1 /*
2  * INET		An implementation of the TCP/IP protocol suite for the LINUX
3  *		operating system.  INET is implemented using the  BSD Socket
4  *		interface as the means of communication with the user level.
5  *
6  *		Definitions for the Interfaces handler.
7  *
8  * Version:	@(#)dev.h	1.0.10	08/12/93
9  *
10  * Authors:	Ross Biro
11  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
14  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
15  *		Bjorn Ekwall. <bj0rn@blox.se>
16  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
17  *
18  *		This program is free software; you can redistribute it and/or
19  *		modify it under the terms of the GNU General Public License
20  *		as published by the Free Software Foundation; either version
21  *		2 of the License, or (at your option) any later version.
22  *
23  *		Moved to /usr/include/linux for NET3
24  */
25 #ifndef _LINUX_NETDEVICE_H
26 #define _LINUX_NETDEVICE_H
27 
28 #include <linux/timer.h>
29 #include <linux/bug.h>
30 #include <linux/delay.h>
31 #include <linux/atomic.h>
32 #include <linux/prefetch.h>
33 #include <asm/cache.h>
34 #include <asm/byteorder.h>
35 
36 #include <linux/percpu.h>
37 #include <linux/rculist.h>
38 #include <linux/workqueue.h>
39 #include <linux/dynamic_queue_limits.h>
40 
41 #include <linux/ethtool.h>
42 #include <net/net_namespace.h>
43 #ifdef CONFIG_DCB
44 #include <net/dcbnl.h>
45 #endif
46 #include <net/netprio_cgroup.h>
47 #include <net/xdp.h>
48 
49 #include <linux/netdev_features.h>
50 #include <linux/neighbour.h>
51 #include <uapi/linux/netdevice.h>
52 #include <uapi/linux/if_bonding.h>
53 #include <uapi/linux/pkt_cls.h>
54 #include <linux/hashtable.h>
55 
56 struct netpoll_info;
57 struct device;
58 struct phy_device;
59 struct dsa_port;
60 
61 struct sfp_bus;
62 /* 802.11 specific */
63 struct wireless_dev;
64 /* 802.15.4 specific */
65 struct wpan_dev;
66 struct mpls_dev;
67 /* UDP Tunnel offloads */
68 struct udp_tunnel_info;
69 struct bpf_prog;
70 struct xdp_buff;
71 
72 void netdev_set_default_ethtool_ops(struct net_device *dev,
73 				    const struct ethtool_ops *ops);
74 
75 /* Backlog congestion levels */
76 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
77 #define NET_RX_DROP		1	/* packet dropped */
78 
79 /*
80  * Transmit return codes: transmit return codes originate from three different
81  * namespaces:
82  *
83  * - qdisc return codes
84  * - driver transmit return codes
85  * - errno values
86  *
87  * Drivers are allowed to return any one of those in their hard_start_xmit()
88  * function. Real network devices commonly used with qdiscs should only return
89  * the driver transmit return codes though - when qdiscs are used, the actual
90  * transmission happens asynchronously, so the value is not propagated to
91  * higher layers. Virtual network devices transmit synchronously; in this case
92  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
93  * others are propagated to higher layers.
94  */
95 
96 /* qdisc ->enqueue() return codes. */
97 #define NET_XMIT_SUCCESS	0x00
98 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
99 #define NET_XMIT_CN		0x02	/* congestion notification	*/
100 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
101 
102 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
103  * indicates that the device will soon be dropping packets, or already drops
104  * some packets of the same priority; prompting us to send less aggressively. */
105 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
106 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
107 
108 /* Driver transmit return codes */
109 #define NETDEV_TX_MASK		0xf0
110 
111 enum netdev_tx {
112 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
113 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
114 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
115 };
116 typedef enum netdev_tx netdev_tx_t;
117 
118 /*
119  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
120  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
121  */
dev_xmit_complete(int rc)122 static inline bool dev_xmit_complete(int rc)
123 {
124 	/*
125 	 * Positive cases with an skb consumed by a driver:
126 	 * - successful transmission (rc == NETDEV_TX_OK)
127 	 * - error while transmitting (rc < 0)
128 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
129 	 */
130 	if (likely(rc < NET_XMIT_MASK))
131 		return true;
132 
133 	return false;
134 }
135 
136 /*
137  *	Compute the worst-case header length according to the protocols
138  *	used.
139  */
140 
141 #if defined(CONFIG_HYPERV_NET)
142 # define LL_MAX_HEADER 128
143 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
144 # if defined(CONFIG_MAC80211_MESH)
145 #  define LL_MAX_HEADER 128
146 # else
147 #  define LL_MAX_HEADER 96
148 # endif
149 #else
150 # define LL_MAX_HEADER 32
151 #endif
152 
153 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
154     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
155 #define MAX_HEADER LL_MAX_HEADER
156 #else
157 #define MAX_HEADER (LL_MAX_HEADER + 48)
158 #endif
159 
160 /*
161  *	Old network device statistics. Fields are native words
162  *	(unsigned long) so they can be read and written atomically.
163  */
164 
165 #define NET_DEV_STAT(FIELD)			\
166 	union {					\
167 		unsigned long FIELD;		\
168 		atomic_long_t __##FIELD;	\
169 	}
170 
171 struct net_device_stats {
172 	NET_DEV_STAT(rx_packets);
173 	NET_DEV_STAT(tx_packets);
174 	NET_DEV_STAT(rx_bytes);
175 	NET_DEV_STAT(tx_bytes);
176 	NET_DEV_STAT(rx_errors);
177 	NET_DEV_STAT(tx_errors);
178 	NET_DEV_STAT(rx_dropped);
179 	NET_DEV_STAT(tx_dropped);
180 	NET_DEV_STAT(multicast);
181 	NET_DEV_STAT(collisions);
182 	NET_DEV_STAT(rx_length_errors);
183 	NET_DEV_STAT(rx_over_errors);
184 	NET_DEV_STAT(rx_crc_errors);
185 	NET_DEV_STAT(rx_frame_errors);
186 	NET_DEV_STAT(rx_fifo_errors);
187 	NET_DEV_STAT(rx_missed_errors);
188 	NET_DEV_STAT(tx_aborted_errors);
189 	NET_DEV_STAT(tx_carrier_errors);
190 	NET_DEV_STAT(tx_fifo_errors);
191 	NET_DEV_STAT(tx_heartbeat_errors);
192 	NET_DEV_STAT(tx_window_errors);
193 	NET_DEV_STAT(rx_compressed);
194 	NET_DEV_STAT(tx_compressed);
195 };
196 #undef NET_DEV_STAT
197 
198 
199 #include <linux/cache.h>
200 #include <linux/skbuff.h>
201 
202 #ifdef CONFIG_RPS
203 #include <linux/static_key.h>
204 extern struct static_key rps_needed;
205 extern struct static_key rfs_needed;
206 #endif
207 
208 struct neighbour;
209 struct neigh_parms;
210 struct sk_buff;
211 
212 struct netdev_hw_addr {
213 	struct list_head	list;
214 	unsigned char		addr[MAX_ADDR_LEN];
215 	unsigned char		type;
216 #define NETDEV_HW_ADDR_T_LAN		1
217 #define NETDEV_HW_ADDR_T_SAN		2
218 #define NETDEV_HW_ADDR_T_SLAVE		3
219 #define NETDEV_HW_ADDR_T_UNICAST	4
220 #define NETDEV_HW_ADDR_T_MULTICAST	5
221 	bool			global_use;
222 	int			sync_cnt;
223 	int			refcount;
224 	int			synced;
225 	struct rcu_head		rcu_head;
226 };
227 
228 struct netdev_hw_addr_list {
229 	struct list_head	list;
230 	int			count;
231 };
232 
233 #define netdev_hw_addr_list_count(l) ((l)->count)
234 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
235 #define netdev_hw_addr_list_for_each(ha, l) \
236 	list_for_each_entry(ha, &(l)->list, list)
237 
238 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
239 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
240 #define netdev_for_each_uc_addr(ha, dev) \
241 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
242 
243 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
244 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
245 #define netdev_for_each_mc_addr(ha, dev) \
246 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
247 
248 struct hh_cache {
249 	unsigned int	hh_len;
250 	seqlock_t	hh_lock;
251 
252 	/* cached hardware header; allow for machine alignment needs.        */
253 #define HH_DATA_MOD	16
254 #define HH_DATA_OFF(__len) \
255 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
256 #define HH_DATA_ALIGN(__len) \
257 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
258 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
259 };
260 
261 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
262  * Alternative is:
263  *   dev->hard_header_len ? (dev->hard_header_len +
264  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
265  *
266  * We could use other alignment values, but we must maintain the
267  * relationship HH alignment <= LL alignment.
268  */
269 #define LL_RESERVED_SPACE(dev) \
270 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom)) \
271 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
272 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
273 	((((dev)->hard_header_len + READ_ONCE((dev)->needed_headroom) + (extra)) \
274 	  & ~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
275 
276 struct header_ops {
277 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
278 			   unsigned short type, const void *daddr,
279 			   const void *saddr, unsigned int len);
280 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
281 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
282 	void	(*cache_update)(struct hh_cache *hh,
283 				const struct net_device *dev,
284 				const unsigned char *haddr);
285 	bool	(*validate)(const char *ll_header, unsigned int len);
286 	__be16	(*parse_protocol)(const struct sk_buff *skb);
287 };
288 
289 /* These flag bits are private to the generic network queueing
290  * layer; they may not be explicitly referenced by any other
291  * code.
292  */
293 
294 enum netdev_state_t {
295 	__LINK_STATE_START,
296 	__LINK_STATE_PRESENT,
297 	__LINK_STATE_NOCARRIER,
298 	__LINK_STATE_LINKWATCH_PENDING,
299 	__LINK_STATE_DORMANT,
300 };
301 
302 
303 /*
304  * This structure holds boot-time configured netdevice settings. They
305  * are then used in the device probing.
306  */
307 struct netdev_boot_setup {
308 	char name[IFNAMSIZ];
309 	struct ifmap map;
310 };
311 #define NETDEV_BOOT_SETUP_MAX 8
312 
313 int __init netdev_boot_setup(char *str);
314 
315 struct gro_list {
316 	struct list_head	list;
317 	int			count;
318 };
319 
320 /*
321  * size of gro hash buckets, must less than bit number of
322  * napi_struct::gro_bitmask
323  */
324 #define GRO_HASH_BUCKETS	8
325 
326 /*
327  * Structure for NAPI scheduling similar to tasklet but with weighting
328  */
329 struct napi_struct {
330 	/* The poll_list must only be managed by the entity which
331 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
332 	 * whoever atomically sets that bit can add this napi_struct
333 	 * to the per-CPU poll_list, and whoever clears that bit
334 	 * can remove from the list right before clearing the bit.
335 	 */
336 	struct list_head	poll_list;
337 
338 	unsigned long		state;
339 	int			weight;
340 	unsigned long		gro_bitmask;
341 	int			(*poll)(struct napi_struct *, int);
342 #ifdef CONFIG_NETPOLL
343 	int			poll_owner;
344 #endif
345 	struct net_device	*dev;
346 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
347 	struct sk_buff		*skb;
348 	struct hrtimer		timer;
349 	struct list_head	dev_list;
350 	struct hlist_node	napi_hash_node;
351 	unsigned int		napi_id;
352 };
353 
354 enum {
355 	NAPI_STATE_SCHED,	/* Poll is scheduled */
356 	NAPI_STATE_MISSED,	/* reschedule a napi */
357 	NAPI_STATE_DISABLE,	/* Disable pending */
358 	NAPI_STATE_NPSVC,	/* Netpoll - don't dequeue from poll_list */
359 	NAPI_STATE_HASHED,	/* In NAPI hash (busy polling possible) */
360 	NAPI_STATE_NO_BUSY_POLL,/* Do not add in napi_hash, no busy polling */
361 	NAPI_STATE_IN_BUSY_POLL,/* sk_busy_loop() owns this NAPI */
362 };
363 
364 enum {
365 	NAPIF_STATE_SCHED	 = BIT(NAPI_STATE_SCHED),
366 	NAPIF_STATE_MISSED	 = BIT(NAPI_STATE_MISSED),
367 	NAPIF_STATE_DISABLE	 = BIT(NAPI_STATE_DISABLE),
368 	NAPIF_STATE_NPSVC	 = BIT(NAPI_STATE_NPSVC),
369 	NAPIF_STATE_HASHED	 = BIT(NAPI_STATE_HASHED),
370 	NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
371 	NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
372 };
373 
374 enum gro_result {
375 	GRO_MERGED,
376 	GRO_MERGED_FREE,
377 	GRO_HELD,
378 	GRO_NORMAL,
379 	GRO_DROP,
380 	GRO_CONSUMED,
381 };
382 typedef enum gro_result gro_result_t;
383 
384 /*
385  * enum rx_handler_result - Possible return values for rx_handlers.
386  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
387  * further.
388  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
389  * case skb->dev was changed by rx_handler.
390  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
391  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
392  *
393  * rx_handlers are functions called from inside __netif_receive_skb(), to do
394  * special processing of the skb, prior to delivery to protocol handlers.
395  *
396  * Currently, a net_device can only have a single rx_handler registered. Trying
397  * to register a second rx_handler will return -EBUSY.
398  *
399  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
400  * To unregister a rx_handler on a net_device, use
401  * netdev_rx_handler_unregister().
402  *
403  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
404  * do with the skb.
405  *
406  * If the rx_handler consumed the skb in some way, it should return
407  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
408  * the skb to be delivered in some other way.
409  *
410  * If the rx_handler changed skb->dev, to divert the skb to another
411  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
412  * new device will be called if it exists.
413  *
414  * If the rx_handler decides the skb should be ignored, it should return
415  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
416  * are registered on exact device (ptype->dev == skb->dev).
417  *
418  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
419  * delivered, it should return RX_HANDLER_PASS.
420  *
421  * A device without a registered rx_handler will behave as if rx_handler
422  * returned RX_HANDLER_PASS.
423  */
424 
425 enum rx_handler_result {
426 	RX_HANDLER_CONSUMED,
427 	RX_HANDLER_ANOTHER,
428 	RX_HANDLER_EXACT,
429 	RX_HANDLER_PASS,
430 };
431 typedef enum rx_handler_result rx_handler_result_t;
432 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
433 
434 void __napi_schedule(struct napi_struct *n);
435 void __napi_schedule_irqoff(struct napi_struct *n);
436 
napi_disable_pending(struct napi_struct * n)437 static inline bool napi_disable_pending(struct napi_struct *n)
438 {
439 	return test_bit(NAPI_STATE_DISABLE, &n->state);
440 }
441 
442 bool napi_schedule_prep(struct napi_struct *n);
443 
444 /**
445  *	napi_schedule - schedule NAPI poll
446  *	@n: NAPI context
447  *
448  * Schedule NAPI poll routine to be called if it is not already
449  * running.
450  */
napi_schedule(struct napi_struct * n)451 static inline void napi_schedule(struct napi_struct *n)
452 {
453 	if (napi_schedule_prep(n))
454 		__napi_schedule(n);
455 }
456 
457 /**
458  *	napi_schedule_irqoff - schedule NAPI poll
459  *	@n: NAPI context
460  *
461  * Variant of napi_schedule(), assuming hard irqs are masked.
462  */
napi_schedule_irqoff(struct napi_struct * n)463 static inline void napi_schedule_irqoff(struct napi_struct *n)
464 {
465 	if (napi_schedule_prep(n))
466 		__napi_schedule_irqoff(n);
467 }
468 
469 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)470 static inline bool napi_reschedule(struct napi_struct *napi)
471 {
472 	if (napi_schedule_prep(napi)) {
473 		__napi_schedule(napi);
474 		return true;
475 	}
476 	return false;
477 }
478 
479 bool napi_complete_done(struct napi_struct *n, int work_done);
480 /**
481  *	napi_complete - NAPI processing complete
482  *	@n: NAPI context
483  *
484  * Mark NAPI processing as complete.
485  * Consider using napi_complete_done() instead.
486  * Return false if device should avoid rearming interrupts.
487  */
napi_complete(struct napi_struct * n)488 static inline bool napi_complete(struct napi_struct *n)
489 {
490 	return napi_complete_done(n, 0);
491 }
492 
493 /**
494  *	napi_hash_del - remove a NAPI from global table
495  *	@napi: NAPI context
496  *
497  * Warning: caller must observe RCU grace period
498  * before freeing memory containing @napi, if
499  * this function returns true.
500  * Note: core networking stack automatically calls it
501  * from netif_napi_del().
502  * Drivers might want to call this helper to combine all
503  * the needed RCU grace periods into a single one.
504  */
505 bool napi_hash_del(struct napi_struct *napi);
506 
507 /**
508  *	napi_disable - prevent NAPI from scheduling
509  *	@n: NAPI context
510  *
511  * Stop NAPI from being scheduled on this context.
512  * Waits till any outstanding processing completes.
513  */
514 void napi_disable(struct napi_struct *n);
515 
516 /**
517  *	napi_enable - enable NAPI scheduling
518  *	@n: NAPI context
519  *
520  * Resume NAPI from being scheduled on this context.
521  * Must be paired with napi_disable.
522  */
napi_enable(struct napi_struct * n)523 static inline void napi_enable(struct napi_struct *n)
524 {
525 	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
526 	smp_mb__before_atomic();
527 	clear_bit(NAPI_STATE_SCHED, &n->state);
528 	clear_bit(NAPI_STATE_NPSVC, &n->state);
529 }
530 
531 /**
532  *	napi_synchronize - wait until NAPI is not running
533  *	@n: NAPI context
534  *
535  * Wait until NAPI is done being scheduled on this context.
536  * Waits till any outstanding processing completes but
537  * does not disable future activations.
538  */
napi_synchronize(const struct napi_struct * n)539 static inline void napi_synchronize(const struct napi_struct *n)
540 {
541 	if (IS_ENABLED(CONFIG_SMP))
542 		while (test_bit(NAPI_STATE_SCHED, &n->state))
543 			msleep(1);
544 	else
545 		barrier();
546 }
547 
548 enum netdev_queue_state_t {
549 	__QUEUE_STATE_DRV_XOFF,
550 	__QUEUE_STATE_STACK_XOFF,
551 	__QUEUE_STATE_FROZEN,
552 };
553 
554 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
555 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
556 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
557 
558 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
559 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
560 					QUEUE_STATE_FROZEN)
561 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
562 					QUEUE_STATE_FROZEN)
563 
564 /*
565  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
566  * netif_tx_* functions below are used to manipulate this flag.  The
567  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
568  * queue independently.  The netif_xmit_*stopped functions below are called
569  * to check if the queue has been stopped by the driver or stack (either
570  * of the XOFF bits are set in the state).  Drivers should not need to call
571  * netif_xmit*stopped functions, they should only be using netif_tx_*.
572  */
573 
574 struct netdev_queue {
575 /*
576  * read-mostly part
577  */
578 	struct net_device	*dev;
579 	struct Qdisc __rcu	*qdisc;
580 	struct Qdisc		*qdisc_sleeping;
581 #ifdef CONFIG_SYSFS
582 	struct kobject		kobj;
583 #endif
584 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
585 	int			numa_node;
586 #endif
587 	unsigned long		tx_maxrate;
588 	/*
589 	 * Number of TX timeouts for this queue
590 	 * (/sys/class/net/DEV/Q/trans_timeout)
591 	 */
592 	unsigned long		trans_timeout;
593 
594 	/* Subordinate device that the queue has been assigned to */
595 	struct net_device	*sb_dev;
596 /*
597  * write-mostly part
598  */
599 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
600 	int			xmit_lock_owner;
601 	/*
602 	 * Time (in jiffies) of last Tx
603 	 */
604 	unsigned long		trans_start;
605 
606 	unsigned long		state;
607 
608 #ifdef CONFIG_BQL
609 	struct dql		dql;
610 #endif
611 } ____cacheline_aligned_in_smp;
612 
613 extern int sysctl_fb_tunnels_only_for_init_net;
614 
net_has_fallback_tunnels(const struct net * net)615 static inline bool net_has_fallback_tunnels(const struct net *net)
616 {
617 	return net == &init_net ||
618 	       !IS_ENABLED(CONFIG_SYSCTL) ||
619 	       !sysctl_fb_tunnels_only_for_init_net;
620 }
621 
netdev_queue_numa_node_read(const struct netdev_queue * q)622 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
623 {
624 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
625 	return q->numa_node;
626 #else
627 	return NUMA_NO_NODE;
628 #endif
629 }
630 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)631 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
632 {
633 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
634 	q->numa_node = node;
635 #endif
636 }
637 
638 #ifdef CONFIG_RPS
639 /*
640  * This structure holds an RPS map which can be of variable length.  The
641  * map is an array of CPUs.
642  */
643 struct rps_map {
644 	unsigned int len;
645 	struct rcu_head rcu;
646 	u16 cpus[0];
647 };
648 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
649 
650 /*
651  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
652  * tail pointer for that CPU's input queue at the time of last enqueue, and
653  * a hardware filter index.
654  */
655 struct rps_dev_flow {
656 	u16 cpu;
657 	u16 filter;
658 	unsigned int last_qtail;
659 };
660 #define RPS_NO_FILTER 0xffff
661 
662 /*
663  * The rps_dev_flow_table structure contains a table of flow mappings.
