490 	return err;
491 }
492 EXPORT_SYMBOL_GPL(rtc_set_alarm);
493 
494 /* Called once per device from rtc_device_register */
rtc_initialize_alarm(struct rtc_device * rtc,struct rtc_wkalrm * alarm)495 int rtc_initialize_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
496 {
497 	int err;
498 	struct rtc_time now;
499 
500 	err = rtc_valid_tm(&alarm->time);
501 	if (err != 0)
502 		return err;
503 
504 	err = rtc_read_time(rtc, &now);
505 	if (err)
506 		return err;
507 
508 	err = mutex_lock_interruptible(&rtc->ops_lock);
509 	if (err)
510 		return err;
511 
512 	rtc->aie_timer.node.expires = rtc_tm_to_ktime(alarm->time);
513 	rtc->aie_timer.period = 0;
514 
515 	/* Alarm has to be enabled & in the future for us to enqueue it */
516 	if (alarm->enabled && (rtc_tm_to_ktime(now) <
517 			 rtc->aie_timer.node.expires)) {
518 
519 		rtc->aie_timer.enabled = 1;
520 		timerqueue_add(&rtc->timerqueue, &rtc->aie_timer.node);
521 		trace_rtc_timer_enqueue(&rtc->aie_timer);
522 	}
523 	mutex_unlock(&rtc->ops_lock);
524 	return err;
525 }
526 EXPORT_SYMBOL_GPL(rtc_initialize_alarm);
527 
rtc_alarm_irq_enable(struct rtc_device * rtc,unsigned int enabled)528 int rtc_alarm_irq_enable(struct rtc_device *rtc, unsigned int enabled)
529 {
530 	int err = mutex_lock_interruptible(&rtc->ops_lock);
531 	if (err)
532 		return err;
533 
534 	if (rtc->aie_timer.enabled != enabled) {
535 		if (enabled)
536 			err = rtc_timer_enqueue(rtc, &rtc->aie_timer);
537 		else
538 			rtc_timer_remove(rtc, &rtc->aie_timer);
539 	}
540 
541 	if (err)
542 		/* nothing */;
543 	else if (!rtc->ops)
544 		err = -ENODEV;
545 	else if (!rtc->ops->alarm_irq_enable)
546 		err = -EINVAL;
547 	else
548 		err = rtc->ops->alarm_irq_enable(rtc->dev.parent, enabled);
549 
550 	mutex_unlock(&rtc->ops_lock);
551 
552 	trace_rtc_alarm_irq_enable(enabled, err);
553 	return err;
554 }
555 EXPORT_SYMBOL_GPL(rtc_alarm_irq_enable);
556 
rtc_update_irq_enable(struct rtc_device * rtc,unsigned int enabled)557 int rtc_update_irq_enable(struct rtc_device *rtc, unsigned int enabled)
558 {
559 	int err = mutex_lock_interruptible(&rtc->ops_lock);
560 	if (err)
561 		return err;
562 
563 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
564 	if (enabled == 0 && rtc->uie_irq_active) {
565 		mutex_unlock(&rtc->ops_lock);
566 		return rtc_dev_update_irq_enable_emul(rtc, 0);
567 	}
568 #endif
569 	/* make sure we're changing state */
570 	if (rtc->uie_rtctimer.enabled == enabled)
571 		goto out;
572 
573 	if (rtc->uie_unsupported) {
574 		err = -EINVAL;
575 		goto out;
576 	}
577 
578 	if (enabled) {
579 		struct rtc_time tm;
580 		ktime_t now, onesec;
581 
582 		__rtc_read_time(rtc, &tm);
583 		onesec = ktime_set(1, 0);
584 		now = rtc_tm_to_ktime(tm);
585 		rtc->uie_rtctimer.node.expires = ktime_add(now, onesec);
586 		rtc->uie_rtctimer.period = ktime_set(1, 0);
587 		err = rtc_timer_enqueue(rtc, &rtc->uie_rtctimer);
588 	} else
589 		rtc_timer_remove(rtc, &rtc->uie_rtctimer);
590 
591 out:
592 	mutex_unlock(&rtc->ops_lock);
593 #ifdef CONFIG_RTC_INTF_DEV_UIE_EMUL
594 	/*
595 	 * Enable emulation if the driver did not provide
596 	 * the update_irq_enable function pointer or if returned
597 	 * -EINVAL to signal that it has been configured without
598 	 * interrupts or that are not available at the moment.
