1 /*
2 * linux/fs/block_dev.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
7
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/dax.h>
22 #include <linux/buffer_head.h>
23 #include <linux/swap.h>
24 #include <linux/pagevec.h>
25 #include <linux/writeback.h>
26 #include <linux/mpage.h>
27 #include <linux/mount.h>
28 #include <linux/uio.h>
29 #include <linux/namei.h>
30 #include <linux/log2.h>
31 #include <linux/cleancache.h>
32 #include <linux/dax.h>
33 #include <linux/badblocks.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
38
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
42 };
43
44 static const struct address_space_operations def_blk_aops;
45
BDEV_I(struct inode * inode)46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
47 {
48 return container_of(inode, struct bdev_inode, vfs_inode);
49 }
50
I_BDEV(struct inode * inode)51 struct block_device *I_BDEV(struct inode *inode)
52 {
53 return &BDEV_I(inode)->bdev;
54 }
55 EXPORT_SYMBOL(I_BDEV);
56
bdev_write_inode(struct block_device * bdev)57 static void bdev_write_inode(struct block_device *bdev)
58 {
59 struct inode *inode = bdev->bd_inode;
60 int ret;
61
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
71 }
72 spin_lock(&inode->i_lock);
73 }
74 spin_unlock(&inode->i_lock);
75 }
76
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
kill_bdev(struct block_device * bdev)78 void kill_bdev(struct block_device *bdev)
79 {
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
81
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
84
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
87 }
88 EXPORT_SYMBOL(kill_bdev);
89
90 /* Invalidate clean unused buffers and pagecache. */
invalidate_bdev(struct block_device * bdev)91 void invalidate_bdev(struct block_device *bdev)
92 {
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
94
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
99 }
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
102 */
103 cleancache_invalidate_inode(mapping);
104 }
105 EXPORT_SYMBOL(invalidate_bdev);
106
set_init_blocksize(struct block_device * bdev)107 static void set_init_blocksize(struct block_device *bdev)
108 {
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
111
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
116 }
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
119 }
120
set_blocksize(struct block_device * bdev,int size)121 int set_blocksize(struct block_device *bdev, int size)
122 {
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
126
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
130
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
137 }
138 return 0;
139 }
140
141 EXPORT_SYMBOL(set_blocksize);
142
sb_set_blocksize(struct super_block * sb,int size)143 int sb_set_blocksize(struct super_block *sb, int size)
144 {
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
152 }
153
154 EXPORT_SYMBOL(sb_set_blocksize);
155
sb_min_blocksize(struct super_block * sb,int size)156 int sb_min_blocksize(struct super_block *sb, int size)
157 {
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
162 }
163
164 EXPORT_SYMBOL(sb_min_blocksize);
165
166 static int
blkdev_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
169 {
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
174 }
175
bdev_file_inode(struct file * file)176 static struct inode *bdev_file_inode(struct file *file)
177 {
178 return file->f_mapping->host;
179 }
180
dio_bio_write_op(struct kiocb * iocb)181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
182 {
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
184
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
189 }
190
191 #define DIO_INLINE_BIO_VECS 4
192
blkdev_bio_end_io_simple(struct bio * bio)193 static void blkdev_bio_end_io_simple(struct bio *bio)
194 {
195 struct task_struct *waiter = bio->bi_private;
196
197 WRITE_ONCE(bio->bi_private, NULL);
198 wake_up_process(waiter);
199 }
200
201 static ssize_t
__blkdev_direct_IO_simple(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
204 {
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs, *bvec;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
213 int i;
214
215 if ((pos | iov_iter_alignment(iter)) &
216 (bdev_logical_block_size(bdev) - 1))
217 return -EINVAL;
218
219 if (nr_pages <= DIO_INLINE_BIO_VECS)
220 vecs = inline_vecs;
221 else {
222 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
223 GFP_KERNEL);
224 if (!vecs)
225 return -ENOMEM;
226 }
227
228 bio_init(&bio, vecs, nr_pages);
229 bio_set_dev(&bio, bdev);
230 bio.bi_iter.bi_sector = pos >> 9;
231 bio.bi_write_hint = iocb->ki_hint;
232 bio.bi_private = current;
233 bio.bi_end_io = blkdev_bio_end_io_simple;
234 bio.bi_ioprio = iocb->ki_ioprio;
235
236 ret = bio_iov_iter_get_pages(&bio, iter);
237 if (unlikely(ret))
238 goto out;
239 ret = bio.bi_iter.bi_size;
240
241 if (iov_iter_rw(iter) == READ) {
242 bio.bi_opf = REQ_OP_READ;
243 if (iter_is_iovec(iter))
244 should_dirty = true;
245 } else {
246 bio.bi_opf = dio_bio_write_op(iocb);
247 task_io_account_write(ret);
248 }
249
250 qc = submit_bio(&bio);
251 for (;;) {
252 set_current_state(TASK_UNINTERRUPTIBLE);
253 if (!READ_ONCE(bio.bi_private))
254 break;
255 if (!(iocb->ki_flags & IOCB_HIPRI) ||
256 !blk_poll(bdev_get_queue(bdev), qc))
257 io_schedule();
258 }
259 __set_current_state(TASK_RUNNING);
260
261 bio_for_each_segment_all(bvec, &bio, i) {
262 if (should_dirty && !PageCompound(bvec->bv_page))
263 set_page_dirty_lock(bvec->bv_page);
264 put_page(bvec->bv_page);
265 }
266
267 if (unlikely(bio.bi_status))
268 ret = blk_status_to_errno(bio.bi_status);
269
270 out:
271 if (vecs != inline_vecs)
272 kfree(vecs);
273
274 bio_uninit(&bio);
275
276 return ret;
277 }
278
279 struct blkdev_dio {
280 union {
281 struct kiocb *iocb;
282 struct task_struct *waiter;
283 };
284 size_t size;
285 atomic_t ref;
286 bool multi_bio : 1;
287 bool should_dirty : 1;
288 bool is_sync : 1;
289 struct bio bio;
290 };
291
292 static struct bio_set blkdev_dio_pool;
293
blkdev_bio_end_io(struct bio * bio)294 static void blkdev_bio_end_io(struct bio *bio)
295 {
296 struct blkdev_dio *dio = bio->bi_private;
297 bool should_dirty = dio->should_dirty;
298
299 if (bio->bi_status && !dio->bio.bi_status)
300 dio->bio.bi_status = bio->bi_status;
301
302 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
303 if (!dio->is_sync) {
304 struct kiocb *iocb = dio->iocb;
305 ssize_t ret;
306
307 if (likely(!dio->bio.bi_status)) {
308 ret = dio->size;
309 iocb->ki_pos += ret;
310 } else {
311 ret = blk_status_to_errno(dio->bio.bi_status);
312 }
313
314 dio->iocb->ki_complete(iocb, ret, 0);
315 bio_put(&dio->bio);
316 } else {
317 struct task_struct *waiter = dio->waiter;
318
319 WRITE_ONCE(dio->waiter, NULL);
320 wake_up_process(waiter);
321 }
322 }
323
324 if (should_dirty) {
325 bio_check_pages_dirty(bio);
326 } else {
327 struct bio_vec *bvec;
328 int i;
329
330 bio_for_each_segment_all(bvec, bio, i)
331 put_page(bvec->bv_page);
332 bio_put(bio);
333 }
334 }
335
336 static ssize_t
__blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter,int nr_pages)337 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
338 {
339 struct file *file = iocb->ki_filp;
340 struct inode *inode = bdev_file_inode(file);
341 struct block_device *bdev = I_BDEV(inode);
342 struct blk_plug plug;
343 struct blkdev_dio *dio;
344 struct bio *bio;
345 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
346 loff_t pos = iocb->ki_pos;
347 blk_qc_t qc = BLK_QC_T_NONE;
348 int ret = 0;
349
350 if ((pos | iov_iter_alignment(iter)) &
351 (bdev_logical_block_size(bdev) - 1))
352 return -EINVAL;
353
354 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
355 bio_get(bio); /* extra ref for the completion handler */
356
357 dio = container_of(bio, struct blkdev_dio, bio);
358 dio->is_sync = is_sync = is_sync_kiocb(iocb);
359 if (dio->is_sync)
360 dio->waiter = current;
361 else
362 dio->iocb = iocb;
363
364 dio->size = 0;
365 dio->multi_bio = false;
366 dio->should_dirty = is_read && (iter->type == ITER_IOVEC);
367
368 blk_start_plug(&plug);