664  */
665 struct rps_dev_flow_table {
666 	unsigned int mask;
667 	struct rcu_head rcu;
668 	struct rps_dev_flow flows[0];
669 };
670 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
671     ((_num) * sizeof(struct rps_dev_flow)))
672 
673 /*
674  * The rps_sock_flow_table contains mappings of flows to the last CPU
675  * on which they were processed by the application (set in recvmsg).
676  * Each entry is a 32bit value. Upper part is the high-order bits
677  * of flow hash, lower part is CPU number.
678  * rps_cpu_mask is used to partition the space, depending on number of
679  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
680  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
681  * meaning we use 32-6=26 bits for the hash.
682  */
683 struct rps_sock_flow_table {
684 	u32	mask;
685 
686 	u32	ents[0] ____cacheline_aligned_in_smp;
687 };
688 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
689 
690 #define RPS_NO_CPU 0xffff
691 
692 extern u32 rps_cpu_mask;
693 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
694 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)695 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
696 					u32 hash)
697 {
698 	if (table && hash) {
699 		unsigned int index = hash & table->mask;
700 		u32 val = hash & ~rps_cpu_mask;
701 
702 		/* We only give a hint, preemption can change CPU under us */
703 		val |= raw_smp_processor_id();
704 
705 		/* The following WRITE_ONCE() is paired with the READ_ONCE()
706 		 * here, and another one in get_rps_cpu().
707 		 */
708 		if (READ_ONCE(table->ents[index]) != val)
709 			WRITE_ONCE(table->ents[index], val);
710 	}
711 }
712 
713 #ifdef CONFIG_RFS_ACCEL
714 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
715 			 u16 filter_id);
716 #endif
717 #endif /* CONFIG_RPS */
718 
719 /* This structure contains an instance of an RX queue. */
720 struct netdev_rx_queue {
721 #ifdef CONFIG_RPS
722 	struct rps_map __rcu		*rps_map;
723 	struct rps_dev_flow_table __rcu	*rps_flow_table;
724 #endif
725 	struct kobject			kobj;
726 	struct net_device		*dev;
727 	struct xdp_rxq_info		xdp_rxq;
728 } ____cacheline_aligned_in_smp;
729 
730 /*
731  * RX queue sysfs structures and functions.
732  */
733 struct rx_queue_attribute {
734 	struct attribute attr;
735 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
736 	ssize_t (*store)(struct netdev_rx_queue *queue,
737 			 const char *buf, size_t len);
738 };
739 
740 #ifdef CONFIG_XPS
741 /*
742  * This structure holds an XPS map which can be of variable length.  The
743  * map is an array of queues.
744  */
745 struct xps_map {
746 	unsigned int len;
747 	unsigned int alloc_len;
748 	struct rcu_head rcu;
749 	u16 queues[0];
750 };
751 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
752 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
753        - sizeof(struct xps_map)) / sizeof(u16))
754 
755 /*
756  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
757  */
758 struct xps_dev_maps {
759 	struct rcu_head rcu;
760 	struct xps_map __rcu *attr_map[0]; /* Either CPUs map or RXQs map */
761 };
762 
763 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
764 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
765 
766 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
767 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
768 
769 #endif /* CONFIG_XPS */
770 
771 #define TC_MAX_QUEUE	16
772 #define TC_BITMASK	15
773 /* HW offloaded queuing disciplines txq count and offset maps */
774 struct netdev_tc_txq {
775 	u16 count;
776 	u16 offset;
777 };
778 
779 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
780 /*
781  * This structure is to hold information about the device
782  * configured to run FCoE protocol stack.
783  */
784 struct netdev_fcoe_hbainfo {
785 	char	manufacturer[64];
786 	char	serial_number[64];
787 	char	hardware_version[64];
788 	char	driver_version[64];
789 	char	optionrom_version[64];
790 	char	firmware_version[64];
791 	char	model[256];
792 	char	model_description[256];
793 };
794 #endif
795 
796 #define MAX_PHYS_ITEM_ID_LEN 32
797 
798 /* This structure holds a unique identifier to identify some
799  * physical item (port for example) used by a netdevice.
800  */
801 struct netdev_phys_item_id {
802 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
803 	unsigned char id_len;
804 };
805 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)806 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
807 					    struct netdev_phys_item_id *b)
808 {
809 	return a->id_len == b->id_len &&
810 	       memcmp(a->id, b->id, a->id_len) == 0;
811 }
812 
813 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
814 				       struct sk_buff *skb,
815 				       struct net_device *sb_dev);
816 
817 enum tc_setup_type {
818 	TC_SETUP_QDISC_MQPRIO,
819 	TC_SETUP_CLSU32,
820 	TC_SETUP_CLSFLOWER,
821 	TC_SETUP_CLSMATCHALL,
822 	TC_SETUP_CLSBPF,
823 	TC_SETUP_BLOCK,
824 	TC_SETUP_QDISC_CBS,
825 	TC_SETUP_QDISC_RED,
826 	TC_SETUP_QDISC_PRIO,
827 	TC_SETUP_QDISC_MQ,
828 	TC_SETUP_QDISC_ETF,
829 };
830 
831 /* These structures hold the attributes of bpf state that are being passed
832  * to the netdevice through the bpf op.
833  */
834 enum bpf_netdev_command {
835 	/* Set or clear a bpf program used in the earliest stages of packet
836 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
837 	 * is responsible for calling bpf_prog_put on any old progs that are
838 	 * stored. In case of error, the callee need not release the new prog
839 	 * reference, but on success it takes ownership and must bpf_prog_put
840 	 * when it is no longer used.
841 	 */
842 	XDP_SETUP_PROG,
843 	XDP_SETUP_PROG_HW,
844 	XDP_QUERY_PROG,
845 	XDP_QUERY_PROG_HW,
846 	/* BPF program for offload callbacks, invoked at program load time. */
847 	BPF_OFFLOAD_VERIFIER_PREP,
848 	BPF_OFFLOAD_TRANSLATE,
849 	BPF_OFFLOAD_DESTROY,
850 	BPF_OFFLOAD_MAP_ALLOC,
851 	BPF_OFFLOAD_MAP_FREE,
852 	XDP_QUERY_XSK_UMEM,
853 	XDP_SETUP_XSK_UMEM,
854 };
855 
856 struct bpf_prog_offload_ops;
857 struct netlink_ext_ack;
858 struct xdp_umem;
859 
860 struct netdev_bpf {
861 	enum bpf_netdev_command command;
862 	union {
863 		/* XDP_SETUP_PROG */
864 		struct {
865 			u32 flags;
866 			struct bpf_prog *prog;
867 			struct netlink_ext_ack *extack;
868 		};
869 		/* XDP_QUERY_PROG, XDP_QUERY_PROG_HW */
870 		struct {
871 			u32 prog_id;
872 			/* flags with which program was installed */
873 			u32 prog_flags;
874 		};
875 		/* BPF_OFFLOAD_VERIFIER_PREP */
876 		struct {
877 			struct bpf_prog *prog;
878 			const struct bpf_prog_offload_ops *ops; /* callee set */
879 		} verifier;
880 		/* BPF_OFFLOAD_TRANSLATE, BPF_OFFLOAD_DESTROY */
881 		struct {
882 			struct bpf_prog *prog;
883 		} offload;
884 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
885 		struct {
886 			struct bpf_offloaded_map *offmap;
887 		};
888 		/* XDP_QUERY_XSK_UMEM, XDP_SETUP_XSK_UMEM */
889 		struct {
890 			struct xdp_umem *umem; /* out for query*/
891 			u16 queue_id; /* in for query */
892 		} xsk;
893 	};
894 };
895 
896 #ifdef CONFIG_XFRM_OFFLOAD
897 struct xfrmdev_ops {
898 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
899 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
900 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
901 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
902 				       struct xfrm_state *x);
903 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
904 };
905 #endif
906 
907 #if IS_ENABLED(CONFIG_TLS_DEVICE)
908 enum tls_offload_ctx_dir {
909 	TLS_OFFLOAD_CTX_DIR_RX,
910 	TLS_OFFLOAD_CTX_DIR_TX,
911 };
912 
913 struct tls_crypto_info;
914 struct tls_context;
915 
916 struct tlsdev_ops {
917 	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
918 			   enum tls_offload_ctx_dir direction,
919 			   struct tls_crypto_info *crypto_info,
920 			   u32 start_offload_tcp_sn);
921 	void (*tls_dev_del)(struct net_device *netdev,
922 			    struct tls_context *ctx,
923 			    enum tls_offload_ctx_dir direction);
924 	void (*tls_dev_resync_rx)(struct net_device *netdev,
925 				  struct sock *sk, u32 seq, u64 rcd_sn);
926 };
927 #endif
928 
929 struct dev_ifalias {
930 	struct rcu_head rcuhead;
931 	char ifalias[];
932 };
933 
934 /*
935  * This structure defines the management hooks for network devices.
936  * The following hooks can be defined; unless noted otherwise, they are
937  * optional and can be filled with a null pointer.
938  *
939  * int (*ndo_init)(struct net_device *dev);
940  *     This function is called once when a network device is registered.
941  *     The network device can use this for any late stage initialization
942  *     or semantic validation. It can fail with an error code which will
943  *     be propagated back to register_netdev.
944  *
945  * void (*ndo_uninit)(struct net_device *dev);
946  *     This function is called when device is unregistered or when registration
947  *     fails. It is not called if init fails.
948  *
949  * int (*ndo_open)(struct net_device *dev);
950  *     This function is called when a network device transitions to the up
951  *     state.
952  *
953  * int (*ndo_stop)(struct net_device *dev);
954  *     This function is called when a network device transitions to the down
955  *     state.
956  *
957  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
958  *                               struct net_device *dev);
959  *	Called when a packet needs to be transmitted.
960  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
961  *	the queue before that can happen; it's for obsolete devices and weird
962  *	corner cases, but the stack really does a non-trivial amount
963  *	of useless work if you return NETDEV_TX_BUSY.
964  *	Required; cannot be NULL.
965  *
966  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
967  *					   struct net_device *dev
968  *					   netdev_features_t features);
969  *	Called by core transmit path to determine if device is capable of
970  *	performing offload operations on a given packet. This is to give
971  *	the device an opportunity to implement any restrictions that cannot
972  *	be otherwise expressed by feature flags. The check is called with
973  *	the set of features that the stack has calculated and it returns
974  *	those the driver believes to be appropriate.
975  *
976  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
977  *                         struct net_device *sb_dev,
978  *                         select_queue_fallback_t fallback);
979  *	Called to decide which queue to use when device supports multiple
980  *	transmit queues.
981  *
982  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
983  *	This function is called to allow device receiver to make
984  *	changes to configuration when multicast or promiscuous is enabled.
985  *
986  * void (*ndo_set_rx_mode)(struct net_device *dev);
987  *	This function is called device changes address list filtering.
988  *	If driver handles unicast address filtering, it should set
989  *	IFF_UNICAST_FLT in its priv_flags.
990  *
991  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
992  *	This function  is called when the Media Access Control address
993  *	needs to be changed. If this interface is not defined, the
994  *	MAC address can not be changed.
995  *
996  * int (*ndo_validate_addr)(struct net_device *dev);
997  *	Test if Media Access Control address is valid for the device.
998  *
999  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1000  *	Called when a user requests an ioctl which can't be handled by
1001  *	the generic interface code. If not defined ioctls return
1002  *	not supported error code.
1003  *
1004  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1005  *	Used to set network devices bus interface parameters. This interface
1006  *	is retained for legacy reasons; new devices should use the bus
1007  *	interface (PCI) for low level management.
1008  *
1009  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1010  *	Called when a user wants to change the Maximum Transfer Unit
1011  *	of a device.
1012  *
1013  * void (*ndo_tx_timeout)(struct net_device *dev);
1014  *	Callback used when the transmitter has not made any progress
1015  *	for dev->watchdog ticks.
1016  *
1017  * void (*ndo_get_stats64)(struct net_device *dev,
1018  *                         struct rtnl_link_stats64 *storage);
1019  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1020  *	Called when a user wants to get the network device usage
1021  *	statistics. Drivers must do one of the following:
1022  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1023  *	   rtnl_link_stats64 structure passed by the caller.
1024  *	2. Define @ndo_get_stats to update a net_device_stats structure
1025  *	   (which should normally be dev->stats) and return a pointer to
1026  *	   it. The structure may be changed asynchronously only if each
1027  *	   field is written atomically.
1028  *	3. Update dev->stats asynchronously and atomically, and define
1029  *	   neither operation.
1030  *
1031  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1032  *	Return true if this device supports offload stats of this attr_id.
1033  *
1034  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1035  *	void *attr_data)
1036  *	Get statistics for offload operations by attr_id. Write it into the
1037  *	attr_data pointer.
1038  *
1039  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1040  *	If device supports VLAN filtering this function is called when a
1041  *	VLAN id is registered.
1042  *
1043  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1044  *	If device supports VLAN filtering this function is called when a
1045  *	VLAN id is unregistered.
1046  *
1047  * void (*ndo_poll_controller)(struct net_device *dev);
1048  *
1049  *	SR-IOV management functions.
1050  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1051  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1052  *			  u8 qos, __be16 proto);
1053  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1054  *			  int max_tx_rate);
1055  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1056  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1057  * int (*ndo_get_vf_config)(struct net_device *dev,
1058  *			    int vf, struct ifla_vf_info *ivf);
1059  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1060  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1061  *			  struct nlattr *port[]);
1062  *
1063  *      Enable or disable the VF ability to query its RSS Redirection Table and
1064  *      Hash Key. This is needed since on some devices VF share this information
1065  *      with PF and querying it may introduce a theoretical security risk.
1066  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1067  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1068  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1069  *		       void *type_data);
1070  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1071  *	This is always called from the stack with the rtnl lock held and netif
1072  *	tx queues stopped. This allows the netdevice to perform queue
1073  *	management safely.
1074  *
1075  *	Fiber Channel over Ethernet (FCoE) offload functions.
1076  * int (*ndo_fcoe_enable)(struct net_device *dev);
1077  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1078  *	so the underlying device can perform whatever needed configuration or
1079  *	initialization to support acceleration of FCoE traffic.
1080  *
1081  * int (*ndo_fcoe_disable)(struct net_device *dev);
1082  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1083  *	so the underlying device can perform whatever needed clean-ups to
1084  *	stop supporting acceleration of FCoE traffic.
1085  *
1086  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1087  *			     struct scatterlist *sgl, unsigned int sgc);
1088  *	Called when the FCoE Initiator wants to initialize an I/O that
1089  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1090  *	perform necessary setup and returns 1 to indicate the device is set up
1091  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1092  *
1093  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1094  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1095  *	indicated by the FC exchange id 'xid', so the underlying device can
1096  *	clean up and reuse resources for later DDP requests.
1097  *
1098  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1099  *			      struct scatterlist *sgl, unsigned int sgc);
1100  *	Called when the FCoE Target wants to initialize an I/O that
1101  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1102  *	perform necessary setup and returns 1 to indicate the device is set up
1103  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1104  *
1105  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1106  *			       struct netdev_fcoe_hbainfo *hbainfo);
1107  *	Called when the FCoE Protocol stack wants information on the underlying
1108  *	device. This information is utilized by the FCoE protocol stack to
1109  *	register attributes with Fiber Channel management service as per the
1110  *	FC-GS Fabric Device Management Information(FDMI) specification.
1111  *
1112  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1113  *	Called when the underlying device wants to override default World Wide
1114  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1115  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1116  *	protocol stack to use.
1117  *
1118  *	RFS acceleration.
1119  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1120  *			    u16 rxq_index, u32 flow_id);
1121  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1122  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1123  *	Return the filter ID on success, or a negative error code.
1124  *
1125  *	Slave management functions (for bridge, bonding, etc).
1126  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1127  *	Called to make another netdev an underling.
1128  *
1129  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1130  *	Called to release previously enslaved netdev.
1131  *
1132  *      Feature/offload setting functions.
1133  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1134  *		netdev_features_t features);
1135  *	Adjusts the requested feature flags according to device-specific
1136  *	constraints, and returns the resulting flags. Must not modify
1137  *	the device state.
1138  *
1139  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1140  *	Called to update device configuration to new features. Passed
1141  *	feature set might be less than what was returned by ndo_fix_features()).
1142  *	Must return >0 or -errno if it changed dev->features itself.
1143  *
1144  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1145  *		      struct net_device *dev,
1146  *		      const unsigned char *addr, u16 vid, u16 flags)
1147  *	Adds an FDB entry to dev for addr.
1148  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1149  *		      struct net_device *dev,
1150  *		      const unsigned char *addr, u16 vid)
1151  *	Deletes the FDB entry from dev coresponding to addr.
1152  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1153  *		       struct net_device *dev, struct net_device *filter_dev,
1154  *		       int *idx)
1155  *	Used to add FDB entries to dump requests. Implementers should add
1156  *	entries to skb and update idx with the number of entries.
1157  *
1158  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1159  *			     u16 flags)
1160  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1161  *			     struct net_device *dev, u32 filter_mask,
1162  *			     int nlflags)
1163  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1164  *			     u16 flags);
1165  *
1166  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1167  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1168  *	which do not represent real hardware may define this to allow their
1169  *	userspace components to manage their virtual carrier state. Devices
1170  *	that determine carrier state from physical hardware properties (eg
1171  *	network cables) or protocol-dependent mechanisms (eg
1172  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1173  *
1174  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1175  *			       struct netdev_phys_item_id *ppid);
1176  *	Called to get ID of physical port of this device. If driver does
1177  *	not implement this, it is assumed that the hw is not able to have
1178  *	multiple net devices on single physical port.
1179  *
1180  * void (*ndo_udp_tunnel_add)(struct net_device *dev,
1181  *			      struct udp_tunnel_info *ti);
1182  *	Called by UDP tunnel to notify a driver about the UDP port and socket
1183  *	address family that a UDP tunnel is listnening to. It is called only
1184  *	when a new port starts listening. The operation is protected by the
1185  *	RTNL.
1186  *
1187  * void (*ndo_udp_tunnel_del)(struct net_device *dev,
1188  *			      struct udp_tunnel_info *ti);
1189  *	Called by UDP tunnel to notify the driver about a UDP port and socket
1190  *	address family that the UDP tunnel is not listening to anymore. The
1191  *	operation is protected by the RTNL.
1192  *
1193  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1194  *				 struct net_device *dev)
1195  *	Called by upper layer devices to accelerate switching or other
1196  *	station functionality into hardware. 'pdev is the lowerdev
1197  *	to use for the offload and 'dev' is the net device that will
1198  *	back the offload. Returns a pointer to the private structure
1199  *	the upper layer will maintain.
1200  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1201  *	Called by upper layer device to delete the station created
1202  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1203  *	the station and priv is the structure returned by the add
1204  *	operation.
1205  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1206  *			     int queue_index, u32 maxrate);
1207  *	Called when a user wants to set a max-rate limitation of specific
1208  *	TX queue.
1209  * int (*ndo_get_iflink)(const struct net_device *dev);
1210  *	Called to get the iflink value of this device.
1211  * void (*ndo_change_proto_down)(struct net_device *dev,
1212  *				 bool proto_down);
1213  *	This function is used to pass protocol port error state information
1214  *	to the switch driver. The switch driver can react to the proto_down
1215  *      by doing a phys down on the associated switch port.
1216  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1217  *	This function is used to get egress tunnel information for given skb.
1218  *	This is useful for retrieving outer tunnel header parameters while
1219  *	sampling packet.
1220  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1221  *	This function is used to specify the headroom that the skb must
1222  *	consider when allocation skb during packet reception. Setting
1223  *	appropriate rx headroom value allows avoiding skb head copy on
1224  *	forward. Setting a negative value resets the rx headroom to the
1225  *	default value.
1226  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1227  *	This function is used to set or query state related to XDP on the
1228  *	netdevice and manage BPF offload. See definition of
1229  *	enum bpf_netdev_command for details.
1230  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1231  *			u32 flags);
1232  *	This function is used to submit @n XDP packets for transmit on a
1233  *	netdevice. Returns number of frames successfully transmitted, frames
1234  *	that got dropped are freed/returned via xdp_return_frame().
1235  *	Returns negative number, means general error invoking ndo, meaning
1236  *	no frames were xmit'ed and core-caller will free all frames.