599 	 */
600 	if (err == -EINVAL)
601 		err = rtc_dev_update_irq_enable_emul(rtc, enabled);
602 #endif
603 	return err;
604 
605 }
606 EXPORT_SYMBOL_GPL(rtc_update_irq_enable);
607 
608 
609 /**
610  * rtc_handle_legacy_irq - AIE, UIE and PIE event hook
611  * @rtc: pointer to the rtc device
612  *
613  * This function is called when an AIE, UIE or PIE mode interrupt
614  * has occurred (or been emulated).
615  *
616  * Triggers the registered irq_task function callback.
617  */
rtc_handle_legacy_irq(struct rtc_device * rtc,int num,int mode)618 void rtc_handle_legacy_irq(struct rtc_device *rtc, int num, int mode)
619 {
620 	unsigned long flags;
621 
622 	/* mark one irq of the appropriate mode */
623 	spin_lock_irqsave(&rtc->irq_lock, flags);
624 	rtc->irq_data = (rtc->irq_data + (num << 8)) | (RTC_IRQF|mode);
625 	spin_unlock_irqrestore(&rtc->irq_lock, flags);
626 
627 	wake_up_interruptible(&rtc->irq_queue);
628 	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
629 }
630 
631 
632 /**
633  * rtc_aie_update_irq - AIE mode rtctimer hook
634  * @private: pointer to the rtc_device
635  *
636  * This functions is called when the aie_timer expires.
637  */
rtc_aie_update_irq(void * private)638 void rtc_aie_update_irq(void *private)
639 {
640 	struct rtc_device *rtc = (struct rtc_device *)private;
641 	rtc_handle_legacy_irq(rtc, 1, RTC_AF);
642 }
643 
644 
645 /**
646  * rtc_uie_update_irq - UIE mode rtctimer hook
647  * @private: pointer to the rtc_device
648  *
649  * This functions is called when the uie_timer expires.
650  */
rtc_uie_update_irq(void * private)651 void rtc_uie_update_irq(void *private)
652 {
653 	struct rtc_device *rtc = (struct rtc_device *)private;
654 	rtc_handle_legacy_irq(rtc, 1,  RTC_UF);
655 }
656 
657 
658 /**
659  * rtc_pie_update_irq - PIE mode hrtimer hook
660  * @timer: pointer to the pie mode hrtimer
661  *
662  * This function is used to emulate PIE mode interrupts
663  * using an hrtimer. This function is called when the periodic
664  * hrtimer expires.
665  */
rtc_pie_update_irq(struct hrtimer * timer)666 enum hrtimer_restart rtc_pie_update_irq(struct hrtimer *timer)
667 {
668 	struct rtc_device *rtc;
669 	ktime_t period;
670 	int count;
671 	rtc = container_of(timer, struct rtc_device, pie_timer);
672 
673 	period = NSEC_PER_SEC / rtc->irq_freq;
674 	count = hrtimer_forward_now(timer, period);
675 
676 	rtc_handle_legacy_irq(rtc, count, RTC_PF);
677 
678 	return HRTIMER_RESTART;
679 }
680 
681 /**
682  * rtc_update_irq - Triggered when a RTC interrupt occurs.