369 for (;;) {
370 bio_set_dev(bio, bdev);
371 bio->bi_iter.bi_sector = pos >> 9;
372 bio->bi_write_hint = iocb->ki_hint;
373 bio->bi_private = dio;
374 bio->bi_end_io = blkdev_bio_end_io;
375 bio->bi_ioprio = iocb->ki_ioprio;
376
377 ret = bio_iov_iter_get_pages(bio, iter);
378 if (unlikely(ret)) {
379 bio->bi_status = BLK_STS_IOERR;
380 bio_endio(bio);
381 break;
382 }
383
384 if (is_read) {
385 bio->bi_opf = REQ_OP_READ;
386 if (dio->should_dirty)
387 bio_set_pages_dirty(bio);
388 } else {
389 bio->bi_opf = dio_bio_write_op(iocb);
390 task_io_account_write(bio->bi_iter.bi_size);
391 }
392
393 dio->size += bio->bi_iter.bi_size;
394 pos += bio->bi_iter.bi_size;
395
396 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
397 if (!nr_pages) {
398 qc = submit_bio(bio);
399 break;
400 }
401
402 if (!dio->multi_bio) {
403 dio->multi_bio = true;
404 atomic_set(&dio->ref, 2);
405 } else {
406 atomic_inc(&dio->ref);
407 }
408
409 submit_bio(bio);
410 bio = bio_alloc(GFP_KERNEL, nr_pages);
411 }
412 blk_finish_plug(&plug);
413
414 if (!is_sync)
415 return -EIOCBQUEUED;
416
417 for (;;) {
418 set_current_state(TASK_UNINTERRUPTIBLE);
419 if (!READ_ONCE(dio->waiter))
420 break;
421
422 if (!(iocb->ki_flags & IOCB_HIPRI) ||
423 !blk_poll(bdev_get_queue(bdev), qc))
424 io_schedule();
425 }
426 __set_current_state(TASK_RUNNING);
427
428 if (!ret)
429 ret = blk_status_to_errno(dio->bio.bi_status);
430 if (likely(!ret))
431 ret = dio->size;
432
433 bio_put(&dio->bio);
434 return ret;
435 }
436
437 static ssize_t
blkdev_direct_IO(struct kiocb * iocb,struct iov_iter * iter)438 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
439 {
440 int nr_pages;
441
442 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
443 if (!nr_pages)
444 return 0;
445 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
446 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
447
448 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
449 }
450
blkdev_init(void)451 static __init int blkdev_init(void)
452 {
453 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
454 }
455 module_init(blkdev_init);
456
__sync_blockdev(struct block_device * bdev,int wait)457 int __sync_blockdev(struct block_device *bdev, int wait)
458 {
459 if (!bdev)
460 return 0;
461 if (!wait)
462 return filemap_flush(bdev->bd_inode->i_mapping);
463 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
464 }
465
466 /*
467 * Write out and wait upon all the dirty data associated with a block
468 * device via its mapping. Does not take the superblock lock.
469 */
sync_blockdev(struct block_device * bdev)470 int sync_blockdev(struct block_device *bdev)
471 {
472 return __sync_blockdev(bdev, 1);
473 }
474 EXPORT_SYMBOL(sync_blockdev);
475
476 /*
477 * Write out and wait upon all dirty data associated with this
478 * device. Filesystem data as well as the underlying block
479 * device. Takes the superblock lock.
480 */
fsync_bdev(struct block_device * bdev)481 int fsync_bdev(struct block_device *bdev)
482 {
483 struct super_block *sb = get_super(bdev);
484 if (sb) {
485 int res = sync_filesystem(sb);
486 drop_super(sb);
487 return res;
488 }
489 return sync_blockdev(bdev);
490 }
491 EXPORT_SYMBOL(fsync_bdev);
492
493 /**
494 * freeze_bdev -- lock a filesystem and force it into a consistent state
495 * @bdev: blockdevice to lock
496 *
497 * If a superblock is found on this device, we take the s_umount semaphore
498 * on it to make sure nobody unmounts until the snapshot creation is done.
499 * The reference counter (bd_fsfreeze_count) guarantees that only the last
500 * unfreeze process can unfreeze the frozen filesystem actually when multiple
501 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
502 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
503 * actually.
504 */
freeze_bdev(struct block_device * bdev)505 struct super_block *freeze_bdev(struct block_device *bdev)
506 {
507 struct super_block *sb;
508 int error = 0;
509
510 mutex_lock(&bdev->bd_fsfreeze_mutex);
511 if (++bdev->bd_fsfreeze_count > 1) {
512 /*
513 * We don't even need to grab a reference - the first call
514 * to freeze_bdev grab an active reference and only the last
515 * thaw_bdev drops it.
516 */
517 sb = get_super(bdev);
518 if (sb)
519 drop_super(sb);
520 mutex_unlock(&bdev->bd_fsfreeze_mutex);
521 return sb;
522 }
523
524 sb = get_active_super(bdev);
525 if (!sb)
526 goto out;
527 if (sb->s_op->freeze_super)
528 error = sb->s_op->freeze_super(sb);
529 else
530 error = freeze_super(sb);
531 if (error) {
532 deactivate_super(sb);
533 bdev->bd_fsfreeze_count--;
534 mutex_unlock(&bdev->bd_fsfreeze_mutex);
535 return ERR_PTR(error);
536 }
537 deactivate_super(sb);
538 out:
539 sync_blockdev(bdev);
540 mutex_unlock(&bdev->bd_fsfreeze_mutex);
541 return sb; /* thaw_bdev releases s->s_umount */
542 }
543 EXPORT_SYMBOL(freeze_bdev);
544
545 /**
546 * thaw_bdev -- unlock filesystem
547 * @bdev: blockdevice to unlock
548 * @sb: associated superblock
549 *
550 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
551 */
thaw_bdev(struct block_device * bdev,struct super_block * sb)552 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
553 {
554 int error = -EINVAL;
555
556 mutex_lock(&bdev->bd_fsfreeze_mutex);
557 if (!bdev->bd_fsfreeze_count)
558 goto out;
559
560 error = 0;
561 if (--bdev->bd_fsfreeze_count > 0)
562 goto out;
563
564 if (!sb)
565 goto out;
566
567 if (sb->s_op->thaw_super)
568 error = sb->s_op->thaw_super(sb);
569 else
570 error = thaw_super(sb);
571 if (error)
572 bdev->bd_fsfreeze_count++;
573 out:
574 mutex_unlock(&bdev->bd_fsfreeze_mutex);
575 return error;
576 }
577 EXPORT_SYMBOL(thaw_bdev);
578
blkdev_writepage(struct page * page,struct writeback_control * wbc)579 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
580 {
581 return block_write_full_page(page, blkdev_get_block, wbc);
582 }
583
blkdev_readpage(struct file * file,struct page * page)584 static int blkdev_readpage(struct file * file, struct page * page)
585 {
586 return block_read_full_page(page, blkdev_get_block);
587 }
588
blkdev_readpages(struct file * file,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)589 static int blkdev_readpages(struct file *file, struct address_space *mapping,
590 struct list_head *pages, unsigned nr_pages)
591 {
592 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
593 }
594
blkdev_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)595 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
596 loff_t pos, unsigned len, unsigned flags,
597 struct page **pagep, void **fsdata)
598 {
599 return block_write_begin(mapping, pos, len, flags, pagep,
600 blkdev_get_block);
601 }
602
blkdev_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)603 static int blkdev_write_end(struct file *file, struct address_space *mapping,
604 loff_t pos, unsigned len, unsigned copied,
605 struct page *page, void *fsdata)
606 {
607 int ret;
608 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
609
610 unlock_page(page);
611 put_page(page);
612
613 return ret;
614 }
615
616 /*
617 * private llseek:
618 * for a block special file file_inode(file)->i_size is zero
619 * so we compute the size by hand (just as in block_read/write above)
620 */
block_llseek(struct file * file,loff_t offset,int whence)621 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
622 {
623 struct inode *bd_inode = bdev_file_inode(file);
624 loff_t retval;
625
626 inode_lock(bd_inode);
627 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
628 inode_unlock(bd_inode);
629 return retval;
630 }
631
blkdev_fsync(struct file * filp,loff_t start,loff_t end,int datasync)632 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
633 {
634 struct inode *bd_inode = bdev_file_inode(filp);
635 struct block_device *bdev = I_BDEV(bd_inode);
636 int error;
637
638 error = file_write_and_wait_range(filp, start, end);
639 if (error)
640 return error;
641
642 /*
643 * There is no need to serialise calls to blkdev_issue_flush with
644 * i_mutex and doing so causes performance issues with concurrent
645 * O_SYNC writers to a block device.