1237  */
1238 struct net_device_ops {
1239 	int			(*ndo_init)(struct net_device *dev);
1240 	void			(*ndo_uninit)(struct net_device *dev);
1241 	int			(*ndo_open)(struct net_device *dev);
1242 	int			(*ndo_stop)(struct net_device *dev);
1243 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1244 						  struct net_device *dev);
1245 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1246 						      struct net_device *dev,
1247 						      netdev_features_t features);
1248 	u16			(*ndo_select_queue)(struct net_device *dev,
1249 						    struct sk_buff *skb,
1250 						    struct net_device *sb_dev,
1251 						    select_queue_fallback_t fallback);
1252 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1253 						       int flags);
1254 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1255 	int			(*ndo_set_mac_address)(struct net_device *dev,
1256 						       void *addr);
1257 	int			(*ndo_validate_addr)(struct net_device *dev);
1258 	int			(*ndo_do_ioctl)(struct net_device *dev,
1259 					        struct ifreq *ifr, int cmd);
1260 	int			(*ndo_set_config)(struct net_device *dev,
1261 					          struct ifmap *map);
1262 	int			(*ndo_change_mtu)(struct net_device *dev,
1263 						  int new_mtu);
1264 	int			(*ndo_neigh_setup)(struct net_device *dev,
1265 						   struct neigh_parms *);
1266 	void			(*ndo_tx_timeout) (struct net_device *dev);
1267 
1268 	void			(*ndo_get_stats64)(struct net_device *dev,
1269 						   struct rtnl_link_stats64 *storage);
1270 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1271 	int			(*ndo_get_offload_stats)(int attr_id,
1272 							 const struct net_device *dev,
1273 							 void *attr_data);
1274 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1275 
1276 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1277 						       __be16 proto, u16 vid);
1278 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1279 						        __be16 proto, u16 vid);
1280 #ifdef CONFIG_NET_POLL_CONTROLLER
1281 	void                    (*ndo_poll_controller)(struct net_device *dev);
1282 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1283 						     struct netpoll_info *info);
1284 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1285 #endif
1286 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1287 						  int queue, u8 *mac);
1288 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1289 						   int queue, u16 vlan,
1290 						   u8 qos, __be16 proto);
1291 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1292 						   int vf, int min_tx_rate,
1293 						   int max_tx_rate);
1294 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1295 						       int vf, bool setting);
1296 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1297 						    int vf, bool setting);
1298 	int			(*ndo_get_vf_config)(struct net_device *dev,
1299 						     int vf,
1300 						     struct ifla_vf_info *ivf);
1301 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1302 							 int vf, int link_state);
1303 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1304 						    int vf,
1305 						    struct ifla_vf_stats
1306 						    *vf_stats);
1307 	int			(*ndo_set_vf_port)(struct net_device *dev,
1308 						   int vf,
1309 						   struct nlattr *port[]);
1310 	int			(*ndo_get_vf_port)(struct net_device *dev,
1311 						   int vf, struct sk_buff *skb);
1312 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1313 						   int vf, u64 guid,
1314 						   int guid_type);
1315 	int			(*ndo_set_vf_rss_query_en)(
1316 						   struct net_device *dev,
1317 						   int vf, bool setting);
1318 	int			(*ndo_setup_tc)(struct net_device *dev,
1319 						enum tc_setup_type type,
1320 						void *type_data);
1321 #if IS_ENABLED(CONFIG_FCOE)
1322 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1323 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1324 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1325 						      u16 xid,
1326 						      struct scatterlist *sgl,
1327 						      unsigned int sgc);
1328 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1329 						     u16 xid);
1330 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1331 						       u16 xid,
1332 						       struct scatterlist *sgl,
1333 						       unsigned int sgc);
1334 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1335 							struct netdev_fcoe_hbainfo *hbainfo);
1336 #endif
1337 
1338 #if IS_ENABLED(CONFIG_LIBFCOE)
1339 #define NETDEV_FCOE_WWNN 0
1340 #define NETDEV_FCOE_WWPN 1
1341 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1342 						    u64 *wwn, int type);
1343 #endif
1344 
1345 #ifdef CONFIG_RFS_ACCEL
1346 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1347 						     const struct sk_buff *skb,
1348 						     u16 rxq_index,
1349 						     u32 flow_id);
1350 #endif
1351 	int			(*ndo_add_slave)(struct net_device *dev,
1352 						 struct net_device *slave_dev,
1353 						 struct netlink_ext_ack *extack);
1354 	int			(*ndo_del_slave)(struct net_device *dev,
1355 						 struct net_device *slave_dev);
1356 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1357 						    netdev_features_t features);
1358 	int			(*ndo_set_features)(struct net_device *dev,
1359 						    netdev_features_t features);
1360 	int			(*ndo_neigh_construct)(struct net_device *dev,
1361 						       struct neighbour *n);
1362 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1363 						     struct neighbour *n);
1364 
1365 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1366 					       struct nlattr *tb[],
1367 					       struct net_device *dev,
1368 					       const unsigned char *addr,
1369 					       u16 vid,
1370 					       u16 flags);
1371 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1372 					       struct nlattr *tb[],
1373 					       struct net_device *dev,
1374 					       const unsigned char *addr,
1375 					       u16 vid);
1376 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1377 						struct netlink_callback *cb,
1378 						struct net_device *dev,
1379 						struct net_device *filter_dev,
1380 						int *idx);
1381 
1382 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1383 						      struct nlmsghdr *nlh,
1384 						      u16 flags);
1385 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1386 						      u32 pid, u32 seq,
1387 						      struct net_device *dev,
1388 						      u32 filter_mask,
1389 						      int nlflags);
1390 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1391 						      struct nlmsghdr *nlh,
1392 						      u16 flags);
1393 	int			(*ndo_change_carrier)(struct net_device *dev,
1394 						      bool new_carrier);
1395 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1396 							struct netdev_phys_item_id *ppid);
1397 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1398 							  char *name, size_t len);
1399 	void			(*ndo_udp_tunnel_add)(struct net_device *dev,
1400 						      struct udp_tunnel_info *ti);
1401 	void			(*ndo_udp_tunnel_del)(struct net_device *dev,
1402 						      struct udp_tunnel_info *ti);
1403 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1404 							struct net_device *dev);
1405 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1406 							void *priv);
1407 
1408 	int			(*ndo_get_lock_subclass)(struct net_device *dev);
1409 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1410 						      int queue_index,
1411 						      u32 maxrate);
1412 	int			(*ndo_get_iflink)(const struct net_device *dev);
1413 	int			(*ndo_change_proto_down)(struct net_device *dev,
1414 							 bool proto_down);
1415 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1416 						       struct sk_buff *skb);
1417 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1418 						       int needed_headroom);
1419 	int			(*ndo_bpf)(struct net_device *dev,
1420 					   struct netdev_bpf *bpf);
1421 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1422 						struct xdp_frame **xdp,
1423 						u32 flags);
1424 	int			(*ndo_xsk_async_xmit)(struct net_device *dev,
1425 						      u32 queue_id);
1426 };
1427 
1428 /**
1429  * enum net_device_priv_flags - &struct net_device priv_flags
1430  *
1431  * These are the &struct net_device, they are only set internally
1432  * by drivers and used in the kernel. These flags are invisible to
1433  * userspace; this means that the order of these flags can change
1434  * during any kernel release.
1435  *
1436  * You should have a pretty good reason to be extending these flags.
1437  *
1438  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1439  * @IFF_EBRIDGE: Ethernet bridging device
1440  * @IFF_BONDING: bonding master or slave
1441  * @IFF_ISATAP: ISATAP interface (RFC4214)
1442  * @IFF_WAN_HDLC: WAN HDLC device
1443  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1444  *	release skb->dst
1445  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1446  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1447  * @IFF_MACVLAN_PORT: device used as macvlan port
1448  * @IFF_BRIDGE_PORT: device used as bridge port
1449  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1450  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1451  * @IFF_UNICAST_FLT: Supports unicast filtering
1452  * @IFF_TEAM_PORT: device used as team port
1453  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1454  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1455  *	change when it's running
1456  * @IFF_MACVLAN: Macvlan device
1457  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1458  *	underlying stacked devices
1459  * @IFF_L3MDEV_MASTER: device is an L3 master device
1460  * @IFF_NO_QUEUE: device can run without qdisc attached
1461  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1462  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1463  * @IFF_TEAM: device is a team device
1464  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1465  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1466  *	entity (i.e. the master device for bridged veth)
1467  * @IFF_MACSEC: device is a MACsec device
1468  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1469  * @IFF_FAILOVER: device is a failover master device
1470  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1471  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1472  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1473  */
1474 enum netdev_priv_flags {
1475 	IFF_802_1Q_VLAN			= 1<<0,
1476 	IFF_EBRIDGE			= 1<<1,
1477 	IFF_BONDING			= 1<<2,
1478 	IFF_ISATAP			= 1<<3,
1479 	IFF_WAN_HDLC			= 1<<4,
1480 	IFF_XMIT_DST_RELEASE		= 1<<5,
1481 	IFF_DONT_BRIDGE			= 1<<6,
1482 	IFF_DISABLE_NETPOLL		= 1<<7,
1483 	IFF_MACVLAN_PORT		= 1<<8,
1484 	IFF_BRIDGE_PORT			= 1<<9,
1485 	IFF_OVS_DATAPATH		= 1<<10,
1486 	IFF_TX_SKB_SHARING		= 1<<11,
1487 	IFF_UNICAST_FLT			= 1<<12,
1488 	IFF_TEAM_PORT			= 1<<13,
1489 	IFF_SUPP_NOFCS			= 1<<14,
1490 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1491 	IFF_MACVLAN			= 1<<16,
1492 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1493 	IFF_L3MDEV_MASTER		= 1<<18,
1494 	IFF_NO_QUEUE			= 1<<19,
1495 	IFF_OPENVSWITCH			= 1<<20,
1496 	IFF_L3MDEV_SLAVE		= 1<<21,
1497 	IFF_TEAM			= 1<<22,
1498 	IFF_RXFH_CONFIGURED		= 1<<23,
1499 	IFF_PHONY_HEADROOM		= 1<<24,
1500 	IFF_MACSEC			= 1<<25,
1501 	IFF_NO_RX_HANDLER		= 1<<26,
1502 	IFF_FAILOVER			= 1<<27,
1503 	IFF_FAILOVER_SLAVE		= 1<<28,
1504 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1505 	IFF_LIVE_RENAME_OK		= 1<<30,
1506 };
1507 
1508 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1509 #define IFF_EBRIDGE			IFF_EBRIDGE
1510 #define IFF_BONDING			IFF_BONDING
1511 #define IFF_ISATAP			IFF_ISATAP
1512 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1513 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1514 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1515 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1516 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1517 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1518 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1519 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1520 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1521 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1522 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1523 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1524 #define IFF_MACVLAN			IFF_MACVLAN
1525 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1526 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1527 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1528 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1529 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1530 #define IFF_TEAM			IFF_TEAM
1531 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1532 #define IFF_MACSEC			IFF_MACSEC
1533 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1534 #define IFF_FAILOVER			IFF_FAILOVER
1535 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1536 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1537 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1538 
1539 /**
1540  *	struct net_device - The DEVICE structure.
1541  *
1542  *	Actually, this whole structure is a big mistake.  It mixes I/O
1543  *	data with strictly "high-level" data, and it has to know about
1544  *	almost every data structure used in the INET module.
1545  *
1546  *	@name:	This is the first field of the "visible" part of this structure
1547  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1548  *		of the interface.
1549  *
1550  *	@name_hlist: 	Device name hash chain, please keep it close to name[]
1551  *	@ifalias:	SNMP alias
1552  *	@mem_end:	Shared memory end
1553  *	@mem_start:	Shared memory start
1554  *	@base_addr:	Device I/O address
1555  *	@irq:		Device IRQ number
1556  *
1557  *	@state:		Generic network queuing layer state, see netdev_state_t
1558  *	@dev_list:	The global list of network devices
1559  *	@napi_list:	List entry used for polling NAPI devices
1560  *	@unreg_list:	List entry  when we are unregistering the
1561  *			device; see the function unregister_netdev
1562  *	@close_list:	List entry used when we are closing the device
1563  *	@ptype_all:     Device-specific packet handlers for all protocols
1564  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1565  *
1566  *	@adj_list:	Directly linked devices, like slaves for bonding
1567  *	@features:	Currently active device features
1568  *	@hw_features:	User-changeable features
1569  *
1570  *	@wanted_features:	User-requested features
1571  *	@vlan_features:		Mask of features inheritable by VLAN devices
1572  *
1573  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1574  *				This field indicates what encapsulation
1575  *				offloads the hardware is capable of doing,
1576  *				and drivers will need to set them appropriately.
1577  *
1578  *	@mpls_features:	Mask of features inheritable by MPLS
1579  *
1580  *	@ifindex:	interface index
1581  *	@group:		The group the device belongs to
1582  *
1583  *	@stats:		Statistics struct, which was left as a legacy, use
1584  *			rtnl_link_stats64 instead
1585  *
1586  *	@rx_dropped:	Dropped packets by core network,
1587  *			do not use this in drivers
1588  *	@tx_dropped:	Dropped packets by core network,
1589  *			do not use this in drivers
1590  *	@rx_nohandler:	nohandler dropped packets by core network on
1591  *			inactive devices, do not use this in drivers
1592  *	@carrier_up_count:	Number of times the carrier has been up
1593  *	@carrier_down_count:	Number of times the carrier has been down
1594  *
1595  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1596  *				instead of ioctl,
1597  *				see <net/iw_handler.h> for details.
1598  *	@wireless_data:	Instance data managed by the core of wireless extensions
1599  *
1600  *	@netdev_ops:	Includes several pointers to callbacks,
1601  *			if one wants to override the ndo_*() functions
1602  *	@ethtool_ops:	Management operations
1603  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1604  *			discovery handling. Necessary for e.g. 6LoWPAN.
1605  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1606  *			of Layer 2 headers.
1607  *
1608  *	@flags:		Interface flags (a la BSD)
1609  *	@priv_flags:	Like 'flags' but invisible to userspace,
1610  *			see if.h for the definitions
1611  *	@gflags:	Global flags ( kept as legacy )
1612  *	@padded:	How much padding added by alloc_netdev()
1613  *	@operstate:	RFC2863 operstate
1614  *	@link_mode:	Mapping policy to operstate
1615  *	@if_port:	Selectable AUI, TP, ...
1616  *	@dma:		DMA channel
1617  *	@mtu:		Interface MTU value
1618  *	@min_mtu:	Interface Minimum MTU value
1619  *	@max_mtu:	Interface Maximum MTU value
1620  *	@type:		Interface hardware type
1621  *	@hard_header_len: Maximum hardware header length.
1622  *	@min_header_len:  Minimum hardware header length
1623  *
1624  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1625  *			  cases can this be guaranteed
1626  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1627  *			  cases can this be guaranteed. Some cases also use
1628  *			  LL_MAX_HEADER instead to allocate the skb
1629  *
1630  *	interface address info:
1631  *
1632  * 	@perm_addr:		Permanent hw address
1633  * 	@addr_assign_type:	Hw address assignment type
1634  * 	@addr_len:		Hardware address length
1635  *	@upper_level:		Maximum depth level of upper devices.
1636  *	@lower_level:		Maximum depth level of lower devices.
1637  *	@neigh_priv_len:	Used in neigh_alloc()
1638  * 	@dev_id:		Used to differentiate devices that share
1639  * 				the same link layer address
1640  * 	@dev_port:		Used to differentiate devices that share
1641  * 				the same function
1642  *	@addr_list_lock:	XXX: need comments on this one
1643  *	@uc_promisc:		Counter that indicates promiscuous mode
1644  *				has been enabled due to the need to listen to
1645  *				additional unicast addresses in a device that
1646  *				does not implement ndo_set_rx_mode()
1647  *	@uc:			unicast mac addresses
1648  *	@mc:			multicast mac addresses
1649  *	@dev_addrs:		list of device hw addresses
1650  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1651  *	@promiscuity:		Number of times the NIC is told to work in
1652  *				promiscuous mode; if it becomes 0 the NIC will
1653  *				exit promiscuous mode
1654  *	@allmulti:		Counter, enables or disables allmulticast mode
1655  *
1656  *	@vlan_info:	VLAN info
1657  *	@dsa_ptr:	dsa specific data
1658  *	@tipc_ptr:	TIPC specific data
1659  *	@atalk_ptr:	AppleTalk link
1660  *	@ip_ptr:	IPv4 specific data
1661  *	@ip6_ptr:	IPv6 specific data
1662  *	@ax25_ptr:	AX.25 specific data
1663  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1664  *
1665  *	@dev_addr:	Hw address (before bcast,
1666  *			because most packets are unicast)
1667  *
1668  *	@_rx:			Array of RX queues
1669  *	@num_rx_queues:		Number of RX queues
1670  *				allocated at register_netdev() time
1671  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1672  *
1673  *	@rx_handler:		handler for received packets
1674  *	@rx_handler_data: 	XXX: need comments on this one
1675  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1676  *				ingress processing
1677  *	@ingress_queue:		XXX: need comments on this one
1678  *	@broadcast:		hw bcast address
1679  *
1680  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1681  *			indexed by RX queue number. Assigned by driver.
1682  *			This must only be set if the ndo_rx_flow_steer
1683  *			operation is defined
1684  *	@index_hlist:		Device index hash chain
1685  *
1686  *	@_tx:			Array of TX queues
1687  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1688  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1689  *	@qdisc:			Root qdisc from userspace point of view
1690  *	@tx_queue_len:		Max frames per queue allowed
1691  *	@tx_global_lock: 	XXX: need comments on this one
1692  *
1693  *	@xps_maps:	XXX: need comments on this one
1694  *	@miniq_egress:		clsact qdisc specific data for
1695  *				egress processing
1696  *	@watchdog_timeo:	Represents the timeout that is used by
1697  *				the watchdog (see dev_watchdog())
1698  *	@watchdog_timer:	List of timers
1699  *
1700  *	@pcpu_refcnt:		Number of references to this device
1701  *	@todo_list:		Delayed register/unregister
1702  *	@link_watch_list:	XXX: need comments on this one
1703  *
1704  *	@reg_state:		Register/unregister state machine
1705  *	@dismantle:		Device is going to be freed
1706  *	@rtnl_link_state:	This enum represents the phases of creating
1707  *				a new link
1708  *
1709  *	@needs_free_netdev:	Should unregister perform free_netdev?
1710  *	@priv_destructor:	Called from unregister
1711  *	@npinfo:		XXX: need comments on this one
1712  * 	@nd_net:		Network namespace this network device is inside
1713  *
1714  * 	@ml_priv:	Mid-layer private
1715  * 	@lstats:	Loopback statistics
1716  * 	@tstats:	Tunnel statistics
1717  * 	@dstats:	Dummy statistics
1718  * 	@vstats:	Virtual ethernet statistics
1719  *
1720  *	@garp_port:	GARP
1721  *	@mrp_port:	MRP
1722  *
1723  *	@dev:		Class/net/name entry
1724  *	@sysfs_groups:	Space for optional device, statistics and wireless
1725  *			sysfs groups
1726  *
1727  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1728  *	@rtnl_link_ops:	Rtnl_link_ops
1729  *
1730  *	@gso_max_size:	Maximum size of generic segmentation offload
1731  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1732  *			NIC for GSO
1733  *
1734  *	@dcbnl_ops:	Data Center Bridging netlink ops
1735  *	@num_tc:	Number of traffic classes in the net device
1736  *	@tc_to_txq:	XXX: need comments on this one
1737  *	@prio_tc_map:	XXX: need comments on this one
1738  *
1739  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1740  *
1741  *	@priomap:	XXX: need comments on this one
1742  *	@phydev:	Physical device may attach itself
1743  *			for hardware timestamping
1744  *	@sfp_bus:	attached &struct sfp_bus structure.
1745  *
1746  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1747  *	@qdisc_running_key: lockdep class annotating Qdisc->running seqcount
1748  *
1749  *	@proto_down:	protocol port state information can be sent to the
1750  *			switch driver and used to set the phys state of the
1751  *			switch port.
1752  *
1753  *	@wol_enabled:	Wake-on-LAN is enabled
1754  *
1755  *	FIXME: cleanup struct net_device such that network protocol info
1756  *	moves out.
1757  */
1758 
1759 struct net_device {
1760 	char			name[IFNAMSIZ];
1761 	struct hlist_node	name_hlist;
1762 	struct dev_ifalias	__rcu *ifalias;
1763 	/*
1764 	 *	I/O specific fields
1765 	 *	FIXME: Merge these and struct ifmap into one
1766 	 */
1767 	unsigned long		mem_end;
1768 	unsigned long		mem_start;
1769 	unsigned long		base_addr;
1770 	int			irq;
1771 
1772 	/*
1773 	 *	Some hardware also needs these fields (state,dev_list,
1774 	 *	napi_list,unreg_list,close_list) but they are not
1775 	 *	part of the usual set specified in Space.c.
1776 	 */
1777 
1778 	unsigned long		state;
1779 
1780 	struct list_head	dev_list;
1781 	struct list_head	napi_list;
1782 	struct list_head	unreg_list;
1783 	struct list_head	close_list;
1784 	struct list_head	ptype_all;
1785 	struct list_head	ptype_specific;
1786 
1787 	struct {
1788 		struct list_head upper;
1789 		struct list_head lower;
1790 	} adj_list;
1791 
1792 	netdev_features_t	features;
1793 	netdev_features_t	hw_features;
1794 	netdev_features_t	wanted_features;
1795 	netdev_features_t	vlan_features;
1796 	netdev_features_t	hw_enc_features;
1797 	netdev_features_t	mpls_features;
1798 	netdev_features_t	gso_partial_features;
1799 
1800 	int			ifindex;
1801 	int			group;
1802 
1803 	struct net_device_stats	stats;
1804 
1805 	atomic_long_t		rx_dropped;
1806 	atomic_long_t		tx_dropped;
1807 	atomic_long_t		rx_nohandler;
1808 
1809 	/* Stats to monitor link on/off, flapping */
1810 	atomic_t		carrier_up_count;
1811 	atomic_t		carrier_down_count;
1812 
1813 #ifdef CONFIG_WIRELESS_EXT
1814 	const struct iw_handler_def *wireless_handlers;
1815 	struct iw_public_data	*wireless_data;
1816 #endif
1817 	const struct net_device_ops *netdev_ops;
1818 	const struct ethtool_ops *ethtool_ops;
1819 #ifdef CONFIG_NET_SWITCHDEV
1820 	const struct switchdev_ops *switchdev_ops;
1821 #endif
1822 #ifdef CONFIG_NET_L3_MASTER_DEV
1823 	const struct l3mdev_ops	*l3mdev_ops;
1824 #endif
1825 #if IS_ENABLED(CONFIG_IPV6)
1826 	const struct ndisc_ops *ndisc_ops;
1827 #endif
1828 
1829 #ifdef CONFIG_XFRM_OFFLOAD
1830 	const struct xfrmdev_ops *xfrmdev_ops;
1831 #endif
1832 
1833 #if IS_ENABLED(CONFIG_TLS_DEVICE)
1834 	const struct tlsdev_ops *tlsdev_ops;
1835 #endif
1836 
1837 	const struct header_ops *header_ops;
1838 
1839 	unsigned int		flags;
1840 	unsigned int		priv_flags;
1841 
1842 	unsigned short		gflags;
1843 	unsigned short		padded;
1844 
1845 	unsigned char		operstate;
1846 	unsigned char		link_mode;
1847 
1848 	unsigned char		if_port;
1849 	unsigned char		dma;
1850 
1851 	/* Note : dev->mtu is often read without holding a lock.
