1 /*
2  *  linux/fs/block_dev.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *  Copyright (C) 2001  Andrea Arcangeli <andrea@suse.de> SuSE
6  */
7 
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38 
39 struct bdev_inode {
40 	struct block_device bdev;
41 	struct inode vfs_inode;
42 };
43 
44 static const struct address_space_operations def_blk_aops;
45 
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 	return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50 
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 	return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56 
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 	struct inode *inode = bdev->bd_inode;
60 	int ret;
61 
62 	spin_lock(&inode->i_lock);
63 	while (inode->i_state & I_DIRTY) {
64 		spin_unlock(&inode->i_lock);
65 		ret = write_inode_now(inode, true);
66 		if (ret) {
67 			char name[BDEVNAME_SIZE];
68 			pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 					    "for block device %s (err=%d).\n",
70 					    bdevname(bdev, name), ret);
71 		}
72 		spin_lock(&inode->i_lock);
73 	}
74 	spin_unlock(&inode->i_lock);
75 }
76 
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 void kill_bdev(struct block_device *bdev)
79 {
80 	struct address_space *mapping = bdev->bd_inode->i_mapping;
81 
82 	if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 		return;
84 
85 	invalidate_bh_lrus();
86 	truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89 
90 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)91 void invalidate_bdev(struct block_device *bdev)
92 {
93 	struct address_space *mapping = bdev->bd_inode->i_mapping;
94 
95 	if (mapping->nrpages) {
96 		invalidate_bh_lrus();
97 		lru_add_drain_all();	/* make sure all lru add caches are flushed */
98 		invalidate_mapping_pages(mapping, 0, -1);
99 	}
100 	/* 99% of the time, we don't need to flush the cleancache on the bdev.
101 	 * But, for the strange corners, lets be cautious
102 	 */
103 	cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106 
set_init_blocksize(struct block_device * bdev)107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 	unsigned bsize = bdev_logical_block_size(bdev);
110 	loff_t size = i_size_read(bdev->bd_inode);
111 
112 	while (bsize < PAGE_SIZE) {
113 		if (size & bsize)
114 			break;
115 		bsize <<= 1;
116 	}
117 	bdev->bd_block_size = bsize;
118 	bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120 
set_blocksize(struct block_device * bdev,int size)121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 	/* Size must be a power of two, and between 512 and PAGE_SIZE */
124 	if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 		return -EINVAL;
126 
127 	/* Size cannot be smaller than the size supported by the device */
128 	if (size < bdev_logical_block_size(bdev))
129 		return -EINVAL;
130 
131 	/* Don't change the size if it is same as current */
132 	if (bdev->bd_block_size != size) {
133 		sync_blockdev(bdev);
134 		bdev->bd_block_size = size;
135 		bdev->bd_inode->i_blkbits = blksize_bits(size);
136 		kill_bdev(bdev);
137 	}
138 	return 0;
139 }
140 
141 EXPORT_SYMBOL(set_blocksize);
142 
sb_set_blocksize(struct super_block * sb,int size)143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 	if (set_blocksize(sb->s_bdev, size))
146 		return 0;
147 	/* If we get here, we know size is power of two
148 	 * and it's value is between 512 and PAGE_SIZE */
149 	sb->s_blocksize = size;
150 	sb->s_blocksize_bits = blksize_bits(size);
151 	return sb->s_blocksize;
152 }
153 
154 EXPORT_SYMBOL(sb_set_blocksize);
155 
sb_min_blocksize(struct super_block * sb,int size)156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 	int minsize = bdev_logical_block_size(sb->s_bdev);
159 	if (size < minsize)
160 		size = minsize;
161 	return sb_set_blocksize(sb, size);
162 }
163 
164 EXPORT_SYMBOL(sb_min_blocksize);
165 
166 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 		struct buffer_head *bh, int create)
169 {
170 	bh->b_bdev = I_BDEV(inode);
171 	bh->b_blocknr = iblock;
172 	set_buffer_mapped(bh);
173 	return 0;
174 }
175 
bdev_file_inode(struct file * file)176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 	return file->f_mapping->host;
179 }
180 
dio_bio_write_op(struct kiocb * iocb)181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 	unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184 
185 	/* avoid the need for a I/O completion work item */
186 	if (iocb->ki_flags & IOCB_DSYNC)
187 		op |= REQ_FUA;
188 	return op;
189 }
190 
191 #define DIO_INLINE_BIO_VECS 4
192 
blkdev_bio_end_io_simple(struct bio * bio)193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 	struct task_struct *waiter = bio->bi_private;
196 
197 	WRITE_ONCE(bio->bi_private, NULL);
198 	wake_up_process(waiter);
199 }
200 
201 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 		int nr_pages)
204 {
205 	struct file *file = iocb->ki_filp;
206 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 	struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 	loff_t pos = iocb->ki_pos;
209 	bool should_dirty = false;
210 	struct bio bio;
211 	ssize_t ret;
212 	blk_qc_t qc;
213 	int i;
214 
215 	if ((pos | iov_iter_alignment(iter)) &
216 	    (bdev_logical_block_size(bdev) - 1))
217 		return -EINVAL;
218 
219 	if (nr_pages <= DIO_INLINE_BIO_VECS)
220 		vecs = inline_vecs;
221 	else {
222 		vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
223 				     GFP_KERNEL);
224 		if (!vecs)
225 			return -ENOMEM;
226 	}
227 
228 	bio_init(&bio, vecs, nr_pages);
229 	bio_set_dev(&bio, bdev);
230 	bio.bi_iter.bi_sector = pos >> 9;
231 	bio.bi_write_hint = iocb->ki_hint;
232 	bio.bi_private = current;
233 	bio.bi_end_io = blkdev_bio_end_io_simple;
234 	bio.bi_ioprio = iocb->ki_ioprio;
235 
236 	ret = bio_iov_iter_get_pages(&bio, iter);
237 	if (unlikely(ret))
238 		goto out;
239 	ret = bio.bi_iter.bi_size;
240 
241 	if (iov_iter_rw(iter) == READ) {
242 		bio.bi_opf = REQ_OP_READ;
243 		if (iter_is_iovec(iter))
244 			should_dirty = true;
245 	} else {
246 		bio.bi_opf = dio_bio_write_op(iocb);
247 		task_io_account_write(ret);
248 	}
249 
250 	qc = submit_bio(&bio);
251 	for (;;) {
252 		set_current_state(TASK_UNINTERRUPTIBLE);
253 		if (!READ_ONCE(bio.bi_private))
254 			break;
255 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
256 		    !blk_poll(bdev_get_queue(bdev), qc))
257 			io_schedule();
258 	}
259 	__set_current_state(TASK_RUNNING);
260 
261 	bio_for_each_segment_all(bvec, &bio, i) {
262 		if (should_dirty && !PageCompound(bvec->bv_page))
263 			set_page_dirty_lock(bvec->bv_page);
264 		put_page(bvec->bv_page);
265 	}
266 
267 	if (unlikely(bio.bi_status))
268 		ret = blk_status_to_errno(bio.bi_status);
269 
270 out:
271 	if (vecs != inline_vecs)
272 		kfree(vecs);
273 
274 	bio_uninit(&bio);
275 
276 	return ret;
277 }
278 
279 struct blkdev_dio {
280 	union {
281 		struct kiocb		*iocb;
282 		struct task_struct	*waiter;
283 	};
284 	size_t			size;
285 	atomic_t		ref;
286 	bool			multi_bio : 1;
287 	bool			should_dirty : 1;
288 	bool			is_sync : 1;
289 	struct bio		bio;
290 };
291 
292 static struct bio_set blkdev_dio_pool;
293 
blkdev_bio_end_io(struct bio * bio)294 static void blkdev_bio_end_io(struct bio *bio)
295 {
296 	struct blkdev_dio *dio = bio->bi_private;
297 	bool should_dirty = dio->should_dirty;
298 
299 	if (bio->bi_status && !dio->bio.bi_status)
300 		dio->bio.bi_status = bio->bi_status;
301 
302 	if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
303 		if (!dio->is_sync) {
304 			struct kiocb *iocb = dio->iocb;
305 			ssize_t ret;
306 
307 			if (likely(!dio->bio.bi_status)) {
308 				ret = dio->size;
309 				iocb->ki_pos += ret;
310 			} else {
311 				ret = blk_status_to_errno(dio->bio.bi_status);
312 			}
313 
314 			dio->iocb->ki_complete(iocb, ret, 0);
315 			bio_put(&dio->bio);
316 		} else {
317 			struct task_struct *waiter = dio->waiter;
318 
319 			WRITE_ONCE(dio->waiter, NULL);
320 			wake_up_process(waiter);
321 		}
322 	}
323 
324 	if (should_dirty) {
325 		bio_check_pages_dirty(bio);
326 	} else {
327 		struct bio_vec *bvec;
328 		int i;
329 
330 		bio_for_each_segment_all(bvec, bio, i)
331 			put_page(bvec->bv_page);
332 		bio_put(bio);
333 	}
334 }
335 
336 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)337 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
338 {
339 	struct file *file = iocb->ki_filp;
340 	struct inode *inode = bdev_file_inode(file);
341 	struct block_device *bdev = I_BDEV(inode);
342 	struct blk_plug plug;
343 	struct blkdev_dio *dio;
344 	struct bio *bio;
345 	bool is_read = (iov_iter_rw(iter) == READ), is_sync;
346 	loff_t pos = iocb->ki_pos;
347 	blk_qc_t qc = BLK_QC_T_NONE;
348 	int ret = 0;
349 
350 	if ((pos | iov_iter_alignment(iter)) &
351 	    (bdev_logical_block_size(bdev) - 1))
352 		return -EINVAL;
353 