646 */
647 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
648 if (error == -EOPNOTSUPP)
649 error = 0;
650
651 return error;
652 }
653 EXPORT_SYMBOL(blkdev_fsync);
654
655 /**
656 * bdev_read_page() - Start reading a page from a block device
657 * @bdev: The device to read the page from
658 * @sector: The offset on the device to read the page to (need not be aligned)
659 * @page: The page to read
660 *
661 * On entry, the page should be locked. It will be unlocked when the page
662 * has been read. If the block driver implements rw_page synchronously,
663 * that will be true on exit from this function, but it need not be.
664 *
665 * Errors returned by this function are usually "soft", eg out of memory, or
666 * queue full; callers should try a different route to read this page rather
667 * than propagate an error back up the stack.
668 *
669 * Return: negative errno if an error occurs, 0 if submission was successful.
670 */
bdev_read_page(struct block_device * bdev,sector_t sector,struct page * page)671 int bdev_read_page(struct block_device *bdev, sector_t sector,
672 struct page *page)
673 {
674 const struct block_device_operations *ops = bdev->bd_disk->fops;
675 int result = -EOPNOTSUPP;
676
677 if (!ops->rw_page || bdev_get_integrity(bdev))
678 return result;
679
680 result = blk_queue_enter(bdev->bd_queue, 0);
681 if (result)
682 return result;
683 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
684 REQ_OP_READ);
685 blk_queue_exit(bdev->bd_queue);
686 return result;
687 }
688 EXPORT_SYMBOL_GPL(bdev_read_page);
689
690 /**
691 * bdev_write_page() - Start writing a page to a block device
692 * @bdev: The device to write the page to
693 * @sector: The offset on the device to write the page to (need not be aligned)
694 * @page: The page to write
695 * @wbc: The writeback_control for the write
696 *
697 * On entry, the page should be locked and not currently under writeback.
698 * On exit, if the write started successfully, the page will be unlocked and
699 * under writeback. If the write failed already (eg the driver failed to
700 * queue the page to the device), the page will still be locked. If the
701 * caller is a ->writepage implementation, it will need to unlock the page.
702 *
703 * Errors returned by this function are usually "soft", eg out of memory, or
704 * queue full; callers should try a different route to write this page rather
705 * than propagate an error back up the stack.
706 *
707 * Return: negative errno if an error occurs, 0 if submission was successful.
708 */
bdev_write_page(struct block_device * bdev,sector_t sector,struct page * page,struct writeback_control * wbc)709 int bdev_write_page(struct block_device *bdev, sector_t sector,
710 struct page *page, struct writeback_control *wbc)
711 {
712 int result;
713 const struct block_device_operations *ops = bdev->bd_disk->fops;
714
715 if (!ops->rw_page || bdev_get_integrity(bdev))
716 return -EOPNOTSUPP;
717 result = blk_queue_enter(bdev->bd_queue, 0);
718 if (result)
719 return result;
720
721 set_page_writeback(page);
722 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
723 REQ_OP_WRITE);
724 if (result) {
725 end_page_writeback(page);
726 } else {
727 clean_page_buffers(page);
728 unlock_page(page);
729 }
730 blk_queue_exit(bdev->bd_queue);
731 return result;
732 }
733 EXPORT_SYMBOL_GPL(bdev_write_page);
734
735 /*
736 * pseudo-fs
737 */
738
739 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
740 static struct kmem_cache * bdev_cachep __read_mostly;
741
bdev_alloc_inode(struct super_block * sb)742 static struct inode *bdev_alloc_inode(struct super_block *sb)
743 {
744 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
745 if (!ei)
746 return NULL;
747 return &ei->vfs_inode;
748 }
749
bdev_i_callback(struct rcu_head * head)750 static void bdev_i_callback(struct rcu_head *head)
751 {
752 struct inode *inode = container_of(head, struct inode, i_rcu);
753 struct bdev_inode *bdi = BDEV_I(inode);
754
755 kmem_cache_free(bdev_cachep, bdi);
756 }
757
bdev_destroy_inode(struct inode * inode)758 static void bdev_destroy_inode(struct inode *inode)
759 {
760 call_rcu(&inode->i_rcu, bdev_i_callback);
761 }
762
init_once(void * foo)763 static void init_once(void *foo)
764 {
765 struct bdev_inode *ei = (struct bdev_inode *) foo;
766 struct block_device *bdev = &ei->bdev;
767
768 memset(bdev, 0, sizeof(*bdev));
769 mutex_init(&bdev->bd_mutex);
770 INIT_LIST_HEAD(&bdev->bd_list);
771 #ifdef CONFIG_SYSFS
772 INIT_LIST_HEAD(&bdev->bd_holder_disks);
773 #endif
774 bdev->bd_bdi = &noop_backing_dev_info;
775 inode_init_once(&ei->vfs_inode);
776 /* Initialize mutex for freeze. */
777 mutex_init(&bdev->bd_fsfreeze_mutex);
778 }
779
bdev_evict_inode(struct inode * inode)780 static void bdev_evict_inode(struct inode *inode)
781 {
782 struct block_device *bdev = &BDEV_I(inode)->bdev;
783 truncate_inode_pages_final(&inode->i_data);
784 invalidate_inode_buffers(inode); /* is it needed here? */
785 clear_inode(inode);
786 spin_lock(&bdev_lock);
787 list_del_init(&bdev->bd_list);
788 spin_unlock(&bdev_lock);
789 /* Detach inode from wb early as bdi_put() may free bdi->wb */
790 inode_detach_wb(inode);
791 if (bdev->bd_bdi != &noop_backing_dev_info) {
792 bdi_put(bdev->bd_bdi);
793 bdev->bd_bdi = &noop_backing_dev_info;
794 }
795 }
796
797 static const struct super_operations bdev_sops = {
798 .statfs = simple_statfs,
799 .alloc_inode = bdev_alloc_inode,
800 .destroy_inode = bdev_destroy_inode,
801 .drop_inode = generic_delete_inode,
802 .evict_inode = bdev_evict_inode,
803 };
804
bd_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)805 static struct dentry *bd_mount(struct file_system_type *fs_type,
806 int flags, const char *dev_name, void *data)
807 {
808 struct dentry *dent;
809 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
810 if (!IS_ERR(dent))
811 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
812 return dent;
813 }
814
815 static struct file_system_type bd_type = {
816 .name = "bdev",
817 .mount = bd_mount,
818 .kill_sb = kill_anon_super,
819 };
820
821 struct super_block *blockdev_superblock __read_mostly;
822 EXPORT_SYMBOL_GPL(blockdev_superblock);
823
bdev_cache_init(void)824 void __init bdev_cache_init(void)
825 {
826 int err;
827 static struct vfsmount *bd_mnt;
828
829 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
830 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
831 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
832 init_once);
833 err = register_filesystem(&bd_type);
834 if (err)
835 panic("Cannot register bdev pseudo-fs");
836 bd_mnt = kern_mount(&bd_type);
837 if (IS_ERR(bd_mnt))
838 panic("Cannot create bdev pseudo-fs");
839 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
840 }
841
842 /*
843 * Most likely _very_ bad one - but then it's hardly critical for small
844 * /dev and can be fixed when somebody will need really large one.