1852 	 * Writers usually hold RTNL.
1853 	 * It is recommended to use READ_ONCE() to annotate the reads,
1854 	 * and to use WRITE_ONCE() to annotate the writes.
1855 	 */
1856 	unsigned int		mtu;
1857 	unsigned int		min_mtu;
1858 	unsigned int		max_mtu;
1859 	unsigned short		type;
1860 	unsigned short		hard_header_len;
1861 	unsigned char		min_header_len;
1862 
1863 	unsigned short		needed_headroom;
1864 	unsigned short		needed_tailroom;
1865 
1866 	/* Interface address info. */
1867 	unsigned char		perm_addr[MAX_ADDR_LEN];
1868 	unsigned char		addr_assign_type;
1869 	unsigned char		addr_len;
1870 	unsigned char		upper_level;
1871 	unsigned char		lower_level;
1872 	unsigned short		neigh_priv_len;
1873 	unsigned short          dev_id;
1874 	unsigned short          dev_port;
1875 	spinlock_t		addr_list_lock;
1876 	unsigned char		name_assign_type;
1877 	bool			uc_promisc;
1878 	struct netdev_hw_addr_list	uc;
1879 	struct netdev_hw_addr_list	mc;
1880 	struct netdev_hw_addr_list	dev_addrs;
1881 
1882 #ifdef CONFIG_SYSFS
1883 	struct kset		*queues_kset;
1884 #endif
1885 	unsigned int		promiscuity;
1886 	unsigned int		allmulti;
1887 
1888 
1889 	/* Protocol-specific pointers */
1890 
1891 #if IS_ENABLED(CONFIG_VLAN_8021Q)
1892 	struct vlan_info __rcu	*vlan_info;
1893 #endif
1894 #if IS_ENABLED(CONFIG_NET_DSA)
1895 	struct dsa_port		*dsa_ptr;
1896 #endif
1897 #if IS_ENABLED(CONFIG_TIPC)
1898 	struct tipc_bearer __rcu *tipc_ptr;
1899 #endif
1900 #if IS_ENABLED(CONFIG_IRDA) || IS_ENABLED(CONFIG_ATALK)
1901 	void 			*atalk_ptr;
1902 #endif
1903 	struct in_device __rcu	*ip_ptr;
1904 	struct inet6_dev __rcu	*ip6_ptr;
1905 #if IS_ENABLED(CONFIG_AX25)
1906 	void			*ax25_ptr;
1907 #endif
1908 	struct wireless_dev	*ieee80211_ptr;
1909 	struct wpan_dev		*ieee802154_ptr;
1910 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
1911 	struct mpls_dev __rcu	*mpls_ptr;
1912 #endif
1913 
1914 /*
1915  * Cache lines mostly used on receive path (including eth_type_trans())
1916  */
1917 	/* Interface address info used in eth_type_trans() */
1918 	unsigned char		*dev_addr;
1919 
1920 	struct netdev_rx_queue	*_rx;
1921 	unsigned int		num_rx_queues;
1922 	unsigned int		real_num_rx_queues;
1923 
1924 	struct bpf_prog __rcu	*xdp_prog;
1925 	unsigned long		gro_flush_timeout;
1926 	rx_handler_func_t __rcu	*rx_handler;
1927 	void __rcu		*rx_handler_data;
1928 
1929 #ifdef CONFIG_NET_CLS_ACT
1930 	struct mini_Qdisc __rcu	*miniq_ingress;
1931 #endif
1932 	struct netdev_queue __rcu *ingress_queue;
1933 #ifdef CONFIG_NETFILTER_INGRESS
1934 	struct nf_hook_entries __rcu *nf_hooks_ingress;
1935 #endif
1936 
1937 	unsigned char		broadcast[MAX_ADDR_LEN];
1938 #ifdef CONFIG_RFS_ACCEL
1939 	struct cpu_rmap		*rx_cpu_rmap;
1940 #endif
1941 	struct hlist_node	index_hlist;
1942 
1943 /*
1944  * Cache lines mostly used on transmit path
1945  */
1946 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
1947 	unsigned int		num_tx_queues;
1948 	unsigned int		real_num_tx_queues;
1949 	struct Qdisc		*qdisc;
1950 #ifdef CONFIG_NET_SCHED
1951 	DECLARE_HASHTABLE	(qdisc_hash, 4);
1952 #endif
1953 	unsigned int		tx_queue_len;
1954 	spinlock_t		tx_global_lock;
1955 	int			watchdog_timeo;
1956 
1957 #ifdef CONFIG_XPS
1958 	struct xps_dev_maps __rcu *xps_cpus_map;
1959 	struct xps_dev_maps __rcu *xps_rxqs_map;
1960 #endif
1961 #ifdef CONFIG_NET_CLS_ACT
1962 	struct mini_Qdisc __rcu	*miniq_egress;
1963 #endif
1964 
1965 	/* These may be needed for future network-power-down code. */
1966 	struct timer_list	watchdog_timer;
1967 
1968 	int __percpu		*pcpu_refcnt;
1969 	struct list_head	todo_list;
1970 
1971 	struct list_head	link_watch_list;
1972 
1973 	enum { NETREG_UNINITIALIZED=0,
1974 	       NETREG_REGISTERED,	/* completed register_netdevice */
1975 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
1976 	       NETREG_UNREGISTERED,	/* completed unregister todo */
1977 	       NETREG_RELEASED,		/* called free_netdev */
1978 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
1979 	} reg_state:8;
1980 
1981 	bool dismantle;
1982 
1983 	enum {
1984 		RTNL_LINK_INITIALIZED,
1985 		RTNL_LINK_INITIALIZING,
1986 	} rtnl_link_state:16;
1987 
1988 	bool needs_free_netdev;
1989 	void (*priv_destructor)(struct net_device *dev);
1990 
1991 #ifdef CONFIG_NETPOLL
1992 	struct netpoll_info __rcu	*npinfo;
1993 #endif
1994 
1995 	possible_net_t			nd_net;
1996 
1997 	/* mid-layer private */
1998 	union {
1999 		void					*ml_priv;
2000 		struct pcpu_lstats __percpu		*lstats;
2001 		struct pcpu_sw_netstats __percpu	*tstats;
2002 		struct pcpu_dstats __percpu		*dstats;
2003 		struct pcpu_vstats __percpu		*vstats;
2004 	};
2005 
2006 #if IS_ENABLED(CONFIG_GARP)
2007 	struct garp_port __rcu	*garp_port;
2008 #endif
2009 #if IS_ENABLED(CONFIG_MRP)
2010 	struct mrp_port __rcu	*mrp_port;
2011 #endif
2012 
2013 	struct device		dev;
2014 	const struct attribute_group *sysfs_groups[4];
2015 	const struct attribute_group *sysfs_rx_queue_group;
2016 
2017 	const struct rtnl_link_ops *rtnl_link_ops;
2018 
2019 	/* for setting kernel sock attribute on TCP connection setup */
2020 #define GSO_MAX_SIZE		65536
2021 	unsigned int		gso_max_size;
2022 #define GSO_MAX_SEGS		65535
2023 	u16			gso_max_segs;
2024 
2025 #ifdef CONFIG_DCB
2026 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2027 #endif
2028 	s16			num_tc;
2029 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2030 	u8			prio_tc_map[TC_BITMASK + 1];
2031 
2032 #if IS_ENABLED(CONFIG_FCOE)
2033 	unsigned int		fcoe_ddp_xid;
2034 #endif
2035 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2036 	struct netprio_map __rcu *priomap;
2037 #endif
2038 	struct phy_device	*phydev;
2039 	struct sfp_bus		*sfp_bus;
2040 	struct lock_class_key	*qdisc_tx_busylock;
2041 	struct lock_class_key	*qdisc_running_key;
2042 	bool			proto_down;
2043 	unsigned		wol_enabled:1;
2044 };
2045 #define to_net_dev(d) container_of(d, struct net_device, dev)
2046 
netif_elide_gro(const struct net_device * dev)2047 static inline bool netif_elide_gro(const struct net_device *dev)
2048 {
2049 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2050 		return true;
2051 	return false;
2052 }
2053 
2054 #define	NETDEV_ALIGN		32
2055 
2056 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2057 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2058 {
2059 	return dev->prio_tc_map[prio & TC_BITMASK];
2060 }
2061 
2062 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2063 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2064 {
2065 	if (tc >= dev->num_tc)
2066 		return -EINVAL;
2067 
2068 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2069 	return 0;
2070 }
2071 
2072 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2073 void netdev_reset_tc(struct net_device *dev);
2074 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2075 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2076 
2077 static inline
netdev_get_num_tc(struct net_device * dev)2078 int netdev_get_num_tc(struct net_device *dev)
2079 {
2080 	return dev->num_tc;
2081 }
2082 
2083 void netdev_unbind_sb_channel(struct net_device *dev,
2084 			      struct net_device *sb_dev);
2085 int netdev_bind_sb_channel_queue(struct net_device *dev,
2086 				 struct net_device *sb_dev,
2087 				 u8 tc, u16 count, u16 offset);
2088 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2089 static inline int netdev_get_sb_channel(struct net_device *dev)
2090 {
2091 	return max_t(int, -dev->num_tc, 0);
2092 }
2093 
2094 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2095 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2096 					 unsigned int index)
2097 {
2098 	return &dev->_tx[index];
2099 }
2100 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2101 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2102 						    const struct sk_buff *skb)
2103 {
2104 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2105 }
2106 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2107 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2108 					    void (*f)(struct net_device *,
2109 						      struct netdev_queue *,
2110 						      void *),
2111 					    void *arg)
2112 {
2113 	unsigned int i;
2114 
2115 	for (i = 0; i < dev->num_tx_queues; i++)
2116 		f(dev, &dev->_tx[i], arg);
2117 }
2118 
2119 #define netdev_lockdep_set_classes(dev)				\
2120 {								\
2121 	static struct lock_class_key qdisc_tx_busylock_key;	\
2122 	static struct lock_class_key qdisc_running_key;		\
2123 	static struct lock_class_key qdisc_xmit_lock_key;	\
2124 	static struct lock_class_key dev_addr_list_lock_key;	\
2125 	unsigned int i;						\
2126 								\
2127 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2128 	(dev)->qdisc_running_key = &qdisc_running_key;		\
2129 	lockdep_set_class(&(dev)->addr_list_lock,		\
2130 			  &dev_addr_list_lock_key); 		\
2131 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2132 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2133 				  &qdisc_xmit_lock_key);	\
2134 }
2135 
2136 struct netdev_queue *netdev_pick_tx(struct net_device *dev,
2137 				    struct sk_buff *skb,
2138 				    struct net_device *sb_dev);
2139 
2140 /* returns the headroom that the master device needs to take in account
2141  * when forwarding to this dev
2142  */
netdev_get_fwd_headroom(struct net_device * dev)2143 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2144 {
2145 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2146 }
2147 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2148 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2149 {
2150 	if (dev->netdev_ops->ndo_set_rx_headroom)
2151 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2152 }
2153 
2154 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2155 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2156 {
2157 	netdev_set_rx_headroom(dev, -1);
2158 }
2159 
2160 /*
2161  * Net namespace inlines
2162  */
2163 static inline
dev_net(const struct net_device * dev)2164 struct net *dev_net(const struct net_device *dev)
2165 {
2166 	return read_pnet(&dev->nd_net);
2167 }
2168 
2169 static inline
dev_net_set(struct net_device * dev,struct net * net)2170 void dev_net_set(struct net_device *dev, struct net *net)
2171 {
2172 	write_pnet(&dev->nd_net, net);
2173 }
2174 
2175 /**
2176  *	netdev_priv - access network device private data
2177  *	@dev: network device
2178  *
2179  * Get network device private data
2180  */
netdev_priv(const struct net_device * dev)2181 static inline void *netdev_priv(const struct net_device *dev)
2182 {
2183 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2184 }
2185 
2186 /* Set the sysfs physical device reference for the network logical device
2187  * if set prior to registration will cause a symlink during initialization.
2188  */
2189 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2190 
2191 /* Set the sysfs device type for the network logical device to allow
2192  * fine-grained identification of different network device types. For
2193  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2194  */
2195 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2196 
2197 /* Default NAPI poll() weight
2198  * Device drivers are strongly advised to not use bigger value
2199  */
2200 #define NAPI_POLL_WEIGHT 64
2201 
2202 /**
2203  *	netif_napi_add - initialize a NAPI context
2204  *	@dev:  network device
2205  *	@napi: NAPI context
2206  *	@poll: polling function
2207  *	@weight: default weight
2208  *
2209  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2210  * *any* of the other NAPI-related functions.
2211  */
2212 void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2213 		    int (*poll)(struct napi_struct *, int), int weight);
2214 
2215 /**
2216  *	netif_tx_napi_add - initialize a NAPI context
2217  *	@dev:  network device
2218  *	@napi: NAPI context
2219  *	@poll: polling function
2220  *	@weight: default weight
2221  *
2222  * This variant of netif_napi_add() should be used from drivers using NAPI
2223  * to exclusively poll a TX queue.
2224  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2225  */
netif_tx_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2226 static inline void netif_tx_napi_add(struct net_device *dev,
2227 				     struct napi_struct *napi,
2228 				     int (*poll)(struct napi_struct *, int),
2229 				     int weight)
2230 {
2231 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2232 	netif_napi_add(dev, napi, poll, weight);
2233 }
2234 
2235 /**
2236  *  netif_napi_del - remove a NAPI context
2237  *  @napi: NAPI context
2238  *
2239  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2240  */
2241 void netif_napi_del(struct napi_struct *napi);
2242 
2243 struct napi_gro_cb {
2244 	/* Virtual address of skb_shinfo(skb)->frags[0].page + offset. */
2245 	void	*frag0;
2246 
2247 	/* Length of frag0. */
2248 	unsigned int frag0_len;
2249 
2250 	/* This indicates where we are processing relative to skb->data. */
2251 	int	data_offset;
2252 
2253 	/* This is non-zero if the packet cannot be merged with the new skb. */
2254 	u16	flush;
2255 
2256 	/* Save the IP ID here and check when we get to the transport layer */
2257 	u16	flush_id;
2258 
2259 	/* Number of segments aggregated. */
2260 	u16	count;
2261 
2262 	/* Start offset for remote checksum offload */
2263 	u16	gro_remcsum_start;
2264 
2265 	/* jiffies when first packet was created/queued */
2266 	unsigned long age;
2267 
2268 	/* Used in ipv6_gro_receive() and foo-over-udp */
2269 	u16	proto;
2270 
2271 	/* This is non-zero if the packet may be of the same flow. */
2272 	u8	same_flow:1;
2273 
2274 	/* Used in tunnel GRO receive */
2275 	u8	encap_mark:1;
2276 
2277 	/* GRO checksum is valid */
2278 	u8	csum_valid:1;
2279 
2280 	/* Number of checksums via CHECKSUM_UNNECESSARY */
2281 	u8	csum_cnt:3;
2282 
2283 	/* Free the skb? */
2284 	u8	free:2;
2285 #define NAPI_GRO_FREE		  1
2286 #define NAPI_GRO_FREE_STOLEN_HEAD 2
2287 
2288 	/* Used in foo-over-udp, set in udp[46]_gro_receive */
2289 	u8	is_ipv6:1;
2290 
2291 	/* Used in GRE, set in fou/gue_gro_receive */
2292 	u8	is_fou:1;
2293 
2294 	/* Used to determine if flush_id can be ignored */
2295 	u8	is_atomic:1;
2296 
2297 	/* Number of gro_receive callbacks this packet already went through */
2298 	u8 recursion_counter:4;
2299 
2300 	/* 1 bit hole */
2301 
2302 	/* used to support CHECKSUM_COMPLETE for tunneling protocols */
2303 	__wsum	csum;
2304 
2305 	/* used in skb_gro_receive() slow path */
2306 	struct sk_buff *last;
2307 };
2308 
2309 #define NAPI_GRO_CB(skb) ((struct napi_gro_cb *)(skb)->cb)
2310 
2311 #define GRO_RECURSION_LIMIT 15
gro_recursion_inc_test(struct sk_buff * skb)2312 static inline int gro_recursion_inc_test(struct sk_buff *skb)
2313 {
2314 	return ++NAPI_GRO_CB(skb)->recursion_counter == GRO_RECURSION_LIMIT;
2315 }
2316 
2317 typedef struct sk_buff *(*gro_receive_t)(struct list_head *, struct sk_buff *);
call_gro_receive(gro_receive_t cb,struct list_head * head,struct sk_buff * skb)2318 static inline struct sk_buff *call_gro_receive(gro_receive_t cb,
2319 					       struct list_head *head,
2320 					       struct sk_buff *skb)
2321 {
2322 	if (unlikely(gro_recursion_inc_test(skb))) {
2323 		NAPI_GRO_CB(skb)->flush |= 1;
2324 		return NULL;
2325 	}
2326 
2327 	return cb(head, skb);
2328 }
2329 
2330 typedef struct sk_buff *(*gro_receive_sk_t)(struct sock *, struct list_head *,
2331 					    struct sk_buff *);
call_gro_receive_sk(gro_receive_sk_t cb,struct sock * sk,struct list_head * head,struct sk_buff * skb)2332 static inline struct sk_buff *call_gro_receive_sk(gro_receive_sk_t cb,
2333 						  struct sock *sk,
2334 						  struct list_head *head,
2335 						  struct sk_buff *skb)
2336 {
2337 	if (unlikely(gro_recursion_inc_test(skb))) {
2338 		NAPI_GRO_CB(skb)->flush |= 1;
2339 		return NULL;
2340 	}
2341 
2342 	return cb(sk, head, skb);
2343 }
2344 
2345 struct packet_type {
2346 	__be16			type;	/* This is really htons(ether_type). */
2347 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2348 	int			(*func) (struct sk_buff *,
2349 					 struct net_device *,
2350 					 struct packet_type *,
2351 					 struct net_device *);
2352 	void			(*list_func) (struct list_head *,
2353 					      struct packet_type *,
2354 					      struct net_device *);
2355 	bool			(*id_match)(struct packet_type *ptype,
2356 					    struct sock *sk);
2357 	struct net		*af_packet_net;
2358 	void			*af_packet_priv;
2359 	struct list_head	list;
2360 };
2361 
2362 struct offload_callbacks {
2363 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2364 						netdev_features_t features);
2365 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2366 						struct sk_buff *skb);
2367 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2368 };
2369 
2370 struct packet_offload {
2371 	__be16			 type;	/* This is really htons(ether_type). */
2372 	u16			 priority;
2373 	struct offload_callbacks callbacks;
2374 	struct list_head	 list;
2375 };
2376 
2377 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2378 struct pcpu_sw_netstats {
2379 	u64     rx_packets;
2380 	u64     rx_bytes;
2381 	u64     tx_packets;
2382 	u64     tx_bytes;
2383 	struct u64_stats_sync   syncp;
2384 };
2385 
2386 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2387 ({									\
2388 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2389 	if (pcpu_stats)	{						\
2390 		int __cpu;						\
2391 		for_each_possible_cpu(__cpu) {				\
2392 			typeof(type) *stat;				\
2393 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2394 			u64_stats_init(&stat->syncp);			\
2395 		}							\
2396 	}								\
2397 	pcpu_stats;							\
2398 })
2399 
2400 #define netdev_alloc_pcpu_stats(type)					\
2401 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2402 
2403 enum netdev_lag_tx_type {
2404 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2405 	NETDEV_LAG_TX_TYPE_RANDOM,
2406 	NETDEV_LAG_TX_TYPE_BROADCAST,
2407 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2408 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2409 	NETDEV_LAG_TX_TYPE_HASH,
2410 };
2411 
2412 enum netdev_lag_hash {
2413 	NETDEV_LAG_HASH_NONE,
2414 	NETDEV_LAG_HASH_L2,
2415 	NETDEV_LAG_HASH_L34,
2416 	NETDEV_LAG_HASH_L23,
2417 	NETDEV_LAG_HASH_E23,
2418 	NETDEV_LAG_HASH_E34,
2419 	NETDEV_LAG_HASH_UNKNOWN,
2420 };
2421 
2422 struct netdev_lag_upper_info {
2423 	enum netdev_lag_tx_type tx_type;
2424 	enum netdev_lag_hash hash_type;
2425 };
2426 
2427 struct netdev_lag_lower_state_info {
2428 	u8 link_up : 1,
2429 	   tx_enabled : 1;
2430 };
2431 
2432 #include <linux/notifier.h>
2433 
2434 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2435  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2436  * adding new types.