354 	bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
355 	bio_get(bio); /* extra ref for the completion handler */
356 
357 	dio = container_of(bio, struct blkdev_dio, bio);
358 	dio->is_sync = is_sync = is_sync_kiocb(iocb);
359 	if (dio->is_sync)
360 		dio->waiter = current;
361 	else
362 		dio->iocb = iocb;
363 
364 	dio->size = 0;
365 	dio->multi_bio = false;
366 	dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
367 
368 	blk_start_plug(&plug);
369 	for (;;) {
370 		bio_set_dev(bio, bdev);
371 		bio->bi_iter.bi_sector = pos >> 9;
372 		bio->bi_write_hint = iocb->ki_hint;
373 		bio->bi_private = dio;
374 		bio->bi_end_io = blkdev_bio_end_io;
375 		bio->bi_ioprio = iocb->ki_ioprio;
376 
377 		ret = bio_iov_iter_get_pages(bio, iter);
378 		if (unlikely(ret)) {
379 			bio->bi_status = BLK_STS_IOERR;
380 			bio_endio(bio);
381 			break;
382 		}
383 
384 		if (is_read) {
385 			bio->bi_opf = REQ_OP_READ;
386 			if (dio->should_dirty)
387 				bio_set_pages_dirty(bio);
388 		} else {
389 			bio->bi_opf = dio_bio_write_op(iocb);
390 			task_io_account_write(bio->bi_iter.bi_size);
391 		}
392 
393 		dio->size += bio->bi_iter.bi_size;
394 		pos += bio->bi_iter.bi_size;
395 
396 		nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
397 		if (!nr_pages) {
398 			qc = submit_bio(bio);
399 			break;
400 		}
401 
402 		if (!dio->multi_bio) {
403 			dio->multi_bio = true;
404 			atomic_set(&dio->ref, 2);
405 		} else {
406 			atomic_inc(&dio->ref);
407 		}
408 
409 		submit_bio(bio);
410 		bio = bio_alloc(GFP_KERNEL, nr_pages);
411 	}
412 	blk_finish_plug(&plug);
413 
414 	if (!is_sync)
415 		return -EIOCBQUEUED;
416 
417 	for (;;) {
418 		set_current_state(TASK_UNINTERRUPTIBLE);
419 		if (!READ_ONCE(dio->waiter))
420 			break;
421 
422 		if (!(iocb->ki_flags & IOCB_HIPRI) ||
423 		    !blk_poll(bdev_get_queue(bdev), qc))
424 			io_schedule();
425 	}
426 	__set_current_state(TASK_RUNNING);
427 
428 	if (!ret)
429 		ret = blk_status_to_errno(dio->bio.bi_status);
430 	if (likely(!ret))
431 		ret = dio->size;
432 
433 	bio_put(&dio->bio);
434 	return ret;
435 }
436 
437 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)438 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
439 {
440 	int nr_pages;
441 
442 	nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
443 	if (!nr_pages)
444 		return 0;
445 	if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
446 		return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
447 
448 	return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
449 }
450 
blkdev_init(void)451 static __init int blkdev_init(void)
452 {
453 	return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
454 }
455 module_init(blkdev_init);
456 
__sync_blockdev(struct block_device * bdev,int wait)457 int __sync_blockdev(struct block_device *bdev, int wait)
458 {
459 	if (!bdev)
460 		return 0;
461 	if (!wait)
462 		return filemap_flush(bdev->bd_inode->i_mapping);
463 	return filemap_write_and_wait(bdev->bd_inode->i_mapping);
464 }
465 
466 /*
467  * Write out and wait upon all the dirty data associated with a block
468  * device via its mapping.  Does not take the superblock lock.
469  */
sync_blockdev(struct block_device * bdev)470 int sync_blockdev(struct block_device *bdev)
471 {
472 	return __sync_blockdev(bdev, 1);
473 }
474 EXPORT_SYMBOL(sync_blockdev);
475 
476 /*
477  * Write out and wait upon all dirty data associated with this
478  * device.   Filesystem data as well as the underlying block
479  * device.  Takes the superblock lock.
480  */
fsync_bdev(struct block_device * bdev)481 int fsync_bdev(struct block_device *bdev)
482 {
483 	struct super_block *sb = get_super(bdev);
484 	if (sb) {
485 		int res = sync_filesystem(sb);
486 		drop_super(sb);
487 		return res;
488 	}
489 	return sync_blockdev(bdev);
490 }
491 EXPORT_SYMBOL(fsync_bdev);
492 
493 /**
494  * freeze_bdev  --  lock a filesystem and force it into a consistent state
495  * @bdev:	blockdevice to lock
496  *
497  * If a superblock is found on this device, we take the s_umount semaphore
498  * on it to make sure nobody unmounts until the snapshot creation is done.
499  * The reference counter (bd_fsfreeze_count) guarantees that only the last
500  * unfreeze process can unfreeze the frozen filesystem actually when multiple
501  * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
502  * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
503  * actually.
504  */
freeze_bdev(struct block_device * bdev)505 struct super_block *freeze_bdev(struct block_device *bdev)
506 {
507 	struct super_block *sb;
508 	int error = 0;
509 
510 	mutex_lock(&bdev->bd_fsfreeze_mutex);
511 	if (++bdev->bd_fsfreeze_count > 1) {
512 		/*
513 		 * We don't even need to grab a reference - the first call
514 		 * to freeze_bdev grab an active reference and only the last
515 		 * thaw_bdev drops it.
516 		 */
517 		sb = get_super(bdev);
518 		if (sb)
519 			drop_super(sb);
520 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
521 		return sb;
522 	}
523 
524 	sb = get_active_super(bdev);
525 	if (!sb)
526 		goto out;
527 	if (sb->s_op->freeze_super)
528 		error = sb->s_op->freeze_super(sb);
529 	else
530 		error = freeze_super(sb);
531 	if (error) {
532 		deactivate_super(sb);
533 		bdev->bd_fsfreeze_count--;
534 		mutex_unlock(&bdev->bd_fsfreeze_mutex);
535 		return ERR_PTR(error);
536 	}
537 	deactivate_super(sb);
538  out:
539 	sync_blockdev(bdev);
540 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
541 	return sb;	/* thaw_bdev releases s->s_umount */
542 }
543 EXPORT_SYMBOL(freeze_bdev);
544 
545 /**
546  * thaw_bdev  -- unlock filesystem
547  * @bdev:	blockdevice to unlock
548  * @sb:		associated superblock
549  *
550  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
551  */
thaw_bdev(struct block_device * bdev,struct super_block * sb)552 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
553 {
554 	int error = -EINVAL;
555 
556 	mutex_lock(&bdev->bd_fsfreeze_mutex);
557 	if (!bdev->bd_fsfreeze_count)
558 		goto out;
559 
560 	error = 0;
561 	if (--bdev->bd_fsfreeze_count > 0)
562 		goto out;
563 
564 	if (!sb)
565 		goto out;
566 
567 	if (sb->s_op->thaw_super)
568 		error = sb->s_op->thaw_super(sb);
569 	else
570 		error = thaw_super(sb);
571 	if (error)
572 		bdev->bd_fsfreeze_count++;
573 out:
574 	mutex_unlock(&bdev->bd_fsfreeze_mutex);
575 	return error;
576 }
577 EXPORT_SYMBOL(thaw_bdev);
578 
blkdev_writepage(struct page * page,struct writeback_control * wbc)579 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
580 {
581 	return block_write_full_page(page, blkdev_get_block, wbc);
582 }
583 
blkdev_readpage(struct file * file,struct page * page)584 static int blkdev_readpage(struct file * file, struct page * page)
585 {
586 	return block_read_full_page(page, blkdev_get_block);
587 }
588 
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)589 static int blkdev_readpages(struct file *file, struct address_space *mapping,
590 			struct list_head *pages, unsigned nr_pages)
591 {
592 	return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
593 }
594 
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)595 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
596 			loff_t pos, unsigned len, unsigned flags,
597 			struct page **pagep, void **fsdata)
598 {
599 	return block_write_begin(mapping, pos, len, flags, pagep,
600 				 blkdev_get_block);
601 }
602 
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)603 static int blkdev_write_end(struct file *file, struct address_space *mapping,
604 			loff_t pos, unsigned len, unsigned copied,
605 			struct page *page, void *fsdata)
606 {
607 	int ret;
608 	ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
609 
610 	unlock_page(page);
611 	put_page(page);
612 
613 	return ret;
614 }
615 
616 /*
617  * private llseek:
618  * for a block special file file_inode(file)->i_size is zero
619  * so we compute the size by hand (just as in block_read/write above)
620  */
block_llseek(struct file * file,loff_t offset,int whence)621 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
622 {
623 	struct inode *bd_inode = bdev_file_inode(file);
624 	loff_t retval;
625 
626 	inode_lock(bd_inode);
627 	retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
628 	inode_unlock(bd_inode);
629 	return retval;
630 }
631 
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)632 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
633 {
634 	struct inode *bd_inode = bdev_file_inode(filp);
635 	struct block_device *bdev = I_BDEV(bd_inode);
636 	int error;
637 
638 	error = file_write_and_wait_range(filp, start, end);
639 	if (error)
640 		return error;
641 
642 	/*
643 	 * There is no need to serialise calls to blkdev_issue_flush with
644 	 * i_mutex and doing so causes performance issues with concurrent
645 	 * O_SYNC writers to a block device.