683  * @rtc: the rtc device
684  * @num: how many irqs are being reported (usually one)
685  * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
686  * Context: any
687  */
rtc_update_irq(struct rtc_device * rtc,unsigned long num,unsigned long events)688 void rtc_update_irq(struct rtc_device *rtc,
689 		unsigned long num, unsigned long events)
690 {
691 	if (IS_ERR_OR_NULL(rtc))
692 		return;
693 
694 	pm_stay_awake(rtc->dev.parent);
695 	schedule_work(&rtc->irqwork);
696 }
697 EXPORT_SYMBOL_GPL(rtc_update_irq);
698 
__rtc_match(struct device * dev,const void * data)699 static int __rtc_match(struct device *dev, const void *data)
700 {
701 	const char *name = data;
702 
703 	if (strcmp(dev_name(dev), name) == 0)
704 		return 1;
705 	return 0;
706 }
707 
rtc_class_open(const char * name)708 struct rtc_device *rtc_class_open(const char *name)
709 {
710 	struct device *dev;
711 	struct rtc_device *rtc = NULL;
712 
713 	dev = class_find_device(rtc_class, NULL, name, __rtc_match);
714 	if (dev)
715 		rtc = to_rtc_device(dev);
716 
717 	if (rtc) {
718 		if (!try_module_get(rtc->owner)) {
719 			put_device(dev);
720 			rtc = NULL;
721 		}
722 	}
723 
724 	return rtc;
725 }
726 EXPORT_SYMBOL_GPL(rtc_class_open);
727 
rtc_class_close(struct rtc_device * rtc)728 void rtc_class_close(struct rtc_device *rtc)
729 {
730 	module_put(rtc->owner);
731 	put_device(&rtc->dev);
732 }
733 EXPORT_SYMBOL_GPL(rtc_class_close);
734 
rtc_update_hrtimer(struct rtc_device * rtc,int enabled)735 static int rtc_update_hrtimer(struct rtc_device *rtc, int enabled)
736 {
737 	/*
738 	 * We always cancel the timer here first, because otherwise
739 	 * we could run into BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
740 	 * when we manage to start the timer before the callback
741 	 * returns HRTIMER_RESTART.
742 	 *
743 	 * We cannot use hrtimer_cancel() here as a running callback
744 	 * could be blocked on rtc->irq_task_lock and hrtimer_cancel()
745 	 * would spin forever.
746 	 */
747 	if (hrtimer_try_to_cancel(&rtc->pie_timer) < 0)
748 		return -1;
749 
750 	if (enabled) {
751 		ktime_t period = NSEC_PER_SEC / rtc->irq_freq;
752 
753 		hrtimer_start(&rtc->pie_timer, period, HRTIMER_MODE_REL);
754 	}
755 	return 0;
756 }
757 
758 /**
759  * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
760  * @rtc: the rtc device
761  * @task: currently registered with rtc_irq_register()
762  * @enabled: true to enable periodic IRQs
763  * Context: any
764  *
765  * Note that rtc_irq_set_freq() should previously have been used to
766  * specify the desired frequency of periodic IRQ.
767  */
rtc_irq_set_state(struct rtc_device * rtc,int enabled)768 int rtc_irq_set_state(struct rtc_device *rtc, int enabled)
769 {
770 	int err = 0;
771 
772 	while (rtc_update_hrtimer(rtc, enabled) < 0)
773 		cpu_relax();
774 
775 	rtc->pie_enabled = enabled;
776 
777 	trace_rtc_irq_set_state(enabled, err);
778 	return err;
779 }
780 
781 /**
782  * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
783  * @rtc: the rtc device
784  * @task: currently registered with rtc_irq_register()
785  * @freq: positive frequency
786  * Context: any
787  *
788  * Note that rtc_irq_set_state() is used to enable or disable the
789  * periodic IRQs.