2437  */
2438 enum netdev_cmd {
2439 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2440 	NETDEV_DOWN,
2441 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2442 				   detected a hardware crash and restarted
2443 				   - we can use this eg to kick tcp sessions
2444 				   once done */
2445 	NETDEV_CHANGE,		/* Notify device state change */
2446 	NETDEV_REGISTER,
2447 	NETDEV_UNREGISTER,
2448 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2449 	NETDEV_CHANGEADDR,
2450 	NETDEV_GOING_DOWN,
2451 	NETDEV_CHANGENAME,
2452 	NETDEV_FEAT_CHANGE,
2453 	NETDEV_BONDING_FAILOVER,
2454 	NETDEV_PRE_UP,
2455 	NETDEV_PRE_TYPE_CHANGE,
2456 	NETDEV_POST_TYPE_CHANGE,
2457 	NETDEV_POST_INIT,
2458 	NETDEV_RELEASE,
2459 	NETDEV_NOTIFY_PEERS,
2460 	NETDEV_JOIN,
2461 	NETDEV_CHANGEUPPER,
2462 	NETDEV_RESEND_IGMP,
2463 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2464 	NETDEV_CHANGEINFODATA,
2465 	NETDEV_BONDING_INFO,
2466 	NETDEV_PRECHANGEUPPER,
2467 	NETDEV_CHANGELOWERSTATE,
2468 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2469 	NETDEV_UDP_TUNNEL_DROP_INFO,
2470 	NETDEV_CHANGE_TX_QUEUE_LEN,
2471 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2472 	NETDEV_CVLAN_FILTER_DROP_INFO,
2473 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2474 	NETDEV_SVLAN_FILTER_DROP_INFO,
2475 };
2476 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2477 
2478 int register_netdevice_notifier(struct notifier_block *nb);
2479 int unregister_netdevice_notifier(struct notifier_block *nb);
2480 
2481 struct netdev_notifier_info {
2482 	struct net_device	*dev;
2483 	struct netlink_ext_ack	*extack;
2484 };
2485 
2486 struct netdev_notifier_info_ext {
2487 	struct netdev_notifier_info info; /* must be first */
2488 	union {
2489 		u32 mtu;
2490 	} ext;
2491 };
2492 
2493 struct netdev_notifier_change_info {
2494 	struct netdev_notifier_info info; /* must be first */
2495 	unsigned int flags_changed;
2496 };
2497 
2498 struct netdev_notifier_changeupper_info {
2499 	struct netdev_notifier_info info; /* must be first */
2500 	struct net_device *upper_dev; /* new upper dev */
2501 	bool master; /* is upper dev master */
2502 	bool linking; /* is the notification for link or unlink */
2503 	void *upper_info; /* upper dev info */
2504 };
2505 
2506 struct netdev_notifier_changelowerstate_info {
2507 	struct netdev_notifier_info info; /* must be first */
2508 	void *lower_state_info; /* is lower dev state */
2509 };
2510 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2511 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2512 					     struct net_device *dev)
2513 {
2514 	info->dev = dev;
2515 	info->extack = NULL;
2516 }
2517 
2518 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2519 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2520 {
2521 	return info->dev;
2522 }
2523 
2524 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2525 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2526 {
2527 	return info->extack;
2528 }
2529 
2530 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2531 
2532 
2533 extern rwlock_t				dev_base_lock;		/* Device list lock */
2534 
2535 #define for_each_netdev(net, d)		\
2536 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2537 #define for_each_netdev_reverse(net, d)	\
2538 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2539 #define for_each_netdev_rcu(net, d)		\
2540 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2541 #define for_each_netdev_safe(net, d, n)	\
2542 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2543 #define for_each_netdev_continue(net, d)		\
2544 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2545 #define for_each_netdev_continue_rcu(net, d)		\
2546 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2547 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2548 		for_each_netdev_rcu(&init_net, slave)	\
2549 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2550 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2551 
next_net_device(struct net_device * dev)2552 static inline struct net_device *next_net_device(struct net_device *dev)
2553 {
2554 	struct list_head *lh;
2555 	struct net *net;
2556 
2557 	net = dev_net(dev);
2558 	lh = dev->dev_list.next;
2559 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2560 }
2561 
next_net_device_rcu(struct net_device * dev)2562 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2563 {
2564 	struct list_head *lh;
2565 	struct net *net;
2566 
2567 	net = dev_net(dev);
2568 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2569 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2570 }
2571 
first_net_device(struct net * net)2572 static inline struct net_device *first_net_device(struct net *net)
2573 {
2574 	return list_empty(&net->dev_base_head) ? NULL :
2575 		net_device_entry(net->dev_base_head.next);
2576 }
2577 
first_net_device_rcu(struct net * net)2578 static inline struct net_device *first_net_device_rcu(struct net *net)
2579 {
2580 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2581 
2582 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2583 }
2584 
2585 int netdev_boot_setup_check(struct net_device *dev);
2586 unsigned long netdev_boot_base(const char *prefix, int unit);
2587 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2588 				       const char *hwaddr);
2589 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2590 struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type);
2591 void dev_add_pack(struct packet_type *pt);
2592 void dev_remove_pack(struct packet_type *pt);
2593 void __dev_remove_pack(struct packet_type *pt);
2594 void dev_add_offload(struct packet_offload *po);
2595 void dev_remove_offload(struct packet_offload *po);
2596 
2597 int dev_get_iflink(const struct net_device *dev);
2598 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2599 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2600 				      unsigned short mask);
2601 struct net_device *dev_get_by_name(struct net *net, const char *name);
2602 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2603 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2604 int dev_alloc_name(struct net_device *dev, const char *name);
2605 int dev_open(struct net_device *dev);
2606 void dev_close(struct net_device *dev);
2607 void dev_close_many(struct list_head *head, bool unlink);
2608 void dev_disable_lro(struct net_device *dev);
2609 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2610 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2611 		     struct net_device *sb_dev,
2612 		     select_queue_fallback_t fallback);
2613 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
2614 		       struct net_device *sb_dev,
2615 		       select_queue_fallback_t fallback);
2616 int dev_queue_xmit(struct sk_buff *skb);
2617 int dev_queue_xmit_accel(struct sk_buff *skb, struct net_device *sb_dev);
2618 int dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
2619 int register_netdevice(struct net_device *dev);
2620 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
2621 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)2622 static inline void unregister_netdevice(struct net_device *dev)
2623 {
2624 	unregister_netdevice_queue(dev, NULL);
2625 }
2626 
2627 int netdev_refcnt_read(const struct net_device *dev);
2628 void free_netdev(struct net_device *dev);
2629 void netdev_freemem(struct net_device *dev);
2630 void synchronize_net(void);
2631 int init_dummy_netdev(struct net_device *dev);
2632 
2633 struct net_device *dev_get_by_index(struct net *net, int ifindex);
2634 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
2635 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
2636 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
2637 int netdev_get_name(struct net *net, char *name, int ifindex);
2638 int dev_restart(struct net_device *dev);
2639 int skb_gro_receive(struct sk_buff *p, struct sk_buff *skb);
2640 
skb_gro_offset(const struct sk_buff * skb)2641 static inline unsigned int skb_gro_offset(const struct sk_buff *skb)
2642 {
2643 	return NAPI_GRO_CB(skb)->data_offset;
2644 }
2645 
skb_gro_len(const struct sk_buff * skb)2646 static inline unsigned int skb_gro_len(const struct sk_buff *skb)
2647 {
2648 	return skb->len - NAPI_GRO_CB(skb)->data_offset;
2649 }
2650 
skb_gro_pull(struct sk_buff * skb,unsigned int len)2651 static inline void skb_gro_pull(struct sk_buff *skb, unsigned int len)
2652 {
2653 	NAPI_GRO_CB(skb)->data_offset += len;
2654 }
2655 
skb_gro_header_fast(struct sk_buff * skb,unsigned int offset)2656 static inline void *skb_gro_header_fast(struct sk_buff *skb,
2657 					unsigned int offset)
2658 {
2659 	return NAPI_GRO_CB(skb)->frag0 + offset;
2660 }
2661 
skb_gro_header_hard(struct sk_buff * skb,unsigned int hlen)2662 static inline int skb_gro_header_hard(struct sk_buff *skb, unsigned int hlen)
2663 {
2664 	return NAPI_GRO_CB(skb)->frag0_len < hlen;
2665 }
2666 
skb_gro_frag0_invalidate(struct sk_buff * skb)2667 static inline void skb_gro_frag0_invalidate(struct sk_buff *skb)
2668 {
2669 	NAPI_GRO_CB(skb)->frag0 = NULL;
2670 	NAPI_GRO_CB(skb)->frag0_len = 0;
2671 }
2672 
skb_gro_header_slow(struct sk_buff * skb,unsigned int hlen,unsigned int offset)2673 static inline void *skb_gro_header_slow(struct sk_buff *skb, unsigned int hlen,
2674 					unsigned int offset)
2675 {
2676 	if (!pskb_may_pull(skb, hlen))
2677 		return NULL;
2678 
2679 	skb_gro_frag0_invalidate(skb);
2680 	return skb->data + offset;
2681 }
2682 
skb_gro_network_header(struct sk_buff * skb)2683 static inline void *skb_gro_network_header(struct sk_buff *skb)
2684 {
2685 	return (NAPI_GRO_CB(skb)->frag0 ?: skb->data) +
2686 	       skb_network_offset(skb);
2687 }
2688 
skb_gro_postpull_rcsum(struct sk_buff * skb,const void * start,unsigned int len)2689 static inline void skb_gro_postpull_rcsum(struct sk_buff *skb,
2690 					const void *start, unsigned int len)
2691 {
2692 	if (NAPI_GRO_CB(skb)->csum_valid)
2693 		NAPI_GRO_CB(skb)->csum = csum_sub(NAPI_GRO_CB(skb)->csum,
2694 						  csum_partial(start, len, 0));
2695 }
2696 
2697 /* GRO checksum functions. These are logical equivalents of the normal
2698  * checksum functions (in skbuff.h) except that they operate on the GRO
2699  * offsets and fields in sk_buff.
2700  */
2701 
2702 __sum16 __skb_gro_checksum_complete(struct sk_buff *skb);
2703 
skb_at_gro_remcsum_start(struct sk_buff * skb)2704 static inline bool skb_at_gro_remcsum_start(struct sk_buff *skb)
2705 {
2706 	return (NAPI_GRO_CB(skb)->gro_remcsum_start == skb_gro_offset(skb));
2707 }
2708 
__skb_gro_checksum_validate_needed(struct sk_buff * skb,bool zero_okay,__sum16 check)2709 static inline bool __skb_gro_checksum_validate_needed(struct sk_buff *skb,
2710 						      bool zero_okay,
2711 						      __sum16 check)
2712 {
2713 	return ((skb->ip_summed != CHECKSUM_PARTIAL ||
2714 		skb_checksum_start_offset(skb) <
2715 		 skb_gro_offset(skb)) &&
2716 		!skb_at_gro_remcsum_start(skb) &&
2717 		NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2718 		(!zero_okay || check));
2719 }
2720 
__skb_gro_checksum_validate_complete(struct sk_buff * skb,__wsum psum)2721 static inline __sum16 __skb_gro_checksum_validate_complete(struct sk_buff *skb,
2722 							   __wsum psum)
2723 {
2724 	if (NAPI_GRO_CB(skb)->csum_valid &&
2725 	    !csum_fold(csum_add(psum, NAPI_GRO_CB(skb)->csum)))
2726 		return 0;
2727 
2728 	NAPI_GRO_CB(skb)->csum = psum;
2729 
2730 	return __skb_gro_checksum_complete(skb);
2731 }
2732 
skb_gro_incr_csum_unnecessary(struct sk_buff * skb)2733 static inline void skb_gro_incr_csum_unnecessary(struct sk_buff *skb)
2734 {
2735 	if (NAPI_GRO_CB(skb)->csum_cnt > 0) {
2736 		/* Consume a checksum from CHECKSUM_UNNECESSARY */
2737 		NAPI_GRO_CB(skb)->csum_cnt--;
2738 	} else {
2739 		/* Update skb for CHECKSUM_UNNECESSARY and csum_level when we
2740 		 * verified a new top level checksum or an encapsulated one
2741 		 * during GRO. This saves work if we fallback to normal path.
2742 		 */
2743 		__skb_incr_checksum_unnecessary(skb);
2744 	}
2745 }
2746 
2747 #define __skb_gro_checksum_validate(skb, proto, zero_okay, check,	\
2748 				    compute_pseudo)			\
2749 ({									\
2750 	__sum16 __ret = 0;						\
2751 	if (__skb_gro_checksum_validate_needed(skb, zero_okay, check))	\
2752 		__ret = __skb_gro_checksum_validate_complete(skb,	\
2753 				compute_pseudo(skb, proto));		\
2754 	if (!__ret)							\
2755 		skb_gro_incr_csum_unnecessary(skb);			\
2756 	__ret;								\
2757 })
2758 
2759 #define skb_gro_checksum_validate(skb, proto, compute_pseudo)		\
2760 	__skb_gro_checksum_validate(skb, proto, false, 0, compute_pseudo)
2761 
2762 #define skb_gro_checksum_validate_zero_check(skb, proto, check,		\
2763 					     compute_pseudo)		\
2764 	__skb_gro_checksum_validate(skb, proto, true, check, compute_pseudo)
2765 
2766 #define skb_gro_checksum_simple_validate(skb)				\
2767 	__skb_gro_checksum_validate(skb, 0, false, 0, null_compute_pseudo)
2768 
__skb_gro_checksum_convert_check(struct sk_buff * skb)2769 static inline bool __skb_gro_checksum_convert_check(struct sk_buff *skb)
2770 {
2771 	return (NAPI_GRO_CB(skb)->csum_cnt == 0 &&
2772 		!NAPI_GRO_CB(skb)->csum_valid);
2773 }
2774 
__skb_gro_checksum_convert(struct sk_buff * skb,__sum16 check,__wsum pseudo)2775 static inline void __skb_gro_checksum_convert(struct sk_buff *skb,
2776 					      __sum16 check, __wsum pseudo)
2777 {
2778 	NAPI_GRO_CB(skb)->csum = ~pseudo;
2779 	NAPI_GRO_CB(skb)->csum_valid = 1;
2780 }
2781 
2782 #define skb_gro_checksum_try_convert(skb, proto, check, compute_pseudo)	\
2783 do {									\
2784 	if (__skb_gro_checksum_convert_check(skb))			\
2785 		__skb_gro_checksum_convert(skb, check,			\
2786 					   compute_pseudo(skb, proto));	\
2787 } while (0)
2788 
2789 struct gro_remcsum {
2790 	int offset;
2791 	__wsum delta;
2792 };
2793 
skb_gro_remcsum_init(struct gro_remcsum * grc)2794 static inline void skb_gro_remcsum_init(struct gro_remcsum *grc)
2795 {
2796 	grc->offset = 0;
2797 	grc->delta = 0;
2798 }
2799 
skb_gro_remcsum_process(struct sk_buff * skb,void * ptr,unsigned int off,size_t hdrlen,int start,int offset,struct gro_remcsum * grc,bool nopartial)2800 static inline void *skb_gro_remcsum_process(struct sk_buff *skb, void *ptr,
2801 					    unsigned int off, size_t hdrlen,
2802 					    int start, int offset,
2803 					    struct gro_remcsum *grc,
2804 					    bool nopartial)
2805 {
2806 	__wsum delta;
2807 	size_t plen = hdrlen + max_t(size_t, offset + sizeof(u16), start);
2808 
2809 	BUG_ON(!NAPI_GRO_CB(skb)->csum_valid);
2810 
2811 	if (!nopartial) {
2812 		NAPI_GRO_CB(skb)->gro_remcsum_start = off + hdrlen + start;
2813 		return ptr;
2814 	}
2815 
2816 	ptr = skb_gro_header_fast(skb, off);
2817 	if (skb_gro_header_hard(skb, off + plen)) {
2818 		ptr = skb_gro_header_slow(skb, off + plen, off);
2819 		if (!ptr)
2820 			return NULL;
2821 	}
2822 
2823 	delta = remcsum_adjust(ptr + hdrlen, NAPI_GRO_CB(skb)->csum,
2824 			       start, offset);
2825 
2826 	/* Adjust skb->csum since we changed the packet */
2827 	NAPI_GRO_CB(skb)->csum = csum_add(NAPI_GRO_CB(skb)->csum, delta);
2828 
2829 	grc->offset = off + hdrlen + offset;
2830 	grc->delta = delta;
2831 
2832 	return ptr;
2833 }
2834 
skb_gro_remcsum_cleanup(struct sk_buff * skb,struct gro_remcsum * grc)2835 static inline void skb_gro_remcsum_cleanup(struct sk_buff *skb,
2836 					   struct gro_remcsum *grc)
2837 {
2838 	void *ptr;
2839 	size_t plen = grc->offset + sizeof(u16);
2840 
2841 	if (!grc->delta)
2842 		return;
2843 
2844 	ptr = skb_gro_header_fast(skb, grc->offset);
2845 	if (skb_gro_header_hard(skb, grc->offset + sizeof(u16))) {
2846 		ptr = skb_gro_header_slow(skb, plen, grc->offset);
2847 		if (!ptr)
2848 			return;
2849 	}
2850 
2851 	remcsum_unadjust((__sum16 *)ptr, grc->delta);
2852 }
2853 
2854 #ifdef CONFIG_XFRM_OFFLOAD
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2855 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2856 {
2857 	if (PTR_ERR(pp) != -EINPROGRESS)
2858 		NAPI_GRO_CB(skb)->flush |= flush;
2859 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2860 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2861 					       struct sk_buff *pp,
2862 					       int flush,
2863 					       struct gro_remcsum *grc)
2864 {
2865 	if (PTR_ERR(pp) != -EINPROGRESS) {
2866 		NAPI_GRO_CB(skb)->flush |= flush;
2867 		skb_gro_remcsum_cleanup(skb, grc);
2868 		skb->remcsum_offload = 0;
2869 	}
2870 }
2871 #else
skb_gro_flush_final(struct sk_buff * skb,struct sk_buff * pp,int flush)2872 static inline void skb_gro_flush_final(struct sk_buff *skb, struct sk_buff *pp, int flush)
2873 {
2874 	NAPI_GRO_CB(skb)->flush |= flush;
2875 }
skb_gro_flush_final_remcsum(struct sk_buff * skb,struct sk_buff * pp,int flush,struct gro_remcsum * grc)2876 static inline void skb_gro_flush_final_remcsum(struct sk_buff *skb,
2877 					       struct sk_buff *pp,
2878 					       int flush,
2879 					       struct gro_remcsum *grc)
2880 {
2881 	NAPI_GRO_CB(skb)->flush |= flush;
2882 	skb_gro_remcsum_cleanup(skb, grc);
2883 	skb->remcsum_offload = 0;
2884 }
2885 #endif
2886 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)2887 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
2888 				  unsigned short type,
2889 				  const void *daddr, const void *saddr,
2890 				  unsigned int len)
2891 {
2892 	if (!dev->header_ops || !dev->header_ops->create)
2893 		return 0;
2894 
2895 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
2896 }
2897 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)2898 static inline int dev_parse_header(const struct sk_buff *skb,
2899 				   unsigned char *haddr)
2900 {
2901 	const struct net_device *dev = skb->dev;
2902 
2903 	if (!dev->header_ops || !dev->header_ops->parse)
2904 		return 0;
2905 	return dev->header_ops->parse(skb, haddr);
2906 }
2907 
dev_parse_header_protocol(const struct sk_buff * skb)2908 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
2909 {
2910 	const struct net_device *dev = skb->dev;
2911 
2912 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
2913 		return 0;
2914 	return dev->header_ops->parse_protocol(skb);
2915 }
2916 
2917 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)2918 static inline bool dev_validate_header(const struct net_device *dev,
2919 				       char *ll_header, int len)
2920 {
2921 	if (likely(len >= dev->hard_header_len))
2922 		return true;
2923 	if (len < dev->min_header_len)
2924 		return false;
2925 
2926 	if (capable(CAP_SYS_RAWIO)) {
2927 		memset(ll_header + len, 0, dev->hard_header_len - len);
2928 		return true;
2929 	}
2930 
2931 	if (dev->header_ops && dev->header_ops->validate)
2932 		return dev->header_ops->validate(ll_header, len);
2933 
2934 	return false;
2935 }
2936 
2937 typedef int gifconf_func_t(struct net_device * dev, char __user * bufptr,
2938 			   int len, int size);
2939 int register_gifconf(unsigned int family, gifconf_func_t *gifconf);
unregister_gifconf(unsigned int family)2940 static inline int unregister_gifconf(unsigned int family)
2941 {
2942 	return register_gifconf(family, NULL);
2943 }
2944 
2945 #ifdef CONFIG_NET_FLOW_LIMIT
2946 #define FLOW_LIMIT_HISTORY	(1 << 7)  /* must be ^2 and !overflow buckets */
2947 struct sd_flow_limit {
2948 	u64			count;
2949 	unsigned int		num_buckets;
2950 	unsigned int		history_head;
2951 	u16			history[FLOW_LIMIT_HISTORY];
2952 	u8			buckets[];
2953 };
2954 
2955 extern int netdev_flow_limit_table_len;
2956 #endif /* CONFIG_NET_FLOW_LIMIT */
2957 
2958 /*
2959  * Incoming packets are placed on per-CPU queues
2960  */
2961 struct softnet_data {
2962 	struct list_head	poll_list;
2963 	struct sk_buff_head	process_queue;
2964 
2965 	/* stats */
2966 	unsigned int		processed;
2967 	unsigned int		time_squeeze;
2968 	unsigned int		received_rps;
2969 #ifdef CONFIG_RPS
2970 	struct softnet_data	*rps_ipi_list;
2971 #endif
2972 #ifdef CONFIG_NET_FLOW_LIMIT
2973 	struct sd_flow_limit __rcu *flow_limit;
2974 #endif
2975 	struct Qdisc		*output_queue;
2976 	struct Qdisc		**output_queue_tailp;
2977 	struct sk_buff		*completion_queue;
2978 #ifdef CONFIG_XFRM_OFFLOAD
2979 	struct sk_buff_head	xfrm_backlog;
2980 #endif
2981 	/* written and read only by owning cpu: */
2982 	struct {
2983 		u16 recursion;
2984 		u8  more;
2985 	} xmit;
2986 #ifdef CONFIG_RPS
2987 	/* input_queue_head should be written by cpu owning this struct,
2988 	 * and only read by other cpus. Worth using a cache line.