646 	 */
647 	error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
648 	if (error == -EOPNOTSUPP)
649 		error = 0;
650 
651 	return error;
652 }
653 EXPORT_SYMBOL(blkdev_fsync);
654 
655 /**
656  * bdev_read_page() - Start reading a page from a block device
657  * @bdev: The device to read the page from
658  * @sector: The offset on the device to read the page to (need not be aligned)
659  * @page: The page to read
660  *
661  * On entry, the page should be locked.  It will be unlocked when the page
662  * has been read.  If the block driver implements rw_page synchronously,
663  * that will be true on exit from this function, but it need not be.
664  *
665  * Errors returned by this function are usually "soft", eg out of memory, or
666  * queue full; callers should try a different route to read this page rather
667  * than propagate an error back up the stack.
668  *
669  * Return: negative errno if an error occurs, 0 if submission was successful.
670  */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)671 int bdev_read_page(struct block_device *bdev, sector_t sector,
672 			struct page *page)
673 {
674 	const struct block_device_operations *ops = bdev->bd_disk->fops;
675 	int result = -EOPNOTSUPP;
676 
677 	if (!ops->rw_page || bdev_get_integrity(bdev))
678 		return result;
679 
680 	result = blk_queue_enter(bdev->bd_queue, 0);
681 	if (result)
682 		return result;
683 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
684 			      REQ_OP_READ);
685 	blk_queue_exit(bdev->bd_queue);
686 	return result;
687 }
688 EXPORT_SYMBOL_GPL(bdev_read_page);
689 
690 /**
691  * bdev_write_page() - Start writing a page to a block device
692  * @bdev: The device to write the page to
693  * @sector: The offset on the device to write the page to (need not be aligned)
694  * @page: The page to write
695  * @wbc: The writeback_control for the write
696  *
697  * On entry, the page should be locked and not currently under writeback.
698  * On exit, if the write started successfully, the page will be unlocked and
699  * under writeback.  If the write failed already (eg the driver failed to
700  * queue the page to the device), the page will still be locked.  If the
701  * caller is a ->writepage implementation, it will need to unlock the page.
702  *
703  * Errors returned by this function are usually "soft", eg out of memory, or
704  * queue full; callers should try a different route to write this page rather
705  * than propagate an error back up the stack.
706  *
707  * Return: negative errno if an error occurs, 0 if submission was successful.
708  */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)709 int bdev_write_page(struct block_device *bdev, sector_t sector,
710 			struct page *page, struct writeback_control *wbc)
711 {
712 	int result;
713 	const struct block_device_operations *ops = bdev->bd_disk->fops;
714 
715 	if (!ops->rw_page || bdev_get_integrity(bdev))
716 		return -EOPNOTSUPP;
717 	result = blk_queue_enter(bdev->bd_queue, 0);
718 	if (result)
719 		return result;
720 
721 	set_page_writeback(page);
722 	result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
723 			      REQ_OP_WRITE);
724 	if (result) {
725 		end_page_writeback(page);
726 	} else {
727 		clean_page_buffers(page);
728 		unlock_page(page);
729 	}
730 	blk_queue_exit(bdev->bd_queue);
731 	return result;
732 }
733 EXPORT_SYMBOL_GPL(bdev_write_page);
734 
735 /*
736  * pseudo-fs
737  */
738 
739 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
740 static struct kmem_cache * bdev_cachep __read_mostly;
741 
bdev_alloc_inode(struct super_block * sb)742 static struct inode *bdev_alloc_inode(struct super_block *sb)
743 {
744 	struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
745 	if (!ei)
746 		return NULL;
747 	return &ei->vfs_inode;
748 }
749 
bdev_i_callback(struct rcu_head * head)750 static void bdev_i_callback(struct rcu_head *head)
751 {
752 	struct inode *inode = container_of(head, struct inode, i_rcu);
753 	struct bdev_inode *bdi = BDEV_I(inode);
754 
755 	kmem_cache_free(bdev_cachep, bdi);
756 }
757 
bdev_destroy_inode(struct inode * inode)758 static void bdev_destroy_inode(struct inode *inode)
759 {
760 	call_rcu(&inode->i_rcu, bdev_i_callback);
761 }
762 
init_once(void * foo)763 static void init_once(void *foo)
764 {
765 	struct bdev_inode *ei = (struct bdev_inode *) foo;
766 	struct block_device *bdev = &ei->bdev;
767 
768 	memset(bdev, 0, sizeof(*bdev));
769 	mutex_init(&bdev->bd_mutex);
770 	INIT_LIST_HEAD(&bdev->bd_list);
771 #ifdef CONFIG_SYSFS
772 	INIT_LIST_HEAD(&bdev->bd_holder_disks);
773 #endif
774 	bdev->bd_bdi = &noop_backing_dev_info;
775 	inode_init_once(&ei->vfs_inode);
776 	/* Initialize mutex for freeze. */
777 	mutex_init(&bdev->bd_fsfreeze_mutex);
778 }
779 
bdev_evict_inode(struct inode * inode)780 static void bdev_evict_inode(struct inode *inode)
781 {
782 	struct block_device *bdev = &BDEV_I(inode)->bdev;
783 	truncate_inode_pages_final(&inode->i_data);
784 	invalidate_inode_buffers(inode); /* is it needed here? */
785 	clear_inode(inode);
786 	spin_lock(&bdev_lock);
787 	list_del_init(&bdev->bd_list);
788 	spin_unlock(&bdev_lock);
789 	/* Detach inode from wb early as bdi_put() may free bdi->wb */
790 	inode_detach_wb(inode);
791 	if (bdev->bd_bdi != &noop_backing_dev_info) {
792 		bdi_put(bdev->bd_bdi);
793 		bdev->bd_bdi = &noop_backing_dev_info;
794 	}
795 }
796 
797 static const struct super_operations bdev_sops = {
798 	.statfs = simple_statfs,
799 	.alloc_inode = bdev_alloc_inode,
800 	.destroy_inode = bdev_destroy_inode,
801 	.drop_inode = generic_delete_inode,
802 	.evict_inode = bdev_evict_inode,
803 };
804 
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)805 static struct dentry *bd_mount(struct file_system_type *fs_type,
806 	int flags, const char *dev_name, void *data)
807 {
808 	struct dentry *dent;
809 	dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
810 	if (!IS_ERR(dent))
811 		dent->d_sb->s_iflags |= SB_I_CGROUPWB;
812 	return dent;
813 }
814 
815 static struct file_system_type bd_type = {
816 	.name		= "bdev",
817 	.mount		= bd_mount,
818 	.kill_sb	= kill_anon_super,
819 };
820 
821 struct super_block *blockdev_superblock __read_mostly;
822 EXPORT_SYMBOL_GPL(blockdev_superblock);
823 
bdev_cache_init(void)824 void __init bdev_cache_init(void)
825 {
826 	int err;
827 	static struct vfsmount *bd_mnt;
828 
829 	bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
830 			0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
831 				SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
832 			init_once);
833 	err = register_filesystem(&bd_type);
834 	if (err)
835 		panic("Cannot register bdev pseudo-fs");
836 	bd_mnt = kern_mount(&bd_type);
837 	if (IS_ERR(bd_mnt))
838 		panic("Cannot create bdev pseudo-fs");
839 	blockdev_superblock = bd_mnt->mnt_sb;   /* For writeback */
840 }
841 
842 /*
843  * Most likely _very_ bad one - but then it's hardly critical for small
844  * /dev and can be fixed when somebody will need really large one.
845  * Keep in mind that it will be fed through icache hash function too.
846  */
hash(dev_t dev)847 static inline unsigned long hash(dev_t dev)
848 {
849 	return MAJOR(dev)+MINOR(dev);
850 }
851 
bdev_test(struct inode * inode,void * data)852 static int bdev_test(struct inode *inode, void *data)
853 {
854 	return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
855 }
856 
bdev_set(struct inode * inode,void * data)857 static int bdev_set(struct inode *inode, void *data)
858 {
859 	BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
860 	return 0;
861 }
862 
863 static LIST_HEAD(all_bdevs);
864 
865 /*
866  * If there is a bdev inode for this device, unhash it so that it gets evicted
867  * as soon as last inode reference is dropped.