845 * Keep in mind that it will be fed through icache hash function too.
846 */
hash(dev_t dev)847 static inline unsigned long hash(dev_t dev)
848 {
849 return MAJOR(dev)+MINOR(dev);
850 }
851
bdev_test(struct inode * inode,void * data)852 static int bdev_test(struct inode *inode, void *data)
853 {
854 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
855 }
856
bdev_set(struct inode * inode,void * data)857 static int bdev_set(struct inode *inode, void *data)
858 {
859 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
860 return 0;
861 }
862
863 static LIST_HEAD(all_bdevs);
864
865 /*
866 * If there is a bdev inode for this device, unhash it so that it gets evicted
867 * as soon as last inode reference is dropped.
868 */
bdev_unhash_inode(dev_t dev)869 void bdev_unhash_inode(dev_t dev)
870 {
871 struct inode *inode;
872
873 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
874 if (inode) {
875 remove_inode_hash(inode);
876 iput(inode);
877 }
878 }
879
bdget(dev_t dev)880 struct block_device *bdget(dev_t dev)
881 {
882 struct block_device *bdev;
883 struct inode *inode;
884
885 inode = iget5_locked(blockdev_superblock, hash(dev),
886 bdev_test, bdev_set, &dev);
887
888 if (!inode)
889 return NULL;
890
891 bdev = &BDEV_I(inode)->bdev;
892
893 if (inode->i_state & I_NEW) {
894 bdev->bd_contains = NULL;
895 bdev->bd_super = NULL;
896 bdev->bd_inode = inode;
897 bdev->bd_block_size = i_blocksize(inode);
898 bdev->bd_part_count = 0;
899 bdev->bd_invalidated = 0;
900 inode->i_mode = S_IFBLK;
901 inode->i_rdev = dev;
902 inode->i_bdev = bdev;
903 inode->i_data.a_ops = &def_blk_aops;
904 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
905 spin_lock(&bdev_lock);
906 list_add(&bdev->bd_list, &all_bdevs);
907 spin_unlock(&bdev_lock);
908 unlock_new_inode(inode);
909 }
910 return bdev;
911 }
912
913 EXPORT_SYMBOL(bdget);
914
915 /**
916 * bdgrab -- Grab a reference to an already referenced block device
917 * @bdev: Block device to grab a reference to.
918 */
bdgrab(struct block_device * bdev)919 struct block_device *bdgrab(struct block_device *bdev)
920 {
921 ihold(bdev->bd_inode);
922 return bdev;
923 }
924 EXPORT_SYMBOL(bdgrab);
925
nr_blockdev_pages(void)926 long nr_blockdev_pages(void)
927 {
928 struct block_device *bdev;
929 long ret = 0;
930 spin_lock(&bdev_lock);
931 list_for_each_entry(bdev, &all_bdevs, bd_list) {
932 ret += bdev->bd_inode->i_mapping->nrpages;
933 }
934 spin_unlock(&bdev_lock);
935 return ret;
936 }
937
bdput(struct block_device * bdev)938 void bdput(struct block_device *bdev)
939 {
940 iput(bdev->bd_inode);
941 }
942
943 EXPORT_SYMBOL(bdput);
944
bd_acquire(struct inode * inode)945 static struct block_device *bd_acquire(struct inode *inode)
946 {
947 struct block_device *bdev;
948
949 spin_lock(&bdev_lock);
950 bdev = inode->i_bdev;
951 if (bdev && !inode_unhashed(bdev->bd_inode)) {
952 bdgrab(bdev);
953 spin_unlock(&bdev_lock);
954 return bdev;
955 }
956 spin_unlock(&bdev_lock);
957
958 /*
959 * i_bdev references block device inode that was already shut down
960 * (corresponding device got removed). Remove the reference and look
961 * up block device inode again just in case new device got
962 * reestablished under the same device number.
963 */
964 if (bdev)
965 bd_forget(inode);
966
967 bdev = bdget(inode->i_rdev);
968 if (bdev) {
969 spin_lock(&bdev_lock);
970 if (!inode->i_bdev) {
971 /*
972 * We take an additional reference to bd_inode,
973 * and it's released in clear_inode() of inode.
974 * So, we can access it via ->i_mapping always
975 * without igrab().
976 */
977 bdgrab(bdev);
978 inode->i_bdev = bdev;
979 inode->i_mapping = bdev->bd_inode->i_mapping;
980 }
981 spin_unlock(&bdev_lock);
982 }
983 return bdev;
984 }
985
986 /* Call when you free inode */
987
bd_forget(struct inode * inode)988 void bd_forget(struct inode *inode)
989 {
990 struct block_device *bdev = NULL;
991
992 spin_lock(&bdev_lock);
993 if (!sb_is_blkdev_sb(inode->i_sb))
994 bdev = inode->i_bdev;
995 inode->i_bdev = NULL;
996 inode->i_mapping = &inode->i_data;
997 spin_unlock(&bdev_lock);
998
999 if (bdev)
1000 bdput(bdev);
1001 }
1002
1003 /**
1004 * bd_may_claim - test whether a block device can be claimed
1005 * @bdev: block device of interest
1006 * @whole: whole block device containing @bdev, may equal @bdev
1007 * @holder: holder trying to claim @bdev
1008 *
1009 * Test whether @bdev can be claimed by @holder.
1010 *
1011 * CONTEXT:
1012 * spin_lock(&bdev_lock).
1013 *
1014 * RETURNS:
1015 * %true if @bdev can be claimed, %false otherwise.
1016 */
bd_may_claim(struct block_device * bdev,struct block_device * whole,void * holder)1017 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1018 void *holder)
1019 {
1020 if (bdev->bd_holder == holder)
1021 return true; /* already a holder */
1022 else if (bdev->bd_holder != NULL)
1023 return false; /* held by someone else */
1024 else if (whole == bdev)
1025 return true; /* is a whole device which isn't held */
1026
1027 else if (whole->bd_holder == bd_may_claim)
1028 return true; /* is a partition of a device that is being partitioned */
1029 else if (whole->bd_holder != NULL)
1030 return false; /* is a partition of a held device */
1031 else
1032 return true; /* is a partition of an un-held device */
1033 }
1034
1035 /**
1036 * bd_prepare_to_claim - prepare to claim a block device
1037 * @bdev: block device of interest
1038 * @whole: the whole device containing @bdev, may equal @bdev
1039 * @holder: holder trying to claim @bdev
1040 *
1041 * Prepare to claim @bdev. This function fails if @bdev is already
1042 * claimed by another holder and waits if another claiming is in
1043 * progress. This function doesn't actually claim. On successful
1044 * return, the caller has ownership of bd_claiming and bd_holder[s].
1045 *
1046 * CONTEXT:
1047 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1048 * it multiple times.
1049 *
1050 * RETURNS:
1051 * 0 if @bdev can be claimed, -EBUSY otherwise.