2989 	 */
2990 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
2991 
2992 	/* Elements below can be accessed between CPUs for RPS/RFS */
2993 	call_single_data_t	csd ____cacheline_aligned_in_smp;
2994 	struct softnet_data	*rps_ipi_next;
2995 	unsigned int		cpu;
2996 	unsigned int		input_queue_tail;
2997 #endif
2998 	unsigned int		dropped;
2999 	struct sk_buff_head	input_pkt_queue;
3000 	struct napi_struct	backlog;
3001 
3002 };
3003 
input_queue_head_incr(struct softnet_data * sd)3004 static inline void input_queue_head_incr(struct softnet_data *sd)
3005 {
3006 #ifdef CONFIG_RPS
3007 	sd->input_queue_head++;
3008 #endif
3009 }
3010 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3011 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3012 					      unsigned int *qtail)
3013 {
3014 #ifdef CONFIG_RPS
3015 	*qtail = ++sd->input_queue_tail;
3016 #endif
3017 }
3018 
3019 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3020 
dev_recursion_level(void)3021 static inline int dev_recursion_level(void)
3022 {
3023 	return this_cpu_read(softnet_data.xmit.recursion);
3024 }
3025 
3026 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3027 static inline bool dev_xmit_recursion(void)
3028 {
3029 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3030 			XMIT_RECURSION_LIMIT);
3031 }
3032 
dev_xmit_recursion_inc(void)3033 static inline void dev_xmit_recursion_inc(void)
3034 {
3035 	__this_cpu_inc(softnet_data.xmit.recursion);
3036 }
3037 
dev_xmit_recursion_dec(void)3038 static inline void dev_xmit_recursion_dec(void)
3039 {
3040 	__this_cpu_dec(softnet_data.xmit.recursion);
3041 }
3042 
3043 void __netif_schedule(struct Qdisc *q);
3044 void netif_schedule_queue(struct netdev_queue *txq);
3045 
netif_tx_schedule_all(struct net_device * dev)3046 static inline void netif_tx_schedule_all(struct net_device *dev)
3047 {
3048 	unsigned int i;
3049 
3050 	for (i = 0; i < dev->num_tx_queues; i++)
3051 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3052 }
3053 
netif_tx_start_queue(struct netdev_queue * dev_queue)3054 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3055 {
3056 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3057 }
3058 
3059 /**
3060  *	netif_start_queue - allow transmit
3061  *	@dev: network device
3062  *
3063  *	Allow upper layers to call the device hard_start_xmit routine.
3064  */
netif_start_queue(struct net_device * dev)3065 static inline void netif_start_queue(struct net_device *dev)
3066 {
3067 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3068 }
3069 
netif_tx_start_all_queues(struct net_device * dev)3070 static inline void netif_tx_start_all_queues(struct net_device *dev)
3071 {
3072 	unsigned int i;
3073 
3074 	for (i = 0; i < dev->num_tx_queues; i++) {
3075 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3076 		netif_tx_start_queue(txq);
3077 	}
3078 }
3079 
3080 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3081 
3082 /**
3083  *	netif_wake_queue - restart transmit
3084  *	@dev: network device
3085  *
3086  *	Allow upper layers to call the device hard_start_xmit routine.
3087  *	Used for flow control when transmit resources are available.
3088  */
netif_wake_queue(struct net_device * dev)3089 static inline void netif_wake_queue(struct net_device *dev)
3090 {
3091 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3092 }
3093 
netif_tx_wake_all_queues(struct net_device * dev)3094 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3095 {
3096 	unsigned int i;
3097 
3098 	for (i = 0; i < dev->num_tx_queues; i++) {
3099 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3100 		netif_tx_wake_queue(txq);
3101 	}
3102 }
3103 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3104 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3105 {
3106 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3107 }
3108 
3109 /**
3110  *	netif_stop_queue - stop transmitted packets
3111  *	@dev: network device
3112  *
3113  *	Stop upper layers calling the device hard_start_xmit routine.
3114  *	Used for flow control when transmit resources are unavailable.
3115  */
netif_stop_queue(struct net_device * dev)3116 static inline void netif_stop_queue(struct net_device *dev)
3117 {
3118 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3119 }
3120 
3121 void netif_tx_stop_all_queues(struct net_device *dev);
3122 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3123 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3124 {
3125 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3126 }
3127 
3128 /**
3129  *	netif_queue_stopped - test if transmit queue is flowblocked
3130  *	@dev: network device
3131  *
3132  *	Test if transmit queue on device is currently unable to send.
3133  */
netif_queue_stopped(const struct net_device * dev)3134 static inline bool netif_queue_stopped(const struct net_device *dev)
3135 {
3136 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3137 }
3138 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3139 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3140 {
3141 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3142 }
3143 
3144 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3145 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3146 {
3147 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3148 }
3149 
3150 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3151 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3152 {
3153 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3154 }
3155 
3156 /**
3157  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3158  *	@dev_queue: pointer to transmit queue
3159  *
3160  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3161  * to give appropriate hint to the CPU.
3162  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3163 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3164 {
3165 #ifdef CONFIG_BQL
3166 	prefetchw(&dev_queue->dql.num_queued);
3167 #endif
3168 }
3169 
3170 /**
3171  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3172  *	@dev_queue: pointer to transmit queue
3173  *
3174  * BQL enabled drivers might use this helper in their TX completion path,
3175  * to give appropriate hint to the CPU.
3176  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3177 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3178 {
3179 #ifdef CONFIG_BQL
3180 	prefetchw(&dev_queue->dql.limit);
3181 #endif
3182 }
3183 
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3184 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3185 					unsigned int bytes)
3186 {
3187 #ifdef CONFIG_BQL
3188 	dql_queued(&dev_queue->dql, bytes);
3189 
3190 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3191 		return;
3192 
3193 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3194 
3195 	/*
3196 	 * The XOFF flag must be set before checking the dql_avail below,
3197 	 * because in netdev_tx_completed_queue we update the dql_completed
3198 	 * before checking the XOFF flag.
3199 	 */
3200 	smp_mb();
3201 
3202 	/* check again in case another CPU has just made room avail */
3203 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3204 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3205 #endif
3206 }
3207 
3208 /**
3209  * 	netdev_sent_queue - report the number of bytes queued to hardware
3210  * 	@dev: network device
3211  * 	@bytes: number of bytes queued to the hardware device queue
3212  *
3213  * 	Report the number of bytes queued for sending/completion to the network
3214  * 	device hardware queue. @bytes should be a good approximation and should
3215  * 	exactly match netdev_completed_queue() @bytes
3216  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3217 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3218 {
3219 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3220 }
3221 
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3222 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3223 					     unsigned int pkts, unsigned int bytes)
3224 {
3225 #ifdef CONFIG_BQL
3226 	if (unlikely(!bytes))
3227 		return;
3228 
3229 	dql_completed(&dev_queue->dql, bytes);
3230 
3231 	/*
3232 	 * Without the memory barrier there is a small possiblity that
3233 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3234 	 * be stopped forever
3235 	 */
3236 	smp_mb();
3237 
3238 	if (dql_avail(&dev_queue->dql) < 0)
3239 		return;
3240 
3241 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3242 		netif_schedule_queue(dev_queue);
3243 #endif
3244 }
3245 
3246 /**
3247  * 	netdev_completed_queue - report bytes and packets completed by device
3248  * 	@dev: network device
3249  * 	@pkts: actual number of packets sent over the medium
3250  * 	@bytes: actual number of bytes sent over the medium
3251  *
3252  * 	Report the number of bytes and packets transmitted by the network device
3253  * 	hardware queue over the physical medium, @bytes must exactly match the
3254  * 	@bytes amount passed to netdev_sent_queue()
3255  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3256 static inline void netdev_completed_queue(struct net_device *dev,
3257 					  unsigned int pkts, unsigned int bytes)
3258 {
3259 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3260 }
3261 
netdev_tx_reset_queue(struct netdev_queue * q)3262 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3263 {
3264 #ifdef CONFIG_BQL
3265 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3266 	dql_reset(&q->dql);
3267 #endif
3268 }
3269 
3270 /**
3271  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3272  * 	@dev_queue: network device
3273  *
3274  * 	Reset the bytes and packet count of a network device and clear the
3275  * 	software flow control OFF bit for this network device
3276  */
netdev_reset_queue(struct net_device * dev_queue)3277 static inline void netdev_reset_queue(struct net_device *dev_queue)
3278 {
3279 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3280 }
3281 
3282 /**
3283  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3284  * 	@dev: network device
3285  * 	@queue_index: given tx queue index
3286  *
3287  * 	Returns 0 if given tx queue index >= number of device tx queues,
3288  * 	otherwise returns the originally passed tx queue index.
3289  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3290 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3291 {
3292 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3293 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3294 				     dev->name, queue_index,
3295 				     dev->real_num_tx_queues);
3296 		return 0;
3297 	}
3298 
3299 	return queue_index;
3300 }
3301 
3302 /**
3303  *	netif_running - test if up
3304  *	@dev: network device
3305  *
3306  *	Test if the device has been brought up.
3307  */
netif_running(const struct net_device * dev)3308 static inline bool netif_running(const struct net_device *dev)
3309 {
3310 	return test_bit(__LINK_STATE_START, &dev->state);
3311 }
3312 
3313 /*
3314  * Routines to manage the subqueues on a device.  We only need start,
3315  * stop, and a check if it's stopped.  All other device management is
3316  * done at the overall netdevice level.
3317  * Also test the device if we're multiqueue.
3318  */
3319 
3320 /**
3321  *	netif_start_subqueue - allow sending packets on subqueue
3322  *	@dev: network device
3323  *	@queue_index: sub queue index
3324  *
3325  * Start individual transmit queue of a device with multiple transmit queues.
3326  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3327 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3328 {
3329 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3330 
3331 	netif_tx_start_queue(txq);
3332 }
3333 
3334 /**
3335  *	netif_stop_subqueue - stop sending packets on subqueue
3336  *	@dev: network device
3337  *	@queue_index: sub queue index
3338  *
3339  * Stop individual transmit queue of a device with multiple transmit queues.
3340  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3341 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3342 {
3343 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3344 	netif_tx_stop_queue(txq);
3345 }
3346 
3347 /**
3348  *	netif_subqueue_stopped - test status of subqueue
3349  *	@dev: network device
3350  *	@queue_index: sub queue index
3351  *
3352  * Check individual transmit queue of a device with multiple transmit queues.
3353  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3354 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3355 					    u16 queue_index)
3356 {
3357 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3358 
3359 	return netif_tx_queue_stopped(txq);
3360 }
3361 
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3362 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3363 					  struct sk_buff *skb)
3364 {
3365 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3366 }
3367 
3368 /**
3369  *	netif_wake_subqueue - allow sending packets on subqueue
3370  *	@dev: network device
3371  *	@queue_index: sub queue index
3372  *
3373  * Resume individual transmit queue of a device with multiple transmit queues.
3374  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3375 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3376 {
3377 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3378 
3379 	netif_tx_wake_queue(txq);
3380 }
3381 
3382 #ifdef CONFIG_XPS
3383 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3384 			u16 index);
3385 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3386 			  u16 index, bool is_rxqs_map);
3387 
3388 /**
3389  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3390  *	@j: CPU/Rx queue index
3391  *	@mask: bitmask of all cpus/rx queues
3392  *	@nr_bits: number of bits in the bitmask
3393  *
3394  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3395  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3396 static inline bool netif_attr_test_mask(unsigned long j,
3397 					const unsigned long *mask,
3398 					unsigned int nr_bits)
3399 {
3400 	cpu_max_bits_warn(j, nr_bits);
3401 	return test_bit(j, mask);
3402 }
3403 
3404 /**
3405  *	netif_attr_test_online - Test for online CPU/Rx queue
3406  *	@j: CPU/Rx queue index
3407  *	@online_mask: bitmask for CPUs/Rx queues that are online
3408  *	@nr_bits: number of bits in the bitmask
3409  *
3410  * Returns true if a CPU/Rx queue is online.
3411  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3412 static inline bool netif_attr_test_online(unsigned long j,
3413 					  const unsigned long *online_mask,
3414 					  unsigned int nr_bits)
3415 {
3416 	cpu_max_bits_warn(j, nr_bits);
3417 
3418 	if (online_mask)
3419 		return test_bit(j, online_mask);
3420 
3421 	return (j < nr_bits);
3422 }
3423 
3424 /**
3425  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3426  *	@n: CPU/Rx queue index
3427  *	@srcp: the cpumask/Rx queue mask pointer
3428  *	@nr_bits: number of bits in the bitmask
3429  *
3430  * Returns >= nr_bits if no further CPUs/Rx queues set.
3431  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3432 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3433 					       unsigned int nr_bits)
3434 {
3435 	/* -1 is a legal arg here. */
3436 	if (n != -1)
3437 		cpu_max_bits_warn(n, nr_bits);
3438 
3439 	if (srcp)
3440 		return find_next_bit(srcp, nr_bits, n + 1);
3441 
3442 	return n + 1;
3443 }
3444 
3445 /**
3446  *	netif_attrmask_next_and - get the next CPU/Rx queue in *src1p & *src2p
3447  *	@n: CPU/Rx queue index
3448  *	@src1p: the first CPUs/Rx queues mask pointer
3449  *	@src2p: the second CPUs/Rx queues mask pointer
3450  *	@nr_bits: number of bits in the bitmask
3451  *
3452  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3453  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3454 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3455 					  const unsigned long *src2p,
3456 					  unsigned int nr_bits)
3457 {
3458 	/* -1 is a legal arg here. */
3459 	if (n != -1)
3460 		cpu_max_bits_warn(n, nr_bits);
3461 
3462 	if (src1p && src2p)
3463 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3464 	else if (src1p)
3465 		return find_next_bit(src1p, nr_bits, n + 1);
3466 	else if (src2p)
3467 		return find_next_bit(src2p, nr_bits, n + 1);
3468 
3469 	return n + 1;
3470 }
3471 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3472 static inline int netif_set_xps_queue(struct net_device *dev,
3473 				      const struct cpumask *mask,
3474 				      u16 index)
3475 {
3476 	return 0;
3477 }
3478 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,bool is_rxqs_map)3479 static inline int __netif_set_xps_queue(struct net_device *dev,
3480 					const unsigned long *mask,
3481 					u16 index, bool is_rxqs_map)
3482 {
3483 	return 0;
3484 }
3485 #endif
3486 
3487 /**
3488  *	netif_is_multiqueue - test if device has multiple transmit queues
3489  *	@dev: network device
3490  *
3491  * Check if device has multiple transmit queues
3492  */
netif_is_multiqueue(const struct net_device * dev)3493 static inline bool netif_is_multiqueue(const struct net_device *dev)
3494 {
3495 	return dev->num_tx_queues > 1;
3496 }
3497 
3498 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3499 
3500 #ifdef CONFIG_SYSFS
3501 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3502 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3503 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3504 						unsigned int rxqs)
3505 {
3506 	dev->real_num_rx_queues = rxqs;
3507 	return 0;
3508 }
3509 #endif
3510 
3511 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3512 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3513 {
3514 	return dev->_rx + rxq;
3515 }
3516 
3517 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3518 static inline unsigned int get_netdev_rx_queue_index(
3519 		struct netdev_rx_queue *queue)
3520 {
3521 	struct net_device *dev = queue->dev;
3522 	int index = queue - dev->_rx;
3523 
3524 	BUG_ON(index >= dev->num_rx_queues);
3525 	return index;
3526 }
3527 #endif
3528 
3529 #define DEFAULT_MAX_NUM_RSS_QUEUES	(8)
3530 int netif_get_num_default_rss_queues(void);
3531 
3532 enum skb_free_reason {
3533 	SKB_REASON_CONSUMED,
3534 	SKB_REASON_DROPPED,
3535 };
3536 
3537 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3538 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3539 
3540 /*
3541  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3542  * interrupt context or with hardware interrupts being disabled.
3543  * (in_irq() || irqs_disabled())
3544  *
3545  * We provide four helpers that can be used in following contexts :
3546  *
3547  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3548  *  replacing kfree_skb(skb)
3549  *
3550  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3551  *  Typically used in place of consume_skb(skb) in TX completion path
3552  *
3553  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3554  *  replacing kfree_skb(skb)
3555  *
3556  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3557  *  and consumed a packet. Used in place of consume_skb(skb)
3558  */
dev_kfree_skb_irq(struct sk_buff * skb)3559 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3560 {
3561 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3562 }
3563 
dev_consume_skb_irq(struct sk_buff * skb)3564 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3565 {
3566 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3567 }
3568 
dev_kfree_skb_any(struct sk_buff * skb)3569 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3570 {
3571 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3572 }
3573 
dev_consume_skb_any(struct sk_buff * skb)3574 static inline void dev_consume_skb_any(struct sk_buff *skb)
3575 {
3576 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3577 }
3578 
3579 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3580 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3581 int netif_rx(struct sk_buff *skb);
3582 int netif_rx_ni(struct sk_buff *skb);
3583 int netif_receive_skb(struct sk_buff *skb);
3584 int netif_receive_skb_core(struct sk_buff *skb);
3585 void netif_receive_skb_list(struct list_head *head);
3586 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3587 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3588 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3589 gro_result_t napi_gro_frags(struct napi_struct *napi);
3590 struct packet_offload *gro_find_receive_by_type(__be16 type);
3591 struct packet_offload *gro_find_complete_by_type(__be16 type);
3592 
napi_free_frags(struct napi_struct * napi)3593 static inline void napi_free_frags(struct napi_struct *napi)
3594 {
3595 	kfree_skb(napi->skb);
3596 	napi->skb = NULL;
3597 }
3598 
3599 bool netdev_is_rx_handler_busy(struct net_device *dev);
3600 int netdev_rx_handler_register(struct net_device *dev,
3601 			       rx_handler_func_t *rx_handler,
3602 			       void *rx_handler_data);
3603 void netdev_rx_handler_unregister(struct net_device *dev);
3604 
3605 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3606 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3607 {
3608 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3609 }
3610 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3611 		bool *need_copyout);
3612 int dev_ifconf(struct net *net, struct ifconf *, int);
3613 int dev_ethtool(struct net *net, struct ifreq *);
3614 unsigned int dev_get_flags(const struct net_device *);
3615 int __dev_change_flags(struct net_device *, unsigned int flags);
3616 int dev_change_flags(struct net_device *, unsigned int);
3617 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3618 			unsigned int gchanges);
3619 int dev_change_name(struct net_device *, const char *);
3620 int dev_set_alias(struct net_device *, const char *, size_t);
3621 int dev_get_alias(const struct net_device *, char *, size_t);
3622 int dev_change_net_namespace(struct net_device *, struct net *, const char *);
3623 int __dev_set_mtu(struct net_device *, int);
3624 int dev_validate_mtu(struct net_device *dev, int mtu,
3625 		     struct netlink_ext_ack *extack);
3626 int dev_set_mtu_ext(struct net_device *dev, int mtu,
3627 		    struct netlink_ext_ack *extack);
3628 int dev_set_mtu(struct net_device *, int);
3629 int dev_change_tx_queue_len(struct net_device *, unsigned long);
3630 void dev_set_group(struct net_device *, int);
3631 int dev_set_mac_address(struct net_device *, struct sockaddr *);
3632 int dev_change_carrier(struct net_device *, bool new_carrier);
3633 int dev_get_phys_port_id(struct net_device *dev,
3634 			 struct netdev_phys_item_id *ppid);
3635 int dev_get_phys_port_name(struct net_device *dev,
3636 			   char *name, size_t len);
3637 int dev_change_proto_down(struct net_device *dev, bool proto_down);
3638 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3639 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3640 				    struct netdev_queue *txq, int *ret);
3641 
3642 typedef int (*bpf_op_t)(struct net_device *dev, struct netdev_bpf *bpf);
3643 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
3644 		      int fd, u32 flags);
3645 u32 __dev_xdp_query(struct net_device *dev, bpf_op_t xdp_op,
3646 		    enum bpf_netdev_command cmd);
3647 int xdp_umem_query(struct net_device *dev, u16 queue_id);
3648 
3649 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3650 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3651 bool is_skb_forwardable(const struct net_device *dev,
3652 			const struct sk_buff *skb);
3653 
____dev_forward_skb(struct net_device * dev,struct sk_buff * skb)3654 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3655 					       struct sk_buff *skb)
3656 {
3657 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3658 	    unlikely(!is_skb_forwardable(dev, skb))) {
3659 		atomic_long_inc(&dev->rx_dropped);
3660 		kfree_skb(skb);
3661 		return NET_RX_DROP;
3662 	}
3663 
3664 	skb_scrub_packet(skb, true);
3665 	skb->priority = 0;
3666 	return 0;
3667 }
3668 
3669 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3670 
3671 extern int		netdev_budget;
3672 extern unsigned int	netdev_budget_usecs;
3673 
3674 /* Called by rtnetlink.c:rtnl_unlock() */
3675 void netdev_run_todo(void);
3676 
3677 /**
3678  *	dev_put - release reference to device
3679  *	@dev: network device
3680  *
3681  * Release reference to device to allow it to be freed.