790  */
rtc_irq_set_freq(struct rtc_device * rtc,int freq)791 int rtc_irq_set_freq(struct rtc_device *rtc, int freq)
792 {
793 	int err = 0;
794 
795 	if (freq <= 0 || freq > RTC_MAX_FREQ)
796 		return -EINVAL;
797 
798 	rtc->irq_freq = freq;
799 	while (rtc->pie_enabled && rtc_update_hrtimer(rtc, 1) < 0)
800 		cpu_relax();
801 
802 	trace_rtc_irq_set_freq(freq, err);
803 	return err;
804 }
805 
806 /**
807  * rtc_timer_enqueue - Adds a rtc_timer to the rtc_device timerqueue
808  * @rtc rtc device
809  * @timer timer being added.
810  *
811  * Enqueues a timer onto the rtc devices timerqueue and sets
812  * the next alarm event appropriately.
813  *
814  * Sets the enabled bit on the added timer.
815  *
816  * Must hold ops_lock for proper serialization of timerqueue
817  */
rtc_timer_enqueue(struct rtc_device * rtc,struct rtc_timer * timer)818 static int rtc_timer_enqueue(struct rtc_device *rtc, struct rtc_timer *timer)
819 {
820 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
821 	struct rtc_time tm;
822 	ktime_t now;
823 
824 	timer->enabled = 1;
825 	__rtc_read_time(rtc, &tm);
826 	now = rtc_tm_to_ktime(tm);
827 
828 	/* Skip over expired timers */
829 	while (next) {
830 		if (next->expires >= now)
831 			break;
832 		next = timerqueue_iterate_next(next);
833 	}
834 
835 	timerqueue_add(&rtc->timerqueue, &timer->node);
836 	trace_rtc_timer_enqueue(timer);
837 	if (!next || ktime_before(timer->node.expires, next->expires)) {
838 		struct rtc_wkalrm alarm;
839 		int err;
840 		alarm.time = rtc_ktime_to_tm(timer->node.expires);
841 		alarm.enabled = 1;
842 		err = __rtc_set_alarm(rtc, &alarm);
843 		if (err == -ETIME) {
844 			pm_stay_awake(rtc->dev.parent);
845 			schedule_work(&rtc->irqwork);
846 		} else if (err) {
847 			timerqueue_del(&rtc->timerqueue, &timer->node);
848 			trace_rtc_timer_dequeue(timer);
849 			timer->enabled = 0;
850 			return err;
851 		}
852 	}
853 	return 0;
854 }
855 
rtc_alarm_disable(struct rtc_device * rtc)856 static void rtc_alarm_disable(struct rtc_device *rtc)
857 {
858 	if (!rtc->ops || !rtc->ops->alarm_irq_enable)
859 		return;
860 
861 	rtc->ops->alarm_irq_enable(rtc->dev.parent, false);
862 	trace_rtc_alarm_irq_enable(0, 0);
863 }
864 
865 /**
866  * rtc_timer_remove - Removes a rtc_timer from the rtc_device timerqueue
867  * @rtc rtc device
868  * @timer timer being removed.
869  *
870  * Removes a timer onto the rtc devices timerqueue and sets
871  * the next alarm event appropriately.
872  *
873  * Clears the enabled bit on the removed timer.
874  *
875  * Must hold ops_lock for proper serialization of timerqueue
876  */
rtc_timer_remove(struct rtc_device * rtc,struct rtc_timer * timer)877 static void rtc_timer_remove(struct rtc_device *rtc, struct rtc_timer *timer)
878 {
879 	struct timerqueue_node *next = timerqueue_getnext(&rtc->timerqueue);
880 	timerqueue_del(&rtc->timerqueue, &timer->node);
881 	trace_rtc_timer_dequeue(timer);
882 	timer->enabled = 0;
883 	if (next == &timer->node) {
884 		struct rtc_wkalrm alarm;
885 		int err;
886 		next = timerqueue_getnext(&rtc->timerqueue);
887 		if (!next) {
888 			rtc_alarm_disable(rtc);
889 			return;
890 		}
891 		alarm.time = rtc_ktime_to_tm(next->expires);
892 		alarm.enabled = 1;
893 		err = __rtc_set_alarm(rtc, &alarm);
894 		if (err == -ETIME) {
895 			pm_stay_awake(rtc->dev.parent);
896 			schedule_work(&rtc->irqwork);
897 		}
898 	}
899 }
900 
901 /**
902  * rtc_timer_do_work - Expires rtc timers
903  * @rtc rtc device
904  * @timer timer being removed.