868  */
bdev_unhash_inode(dev_t dev)869 void bdev_unhash_inode(dev_t dev)
870 {
871 	struct inode *inode;
872 
873 	inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
874 	if (inode) {
875 		remove_inode_hash(inode);
876 		iput(inode);
877 	}
878 }
879 
bdget(dev_t dev)880 struct block_device *bdget(dev_t dev)
881 {
882 	struct block_device *bdev;
883 	struct inode *inode;
884 
885 	inode = iget5_locked(blockdev_superblock, hash(dev),
886 			bdev_test, bdev_set, &dev);
887 
888 	if (!inode)
889 		return NULL;
890 
891 	bdev = &BDEV_I(inode)->bdev;
892 
893 	if (inode->i_state & I_NEW) {
894 		bdev->bd_contains = NULL;
895 		bdev->bd_super = NULL;
896 		bdev->bd_inode = inode;
897 		bdev->bd_block_size = i_blocksize(inode);
898 		bdev->bd_part_count = 0;
899 		bdev->bd_invalidated = 0;
900 		inode->i_mode = S_IFBLK;
901 		inode->i_rdev = dev;
902 		inode->i_bdev = bdev;
903 		inode->i_data.a_ops = &def_blk_aops;
904 		mapping_set_gfp_mask(&inode->i_data, GFP_USER);
905 		spin_lock(&bdev_lock);
906 		list_add(&bdev->bd_list, &all_bdevs);
907 		spin_unlock(&bdev_lock);
908 		unlock_new_inode(inode);
909 	}
910 	return bdev;
911 }
912 
913 EXPORT_SYMBOL(bdget);
914 
915 /**
916  * bdgrab -- Grab a reference to an already referenced block device
917  * @bdev:	Block device to grab a reference to.
918  */
bdgrab(struct block_device * bdev)919 struct block_device *bdgrab(struct block_device *bdev)
920 {
921 	ihold(bdev->bd_inode);
922 	return bdev;
923 }
924 EXPORT_SYMBOL(bdgrab);
925 
nr_blockdev_pages(void)926 long nr_blockdev_pages(void)
927 {
928 	struct block_device *bdev;
929 	long ret = 0;
930 	spin_lock(&bdev_lock);
931 	list_for_each_entry(bdev, &all_bdevs, bd_list) {
932 		ret += bdev->bd_inode->i_mapping->nrpages;
933 	}
934 	spin_unlock(&bdev_lock);
935 	return ret;
936 }
937 
bdput(struct block_device * bdev)938 void bdput(struct block_device *bdev)
939 {
940 	iput(bdev->bd_inode);
941 }
942 
943 EXPORT_SYMBOL(bdput);
944 
bd_acquire(struct inode * inode)945 static struct block_device *bd_acquire(struct inode *inode)
946 {
947 	struct block_device *bdev;
948 
949 	spin_lock(&bdev_lock);
950 	bdev = inode->i_bdev;
951 	if (bdev && !inode_unhashed(bdev->bd_inode)) {
952 		bdgrab(bdev);
953 		spin_unlock(&bdev_lock);
954 		return bdev;
955 	}
956 	spin_unlock(&bdev_lock);
957 
958 	/*
959 	 * i_bdev references block device inode that was already shut down
960 	 * (corresponding device got removed).  Remove the reference and look
961 	 * up block device inode again just in case new device got
962 	 * reestablished under the same device number.
963 	 */
964 	if (bdev)
965 		bd_forget(inode);
966 
967 	bdev = bdget(inode->i_rdev);
968 	if (bdev) {
969 		spin_lock(&bdev_lock);
970 		if (!inode->i_bdev) {
971 			/*
972 			 * We take an additional reference to bd_inode,
973 			 * and it's released in clear_inode() of inode.
974 			 * So, we can access it via ->i_mapping always
975 			 * without igrab().
976 			 */
977 			bdgrab(bdev);
978 			inode->i_bdev = bdev;
979 			inode->i_mapping = bdev->bd_inode->i_mapping;
980 		}
981 		spin_unlock(&bdev_lock);
982 	}
983 	return bdev;
984 }
985 
986 /* Call when you free inode */
987 
bd_forget(struct inode * inode)988 void bd_forget(struct inode *inode)
989 {
990 	struct block_device *bdev = NULL;
991 
992 	spin_lock(&bdev_lock);
993 	if (!sb_is_blkdev_sb(inode->i_sb))
994 		bdev = inode->i_bdev;
995 	inode->i_bdev = NULL;
996 	inode->i_mapping = &inode->i_data;
997 	spin_unlock(&bdev_lock);
998 
999 	if (bdev)
1000 		bdput(bdev);
1001 }
1002 
1003 /**
1004  * bd_may_claim - test whether a block device can be claimed
1005  * @bdev: block device of interest
1006  * @whole: whole block device containing @bdev, may equal @bdev
1007  * @holder: holder trying to claim @bdev
1008  *
1009  * Test whether @bdev can be claimed by @holder.
1010  *
1011  * CONTEXT:
1012  * spin_lock(&bdev_lock).
1013  *
1014  * RETURNS:
1015  * %true if @bdev can be claimed, %false otherwise.
1016  */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1017 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1018 			 void *holder)
1019 {
1020 	if (bdev->bd_holder == holder)
1021 		return true;	 /* already a holder */
1022 	else if (bdev->bd_holder != NULL)
1023 		return false; 	 /* held by someone else */
1024 	else if (whole == bdev)
1025 		return true;  	 /* is a whole device which isn't held */
1026 
1027 	else if (whole->bd_holder == bd_may_claim)
1028 		return true; 	 /* is a partition of a device that is being partitioned */
1029 	else if (whole->bd_holder != NULL)
1030 		return false;	 /* is a partition of a held device */
1031 	else
1032 		return true;	 /* is a partition of an un-held device */
1033 }
1034 
1035 /**
1036  * bd_prepare_to_claim - prepare to claim a block device
1037  * @bdev: block device of interest
1038  * @whole: the whole device containing @bdev, may equal @bdev
1039  * @holder: holder trying to claim @bdev
1040  *
1041  * Prepare to claim @bdev.  This function fails if @bdev is already
1042  * claimed by another holder and waits if another claiming is in
1043  * progress.  This function doesn't actually claim.  On successful
1044  * return, the caller has ownership of bd_claiming and bd_holder[s].
1045  *
1046  * CONTEXT:
1047  * spin_lock(&bdev_lock).  Might release bdev_lock, sleep and regrab
1048  * it multiple times.
1049  *
1050  * RETURNS:
1051  * 0 if @bdev can be claimed, -EBUSY otherwise.
1052  */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1053 static int bd_prepare_to_claim(struct block_device *bdev,
1054 			       struct block_device *whole, void *holder)
1055 {
1056 retry:
1057 	/* if someone else claimed, fail */
1058 	if (!bd_may_claim(bdev, whole, holder))
1059 		return -EBUSY;
1060 
1061 	/* if claiming is already in progress, wait for it to finish */
1062 	if (whole->bd_claiming) {
1063 		wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1064 		DEFINE_WAIT(wait);
1065 
1066 		prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1067 		spin_unlock(&bdev_lock);
1068 		schedule();
1069 		finish_wait(wq, &wait);
1070 		spin_lock(&bdev_lock);
1071 		goto retry;
1072 	}
1073 
1074 	/* yay, all mine */
1075 	return 0;
1076 }
1077 
bdev_get_gendisk(struct block_device * bdev,int * partno)1078 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1079 {
1080 	struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1081 
1082 	if (!disk)
1083 		return NULL;
1084 	/*
1085 	 * Now that we hold gendisk reference we make sure bdev we looked up is
1086 	 * not stale. If it is, it means device got removed and created before
1087 	 * we looked up gendisk and we fail open in such case. Associating
1088 	 * unhashed bdev with newly created gendisk could lead to two bdevs
1089 	 * (and thus two independent caches) being associated with one device
1090 	 * which is bad.
1091 	 */
1092 	if (inode_unhashed(bdev->bd_inode)) {
1093 		put_disk_and_module(disk);
1094 		return NULL;
1095 	}
1096 	return disk;
1097 }
1098 
1099 /**
1100  * bd_start_claiming - start claiming a block device
1101  * @bdev: block device of interest
1102  * @holder: holder trying to claim @bdev
1103  *
1104  * @bdev is about to be opened exclusively.  Check @bdev can be opened
1105  * exclusively and mark that an exclusive open is in progress.  Each
1106  * successful call to this function must be matched with a call to
1107  * either bd_finish_claiming() or bd_abort_claiming() (which do not
1108  * fail).
1109  *
1110  * This function is used to gain exclusive access to the block device
1111  * without actually causing other exclusive open attempts to fail. It
1112  * should be used when the open sequence itself requires exclusive
1113  * access but may subsequently fail.
1114  *
1115  * CONTEXT:
1116  * Might sleep.
1117  *
1118  * RETURNS:
1119  * Pointer to the block device containing @bdev on success, ERR_PTR()
1120  * value on failure.
1121  */
bd_start_claiming(struct block_device * bdev,void * holder)1122 static struct block_device *bd_start_claiming(struct block_device *bdev,
1123 					      void *holder)
1124 {
1125 	struct gendisk *disk;
1126 	struct block_device *whole;
1127 	int partno, err;
1128 
1129 	might_sleep();
1130 
1131 	/*
1132 	 * @bdev might not have been initialized properly yet, look up
1133 	 * and grab the outer block device the hard way.