1052 */
bd_prepare_to_claim(struct block_device * bdev,struct block_device * whole,void * holder)1053 static int bd_prepare_to_claim(struct block_device *bdev,
1054 struct block_device *whole, void *holder)
1055 {
1056 retry:
1057 /* if someone else claimed, fail */
1058 if (!bd_may_claim(bdev, whole, holder))
1059 return -EBUSY;
1060
1061 /* if claiming is already in progress, wait for it to finish */
1062 if (whole->bd_claiming) {
1063 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1064 DEFINE_WAIT(wait);
1065
1066 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1067 spin_unlock(&bdev_lock);
1068 schedule();
1069 finish_wait(wq, &wait);
1070 spin_lock(&bdev_lock);
1071 goto retry;
1072 }
1073
1074 /* yay, all mine */
1075 return 0;
1076 }
1077
bdev_get_gendisk(struct block_device * bdev,int * partno)1078 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1079 {
1080 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1081
1082 if (!disk)
1083 return NULL;
1084 /*
1085 * Now that we hold gendisk reference we make sure bdev we looked up is
1086 * not stale. If it is, it means device got removed and created before
1087 * we looked up gendisk and we fail open in such case. Associating
1088 * unhashed bdev with newly created gendisk could lead to two bdevs
1089 * (and thus two independent caches) being associated with one device
1090 * which is bad.
1091 */
1092 if (inode_unhashed(bdev->bd_inode)) {
1093 put_disk_and_module(disk);
1094 return NULL;
1095 }
1096 return disk;
1097 }
1098
1099 /**
1100 * bd_start_claiming - start claiming a block device
1101 * @bdev: block device of interest
1102 * @holder: holder trying to claim @bdev
1103 *
1104 * @bdev is about to be opened exclusively. Check @bdev can be opened
1105 * exclusively and mark that an exclusive open is in progress. Each
1106 * successful call to this function must be matched with a call to
1107 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1108 * fail).
1109 *
1110 * This function is used to gain exclusive access to the block device
1111 * without actually causing other exclusive open attempts to fail. It
1112 * should be used when the open sequence itself requires exclusive
1113 * access but may subsequently fail.
1114 *
1115 * CONTEXT:
1116 * Might sleep.
1117 *
1118 * RETURNS:
1119 * Pointer to the block device containing @bdev on success, ERR_PTR()
1120 * value on failure.
1121 */
bd_start_claiming(struct block_device * bdev,void * holder)1122 static struct block_device *bd_start_claiming(struct block_device *bdev,
1123 void *holder)
1124 {
1125 struct gendisk *disk;
1126 struct block_device *whole;
1127 int partno, err;
1128
1129 might_sleep();
1130
1131 /*
1132 * @bdev might not have been initialized properly yet, look up
1133 * and grab the outer block device the hard way.
1134 */
1135 disk = bdev_get_gendisk(bdev, &partno);
1136 if (!disk)
1137 return ERR_PTR(-ENXIO);
1138
1139 /*
1140 * Normally, @bdev should equal what's returned from bdget_disk()
1141 * if partno is 0; however, some drivers (floppy) use multiple
1142 * bdev's for the same physical device and @bdev may be one of the
1143 * aliases. Keep @bdev if partno is 0. This means claimer
1144 * tracking is broken for those devices but it has always been that
1145 * way.
1146 */
1147 if (partno)
1148 whole = bdget_disk(disk, 0);
1149 else
1150 whole = bdgrab(bdev);
1151
1152 put_disk_and_module(disk);
1153 if (!whole)
1154 return ERR_PTR(-ENOMEM);
1155
1156 /* prepare to claim, if successful, mark claiming in progress */
1157 spin_lock(&bdev_lock);
1158
1159 err = bd_prepare_to_claim(bdev, whole, holder);
1160 if (err == 0) {
1161 whole->bd_claiming = holder;
1162 spin_unlock(&bdev_lock);
1163 return whole;
1164 } else {
1165 spin_unlock(&bdev_lock);
1166 bdput(whole);
1167 return ERR_PTR(err);
1168 }
1169 }
1170
1171 #ifdef CONFIG_SYSFS
1172 struct bd_holder_disk {
1173 struct list_head list;
1174 struct gendisk *disk;
1175 int refcnt;
1176 };
1177
bd_find_holder_disk(struct block_device * bdev,struct gendisk * disk)1178 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1179 struct gendisk *disk)
1180 {
1181 struct bd_holder_disk *holder;
1182
1183 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1184 if (holder->disk == disk)
1185 return holder;
1186 return NULL;
1187 }
1188
add_symlink(struct kobject * from,struct kobject * to)1189 static int add_symlink(struct kobject *from, struct kobject *to)
1190 {
1191 return sysfs_create_link(from, to, kobject_name(to));
1192 }
1193
del_symlink(struct kobject * from,struct kobject * to)1194 static void del_symlink(struct kobject *from, struct kobject *to)
1195 {
1196 sysfs_remove_link(from, kobject_name(to));
1197 }
1198
1199 /**
1200 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1201 * @bdev: the claimed slave bdev
1202 * @disk: the holding disk
1203 *
1204 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1205 *
1206 * This functions creates the following sysfs symlinks.
1207 *
1208 * - from "slaves" directory of the holder @disk to the claimed @bdev
1209 * - from "holders" directory of the @bdev to the holder @disk
1210 *
1211 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1212 * passed to bd_link_disk_holder(), then:
1213 *
1214 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1215 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1216 *
1217 * The caller must have claimed @bdev before calling this function and
1218 * ensure that both @bdev and @disk are valid during the creation and
1219 * lifetime of these symlinks.
1220 *
1221 * CONTEXT:
1222 * Might sleep.
1223 *
1224 * RETURNS:
1225 * 0 on success, -errno on failure.
1226 */
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)1227 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1228 {
1229 struct bd_holder_disk *holder;
1230 int ret = 0;
1231
1232 mutex_lock(&bdev->bd_mutex);
1233
1234 WARN_ON_ONCE(!bdev->bd_holder);
1235
1236 /* FIXME: remove the following once add_disk() handles errors */
1237 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1238 goto out_unlock;
1239
1240 holder = bd_find_holder_disk(bdev, disk);
1241 if (holder) {
1242 holder->refcnt++;
1243 goto out_unlock;
1244 }
1245
1246 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1247 if (!holder) {
1248 ret = -ENOMEM;
1249 goto out_unlock;
1250 }
1251
1252 INIT_LIST_HEAD(&holder->list);
1253 holder->disk = disk;
1254 holder->refcnt = 1;
1255
1256 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1257 if (ret)
1258 goto out_free;
1259
1260 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1261 if (ret)
1262 goto out_del;
1263 /*
1264 * bdev could be deleted beneath us which would implicitly destroy
1265 * the holder directory. Hold on to it.
1266 */
1267 kobject_get(bdev->bd_part->holder_dir);
1268
1269 list_add(&holder->list, &bdev->bd_holder_disks);
1270 goto out_unlock;
1271
1272 out_del:
1273 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1274 out_free:
1275 kfree(holder);
1276 out_unlock:
1277 mutex_unlock(&bdev->bd_mutex);
1278 return ret;
1279 }
1280 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1281
1282 /**
1283 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1284 * @bdev: the calimed slave bdev
1285 * @disk: the holding disk
1286 *
1287 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1288 *
1289 * CONTEXT:
1290 * Might sleep.
1291 */
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)1292 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1293 {
1294 struct bd_holder_disk *holder;
1295
1296 mutex_lock(&bdev->bd_mutex);
1297
1298 holder = bd_find_holder_disk(bdev, disk);
1299
1300 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1301 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1302 del_symlink(bdev->bd_part->holder_dir,
1303 &disk_to_dev(disk)->kobj);
1304 kobject_put(bdev->bd_part->holder_dir);
1305 list_del_init(&holder->list);
1306 kfree(holder);
1307 }
1308
1309 mutex_unlock(&bdev->bd_mutex);
1310 }
1311 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1312 #endif
1313
1314 /**
1315 * flush_disk - invalidates all buffer-cache entries on a disk
1316 *
1317 * @bdev: struct block device to be flushed
1318 * @kill_dirty: flag to guide handling of dirty inodes
1319 *
1320 * Invalidates all buffer-cache entries on a disk. It should be called
1321 * when a disk has been changed -- either by a media change or online
1322 * resize.