905  *
906  * Expires rtc timers. Reprograms next alarm event if needed.
907  * Called via worktask.
908  *
909  * Serializes access to timerqueue via ops_lock mutex
910  */
rtc_timer_do_work(struct work_struct * work)911 void rtc_timer_do_work(struct work_struct *work)
912 {
913 	struct rtc_timer *timer;
914 	struct timerqueue_node *next;
915 	ktime_t now;
916 	struct rtc_time tm;
917 
918 	struct rtc_device *rtc =
919 		container_of(work, struct rtc_device, irqwork);
920 
921 	mutex_lock(&rtc->ops_lock);
922 again:
923 	__rtc_read_time(rtc, &tm);
924 	now = rtc_tm_to_ktime(tm);
925 	while ((next = timerqueue_getnext(&rtc->timerqueue))) {
926 		if (next->expires > now)
927 			break;
928 
929 		/* expire timer */
930 		timer = container_of(next, struct rtc_timer, node);
931 		timerqueue_del(&rtc->timerqueue, &timer->node);
932 		trace_rtc_timer_dequeue(timer);
933 		timer->enabled = 0;
934 		if (timer->func)
935 			timer->func(timer->private_data);
936 
937 		trace_rtc_timer_fired(timer);
938 		/* Re-add/fwd periodic timers */
939 		if (ktime_to_ns(timer->period)) {
940 			timer->node.expires = ktime_add(timer->node.expires,
941 							timer->period);
942 			timer->enabled = 1;
943 			timerqueue_add(&rtc->timerqueue, &timer->node);
944 			trace_rtc_timer_enqueue(timer);
945 		}
946 	}
947 
948 	/* Set next alarm */
949 	if (next) {
950 		struct rtc_wkalrm alarm;
951 		int err;
952 		int retry = 3;
953 
954 		alarm.time = rtc_ktime_to_tm(next->expires);
955 		alarm.enabled = 1;
956 reprogram:
957 		err = __rtc_set_alarm(rtc, &alarm);
958 		if (err == -ETIME)
959 			goto again;
960 		else if (err) {
961 			if (retry-- > 0)
962 				goto reprogram;
963 
964 			timer = container_of(next, struct rtc_timer, node);
965 			timerqueue_del(&rtc->timerqueue, &timer->node);
966 			trace_rtc_timer_dequeue(timer);
967 			timer->enabled = 0;
968 			dev_err(&rtc->dev, "__rtc_set_alarm: err=%d\n", err);
969 			goto again;
970 		}
971 	} else
972 		rtc_alarm_disable(rtc);
973 
974 	pm_relax(rtc->dev.parent);
975 	mutex_unlock(&rtc->ops_lock);
976 }
977 
978 
979 /* rtc_timer_init - Initializes an rtc_timer
980  * @timer: timer to be intiialized
981  * @f: function pointer to be called when timer fires
982  * @data: private data passed to function pointer
983  *
984  * Kernel interface to initializing an rtc_timer.