1134 	 */
1135 	disk = bdev_get_gendisk(bdev, &partno);
1136 	if (!disk)
1137 		return ERR_PTR(-ENXIO);
1138 
1139 	/*
1140 	 * Normally, @bdev should equal what's returned from bdget_disk()
1141 	 * if partno is 0; however, some drivers (floppy) use multiple
1142 	 * bdev's for the same physical device and @bdev may be one of the
1143 	 * aliases.  Keep @bdev if partno is 0.  This means claimer
1144 	 * tracking is broken for those devices but it has always been that
1145 	 * way.
1146 	 */
1147 	if (partno)
1148 		whole = bdget_disk(disk, 0);
1149 	else
1150 		whole = bdgrab(bdev);
1151 
1152 	put_disk_and_module(disk);
1153 	if (!whole)
1154 		return ERR_PTR(-ENOMEM);
1155 
1156 	/* prepare to claim, if successful, mark claiming in progress */
1157 	spin_lock(&bdev_lock);
1158 
1159 	err = bd_prepare_to_claim(bdev, whole, holder);
1160 	if (err == 0) {
1161 		whole->bd_claiming = holder;
1162 		spin_unlock(&bdev_lock);
1163 		return whole;
1164 	} else {
1165 		spin_unlock(&bdev_lock);
1166 		bdput(whole);
1167 		return ERR_PTR(err);
1168 	}
1169 }
1170 
1171 #ifdef CONFIG_SYSFS
1172 struct bd_holder_disk {
1173 	struct list_head	list;
1174 	struct gendisk		*disk;
1175 	int			refcnt;
1176 };
1177 
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1178 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1179 						  struct gendisk *disk)
1180 {
1181 	struct bd_holder_disk *holder;
1182 
1183 	list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1184 		if (holder->disk == disk)
1185 			return holder;
1186 	return NULL;
1187 }
1188 
add_symlink(struct kobject * from,struct kobject * to)1189 static int add_symlink(struct kobject *from, struct kobject *to)
1190 {
1191 	return sysfs_create_link(from, to, kobject_name(to));
1192 }
1193 
del_symlink(struct kobject * from,struct kobject * to)1194 static void del_symlink(struct kobject *from, struct kobject *to)
1195 {
1196 	sysfs_remove_link(from, kobject_name(to));
1197 }
1198 
1199 /**
1200  * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1201  * @bdev: the claimed slave bdev
1202  * @disk: the holding disk
1203  *
1204  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1205  *
1206  * This functions creates the following sysfs symlinks.
1207  *
1208  * - from "slaves" directory of the holder @disk to the claimed @bdev
1209  * - from "holders" directory of the @bdev to the holder @disk
1210  *
1211  * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1212  * passed to bd_link_disk_holder(), then:
1213  *
1214  *   /sys/block/dm-0/slaves/sda --> /sys/block/sda
1215  *   /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1216  *
1217  * The caller must have claimed @bdev before calling this function and
1218  * ensure that both @bdev and @disk are valid during the creation and
1219  * lifetime of these symlinks.
1220  *
1221  * CONTEXT:
1222  * Might sleep.
1223  *
1224  * RETURNS:
1225  * 0 on success, -errno on failure.
1226  */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1227 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1228 {
1229 	struct bd_holder_disk *holder;
1230 	int ret = 0;
1231 
1232 	mutex_lock(&bdev->bd_mutex);
1233 
1234 	WARN_ON_ONCE(!bdev->bd_holder);
1235 
1236 	/* FIXME: remove the following once add_disk() handles errors */
1237 	if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1238 		goto out_unlock;
1239 
1240 	holder = bd_find_holder_disk(bdev, disk);
1241 	if (holder) {
1242 		holder->refcnt++;
1243 		goto out_unlock;
1244 	}
1245 
1246 	holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1247 	if (!holder) {
1248 		ret = -ENOMEM;
1249 		goto out_unlock;
1250 	}
1251 
1252 	INIT_LIST_HEAD(&holder->list);
1253 	holder->disk = disk;
1254 	holder->refcnt = 1;
1255 
1256 	ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1257 	if (ret)
1258 		goto out_free;
1259 
1260 	ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1261 	if (ret)
1262 		goto out_del;
1263 	/*
1264 	 * bdev could be deleted beneath us which would implicitly destroy
1265 	 * the holder directory.  Hold on to it.
1266 	 */
1267 	kobject_get(bdev->bd_part->holder_dir);
1268 
1269 	list_add(&holder->list, &bdev->bd_holder_disks);
1270 	goto out_unlock;
1271 
1272 out_del:
1273 	del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1274 out_free:
1275 	kfree(holder);
1276 out_unlock:
1277 	mutex_unlock(&bdev->bd_mutex);
1278 	return ret;
1279 }
1280 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1281 
1282 /**
1283  * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1284  * @bdev: the calimed slave bdev
1285  * @disk: the holding disk
1286  *
1287  * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1288  *
1289  * CONTEXT:
1290  * Might sleep.
1291  */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1292 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1293 {
1294 	struct bd_holder_disk *holder;
1295 
1296 	mutex_lock(&bdev->bd_mutex);
1297 
1298 	holder = bd_find_holder_disk(bdev, disk);
1299 
1300 	if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1301 		del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1302 		del_symlink(bdev->bd_part->holder_dir,
1303 			    &disk_to_dev(disk)->kobj);
1304 		kobject_put(bdev->bd_part->holder_dir);
1305 		list_del_init(&holder->list);
1306 		kfree(holder);
1307 	}
1308 
1309 	mutex_unlock(&bdev->bd_mutex);
1310 }
1311 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1312 #endif
1313 
1314 /**
1315  * flush_disk - invalidates all buffer-cache entries on a disk
1316  *
1317  * @bdev:      struct block device to be flushed
1318  * @kill_dirty: flag to guide handling of dirty inodes
1319  *
1320  * Invalidates all buffer-cache entries on a disk. It should be called
1321  * when a disk has been changed -- either by a media change or online
1322  * resize.
1323  */
flush_disk(struct block_device * bdev,bool kill_dirty)1324 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1325 {
1326 	if (__invalidate_device(bdev, kill_dirty)) {
1327 		printk(KERN_WARNING "VFS: busy inodes on changed media or "
1328 		       "resized disk %s\n",
1329 		       bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1330 	}
1331 	bdev->bd_invalidated = 1;
1332 }
1333 
1334 /**
1335  * check_disk_size_change - checks for disk size change and adjusts bdev size.
1336  * @disk: struct gendisk to check
1337  * @bdev: struct bdev to adjust.
1338  * @verbose: if %true log a message about a size change if there is any
1339  *
1340  * This routine checks to see if the bdev size does not match the disk size
1341  * and adjusts it if it differs. When shrinking the bdev size, its all caches
1342  * are freed.
1343  */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1344 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1345 		bool verbose)
1346 {
1347 	loff_t disk_size, bdev_size;
1348 
1349 	disk_size = (loff_t)get_capacity(disk) << 9;
1350 	bdev_size = i_size_read(bdev->bd_inode);
1351 	if (disk_size != bdev_size) {
1352 		if (verbose) {
1353 			printk(KERN_INFO
1354 			       "%s: detected capacity change from %lld to %lld\n",
1355 			       disk->disk_name, bdev_size, disk_size);
1356 		}
1357 		i_size_write(bdev->bd_inode, disk_size);
1358 		if (bdev_size > disk_size)
1359 			flush_disk(bdev, false);
1360 	}
1361 }
1362 
1363 /**
1364  * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1365  * @disk: struct gendisk to be revalidated
1366  *
1367  * This routine is a wrapper for lower-level driver's revalidate_disk
1368  * call-backs.  It is used to do common pre and post operations needed
1369  * for all revalidate_disk operations.
1370  */
revalidate_disk(struct gendisk * disk)1371 int revalidate_disk(struct gendisk *disk)
1372 {
1373 	struct block_device *bdev;
1374 	int ret = 0;
1375 
1376 	if (disk->fops->revalidate_disk)
1377 		ret = disk->fops->revalidate_disk(disk);
1378 	bdev = bdget_disk(disk, 0);
1379 	if (!bdev)
1380 		return ret;
1381 
1382 	mutex_lock(&bdev->bd_mutex);
1383 	check_disk_size_change(disk, bdev, ret == 0);
1384 	bdev->bd_invalidated = 0;
1385 	mutex_unlock(&bdev->bd_mutex);
1386 	bdput(bdev);
1387 	return ret;
1388 }
1389 EXPORT_SYMBOL(revalidate_disk);
1390 
1391 /*
1392  * This routine checks whether a removable media has been changed,
1393  * and invalidates all buffer-cache-entries in that case. This
1394  * is a relatively slow routine, so we have to try to minimize using
1395  * it. Thus it is called only upon a 'mount' or 'open'. This
1396  * is the best way of combining speed and utility, I think.