3682  */
dev_put(struct net_device * dev)3683 static inline void dev_put(struct net_device *dev)
3684 {
3685 	if (dev)
3686 		this_cpu_dec(*dev->pcpu_refcnt);
3687 }
3688 
3689 /**
3690  *	dev_hold - get reference to device
3691  *	@dev: network device
3692  *
3693  * Hold reference to device to keep it from being freed.
3694  */
dev_hold(struct net_device * dev)3695 static inline void dev_hold(struct net_device *dev)
3696 {
3697 	if (dev)
3698 		this_cpu_inc(*dev->pcpu_refcnt);
3699 }
3700 
3701 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
3702  * and _off may be called from IRQ context, but it is caller
3703  * who is responsible for serialization of these calls.
3704  *
3705  * The name carrier is inappropriate, these functions should really be
3706  * called netif_lowerlayer_*() because they represent the state of any
3707  * kind of lower layer not just hardware media.
3708  */
3709 
3710 void linkwatch_init_dev(struct net_device *dev);
3711 void linkwatch_fire_event(struct net_device *dev);
3712 void linkwatch_forget_dev(struct net_device *dev);
3713 
3714 /**
3715  *	netif_carrier_ok - test if carrier present
3716  *	@dev: network device
3717  *
3718  * Check if carrier is present on device
3719  */
netif_carrier_ok(const struct net_device * dev)3720 static inline bool netif_carrier_ok(const struct net_device *dev)
3721 {
3722 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
3723 }
3724 
3725 unsigned long dev_trans_start(struct net_device *dev);
3726 
3727 void __netdev_watchdog_up(struct net_device *dev);
3728 
3729 void netif_carrier_on(struct net_device *dev);
3730 
3731 void netif_carrier_off(struct net_device *dev);
3732 
3733 /**
3734  *	netif_dormant_on - mark device as dormant.
3735  *	@dev: network device
3736  *
3737  * Mark device as dormant (as per RFC2863).
3738  *
3739  * The dormant state indicates that the relevant interface is not
3740  * actually in a condition to pass packets (i.e., it is not 'up') but is
3741  * in a "pending" state, waiting for some external event.  For "on-
3742  * demand" interfaces, this new state identifies the situation where the
3743  * interface is waiting for events to place it in the up state.
3744  */
netif_dormant_on(struct net_device * dev)3745 static inline void netif_dormant_on(struct net_device *dev)
3746 {
3747 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
3748 		linkwatch_fire_event(dev);
3749 }
3750 
3751 /**
3752  *	netif_dormant_off - set device as not dormant.
3753  *	@dev: network device
3754  *
3755  * Device is not in dormant state.
3756  */
netif_dormant_off(struct net_device * dev)3757 static inline void netif_dormant_off(struct net_device *dev)
3758 {
3759 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
3760 		linkwatch_fire_event(dev);
3761 }
3762 
3763 /**
3764  *	netif_dormant - test if device is dormant
3765  *	@dev: network device
3766  *
3767  * Check if device is dormant.
3768  */
netif_dormant(const struct net_device * dev)3769 static inline bool netif_dormant(const struct net_device *dev)
3770 {
3771 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
3772 }
3773 
3774 
3775 /**
3776  *	netif_oper_up - test if device is operational
3777  *	@dev: network device
3778  *
3779  * Check if carrier is operational
3780  */
netif_oper_up(const struct net_device * dev)3781 static inline bool netif_oper_up(const struct net_device *dev)
3782 {
3783 	return (dev->operstate == IF_OPER_UP ||
3784 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
3785 }
3786 
3787 /**
3788  *	netif_device_present - is device available or removed
3789  *	@dev: network device
3790  *
3791  * Check if device has not been removed from system.
3792  */
netif_device_present(struct net_device * dev)3793 static inline bool netif_device_present(struct net_device *dev)
3794 {
3795 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
3796 }
3797 
3798 void netif_device_detach(struct net_device *dev);
3799 
3800 void netif_device_attach(struct net_device *dev);
3801 
3802 /*
3803  * Network interface message level settings
3804  */
3805 
3806 enum {
3807 	NETIF_MSG_DRV		= 0x0001,
3808 	NETIF_MSG_PROBE		= 0x0002,
3809 	NETIF_MSG_LINK		= 0x0004,
3810 	NETIF_MSG_TIMER		= 0x0008,
3811 	NETIF_MSG_IFDOWN	= 0x0010,
3812 	NETIF_MSG_IFUP		= 0x0020,
3813 	NETIF_MSG_RX_ERR	= 0x0040,
3814 	NETIF_MSG_TX_ERR	= 0x0080,
3815 	NETIF_MSG_TX_QUEUED	= 0x0100,
3816 	NETIF_MSG_INTR		= 0x0200,
3817 	NETIF_MSG_TX_DONE	= 0x0400,
3818 	NETIF_MSG_RX_STATUS	= 0x0800,
3819 	NETIF_MSG_PKTDATA	= 0x1000,
3820 	NETIF_MSG_HW		= 0x2000,
3821 	NETIF_MSG_WOL		= 0x4000,
3822 };
3823 
3824 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
3825 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
3826 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
3827 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
3828 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
3829 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
3830 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
3831 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
3832 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
3833 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
3834 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
3835 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
3836 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
3837 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
3838 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
3839 
netif_msg_init(int debug_value,int default_msg_enable_bits)3840 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
3841 {
3842 	/* use default */
3843 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
3844 		return default_msg_enable_bits;
3845 	if (debug_value == 0)	/* no output */
3846 		return 0;
3847 	/* set low N bits */
3848 	return (1U << debug_value) - 1;
3849 }
3850 
__netif_tx_lock(struct netdev_queue * txq,int cpu)3851 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
3852 {
3853 	spin_lock(&txq->_xmit_lock);
3854 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3855 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
3856 }
3857 
__netif_tx_acquire(struct netdev_queue * txq)3858 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
3859 {
3860 	__acquire(&txq->_xmit_lock);
3861 	return true;
3862 }
3863 
__netif_tx_release(struct netdev_queue * txq)3864 static inline void __netif_tx_release(struct netdev_queue *txq)
3865 {
3866 	__release(&txq->_xmit_lock);
3867 }
3868 
__netif_tx_lock_bh(struct netdev_queue * txq)3869 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
3870 {
3871 	spin_lock_bh(&txq->_xmit_lock);
3872 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3873 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
3874 }
3875 
__netif_tx_trylock(struct netdev_queue * txq)3876 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
3877 {
3878 	bool ok = spin_trylock(&txq->_xmit_lock);
3879 
3880 	if (likely(ok)) {
3881 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3882 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
3883 	}
3884 	return ok;
3885 }
3886 
__netif_tx_unlock(struct netdev_queue * txq)3887 static inline void __netif_tx_unlock(struct netdev_queue *txq)
3888 {
3889 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3890 	WRITE_ONCE(txq->xmit_lock_owner, -1);
3891 	spin_unlock(&txq->_xmit_lock);
3892 }
3893 
__netif_tx_unlock_bh(struct netdev_queue * txq)3894 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
3895 {
3896 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
3897 	WRITE_ONCE(txq->xmit_lock_owner, -1);
3898 	spin_unlock_bh(&txq->_xmit_lock);
3899 }
3900 
txq_trans_update(struct netdev_queue * txq)3901 static inline void txq_trans_update(struct netdev_queue *txq)
3902 {
3903 	if (txq->xmit_lock_owner != -1)
3904 		txq->trans_start = jiffies;
3905 }
3906 
3907 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)3908 static inline void netif_trans_update(struct net_device *dev)
3909 {
3910 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
3911 
3912 	if (txq->trans_start != jiffies)
3913 		txq->trans_start = jiffies;
3914 }
3915 
3916 /**
3917  *	netif_tx_lock - grab network device transmit lock
3918  *	@dev: network device
3919  *
3920  * Get network device transmit lock
3921  */
netif_tx_lock(struct net_device * dev)3922 static inline void netif_tx_lock(struct net_device *dev)
3923 {
3924 	unsigned int i;
3925 	int cpu;
3926 
3927 	spin_lock(&dev->tx_global_lock);
3928 	cpu = smp_processor_id();
3929 	for (i = 0; i < dev->num_tx_queues; i++) {
3930 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3931 
3932 		/* We are the only thread of execution doing a
3933 		 * freeze, but we have to grab the _xmit_lock in
3934 		 * order to synchronize with threads which are in
3935 		 * the ->hard_start_xmit() handler and already
3936 		 * checked the frozen bit.
3937 		 */
3938 		__netif_tx_lock(txq, cpu);
3939 		set_bit(__QUEUE_STATE_FROZEN, &txq->state);
3940 		__netif_tx_unlock(txq);
3941 	}
3942 }
3943 
netif_tx_lock_bh(struct net_device * dev)3944 static inline void netif_tx_lock_bh(struct net_device *dev)
3945 {
3946 	local_bh_disable();
3947 	netif_tx_lock(dev);
3948 }
3949 
netif_tx_unlock(struct net_device * dev)3950 static inline void netif_tx_unlock(struct net_device *dev)
3951 {
3952 	unsigned int i;
3953 
3954 	for (i = 0; i < dev->num_tx_queues; i++) {
3955 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3956 
3957 		/* No need to grab the _xmit_lock here.  If the
3958 		 * queue is not stopped for another reason, we
3959 		 * force a schedule.
3960 		 */
3961 		clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
3962 		netif_schedule_queue(txq);
3963 	}
3964 	spin_unlock(&dev->tx_global_lock);
3965 }
3966 
netif_tx_unlock_bh(struct net_device * dev)3967 static inline void netif_tx_unlock_bh(struct net_device *dev)
3968 {
3969 	netif_tx_unlock(dev);
3970 	local_bh_enable();
3971 }
3972 
3973 #define HARD_TX_LOCK(dev, txq, cpu) {			\
3974 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3975 		__netif_tx_lock(txq, cpu);		\
3976 	} else {					\
3977 		__netif_tx_acquire(txq);		\
3978 	}						\
3979 }
3980 
3981 #define HARD_TX_TRYLOCK(dev, txq)			\
3982 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
3983 		__netif_tx_trylock(txq) :		\
3984 		__netif_tx_acquire(txq))
3985 
3986 #define HARD_TX_UNLOCK(dev, txq) {			\
3987 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
3988 		__netif_tx_unlock(txq);			\
3989 	} else {					\
3990 		__netif_tx_release(txq);		\
3991 	}						\
3992 }
3993 
netif_tx_disable(struct net_device * dev)3994 static inline void netif_tx_disable(struct net_device *dev)
3995 {
3996 	unsigned int i;
3997 	int cpu;
3998 
3999 	local_bh_disable();
4000 	cpu = smp_processor_id();
4001 	spin_lock(&dev->tx_global_lock);
4002 	for (i = 0; i < dev->num_tx_queues; i++) {
4003 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4004 
4005 		__netif_tx_lock(txq, cpu);
4006 		netif_tx_stop_queue(txq);
4007 		__netif_tx_unlock(txq);
4008 	}
4009 	spin_unlock(&dev->tx_global_lock);
4010 	local_bh_enable();
4011 }
4012 
netif_addr_lock(struct net_device * dev)4013 static inline void netif_addr_lock(struct net_device *dev)
4014 {
4015 	spin_lock(&dev->addr_list_lock);
4016 }
4017 
netif_addr_lock_nested(struct net_device * dev)4018 static inline void netif_addr_lock_nested(struct net_device *dev)
4019 {
4020 	int subclass = SINGLE_DEPTH_NESTING;
4021 
4022 	if (dev->netdev_ops->ndo_get_lock_subclass)
4023 		subclass = dev->netdev_ops->ndo_get_lock_subclass(dev);
4024 
4025 	spin_lock_nested(&dev->addr_list_lock, subclass);
4026 }
4027 
netif_addr_lock_bh(struct net_device * dev)4028 static inline void netif_addr_lock_bh(struct net_device *dev)
4029 {
4030 	spin_lock_bh(&dev->addr_list_lock);
4031 }
4032 
netif_addr_unlock(struct net_device * dev)4033 static inline void netif_addr_unlock(struct net_device *dev)
4034 {
4035 	spin_unlock(&dev->addr_list_lock);
4036 }
4037 
netif_addr_unlock_bh(struct net_device * dev)4038 static inline void netif_addr_unlock_bh(struct net_device *dev)
4039 {
4040 	spin_unlock_bh(&dev->addr_list_lock);
4041 }
4042 
4043 /*
4044  * dev_addrs walker. Should be used only for read access. Call with
4045  * rcu_read_lock held.
4046  */
4047 #define for_each_dev_addr(dev, ha) \
4048 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4049 
4050 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4051 
4052 void ether_setup(struct net_device *dev);
4053 
4054 /* Support for loadable net-drivers */
4055 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4056 				    unsigned char name_assign_type,
4057 				    void (*setup)(struct net_device *),
4058 				    unsigned int txqs, unsigned int rxqs);
4059 int dev_get_valid_name(struct net *net, struct net_device *dev,
4060 		       const char *name);
4061 
4062 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4063 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4064 
4065 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4066 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4067 			 count)
4068 
4069 int register_netdev(struct net_device *dev);
4070 void unregister_netdev(struct net_device *dev);
4071 
4072 /* General hardware address lists handling functions */
4073 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4074 		   struct netdev_hw_addr_list *from_list, int addr_len);
4075 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4076 		      struct netdev_hw_addr_list *from_list, int addr_len);
4077 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4078 		       struct net_device *dev,
4079 		       int (*sync)(struct net_device *, const unsigned char *),
4080 		       int (*unsync)(struct net_device *,
4081 				     const unsigned char *));
4082 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4083 			  struct net_device *dev,
4084 			  int (*unsync)(struct net_device *,
4085 					const unsigned char *));
4086 void __hw_addr_init(struct netdev_hw_addr_list *list);
4087 
4088 /* Functions used for device addresses handling */
4089 static inline void
__dev_addr_set(struct net_device * dev,const u8 * addr,size_t len)4090 __dev_addr_set(struct net_device *dev, const u8 *addr, size_t len)
4091 {
4092 	memcpy(dev->dev_addr, addr, len);
4093 }
4094 
dev_addr_set(struct net_device * dev,const u8 * addr)4095 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4096 {
4097 	__dev_addr_set(dev, addr, dev->addr_len);
4098 }
4099 
4100 static inline void
dev_addr_mod(struct net_device * dev,unsigned int offset,const u8 * addr,size_t len)4101 dev_addr_mod(struct net_device *dev, unsigned int offset,
4102 	     const u8 *addr, size_t len)
4103 {
4104 	memcpy(&dev->dev_addr[offset], addr, len);
4105 }
4106 
4107 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4108 		 unsigned char addr_type);
4109 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4110 		 unsigned char addr_type);
4111 void dev_addr_flush(struct net_device *dev);
4112 int dev_addr_init(struct net_device *dev);
4113 
4114 /* Functions used for unicast addresses handling */
4115 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4116 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4117 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4118 int dev_uc_sync(struct net_device *to, struct net_device *from);
4119 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4120 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4121 void dev_uc_flush(struct net_device *dev);
4122 void dev_uc_init(struct net_device *dev);
4123 
4124 /**
4125  *  __dev_uc_sync - Synchonize device's unicast list
4126  *  @dev:  device to sync
4127  *  @sync: function to call if address should be added
4128  *  @unsync: function to call if address should be removed
4129  *
4130  *  Add newly added addresses to the interface, and release
4131  *  addresses that have been deleted.
4132  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4133 static inline int __dev_uc_sync(struct net_device *dev,
4134 				int (*sync)(struct net_device *,
4135 					    const unsigned char *),
4136 				int (*unsync)(struct net_device *,
4137 					      const unsigned char *))
4138 {
4139 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4140 }
4141 
4142 /**
4143  *  __dev_uc_unsync - Remove synchronized addresses from device
4144  *  @dev:  device to sync
4145  *  @unsync: function to call if address should be removed
4146  *
4147  *  Remove all addresses that were added to the device by dev_uc_sync().
4148  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4149 static inline void __dev_uc_unsync(struct net_device *dev,
4150 				   int (*unsync)(struct net_device *,
4151 						 const unsigned char *))
4152 {
4153 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4154 }
4155 
4156 /* Functions used for multicast addresses handling */
4157 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4158 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4159 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4160 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4161 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4162 int dev_mc_sync(struct net_device *to, struct net_device *from);
4163 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4164 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4165 void dev_mc_flush(struct net_device *dev);
4166 void dev_mc_init(struct net_device *dev);
4167 
4168 /**
4169  *  __dev_mc_sync - Synchonize device's multicast list
4170  *  @dev:  device to sync
4171  *  @sync: function to call if address should be added
4172  *  @unsync: function to call if address should be removed
4173  *
4174  *  Add newly added addresses to the interface, and release
4175  *  addresses that have been deleted.
4176  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4177 static inline int __dev_mc_sync(struct net_device *dev,
4178 				int (*sync)(struct net_device *,
4179 					    const unsigned char *),
4180 				int (*unsync)(struct net_device *,
4181 					      const unsigned char *))
4182 {
4183 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4184 }
4185 
4186 /**
4187  *  __dev_mc_unsync - Remove synchronized addresses from device
4188  *  @dev:  device to sync
4189  *  @unsync: function to call if address should be removed
4190  *
4191  *  Remove all addresses that were added to the device by dev_mc_sync().