1323 */
flush_disk(struct block_device * bdev,bool kill_dirty)1324 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1325 {
1326 if (__invalidate_device(bdev, kill_dirty)) {
1327 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1328 "resized disk %s\n",
1329 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1330 }
1331 bdev->bd_invalidated = 1;
1332 }
1333
1334 /**
1335 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1336 * @disk: struct gendisk to check
1337 * @bdev: struct bdev to adjust.
1338 * @verbose: if %true log a message about a size change if there is any
1339 *
1340 * This routine checks to see if the bdev size does not match the disk size
1341 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1342 * are freed.
1343 */
check_disk_size_change(struct gendisk * disk,struct block_device * bdev,bool verbose)1344 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev,
1345 bool verbose)
1346 {
1347 loff_t disk_size, bdev_size;
1348
1349 disk_size = (loff_t)get_capacity(disk) << 9;
1350 bdev_size = i_size_read(bdev->bd_inode);
1351 if (disk_size != bdev_size) {
1352 if (verbose) {
1353 printk(KERN_INFO
1354 "%s: detected capacity change from %lld to %lld\n",
1355 disk->disk_name, bdev_size, disk_size);
1356 }
1357 i_size_write(bdev->bd_inode, disk_size);
1358 if (bdev_size > disk_size)
1359 flush_disk(bdev, false);
1360 }
1361 }
1362
1363 /**
1364 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1365 * @disk: struct gendisk to be revalidated
1366 *
1367 * This routine is a wrapper for lower-level driver's revalidate_disk
1368 * call-backs. It is used to do common pre and post operations needed
1369 * for all revalidate_disk operations.
1370 */
revalidate_disk(struct gendisk * disk)1371 int revalidate_disk(struct gendisk *disk)
1372 {
1373 struct block_device *bdev;
1374 int ret = 0;
1375
1376 if (disk->fops->revalidate_disk)
1377 ret = disk->fops->revalidate_disk(disk);
1378 bdev = bdget_disk(disk, 0);
1379 if (!bdev)
1380 return ret;
1381
1382 mutex_lock(&bdev->bd_mutex);
1383 check_disk_size_change(disk, bdev, ret == 0);
1384 bdev->bd_invalidated = 0;
1385 mutex_unlock(&bdev->bd_mutex);
1386 bdput(bdev);
1387 return ret;
1388 }
1389 EXPORT_SYMBOL(revalidate_disk);
1390
1391 /*
1392 * This routine checks whether a removable media has been changed,
1393 * and invalidates all buffer-cache-entries in that case. This
1394 * is a relatively slow routine, so we have to try to minimize using
1395 * it. Thus it is called only upon a 'mount' or 'open'. This
1396 * is the best way of combining speed and utility, I think.
1397 * People changing diskettes in the middle of an operation deserve
1398 * to lose :-)
1399 */
check_disk_change(struct block_device * bdev)1400 int check_disk_change(struct block_device *bdev)
1401 {
1402 struct gendisk *disk = bdev->bd_disk;
1403 const struct block_device_operations *bdops = disk->fops;
1404 unsigned int events;
1405
1406 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1407 DISK_EVENT_EJECT_REQUEST);
1408 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1409 return 0;
1410
1411 flush_disk(bdev, true);
1412 if (bdops->revalidate_disk)
1413 bdops->revalidate_disk(bdev->bd_disk);
1414 return 1;
1415 }
1416
1417 EXPORT_SYMBOL(check_disk_change);
1418
bd_set_size(struct block_device * bdev,loff_t size)1419 void bd_set_size(struct block_device *bdev, loff_t size)
1420 {
1421 inode_lock(bdev->bd_inode);
1422 i_size_write(bdev->bd_inode, size);
1423 inode_unlock(bdev->bd_inode);
1424 }
1425 EXPORT_SYMBOL(bd_set_size);
1426
1427 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1428
bdev_disk_changed(struct block_device * bdev,bool invalidate)1429 static void bdev_disk_changed(struct block_device *bdev, bool invalidate)
1430 {
1431 if (disk_part_scan_enabled(bdev->bd_disk)) {
1432 if (invalidate)
1433 invalidate_partitions(bdev->bd_disk, bdev);
1434 else
1435 rescan_partitions(bdev->bd_disk, bdev);
1436 } else {
1437 check_disk_size_change(bdev->bd_disk, bdev, !invalidate);
1438 bdev->bd_invalidated = 0;
1439 }
1440 }
1441
1442 /*
1443 * bd_mutex locking:
1444 *
1445 * mutex_lock(part->bd_mutex)
1446 * mutex_lock_nested(whole->bd_mutex, 1)
1447 */
1448
__blkdev_get(struct block_device * bdev,fmode_t mode,int for_part)1449 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1450 {
1451 struct gendisk *disk;
1452 int ret;
1453 int partno;
1454 int perm = 0;
1455 bool first_open = false;
1456
1457 if (mode & FMODE_READ)
1458 perm |= MAY_READ;
1459 if (mode & FMODE_WRITE)
1460 perm |= MAY_WRITE;
1461 /*
1462 * hooks: /n/, see "layering violations".
1463 */
1464 if (!for_part) {
1465 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1466 if (ret != 0)
1467 return ret;
1468 }
1469
1470 restart:
1471
1472 ret = -ENXIO;
1473 disk = bdev_get_gendisk(bdev, &partno);
1474 if (!disk)
1475 goto out;
1476
1477 disk_block_events(disk);
1478 mutex_lock_nested(&bdev->bd_mutex, for_part);
1479 if (!bdev->bd_openers) {
1480 first_open = true;
1481 bdev->bd_disk = disk;
1482 bdev->bd_queue = disk->queue;
1483 bdev->bd_contains = bdev;
1484 bdev->bd_partno = partno;
1485
1486 if (!partno) {
1487 ret = -ENXIO;
1488 bdev->bd_part = disk_get_part(disk, partno);
1489 if (!bdev->bd_part)
1490 goto out_clear;
1491
1492 ret = 0;
1493 if (disk->fops->open) {
1494 ret = disk->fops->open(bdev, mode);
1495 if (ret == -ERESTARTSYS) {
1496 /* Lost a race with 'disk' being
1497 * deleted, try again.
1498 * See md.c
1499 */
1500 disk_put_part(bdev->bd_part);
1501 bdev->bd_part = NULL;
1502 bdev->bd_disk = NULL;
1503 bdev->bd_queue = NULL;
1504 mutex_unlock(&bdev->bd_mutex);
1505 disk_unblock_events(disk);
1506 put_disk_and_module(disk);
1507 goto restart;
1508 }
1509 }
1510
1511 if (!ret) {
1512 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1513 set_init_blocksize(bdev);
1514 }
1515
1516 /*
1517 * If the device is invalidated, rescan partition
1518 * if open succeeded or failed with -ENOMEDIUM.
1519 * The latter is necessary to prevent ghost
1520 * partitions on a removed medium.