1397  * People changing diskettes in the middle of an operation deserve
1398  * to lose :-)
1399  */
check_disk_change(struct block_device * bdev)1400 int check_disk_change(struct block_device *bdev)
1401 {
1402 	struct gendisk *disk = bdev->bd_disk;
1403 	const struct block_device_operations *bdops = disk->fops;
1404 	unsigned int events;
1405 
1406 	events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1407 				   DISK_EVENT_EJECT_REQUEST);
1408 	if (!(events & DISK_EVENT_MEDIA_CHANGE))
1409 		return 0;
1410 
1411 	flush_disk(bdev, true);
1412 	if (bdops->revalidate_disk)
1413 		bdops->revalidate_disk(bdev->bd_disk);
1414 	return 1;
1415 }
1416 
1417 EXPORT_SYMBOL(check_disk_change);
1418 
bd_set_size(struct block_device * bdev,loff_t size)1419 void bd_set_size(struct block_device *bdev, loff_t size)
1420 {
1421 	inode_lock(bdev->bd_inode);
1422 	i_size_write(bdev->bd_inode, size);
1423 	inode_unlock(bdev->bd_inode);
1424 }
1425 EXPORT_SYMBOL(bd_set_size);
1426 
1427 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1428 
bdev_disk_changed(struct block_device * bdev,bool invalidate)1429 static void bdev_disk_changed(struct block_device *bdev, bool invalidate)
1430 {
1431 	if (disk_part_scan_enabled(bdev->bd_disk)) {
1432 		if (invalidate)
1433 			invalidate_partitions(bdev->bd_disk, bdev);
1434 		else
1435 			rescan_partitions(bdev->bd_disk, bdev);
1436 	} else {
1437 		check_disk_size_change(bdev->bd_disk, bdev, !invalidate);
1438 		bdev->bd_invalidated = 0;
1439 	}
1440 }
1441 
1442 /*
1443  * bd_mutex locking:
1444  *
1445  *  mutex_lock(part->bd_mutex)
1446  *    mutex_lock_nested(whole->bd_mutex, 1)
1447  */
1448 
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1449 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1450 {
1451 	struct gendisk *disk;
1452 	int ret;
1453 	int partno;
1454 	int perm = 0;
1455 	bool first_open = false;
1456 
1457 	if (mode & FMODE_READ)
1458 		perm |= MAY_READ;
1459 	if (mode & FMODE_WRITE)
1460 		perm |= MAY_WRITE;
1461 	/*
1462 	 * hooks: /n/, see "layering violations".
1463 	 */
1464 	if (!for_part) {
1465 		ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1466 		if (ret != 0)
1467 			return ret;
1468 	}
1469 
1470  restart:
1471 
1472 	ret = -ENXIO;
1473 	disk = bdev_get_gendisk(bdev, &partno);
1474 	if (!disk)
1475 		goto out;
1476 
1477 	disk_block_events(disk);
1478 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1479 	if (!bdev->bd_openers) {
1480 		first_open = true;
1481 		bdev->bd_disk = disk;
1482 		bdev->bd_queue = disk->queue;
1483 		bdev->bd_contains = bdev;
1484 		bdev->bd_partno = partno;
1485 
1486 		if (!partno) {
1487 			ret = -ENXIO;
1488 			bdev->bd_part = disk_get_part(disk, partno);
1489 			if (!bdev->bd_part)
1490 				goto out_clear;
1491 
1492 			ret = 0;
1493 			if (disk->fops->open) {
1494 				ret = disk->fops->open(bdev, mode);
1495 				if (ret == -ERESTARTSYS) {
1496 					/* Lost a race with 'disk' being
1497 					 * deleted, try again.
1498 					 * See md.c
1499 					 */
1500 					disk_put_part(bdev->bd_part);
1501 					bdev->bd_part = NULL;
1502 					bdev->bd_disk = NULL;
1503 					bdev->bd_queue = NULL;
1504 					mutex_unlock(&bdev->bd_mutex);
1505 					disk_unblock_events(disk);
1506 					put_disk_and_module(disk);
1507 					goto restart;
1508 				}
1509 			}
1510 
1511 			if (!ret) {
1512 				bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1513 				set_init_blocksize(bdev);
1514 			}
1515 
1516 			/*
1517 			 * If the device is invalidated, rescan partition
1518 			 * if open succeeded or failed with -ENOMEDIUM.
1519 			 * The latter is necessary to prevent ghost
1520 			 * partitions on a removed medium.
1521 			 */
1522 			if (bdev->bd_invalidated &&
1523 			    (!ret || ret == -ENOMEDIUM))
1524 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1525 
1526 			if (ret)
1527 				goto out_clear;
1528 		} else {
1529 			struct block_device *whole;
1530 			whole = bdget_disk(disk, 0);
1531 			ret = -ENOMEM;
1532 			if (!whole)
1533 				goto out_clear;
1534 			BUG_ON(for_part);
1535 			ret = __blkdev_get(whole, mode, 1);
1536 			if (ret) {
1537 				bdput(whole);
1538 				goto out_clear;
1539 			}
1540 			bdev->bd_contains = whole;
1541 			bdev->bd_part = disk_get_part(disk, partno);
1542 			if (!(disk->flags & GENHD_FL_UP) ||
1543 			    !bdev->bd_part || !bdev->bd_part->nr_sects) {
1544 				ret = -ENXIO;
1545 				goto out_clear;
1546 			}
1547 			bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1548 			set_init_blocksize(bdev);
1549 		}
1550 
1551 		if (bdev->bd_bdi == &noop_backing_dev_info)
1552 			bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1553 	} else {
1554 		if (bdev->bd_contains == bdev) {
1555 			ret = 0;
1556 			if (bdev->bd_disk->fops->open)
1557 				ret = bdev->bd_disk->fops->open(bdev, mode);
1558 			/* the same as first opener case, read comment there */
1559 			if (bdev->bd_invalidated &&
1560 			    (!ret || ret == -ENOMEDIUM))
1561 				bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1562 			if (ret)
1563 				goto out_unlock_bdev;
1564 		}
1565 	}
1566 	bdev->bd_openers++;
1567 	if (for_part)
1568 		bdev->bd_part_count++;
1569 	mutex_unlock(&bdev->bd_mutex);
1570 	disk_unblock_events(disk);
1571 	/* only one opener holds refs to the module and disk */
1572 	if (!first_open)
1573 		put_disk_and_module(disk);
1574 	return 0;
1575 
1576  out_clear:
1577 	disk_put_part(bdev->bd_part);
1578 	bdev->bd_disk = NULL;
1579 	bdev->bd_part = NULL;
1580 	bdev->bd_queue = NULL;
1581 	if (bdev != bdev->bd_contains)
1582 		__blkdev_put(bdev->bd_contains, mode, 1);
1583 	bdev->bd_contains = NULL;
1584  out_unlock_bdev:
1585 	mutex_unlock(&bdev->bd_mutex);
1586 	disk_unblock_events(disk);
1587 	put_disk_and_module(disk);
1588  out:
1589 
1590 	return ret;
1591 }
1592 
1593 /**
1594  * blkdev_get - open a block device
1595  * @bdev: block_device to open
1596  * @mode: FMODE_* mask
1597  * @holder: exclusive holder identifier
1598  *
1599  * Open @bdev with @mode.  If @mode includes %FMODE_EXCL, @bdev is
1600  * open with exclusive access.  Specifying %FMODE_EXCL with %NULL
1601  * @holder is invalid.  Exclusive opens may nest for the same @holder.
1602  *
1603  * On success, the reference count of @bdev is unchanged.  On failure,
1604  * @bdev is put.
1605  *
1606  * CONTEXT:
1607  * Might sleep.
1608  *
1609  * RETURNS:
1610  * 0 on success, -errno on failure.
1611  */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1612 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1613 {
1614 	struct block_device *whole = NULL;
1615 	int res;
1616 
1617 	WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1618 
1619 	if ((mode & FMODE_EXCL) && holder) {
1620 		whole = bd_start_claiming(bdev, holder);
1621 		if (IS_ERR(whole)) {
1622 			bdput(bdev);
1623 			return PTR_ERR(whole);
1624 		}
1625 	}
1626 
1627 	res = __blkdev_get(bdev, mode, 0);
1628 
1629 	if (whole) {
1630 		struct gendisk *disk = whole->bd_disk;
1631 
1632 		/* finish claiming */
1633 		mutex_lock(&bdev->bd_mutex);
1634 		spin_lock(&bdev_lock);
1635 
1636 		if (!res) {
1637 			BUG_ON(!bd_may_claim(bdev, whole, holder));
1638 			/*
1639 			 * Note that for a whole device bd_holders
1640 			 * will be incremented twice, and bd_holder
1641 			 * will be set to bd_may_claim before being
1642 			 * set to holder
1643 			 */
1644 			whole->bd_holders++;
1645 			whole->bd_holder = bd_may_claim;
1646 			bdev->bd_holders++;
1647 			bdev->bd_holder = holder;
1648 		}
1649 
1650 		/* tell others that we're done */
1651 		BUG_ON(whole->bd_claiming != holder);
1652 		whole->bd_claiming = NULL;
1653 		wake_up_bit(&whole->bd_claiming, 0);
1654 
1655 		spin_unlock(&bdev_lock);
1656 
1657 		/*
1658 		 * Block event polling for write claims if requested.  Any
1659 		 * write holder makes the write_holder state stick until
1660 		 * all are released.  This is good enough and tracking
1661 		 * individual writeable reference is too fragile given the
1662 		 * way @mode is used in blkdev_get/put().