4192  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4193 static inline void __dev_mc_unsync(struct net_device *dev,
4194 				   int (*unsync)(struct net_device *,
4195 						 const unsigned char *))
4196 {
4197 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4198 }
4199 
4200 /* Functions used for secondary unicast and multicast support */
4201 void dev_set_rx_mode(struct net_device *dev);
4202 void __dev_set_rx_mode(struct net_device *dev);
4203 int dev_set_promiscuity(struct net_device *dev, int inc);
4204 int dev_set_allmulti(struct net_device *dev, int inc);
4205 void netdev_state_change(struct net_device *dev);
4206 void netdev_notify_peers(struct net_device *dev);
4207 void netdev_features_change(struct net_device *dev);
4208 /* Load a device via the kmod */
4209 void dev_load(struct net *net, const char *name);
4210 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4211 					struct rtnl_link_stats64 *storage);
4212 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4213 			     const struct net_device_stats *netdev_stats);
4214 
4215 extern int		netdev_max_backlog;
4216 extern int		netdev_tstamp_prequeue;
4217 extern int		weight_p;
4218 extern int		dev_weight_rx_bias;
4219 extern int		dev_weight_tx_bias;
4220 extern int		dev_rx_weight;
4221 extern int		dev_tx_weight;
4222 
4223 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4224 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4225 						     struct list_head **iter);
4226 struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
4227 						     struct list_head **iter);
4228 
4229 /* iterate through upper list, must be called under RCU read lock */
4230 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4231 	for (iter = &(dev)->adj_list.upper, \
4232 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4233 	     updev; \
4234 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4235 
4236 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4237 				  int (*fn)(struct net_device *upper_dev,
4238 					    void *data),
4239 				  void *data);
4240 
4241 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4242 				  struct net_device *upper_dev);
4243 
4244 bool netdev_has_any_upper_dev(struct net_device *dev);
4245 
4246 void *netdev_lower_get_next_private(struct net_device *dev,
4247 				    struct list_head **iter);
4248 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4249 					struct list_head **iter);
4250 
4251 #define netdev_for_each_lower_private(dev, priv, iter) \
4252 	for (iter = (dev)->adj_list.lower.next, \
4253 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4254 	     priv; \
4255 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4256 
4257 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4258 	for (iter = &(dev)->adj_list.lower, \
4259 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4260 	     priv; \
4261 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4262 
4263 void *netdev_lower_get_next(struct net_device *dev,
4264 				struct list_head **iter);
4265 
4266 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4267 	for (iter = (dev)->adj_list.lower.next, \
4268 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4269 	     ldev; \
4270 	     ldev = netdev_lower_get_next(dev, &(iter)))
4271 
4272 struct net_device *netdev_all_lower_get_next(struct net_device *dev,
4273 					     struct list_head **iter);
4274 struct net_device *netdev_all_lower_get_next_rcu(struct net_device *dev,
4275 						 struct list_head **iter);
4276 
4277 int netdev_walk_all_lower_dev(struct net_device *dev,
4278 			      int (*fn)(struct net_device *lower_dev,
4279 					void *data),
4280 			      void *data);
4281 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4282 				  int (*fn)(struct net_device *lower_dev,
4283 					    void *data),
4284 				  void *data);
4285 
4286 void *netdev_adjacent_get_private(struct list_head *adj_list);
4287 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4288 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4289 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4290 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4291 			  struct netlink_ext_ack *extack);
4292 int netdev_master_upper_dev_link(struct net_device *dev,
4293 				 struct net_device *upper_dev,
4294 				 void *upper_priv, void *upper_info,
4295 				 struct netlink_ext_ack *extack);
4296 void netdev_upper_dev_unlink(struct net_device *dev,
4297 			     struct net_device *upper_dev);
4298 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4299 void *netdev_lower_dev_get_private(struct net_device *dev,
4300 				   struct net_device *lower_dev);
4301 void netdev_lower_state_changed(struct net_device *lower_dev,
4302 				void *lower_state_info);
4303 
4304 /* RSS keys are 40 or 52 bytes long */
4305 #define NETDEV_RSS_KEY_LEN 52
4306 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4307 void netdev_rss_key_fill(void *buffer, size_t len);
4308 
4309 int dev_get_nest_level(struct net_device *dev);
4310 int skb_checksum_help(struct sk_buff *skb);
4311 int skb_crc32c_csum_help(struct sk_buff *skb);
4312 int skb_csum_hwoffload_help(struct sk_buff *skb,
4313 			    const netdev_features_t features);
4314 
4315 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4316 				  netdev_features_t features, bool tx_path);
4317 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4318 				    netdev_features_t features);
4319 
4320 struct netdev_bonding_info {
4321 	ifslave	slave;
4322 	ifbond	master;
4323 };
4324 
4325 struct netdev_notifier_bonding_info {
4326 	struct netdev_notifier_info info; /* must be first */
4327 	struct netdev_bonding_info  bonding_info;
4328 };
4329 
4330 void netdev_bonding_info_change(struct net_device *dev,
4331 				struct netdev_bonding_info *bonding_info);
4332 
4333 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4334 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4335 {
4336 	return __skb_gso_segment(skb, features, true);
4337 }
4338 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4339 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4340 static inline bool can_checksum_protocol(netdev_features_t features,
4341 					 __be16 protocol)
4342 {
4343 	if (protocol == htons(ETH_P_FCOE))
4344 		return !!(features & NETIF_F_FCOE_CRC);
4345 
4346 	/* Assume this is an IP checksum (not SCTP CRC) */
4347 
4348 	if (features & NETIF_F_HW_CSUM) {
4349 		/* Can checksum everything */
4350 		return true;
4351 	}
4352 
4353 	switch (protocol) {
4354 	case htons(ETH_P_IP):
4355 		return !!(features & NETIF_F_IP_CSUM);
4356 	case htons(ETH_P_IPV6):
4357 		return !!(features & NETIF_F_IPV6_CSUM);
4358 	default:
4359 		return false;
4360 	}
4361 }
4362 
4363 #ifdef CONFIG_BUG
4364 void netdev_rx_csum_fault(struct net_device *dev);
4365 #else
netdev_rx_csum_fault(struct net_device * dev)4366 static inline void netdev_rx_csum_fault(struct net_device *dev)
4367 {
4368 }
4369 #endif
4370 /* rx skb timestamps */
4371 void net_enable_timestamp(void);
4372 void net_disable_timestamp(void);
4373 
4374 #ifdef CONFIG_PROC_FS
4375 int __init dev_proc_init(void);
4376 #else
4377 #define dev_proc_init() 0
4378 #endif
4379 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4380 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4381 					      struct sk_buff *skb, struct net_device *dev,
4382 					      bool more)
4383 {
4384 	skb->xmit_more = more ? 1 : 0;
4385 	return ops->ndo_start_xmit(skb, dev);
4386 }
4387 
netdev_xmit_more(void)4388 static inline bool netdev_xmit_more(void)
4389 {
4390 	return __this_cpu_read(softnet_data.xmit.more);
4391 }
4392 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4393 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4394 					    struct netdev_queue *txq, bool more)
4395 {
4396 	const struct net_device_ops *ops = dev->netdev_ops;
4397 	int rc;
4398 
4399 	rc = __netdev_start_xmit(ops, skb, dev, more);
4400 	if (rc == NETDEV_TX_OK)
4401 		txq_trans_update(txq);
4402 
4403 	return rc;
4404 }
4405 
4406 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4407 				const void *ns);
4408 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4409 				 const void *ns);
4410 
netdev_class_create_file(const struct class_attribute * class_attr)4411 static inline int netdev_class_create_file(const struct class_attribute *class_attr)
4412 {
4413 	return netdev_class_create_file_ns(class_attr, NULL);
4414 }
4415 
netdev_class_remove_file(const struct class_attribute * class_attr)4416 static inline void netdev_class_remove_file(const struct class_attribute *class_attr)
4417 {
4418 	netdev_class_remove_file_ns(class_attr, NULL);
4419 }
4420 
4421 extern const struct kobj_ns_type_operations net_ns_type_operations;
4422 
4423 const char *netdev_drivername(const struct net_device *dev);
4424 
4425 void linkwatch_run_queue(void);
4426 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4427 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4428 							  netdev_features_t f2)
4429 {
4430 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4431 		if (f1 & NETIF_F_HW_CSUM)
4432 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4433 		else
4434 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4435 	}
4436 
4437 	return f1 & f2;
4438 }
4439 
netdev_get_wanted_features(struct net_device * dev)4440 static inline netdev_features_t netdev_get_wanted_features(
4441 	struct net_device *dev)
4442 {
4443 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4444 }
4445 netdev_features_t netdev_increment_features(netdev_features_t all,
4446 	netdev_features_t one, netdev_features_t mask);
4447 
4448 /* Allow TSO being used on stacked device :
4449  * Performing the GSO segmentation before last device
4450  * is a performance improvement.
4451  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4452 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4453 							netdev_features_t mask)
4454 {
4455 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4456 }
4457 
4458 int __netdev_update_features(struct net_device *dev);
4459 void netdev_update_features(struct net_device *dev);
4460 void netdev_change_features(struct net_device *dev);
4461 
4462 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4463 					struct net_device *dev);
4464 
4465 netdev_features_t passthru_features_check(struct sk_buff *skb,
4466 					  struct net_device *dev,
4467 					  netdev_features_t features);
4468 netdev_features_t netif_skb_features(struct sk_buff *skb);
4469 
net_gso_ok(netdev_features_t features,int gso_type)4470 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4471 {
4472 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4473 
4474 	/* check flags correspondence */
4475 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4476 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4477 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4478 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4479 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4480 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4481 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4482 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4483 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4484 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4485 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4486 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4487 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4488 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4489 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4490 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4491 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4492 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4493 
4494 	return (features & feature) == feature;
4495 }
4496 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4497 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4498 {
4499 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4500 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4501 }
4502 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4503 static inline bool netif_needs_gso(struct sk_buff *skb,
4504 				   netdev_features_t features)
4505 {
4506 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4507 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4508 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4509 }
4510 
netif_set_gso_max_size(struct net_device * dev,unsigned int size)4511 static inline void netif_set_gso_max_size(struct net_device *dev,
4512 					  unsigned int size)
4513 {
4514 	dev->gso_max_size = size;
4515 }
4516 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4517 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4518 					int pulled_hlen, u16 mac_offset,
4519 					int mac_len)
4520 {
4521 	skb->protocol = protocol;
4522 	skb->encapsulation = 1;
4523 	skb_push(skb, pulled_hlen);
4524 	skb_reset_transport_header(skb);
4525 	skb->mac_header = mac_offset;
4526 	skb->network_header = skb->mac_header + mac_len;
4527 	skb->mac_len = mac_len;
4528 }
4529 
netif_is_macsec(const struct net_device * dev)4530 static inline bool netif_is_macsec(const struct net_device *dev)
4531 {
4532 	return dev->priv_flags & IFF_MACSEC;
4533 }
4534 
netif_is_macvlan(const struct net_device * dev)4535 static inline bool netif_is_macvlan(const struct net_device *dev)
4536 {
4537 	return dev->priv_flags & IFF_MACVLAN;
4538 }
4539 
netif_is_macvlan_port(const struct net_device * dev)4540 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4541 {
4542 	return dev->priv_flags & IFF_MACVLAN_PORT;
4543 }
4544 
netif_is_bond_master(const struct net_device * dev)4545 static inline bool netif_is_bond_master(const struct net_device *dev)
4546 {
4547 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4548 }
4549 
netif_is_bond_slave(const struct net_device * dev)4550 static inline bool netif_is_bond_slave(const struct net_device *dev)
4551 {
4552 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4553 }
4554 
netif_supports_nofcs(struct net_device * dev)4555 static inline bool netif_supports_nofcs(struct net_device *dev)
4556 {
4557 	return dev->priv_flags & IFF_SUPP_NOFCS;
4558 }
4559 
netif_has_l3_rx_handler(const struct net_device * dev)4560 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4561 {
4562 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4563 }
4564 
netif_is_l3_master(const struct net_device * dev)4565 static inline bool netif_is_l3_master(const struct net_device *dev)
4566 {
4567 	return dev->priv_flags & IFF_L3MDEV_MASTER;
4568 }
4569 
netif_is_l3_slave(const struct net_device * dev)4570 static inline bool netif_is_l3_slave(const struct net_device *dev)
4571 {
4572 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
4573 }
4574 
netif_is_bridge_master(const struct net_device * dev)4575 static inline bool netif_is_bridge_master(const struct net_device *dev)
4576 {
4577 	return dev->priv_flags & IFF_EBRIDGE;
4578 }
4579 
netif_is_bridge_port(const struct net_device * dev)4580 static inline bool netif_is_bridge_port(const struct net_device *dev)
4581 {
4582 	return dev->priv_flags & IFF_BRIDGE_PORT;
4583 }
4584 
netif_is_ovs_master(const struct net_device * dev)4585 static inline bool netif_is_ovs_master(const struct net_device *dev)
4586 {
4587 	return dev->priv_flags & IFF_OPENVSWITCH;
4588 }
4589 
netif_is_ovs_port(const struct net_device * dev)4590 static inline bool netif_is_ovs_port(const struct net_device *dev)
4591 {
4592 	return dev->priv_flags & IFF_OVS_DATAPATH;
4593 }
4594 
netif_is_team_master(const struct net_device * dev)4595 static inline bool netif_is_team_master(const struct net_device *dev)
4596 {
4597 	return dev->priv_flags & IFF_TEAM;
4598 }
4599 
netif_is_team_port(const struct net_device * dev)4600 static inline bool netif_is_team_port(const struct net_device *dev)
4601 {
4602 	return dev->priv_flags & IFF_TEAM_PORT;
4603 }
4604 
netif_is_lag_master(const struct net_device * dev)4605 static inline bool netif_is_lag_master(const struct net_device *dev)
4606 {
4607 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
4608 }
4609 
netif_is_lag_port(const struct net_device * dev)4610 static inline bool netif_is_lag_port(const struct net_device *dev)
4611 {
4612 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
4613 }
4614 
netif_is_rxfh_configured(const struct net_device * dev)4615 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
4616 {
4617 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
4618 }
4619 
netif_is_failover(const struct net_device * dev)4620 static inline bool netif_is_failover(const struct net_device *dev)
4621 {
4622 	return dev->priv_flags & IFF_FAILOVER;
4623 }
4624 
netif_is_failover_slave(const struct net_device * dev)4625 static inline bool netif_is_failover_slave(const struct net_device *dev)
4626 {
4627 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
4628 }
4629 
4630 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)4631 static inline void netif_keep_dst(struct net_device *dev)
4632 {
4633 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
4634 }
4635 
4636 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)4637 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
4638 {
4639 	/* TODO: reserve and use an additional IFF bit, if we get more users */
4640 	return dev->priv_flags & IFF_MACSEC;
4641 }
4642 
4643 extern struct pernet_operations __net_initdata loopback_net_ops;
4644 
4645 /* Logging, debugging and troubleshooting/diagnostic helpers. */
4646 
4647 /* netdev_printk helpers, similar to dev_printk */
4648 
netdev_name(const struct net_device * dev)4649 static inline const char *netdev_name(const struct net_device *dev)
4650 {
4651 	if (!dev->name[0] || strchr(dev->name, '%'))
4652 		return "(unnamed net_device)";
4653 	return dev->name;
4654 }
4655 
netdev_unregistering(const struct net_device * dev)4656 static inline bool netdev_unregistering(const struct net_device *dev)
4657 {
4658 	return dev->reg_state == NETREG_UNREGISTERING;
4659 }
4660 
netdev_reg_state(const struct net_device * dev)4661 static inline const char *netdev_reg_state(const struct net_device *dev)
4662 {
4663 	switch (dev->reg_state) {
4664 	case NETREG_UNINITIALIZED: return " (uninitialized)";
4665 	case NETREG_REGISTERED: return "";
4666 	case NETREG_UNREGISTERING: return " (unregistering)";
4667 	case NETREG_UNREGISTERED: return " (unregistered)";
4668 	case NETREG_RELEASED: return " (released)";
4669 	case NETREG_DUMMY: return " (dummy)";
4670 	}
4671 
4672 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
4673 	return " (unknown)";
4674 }
4675 
4676 __printf(3, 4)
4677 void netdev_printk(const char *level, const struct net_device *dev,
4678 		   const char *format, ...);
4679 __printf(2, 3)
4680 void netdev_emerg(const struct net_device *dev, const char *format, ...);
4681 __printf(2, 3)
4682 void netdev_alert(const struct net_device *dev, const char *format, ...);
4683 __printf(2, 3)
4684 void netdev_crit(const struct net_device *dev, const char *format, ...);
4685 __printf(2, 3)
4686 void netdev_err(const struct net_device *dev, const char *format, ...);
4687 __printf(2, 3)
4688 void netdev_warn(const struct net_device *dev, const char *format, ...);
4689 __printf(2, 3)
4690 void netdev_notice(const struct net_device *dev, const char *format, ...);
4691 __printf(2, 3)
4692 void netdev_info(const struct net_device *dev, const char *format, ...);
4693 
4694 #define netdev_level_once(level, dev, fmt, ...)			\
4695 do {								\
4696 	static bool __print_once __read_mostly;			\
4697 								\
4698 	if (!__print_once) {					\
4699 		__print_once = true;				\
4700 		netdev_printk(level, dev, fmt, ##__VA_ARGS__);	\
4701 	}							\
4702 } while (0)
4703 
4704 #define netdev_emerg_once(dev, fmt, ...) \
4705 	netdev_level_once(KERN_EMERG, dev, fmt, ##__VA_ARGS__)
4706 #define netdev_alert_once(dev, fmt, ...) \
4707 	netdev_level_once(KERN_ALERT, dev, fmt, ##__VA_ARGS__)
4708 #define netdev_crit_once(dev, fmt, ...) \
4709 	netdev_level_once(KERN_CRIT, dev, fmt, ##__VA_ARGS__)
4710 #define netdev_err_once(dev, fmt, ...) \
4711 	netdev_level_once(KERN_ERR, dev, fmt, ##__VA_ARGS__)
4712 #define netdev_warn_once(dev, fmt, ...) \
4713 	netdev_level_once(KERN_WARNING, dev, fmt, ##__VA_ARGS__)
4714 #define netdev_notice_once(dev, fmt, ...) \
4715 	netdev_level_once(KERN_NOTICE, dev, fmt, ##__VA_ARGS__)
4716 #define netdev_info_once(dev, fmt, ...) \
4717 	netdev_level_once(KERN_INFO, dev, fmt, ##__VA_ARGS__)
4718 
4719 #define MODULE_ALIAS_NETDEV(device) \
4720 	MODULE_ALIAS("netdev-" device)
4721 
4722 #if defined(CONFIG_DYNAMIC_DEBUG)
4723 #define netdev_dbg(__dev, format, args...)			\
4724 do {								\
4725 	dynamic_netdev_dbg(__dev, format, ##args);		\
4726 } while (0)
4727 #elif defined(DEBUG)
4728 #define netdev_dbg(__dev, format, args...)			\
4729 	netdev_printk(KERN_DEBUG, __dev, format, ##args)
4730 #else
4731 #define netdev_dbg(__dev, format, args...)			\
4732 ({								\
4733 	if (0)							\
4734 		netdev_printk(KERN_DEBUG, __dev, format, ##args); \
4735 })
4736 #endif
4737 
4738 #if defined(VERBOSE_DEBUG)
4739 #define netdev_vdbg	netdev_dbg
4740 #else
4741 
4742 #define netdev_vdbg(dev, format, args...)			\
4743 ({								\
4744 	if (0)							\
4745 		netdev_printk(KERN_DEBUG, dev, format, ##args);	\
4746 	0;							\
4747 })
4748 #endif
4749 
4750 /*
4751  * netdev_WARN() acts like dev_printk(), but with the key difference
4752  * of using a WARN/WARN_ON to get the message out, including the
4753  * file/line information and a backtrace.
4754  */
4755 #define netdev_WARN(dev, format, args...)			\
4756 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4757 	     netdev_reg_state(dev), ##args)
4758 
4759 #define netdev_WARN_ONCE(dev, format, args...)				\
4760 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
4761 		  netdev_reg_state(dev), ##args)
4762 
4763 /* netif printk helpers, similar to netdev_printk */
4764 
4765 #define netif_printk(priv, type, level, dev, fmt, args...)	\
4766 do {					  			\
4767 	if (netif_msg_##type(priv))				\
4768 		netdev_printk(level, (dev), fmt, ##args);	\
4769 } while (0)
4770 
4771 #define netif_level(level, priv, type, dev, fmt, args...)	\
4772 do {								\
4773 	if (netif_msg_##type(priv))				\
4774 		netdev_##level(dev, fmt, ##args);		\
4775 } while (0)
4776 
4777 #define netif_emerg(priv, type, dev, fmt, args...)		\
4778 	netif_level(emerg, priv, type, dev, fmt, ##args)
4779 #define netif_alert(priv, type, dev, fmt, args...)		\
4780 	netif_level(alert, priv, type, dev, fmt, ##args)
4781 #define netif_crit(priv, type, dev, fmt, args...)		\
4782 	netif_level(crit, priv, type, dev, fmt, ##args)
4783 #define netif_err(priv, type, dev, fmt, args...)		\
4784 	netif_level(err, priv, type, dev, fmt, ##args)
4785 #define netif_warn(priv, type, dev, fmt, args...)		\
4786 	netif_level(warn, priv, type, dev, fmt, ##args)
4787 #define netif_notice(priv, type, dev, fmt, args...)		\
4788 	netif_level(notice, priv, type, dev, fmt, ##args)
4789 #define netif_info(priv, type, dev, fmt, args...)		\
4790 	netif_level(info, priv, type, dev, fmt, ##args)
4791 
4792 #if defined(CONFIG_DYNAMIC_DEBUG)
4793 #define netif_dbg(priv, type, netdev, format, args...)		\
4794 do {								\
4795 	if (netif_msg_##type(priv))				\
4796 		dynamic_netdev_dbg(netdev, format, ##args);	\
4797 } while (0)
4798 #elif defined(DEBUG)
4799 #define netif_dbg(priv, type, dev, format, args...)		\
4800 	netif_printk(priv, type, KERN_DEBUG, dev, format, ##args)
4801 #else
4802 #define netif_dbg(priv, type, dev, format, args...)			\
4803 ({									\
4804 	if (0)								\
4805 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4806 	0;								\
4807 })
4808 #endif
4809 
4810 /* if @cond then downgrade to debug, else print at @level */
4811 #define netif_cond_dbg(priv, type, netdev, cond, level, fmt, args...)     \
4812 	do {                                                              \
4813 		if (cond)                                                 \
4814 			netif_dbg(priv, type, netdev, fmt, ##args);       \
4815 		else                                                      \
4816 			netif_ ## level(priv, type, netdev, fmt, ##args); \
4817 	} while (0)
4818 
4819 #if defined(VERBOSE_DEBUG)
4820 #define netif_vdbg	netif_dbg
4821 #else
4822 #define netif_vdbg(priv, type, dev, format, args...)		\
4823 ({								\
4824 	if (0)							\
4825 		netif_printk(priv, type, KERN_DEBUG, dev, format, ##args); \
4826 	0;							\
4827 })
4828 #endif
4829 
4830 /*
4831  *	The list of packet types we will receive (as opposed to discard)
4832  *	and the routines to invoke.
4833  *
4834  *	Why 16. Because with 16 the only overlap we get on a hash of the
4835  *	low nibble of the protocol value is RARP/SNAP/X.25.
4836  *
4837  *		0800	IP
4838  *		0001	802.3
4839  *		0002	AX.25
4840  *		0004	802.2
4841  *		8035	RARP
4842  *		0005	SNAP
4843  *		0805	X.25
4844  *		0806	ARP
4845  *		8137	IPX
4846  *		0009	Localtalk
4847  *		86DD	IPv6
4848  */
4849 #define PTYPE_HASH_SIZE	(16)
4850 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
4851 
4852 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
4853 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
4854 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
4855 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
4856 
4857 #endif	/* _LINUX_NETDEVICE_H */
4858