1521 */
1522 if (bdev->bd_invalidated &&
1523 (!ret || ret == -ENOMEDIUM))
1524 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1525
1526 if (ret)
1527 goto out_clear;
1528 } else {
1529 struct block_device *whole;
1530 whole = bdget_disk(disk, 0);
1531 ret = -ENOMEM;
1532 if (!whole)
1533 goto out_clear;
1534 BUG_ON(for_part);
1535 ret = __blkdev_get(whole, mode, 1);
1536 if (ret) {
1537 bdput(whole);
1538 goto out_clear;
1539 }
1540 bdev->bd_contains = whole;
1541 bdev->bd_part = disk_get_part(disk, partno);
1542 if (!(disk->flags & GENHD_FL_UP) ||
1543 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1544 ret = -ENXIO;
1545 goto out_clear;
1546 }
1547 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1548 set_init_blocksize(bdev);
1549 }
1550
1551 if (bdev->bd_bdi == &noop_backing_dev_info)
1552 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1553 } else {
1554 if (bdev->bd_contains == bdev) {
1555 ret = 0;
1556 if (bdev->bd_disk->fops->open)
1557 ret = bdev->bd_disk->fops->open(bdev, mode);
1558 /* the same as first opener case, read comment there */
1559 if (bdev->bd_invalidated &&
1560 (!ret || ret == -ENOMEDIUM))
1561 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1562 if (ret)
1563 goto out_unlock_bdev;
1564 }
1565 }
1566 bdev->bd_openers++;
1567 if (for_part)
1568 bdev->bd_part_count++;
1569 mutex_unlock(&bdev->bd_mutex);
1570 disk_unblock_events(disk);
1571 /* only one opener holds refs to the module and disk */
1572 if (!first_open)
1573 put_disk_and_module(disk);
1574 return 0;
1575
1576 out_clear:
1577 disk_put_part(bdev->bd_part);
1578 bdev->bd_disk = NULL;
1579 bdev->bd_part = NULL;
1580 bdev->bd_queue = NULL;
1581 if (bdev != bdev->bd_contains)
1582 __blkdev_put(bdev->bd_contains, mode, 1);
1583 bdev->bd_contains = NULL;
1584 out_unlock_bdev:
1585 mutex_unlock(&bdev->bd_mutex);
1586 disk_unblock_events(disk);
1587 put_disk_and_module(disk);
1588 out:
1589
1590 return ret;
1591 }
1592
1593 /**
1594 * blkdev_get - open a block device
1595 * @bdev: block_device to open
1596 * @mode: FMODE_* mask
1597 * @holder: exclusive holder identifier
1598 *
1599 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1600 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1601 * @holder is invalid. Exclusive opens may nest for the same @holder.
1602 *
1603 * On success, the reference count of @bdev is unchanged. On failure,
1604 * @bdev is put.
1605 *
1606 * CONTEXT:
1607 * Might sleep.
1608 *
1609 * RETURNS:
1610 * 0 on success, -errno on failure.
1611 */
blkdev_get(struct block_device * bdev,fmode_t mode,void * holder)1612 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1613 {
1614 struct block_device *whole = NULL;
1615 int res;
1616
1617 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1618
1619 if ((mode & FMODE_EXCL) && holder) {
1620 whole = bd_start_claiming(bdev, holder);
1621 if (IS_ERR(whole)) {
1622 bdput(bdev);
1623 return PTR_ERR(whole);
1624 }
1625 }
1626
1627 res = __blkdev_get(bdev, mode, 0);
1628
1629 if (whole) {
1630 struct gendisk *disk = whole->bd_disk;
1631
1632 /* finish claiming */
1633 mutex_lock(&bdev->bd_mutex);
1634 spin_lock(&bdev_lock);
1635
1636 if (!res) {
1637 BUG_ON(!bd_may_claim(bdev, whole, holder));
1638 /*
1639 * Note that for a whole device bd_holders
1640 * will be incremented twice, and bd_holder
1641 * will be set to bd_may_claim before being
1642 * set to holder
1643 */
1644 whole->bd_holders++;
1645 whole->bd_holder = bd_may_claim;
1646 bdev->bd_holders++;
1647 bdev->bd_holder = holder;
1648 }
1649
1650 /* tell others that we're done */
1651 BUG_ON(whole->bd_claiming != holder);
1652 whole->bd_claiming = NULL;
1653 wake_up_bit(&whole->bd_claiming, 0);
1654
1655 spin_unlock(&bdev_lock);
1656
1657 /*
1658 * Block event polling for write claims if requested. Any
1659 * write holder makes the write_holder state stick until
1660 * all are released. This is good enough and tracking
1661 * individual writeable reference is too fragile given the
1662 * way @mode is used in blkdev_get/put().
1663 */
1664 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1665 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1666 bdev->bd_write_holder = true;
1667 disk_block_events(disk);
1668 }
1669
1670 mutex_unlock(&bdev->bd_mutex);
1671 bdput(whole);
1672 }
1673
1674 if (res)
1675 bdput(bdev);
1676
1677 return res;
1678 }
1679 EXPORT_SYMBOL(blkdev_get);
1680
1681 /**
1682 * blkdev_get_by_path - open a block device by name
1683 * @path: path to the block device to open
1684 * @mode: FMODE_* mask
1685 * @holder: exclusive holder identifier
1686 *
1687 * Open the blockdevice described by the device file at @path. @mode
1688 * and @holder are identical to blkdev_get().
1689 *
1690 * On success, the returned block_device has reference count of one.
1691 *
1692 * CONTEXT:
1693 * Might sleep.
1694 *
1695 * RETURNS:
1696 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1697 */
blkdev_get_by_path(const char * path,fmode_t mode,void * holder)1698 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1699 void *holder)
1700 {
1701 struct block_device *bdev;
1702 int err;
1703
1704 bdev = lookup_bdev(path);
1705 if (IS_ERR(bdev))
1706 return bdev;
1707
1708 err = blkdev_get(bdev, mode, holder);
1709 if (err)
1710 return ERR_PTR(err);
1711
1712 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1713 blkdev_put(bdev, mode);
1714 return ERR_PTR(-EACCES);
1715 }
1716
1717 return bdev;
1718 }
1719 EXPORT_SYMBOL(blkdev_get_by_path);
1720
1721 /**
1722 * blkdev_get_by_dev - open a block device by device number
1723 * @dev: device number of block device to open
1724 * @mode: FMODE_* mask
1725 * @holder: exclusive holder identifier
1726 *
1727 * Open the blockdevice described by device number @dev. @mode and
1728 * @holder are identical to blkdev_get().
1729 *
1730 * Use it ONLY if you really do not have anything better - i.e. when
1731 * you are behind a truly sucky interface and all you are given is a
1732 * device number. _Never_ to be used for internal purposes. If you
1733 * ever need it - reconsider your API.
1734 *
1735 * On success, the returned block_device has reference count of one.
1736 *
1737 * CONTEXT:
1738 * Might sleep.
1739 *
1740 * RETURNS:
1741 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1742 */
blkdev_get_by_dev(dev_t dev,fmode_t mode,void * holder)1743 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1744 {
1745 struct block_device *bdev;
1746 int err;
1747
1748 bdev = bdget(dev);
1749 if (!bdev)
1750 return ERR_PTR(-ENOMEM);
1751
1752 err = blkdev_get(bdev, mode, holder);
1753 if (err)
1754 return ERR_PTR(err);
1755
1756 return bdev;
1757 }
1758 EXPORT_SYMBOL(blkdev_get_by_dev);
1759
blkdev_open(struct inode * inode,struct file * filp)1760 static int blkdev_open(struct inode * inode, struct file * filp)
1761 {
1762 struct block_device *bdev;
1763
1764 /*
1765 * Preserve backwards compatibility and allow large file access
1766 * even if userspace doesn't ask for it explicitly. Some mkfs
1767 * binary needs it. We might want to drop this workaround
1768 * during an unstable branch.
1769 */
1770 filp->f_flags |= O_LARGEFILE;
1771
1772 filp->f_mode |= FMODE_NOWAIT;
1773
1774 if (filp->f_flags & O_NDELAY)
1775 filp->f_mode |= FMODE_NDELAY;
1776 if (filp->f_flags & O_EXCL)
1777 filp->f_mode |= FMODE_EXCL;
1778 if ((filp->f_flags & O_ACCMODE) == 3)
1779 filp->f_mode |= FMODE_WRITE_IOCTL;
1780
1781 bdev = bd_acquire(inode);
1782 if (bdev == NULL)
1783 return -ENOMEM;
1784
1785 filp->f_mapping = bdev->bd_inode->i_mapping;
1786 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1787
1788 return blkdev_get(bdev, filp->f_mode, filp);
1789 }
1790
__blkdev_put(struct block_device * bdev,fmode_t mode,int for_part)1791 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1792 {
1793 struct gendisk *disk = bdev->bd_disk;
1794 struct block_device *victim = NULL;
1795
1796 /*
1797 * Sync early if it looks like we're the last one. If someone else
1798 * opens the block device between now and the decrement of bd_openers
1799 * then we did a sync that we didn't need to, but that's not the end
1800 * of the world and we want to avoid long (could be several minute)
1801 * syncs while holding the mutex.