1663 		 */
1664 		if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1665 		    (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1666 			bdev->bd_write_holder = true;
1667 			disk_block_events(disk);
1668 		}
1669 
1670 		mutex_unlock(&bdev->bd_mutex);
1671 		bdput(whole);
1672 	}
1673 
1674 	if (res)
1675 		bdput(bdev);
1676 
1677 	return res;
1678 }
1679 EXPORT_SYMBOL(blkdev_get);
1680 
1681 /**
1682  * blkdev_get_by_path - open a block device by name
1683  * @path: path to the block device to open
1684  * @mode: FMODE_* mask
1685  * @holder: exclusive holder identifier
1686  *
1687  * Open the blockdevice described by the device file at @path.  @mode
1688  * and @holder are identical to blkdev_get().
1689  *
1690  * On success, the returned block_device has reference count of one.
1691  *
1692  * CONTEXT:
1693  * Might sleep.
1694  *
1695  * RETURNS:
1696  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1697  */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1698 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1699 					void *holder)
1700 {
1701 	struct block_device *bdev;
1702 	int err;
1703 
1704 	bdev = lookup_bdev(path);
1705 	if (IS_ERR(bdev))
1706 		return bdev;
1707 
1708 	err = blkdev_get(bdev, mode, holder);
1709 	if (err)
1710 		return ERR_PTR(err);
1711 
1712 	if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1713 		blkdev_put(bdev, mode);
1714 		return ERR_PTR(-EACCES);
1715 	}
1716 
1717 	return bdev;
1718 }
1719 EXPORT_SYMBOL(blkdev_get_by_path);
1720 
1721 /**
1722  * blkdev_get_by_dev - open a block device by device number
1723  * @dev: device number of block device to open
1724  * @mode: FMODE_* mask
1725  * @holder: exclusive holder identifier
1726  *
1727  * Open the blockdevice described by device number @dev.  @mode and
1728  * @holder are identical to blkdev_get().
1729  *
1730  * Use it ONLY if you really do not have anything better - i.e. when
1731  * you are behind a truly sucky interface and all you are given is a
1732  * device number.  _Never_ to be used for internal purposes.  If you
1733  * ever need it - reconsider your API.
1734  *
1735  * On success, the returned block_device has reference count of one.
1736  *
1737  * CONTEXT:
1738  * Might sleep.
1739  *
1740  * RETURNS:
1741  * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1742  */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1743 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1744 {
1745 	struct block_device *bdev;
1746 	int err;
1747 
1748 	bdev = bdget(dev);
1749 	if (!bdev)
1750 		return ERR_PTR(-ENOMEM);
1751 
1752 	err = blkdev_get(bdev, mode, holder);
1753 	if (err)
1754 		return ERR_PTR(err);
1755 
1756 	return bdev;
1757 }
1758 EXPORT_SYMBOL(blkdev_get_by_dev);
1759 
blkdev_open(struct inode * inode,struct file * filp)1760 static int blkdev_open(struct inode * inode, struct file * filp)
1761 {
1762 	struct block_device *bdev;
1763 
1764 	/*
1765 	 * Preserve backwards compatibility and allow large file access
1766 	 * even if userspace doesn't ask for it explicitly. Some mkfs
1767 	 * binary needs it. We might want to drop this workaround
1768 	 * during an unstable branch.
1769 	 */
1770 	filp->f_flags |= O_LARGEFILE;
1771 
1772 	filp->f_mode |= FMODE_NOWAIT;
1773 
1774 	if (filp->f_flags & O_NDELAY)
1775 		filp->f_mode |= FMODE_NDELAY;
1776 	if (filp->f_flags & O_EXCL)
1777 		filp->f_mode |= FMODE_EXCL;
1778 	if ((filp->f_flags & O_ACCMODE) == 3)
1779 		filp->f_mode |= FMODE_WRITE_IOCTL;
1780 
1781 	bdev = bd_acquire(inode);
1782 	if (bdev == NULL)
1783 		return -ENOMEM;
1784 
1785 	filp->f_mapping = bdev->bd_inode->i_mapping;
1786 	filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1787 
1788 	return blkdev_get(bdev, filp->f_mode, filp);
1789 }
1790 
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1791 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1792 {
1793 	struct gendisk *disk = bdev->bd_disk;
1794 	struct block_device *victim = NULL;
1795 
1796 	/*
1797 	 * Sync early if it looks like we're the last one.  If someone else
1798 	 * opens the block device between now and the decrement of bd_openers
1799 	 * then we did a sync that we didn't need to, but that's not the end
1800 	 * of the world and we want to avoid long (could be several minute)
1801 	 * syncs while holding the mutex.
1802 	 */
1803 	if (bdev->bd_openers == 1)
1804 		sync_blockdev(bdev);
1805 
1806 	mutex_lock_nested(&bdev->bd_mutex, for_part);
1807 	if (for_part)
1808 		bdev->bd_part_count--;
1809 
1810 	if (!--bdev->bd_openers) {
1811 		WARN_ON_ONCE(bdev->bd_holders);
1812 		sync_blockdev(bdev);
1813 		kill_bdev(bdev);
1814 
1815 		bdev_write_inode(bdev);
1816 	}
1817 	if (bdev->bd_contains == bdev) {
1818 		if (disk->fops->release)
1819 			disk->fops->release(disk, mode);
1820 	}
1821 	if (!bdev->bd_openers) {
1822 		disk_put_part(bdev->bd_part);
1823 		bdev->bd_part = NULL;
1824 		bdev->bd_disk = NULL;
1825 		if (bdev != bdev->bd_contains)
1826 			victim = bdev->bd_contains;
1827 		bdev->bd_contains = NULL;
1828 
1829 		put_disk_and_module(disk);
1830 	}
1831 	mutex_unlock(&bdev->bd_mutex);
1832 	bdput(bdev);
1833 	if (victim)
1834 		__blkdev_put(victim, mode, 1);
1835 }
1836 
blkdev_put(struct block_device * bdev,fmode_t mode)1837 void blkdev_put(struct block_device *bdev, fmode_t mode)
1838 {
1839 	mutex_lock(&bdev->bd_mutex);
1840 
1841 	if (mode & FMODE_EXCL) {
1842 		bool bdev_free;
1843 
1844 		/*
1845 		 * Release a claim on the device.  The holder fields
1846 		 * are protected with bdev_lock.  bd_mutex is to
1847 		 * synchronize disk_holder unlinking.
1848 		 */
1849 		spin_lock(&bdev_lock);
1850 
1851 		WARN_ON_ONCE(--bdev->bd_holders < 0);
1852 		WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1853 
1854 		/* bd_contains might point to self, check in a separate step */
1855 		if ((bdev_free = !bdev->bd_holders))
1856 			bdev->bd_holder = NULL;
1857 		if (!bdev->bd_contains->bd_holders)
1858 			bdev->bd_contains->bd_holder = NULL;
1859 
1860 		spin_unlock(&bdev_lock);
1861 
1862 		/*
1863 		 * If this was the last claim, remove holder link and
1864 		 * unblock evpoll if it was a write holder.
1865 		 */
1866 		if (bdev_free && bdev->bd_write_holder) {
1867 			disk_unblock_events(bdev->bd_disk);
1868 			bdev->bd_write_holder = false;
1869 		}
1870 	}
1871 
1872 	/*
1873 	 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1874 	 * event.  This is to ensure detection of media removal commanded
1875 	 * from userland - e.g. eject(1).
1876 	 */
1877 	disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1878 
1879 	mutex_unlock(&bdev->bd_mutex);
1880 
1881 	__blkdev_put(bdev, mode, 0);
1882 }
1883 EXPORT_SYMBOL(blkdev_put);
1884 
blkdev_close(struct inode * inode,struct file * filp)1885 static int blkdev_close(struct inode * inode, struct file * filp)
1886 {
1887 	struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1888 	blkdev_put(bdev, filp->f_mode);
1889 	return 0;
1890 }
1891 
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1892 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1893 {
1894 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1895 	fmode_t mode = file->f_mode;
1896 
1897 	/*
1898 	 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1899 	 * to updated it before every ioctl.
1900 	 */
1901 	if (file->f_flags & O_NDELAY)
1902 		mode |= FMODE_NDELAY;
1903 	else
1904 		mode &= ~FMODE_NDELAY;
1905 
1906 	return blkdev_ioctl(bdev, mode, cmd, arg);
1907 }
1908 
1909 /*
1910  * Write data to the block device.  Only intended for the block device itself
1911  * and the raw driver which basically is a fake block device.
1912  *
1913  * Does not take i_mutex for the write and thus is not for general purpose
1914  * use.