985  */
rtc_timer_init(struct rtc_timer * timer,void (* f)(void * p),void * data)986 void rtc_timer_init(struct rtc_timer *timer, void (*f)(void *p), void *data)
987 {
988 	timerqueue_init(&timer->node);
989 	timer->enabled = 0;
990 	timer->func = f;
991 	timer->private_data = data;
992 }
993 
994 /* rtc_timer_start - Sets an rtc_timer to fire in the future
995  * @ rtc: rtc device to be used
996  * @ timer: timer being set
997  * @ expires: time at which to expire the timer
998  * @ period: period that the timer will recur
999  *
1000  * Kernel interface to set an rtc_timer
1001  */
rtc_timer_start(struct rtc_device * rtc,struct rtc_timer * timer,ktime_t expires,ktime_t period)1002 int rtc_timer_start(struct rtc_device *rtc, struct rtc_timer *timer,
1003 			ktime_t expires, ktime_t period)
1004 {
1005 	int ret = 0;
1006 	mutex_lock(&rtc->ops_lock);
1007 	if (timer->enabled)
1008 		rtc_timer_remove(rtc, timer);
1009 
1010 	timer->node.expires = expires;
1011 	timer->period = period;
1012 
1013 	ret = rtc_timer_enqueue(rtc, timer);
1014 
1015 	mutex_unlock(&rtc->ops_lock);
1016 	return ret;
1017 }
1018 
1019 /* rtc_timer_cancel - Stops an rtc_timer
1020  * @ rtc: rtc device to be used
1021  * @ timer: timer being set
1022  *
1023  * Kernel interface to cancel an rtc_timer
1024  */
rtc_timer_cancel(struct rtc_device * rtc,struct rtc_timer * timer)1025 void rtc_timer_cancel(struct rtc_device *rtc, struct rtc_timer *timer)
1026 {
1027 	mutex_lock(&rtc->ops_lock);
1028 	if (timer->enabled)
1029 		rtc_timer_remove(rtc, timer);
1030 	mutex_unlock(&rtc->ops_lock);
1031 }
1032 
1033 /**
1034  * rtc_read_offset - Read the amount of rtc offset in parts per billion
1035  * @ rtc: rtc device to be used
1036  * @ offset: the offset in parts per billion
1037  *
1038  * see below for details.
1039  *
1040  * Kernel interface to read rtc clock offset
1041  * Returns 0 on success, or a negative number on error.
1042  * If read_offset() is not implemented for the rtc, return -EINVAL
1043  */
rtc_read_offset(struct rtc_device * rtc,long * offset)1044 int rtc_read_offset(struct rtc_device *rtc, long *offset)
1045 {
1046 	int ret;
1047 
1048 	if (!rtc->ops)
1049 		return -ENODEV;
1050 
1051 	if (!rtc->ops->read_offset)
1052 		return -EINVAL;
1053 
1054 	mutex_lock(&rtc->ops_lock);
1055 	ret = rtc->ops->read_offset(rtc->dev.parent, offset);
1056 	mutex_unlock(&rtc->ops_lock);
1057 
1058 	trace_rtc_read_offset(*offset, ret);
1059 	return ret;
1060 }
1061 
1062 /**
1063  * rtc_set_offset - Adjusts the duration of the average second
1064  * @ rtc: rtc device to be used
1065  * @ offset: the offset in parts per billion
1066  *
1067  * Some rtc's allow an adjustment to the average duration of a second
1068  * to compensate for differences in the actual clock rate due to temperature,
1069  * the crystal, capacitor, etc.
1070  *
1071  * The adjustment applied is as follows:
1072  *   t = t0 * (1 + offset * 1e-9)
1073  * where t0 is the measured length of 1 RTC second with offset = 0
1074  *
1075  * Kernel interface to adjust an rtc clock offset.
1076  * Return 0 on success, or a negative number on error.
1077  * If the rtc offset is not setable (or not implemented), return -EINVAL
1078  */
rtc_set_offset(struct rtc_device * rtc,long offset)1079 int rtc_set_offset(struct rtc_device *rtc, long offset)
1080 {
1081 	int ret;
1082 
1083 	if (!rtc->ops)
1084 		return -ENODEV;
1085 
1086 	if (!rtc->ops->set_offset)
1087 		return -EINVAL;
1088 
1089 	mutex_lock(&rtc->ops_lock);
1090 	ret = rtc->ops->set_offset(rtc->dev.parent, offset);
1091 	mutex_unlock(&rtc->ops_lock);
1092 
1093 	trace_rtc_set_offset(offset, ret);
1094 	return ret;
1095 }
1096