1915  */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1916 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1917 {
1918 	struct file *file = iocb->ki_filp;
1919 	struct inode *bd_inode = bdev_file_inode(file);
1920 	loff_t size = i_size_read(bd_inode);
1921 	struct blk_plug plug;
1922 	size_t shorted = 0;
1923 	ssize_t ret;
1924 
1925 	if (bdev_read_only(I_BDEV(bd_inode)))
1926 		return -EPERM;
1927 
1928 	if (!iov_iter_count(from))
1929 		return 0;
1930 
1931 	if (iocb->ki_pos >= size)
1932 		return -ENOSPC;
1933 
1934 	if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1935 		return -EOPNOTSUPP;
1936 
1937 	size -= iocb->ki_pos;
1938 	if (iov_iter_count(from) > size) {
1939 		shorted = iov_iter_count(from) - size;
1940 		iov_iter_truncate(from, size);
1941 	}
1942 
1943 	blk_start_plug(&plug);
1944 	ret = __generic_file_write_iter(iocb, from);
1945 	if (ret > 0)
1946 		ret = generic_write_sync(iocb, ret);
1947 	iov_iter_reexpand(from, iov_iter_count(from) + shorted);
1948 	blk_finish_plug(&plug);
1949 	return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1952 
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1953 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1954 {
1955 	struct file *file = iocb->ki_filp;
1956 	struct inode *bd_inode = bdev_file_inode(file);
1957 	loff_t size = i_size_read(bd_inode);
1958 	loff_t pos = iocb->ki_pos;
1959 	size_t shorted = 0;
1960 	ssize_t ret;
1961 
1962 	if (pos >= size)
1963 		return 0;
1964 
1965 	size -= pos;
1966 	if (iov_iter_count(to) > size) {
1967 		shorted = iov_iter_count(to) - size;
1968 		iov_iter_truncate(to, size);
1969 	}
1970 
1971 	ret = generic_file_read_iter(iocb, to);
1972 	iov_iter_reexpand(to, iov_iter_count(to) + shorted);
1973 	return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1976 
1977 /*
1978  * Try to release a page associated with block device when the system
1979  * is under memory pressure.
1980  */
blkdev_releasepage(struct page * page,gfp_t wait)1981 static int blkdev_releasepage(struct page *page, gfp_t wait)
1982 {
1983 	struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1984 
1985 	if (super && super->s_op->bdev_try_to_free_page)
1986 		return super->s_op->bdev_try_to_free_page(super, page, wait);
1987 
1988 	return try_to_free_buffers(page);
1989 }
1990 
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1991 static int blkdev_writepages(struct address_space *mapping,
1992 			     struct writeback_control *wbc)
1993 {
1994 	return generic_writepages(mapping, wbc);
1995 }
1996 
1997 static const struct address_space_operations def_blk_aops = {
1998 	.readpage	= blkdev_readpage,
1999 	.readpages	= blkdev_readpages,
2000 	.writepage	= blkdev_writepage,
2001 	.write_begin	= blkdev_write_begin,
2002 	.write_end	= blkdev_write_end,
2003 	.writepages	= blkdev_writepages,
2004 	.releasepage	= blkdev_releasepage,
2005 	.direct_IO	= blkdev_direct_IO,
2006 	.is_dirty_writeback = buffer_check_dirty_writeback,
2007 };
2008 
2009 #define	BLKDEV_FALLOC_FL_SUPPORTED					\
2010 		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
2011 		 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2012 
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)2013 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2014 			     loff_t len)
2015 {
2016 	struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2017 	struct address_space *mapping;
2018 	loff_t end = start + len - 1;
2019 	loff_t isize;
2020 	int error;
2021 
2022 	/* Fail if we don't recognize the flags. */
2023 	if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2024 		return -EOPNOTSUPP;
2025 
2026 	/* Don't go off the end of the device. */
2027 	isize = i_size_read(bdev->bd_inode);
2028 	if (start >= isize)
2029 		return -EINVAL;
2030 	if (end >= isize) {
2031 		if (mode & FALLOC_FL_KEEP_SIZE) {
2032 			len = isize - start;
2033 			end = start + len - 1;
2034 		} else
2035 			return -EINVAL;
2036 	}
2037 
2038 	/*
2039 	 * Don't allow IO that isn't aligned to logical block size.
2040 	 */
2041 	if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2042 		return -EINVAL;
2043 
2044 	/* Invalidate the page cache, including dirty pages. */
2045 	mapping = bdev->bd_inode->i_mapping;
2046 	truncate_inode_pages_range(mapping, start, end);
2047 
2048 	switch (mode) {
2049 	case FALLOC_FL_ZERO_RANGE:
2050 	case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2051 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2052 					    GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2053 		break;
2054 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2055 		error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2056 					     GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2057 		break;
2058 	case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2059 		error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2060 					     GFP_KERNEL, 0);
2061 		break;
2062 	default:
2063 		return -EOPNOTSUPP;
2064 	}
2065 	if (error)
2066 		return error;
2067 
2068 	/*
2069 	 * Invalidate again; if someone wandered in and dirtied a page,
2070 	 * the caller will be given -EBUSY.  The third argument is
2071 	 * inclusive, so the rounding here is safe.
2072 	 */
2073 	return invalidate_inode_pages2_range(mapping,
2074 					     start >> PAGE_SHIFT,
2075 					     end >> PAGE_SHIFT);
2076 }
2077 
2078 const struct file_operations def_blk_fops = {
2079 	.open		= blkdev_open,
2080 	.release	= blkdev_close,
2081 	.llseek		= block_llseek,
2082 	.read_iter	= blkdev_read_iter,
2083 	.write_iter	= blkdev_write_iter,
2084 	.mmap		= generic_file_mmap,
2085 	.fsync		= blkdev_fsync,
2086 	.unlocked_ioctl	= block_ioctl,
2087 #ifdef CONFIG_COMPAT
2088 	.compat_ioctl	= compat_blkdev_ioctl,
2089 #endif
2090 	.splice_read	= generic_file_splice_read,
2091 	.splice_write	= iter_file_splice_write,
2092 	.fallocate	= blkdev_fallocate,
2093 };
2094 
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)2095 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2096 {
2097 	int res;
2098 	mm_segment_t old_fs = get_fs();
2099 	set_fs(KERNEL_DS);
2100 	res = blkdev_ioctl(bdev, 0, cmd, arg);
2101 	set_fs(old_fs);
2102 	return res;
2103 }
2104 
2105 EXPORT_SYMBOL(ioctl_by_bdev);
2106 
2107 /**
2108  * lookup_bdev  - lookup a struct block_device by name
2109  * @pathname:	special file representing the block device
2110  *
2111  * Get a reference to the blockdevice at @pathname in the current
2112  * namespace if possible and return it.  Return ERR_PTR(error)
2113  * otherwise.
2114  */
lookup_bdev(const char * pathname)2115 struct block_device *lookup_bdev(const char *pathname)
2116 {
2117 	struct block_device *bdev;
2118 	struct inode *inode;
2119 	struct path path;
2120 	int error;
2121 
2122 	if (!pathname || !*pathname)
2123 		return ERR_PTR(-EINVAL);
2124 
2125 	error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2126 	if (error)
2127 		return ERR_PTR(error);
2128 
2129 	inode = d_backing_inode(path.dentry);
2130 	error = -ENOTBLK;
2131 	if (!S_ISBLK(inode->i_mode))
2132 		goto fail;
2133 	error = -EACCES;
2134 	if (!may_open_dev(&path))
2135 		goto fail;
2136 	error = -ENOMEM;
2137 	bdev = bd_acquire(inode);
2138 	if (!bdev)
2139 		goto fail;
2140 out:
2141 	path_put(&path);
2142 	return bdev;
2143 fail:
2144 	bdev = ERR_PTR(error);
2145 	goto out;
2146 }
2147 EXPORT_SYMBOL(lookup_bdev);
2148 
__invalidate_device(struct block_device * bdev,bool kill_dirty)2149 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2150 {
2151 	struct super_block *sb = get_super(bdev);
2152 	int res = 0;
2153 
2154 	if (sb) {
2155 		/*
2156 		 * no need to lock the super, get_super holds the
2157 		 * read mutex so the filesystem cannot go away
2158 		 * under us (->put_super runs with the write lock
2159 		 * hold).
2160 		 */
2161 		shrink_dcache_sb(sb);
2162 		res = invalidate_inodes(sb, kill_dirty);
2163 		drop_super(sb);
2164 	}
2165 	invalidate_bdev(bdev);
2166 	return res;
2167 }
2168 EXPORT_SYMBOL(__invalidate_device);
2169 
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2170 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2171 {
2172 	struct inode *inode, *old_inode = NULL;
2173 
2174 	spin_lock(&blockdev_superblock->s_inode_list_lock);
2175 	list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2176 		struct address_space *mapping = inode->i_mapping;
2177 		struct block_device *bdev;
2178 
2179 		spin_lock(&inode->i_lock);
2180 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2181 		    mapping->nrpages == 0) {
2182 			spin_unlock(&inode->i_lock);
2183 			continue;
2184 		}
2185 		__iget(inode);
2186 		spin_unlock(&inode->i_lock);
2187 		spin_unlock(&blockdev_superblock->s_inode_list_lock);
2188 		/*
2189 		 * We hold a reference to 'inode' so it couldn't have been
2190 		 * removed from s_inodes list while we dropped the
2191 		 * s_inode_list_lock  We cannot iput the inode now as we can
2192 		 * be holding the last reference and we cannot iput it under
2193 		 * s_inode_list_lock. So we keep the reference and iput it
2194 		 * later.
2195 		 */
2196 		iput(old_inode);
2197 		old_inode = inode;
2198 		bdev = I_BDEV(inode);
2199 
2200 		mutex_lock(&bdev->bd_mutex);
2201 		if (bdev->bd_openers)
2202 			func(bdev, arg);
2203 		mutex_unlock(&bdev->bd_mutex);
2204 
2205 		spin_lock(&blockdev_superblock->s_inode_list_lock);
2206 	}
2207 	spin_unlock(&blockdev_superblock->s_inode_list_lock);
2208 	iput(old_inode);
2209 }
2210