1802 */
1803 if (bdev->bd_openers == 1)
1804 sync_blockdev(bdev);
1805
1806 mutex_lock_nested(&bdev->bd_mutex, for_part);
1807 if (for_part)
1808 bdev->bd_part_count--;
1809
1810 if (!--bdev->bd_openers) {
1811 WARN_ON_ONCE(bdev->bd_holders);
1812 sync_blockdev(bdev);
1813 kill_bdev(bdev);
1814
1815 bdev_write_inode(bdev);
1816 }
1817 if (bdev->bd_contains == bdev) {
1818 if (disk->fops->release)
1819 disk->fops->release(disk, mode);
1820 }
1821 if (!bdev->bd_openers) {
1822 disk_put_part(bdev->bd_part);
1823 bdev->bd_part = NULL;
1824 bdev->bd_disk = NULL;
1825 if (bdev != bdev->bd_contains)
1826 victim = bdev->bd_contains;
1827 bdev->bd_contains = NULL;
1828
1829 put_disk_and_module(disk);
1830 }
1831 mutex_unlock(&bdev->bd_mutex);
1832 bdput(bdev);
1833 if (victim)
1834 __blkdev_put(victim, mode, 1);
1835 }
1836
blkdev_put(struct block_device * bdev,fmode_t mode)1837 void blkdev_put(struct block_device *bdev, fmode_t mode)
1838 {
1839 mutex_lock(&bdev->bd_mutex);
1840
1841 if (mode & FMODE_EXCL) {
1842 bool bdev_free;
1843
1844 /*
1845 * Release a claim on the device. The holder fields
1846 * are protected with bdev_lock. bd_mutex is to
1847 * synchronize disk_holder unlinking.
1848 */
1849 spin_lock(&bdev_lock);
1850
1851 WARN_ON_ONCE(--bdev->bd_holders < 0);
1852 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1853
1854 /* bd_contains might point to self, check in a separate step */
1855 if ((bdev_free = !bdev->bd_holders))
1856 bdev->bd_holder = NULL;
1857 if (!bdev->bd_contains->bd_holders)
1858 bdev->bd_contains->bd_holder = NULL;
1859
1860 spin_unlock(&bdev_lock);
1861
1862 /*
1863 * If this was the last claim, remove holder link and
1864 * unblock evpoll if it was a write holder.
1865 */
1866 if (bdev_free && bdev->bd_write_holder) {
1867 disk_unblock_events(bdev->bd_disk);
1868 bdev->bd_write_holder = false;
1869 }
1870 }
1871
1872 /*
1873 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1874 * event. This is to ensure detection of media removal commanded
1875 * from userland - e.g. eject(1).
1876 */
1877 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1878
1879 mutex_unlock(&bdev->bd_mutex);
1880
1881 __blkdev_put(bdev, mode, 0);
1882 }
1883 EXPORT_SYMBOL(blkdev_put);
1884
blkdev_close(struct inode * inode,struct file * filp)1885 static int blkdev_close(struct inode * inode, struct file * filp)
1886 {
1887 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1888 blkdev_put(bdev, filp->f_mode);
1889 return 0;
1890 }
1891
block_ioctl(struct file * file,unsigned cmd,unsigned long arg)1892 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1893 {
1894 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1895 fmode_t mode = file->f_mode;
1896
1897 /*
1898 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1899 * to updated it before every ioctl.
1900 */
1901 if (file->f_flags & O_NDELAY)
1902 mode |= FMODE_NDELAY;
1903 else
1904 mode &= ~FMODE_NDELAY;
1905
1906 return blkdev_ioctl(bdev, mode, cmd, arg);
1907 }
1908
1909 /*
1910 * Write data to the block device. Only intended for the block device itself
1911 * and the raw driver which basically is a fake block device.
1912 *
1913 * Does not take i_mutex for the write and thus is not for general purpose
1914 * use.
1915 */
blkdev_write_iter(struct kiocb * iocb,struct iov_iter * from)1916 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1917 {
1918 struct file *file = iocb->ki_filp;
1919 struct inode *bd_inode = bdev_file_inode(file);
1920 loff_t size = i_size_read(bd_inode);
1921 struct blk_plug plug;
1922 size_t shorted = 0;
1923 ssize_t ret;
1924
1925 if (bdev_read_only(I_BDEV(bd_inode)))
1926 return -EPERM;
1927
1928 if (!iov_iter_count(from))
1929 return 0;
1930
1931 if (iocb->ki_pos >= size)
1932 return -ENOSPC;
1933
1934 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
1935 return -EOPNOTSUPP;
1936
1937 size -= iocb->ki_pos;
1938 if (iov_iter_count(from) > size) {
1939 shorted = iov_iter_count(from) - size;
1940 iov_iter_truncate(from, size);
1941 }
1942
1943 blk_start_plug(&plug);
1944 ret = __generic_file_write_iter(iocb, from);
1945 if (ret > 0)
1946 ret = generic_write_sync(iocb, ret);
1947 iov_iter_reexpand(from, iov_iter_count(from) + shorted);
1948 blk_finish_plug(&plug);
1949 return ret;
1950 }
1951 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1952
blkdev_read_iter(struct kiocb * iocb,struct iov_iter * to)1953 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1954 {
1955 struct file *file = iocb->ki_filp;
1956 struct inode *bd_inode = bdev_file_inode(file);
1957 loff_t size = i_size_read(bd_inode);
1958 loff_t pos = iocb->ki_pos;
1959 size_t shorted = 0;
1960 ssize_t ret;
1961
1962 if (pos >= size)
1963 return 0;
1964
1965 size -= pos;
1966 if (iov_iter_count(to) > size) {
1967 shorted = iov_iter_count(to) - size;
1968 iov_iter_truncate(to, size);
1969 }
1970
1971 ret = generic_file_read_iter(iocb, to);
1972 iov_iter_reexpand(to, iov_iter_count(to) + shorted);
1973 return ret;
1974 }
1975 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1976
1977 /*
1978 * Try to release a page associated with block device when the system
1979 * is under memory pressure.
1980 */
blkdev_releasepage(struct page * page,gfp_t wait)1981 static int blkdev_releasepage(struct page *page, gfp_t wait)
1982 {
1983 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1984
1985 if (super && super->s_op->bdev_try_to_free_page)
1986 return super->s_op->bdev_try_to_free_page(super, page, wait);
1987
1988 return try_to_free_buffers(page);
1989 }
1990
blkdev_writepages(struct address_space * mapping,struct writeback_control * wbc)1991 static int blkdev_writepages(struct address_space *mapping,
1992 struct writeback_control *wbc)
1993 {
1994 return generic_writepages(mapping, wbc);
1995 }
1996
1997 static const struct address_space_operations def_blk_aops = {
1998 .readpage = blkdev_readpage,
1999 .readpages = blkdev_readpages,
2000 .writepage = blkdev_writepage,
2001 .write_begin = blkdev_write_begin,
2002 .write_end = blkdev_write_end,
2003 .writepages = blkdev_writepages,
2004 .releasepage = blkdev_releasepage,
2005 .direct_IO = blkdev_direct_IO,
2006 .is_dirty_writeback = buffer_check_dirty_writeback,
2007 };
2008
2009 #define BLKDEV_FALLOC_FL_SUPPORTED \
2010 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2011 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2012
blkdev_fallocate(struct file * file,int mode,loff_t start,loff_t len)2013 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2014 loff_t len)
2015 {
2016 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2017 struct address_space *mapping;
2018 loff_t end = start + len - 1;
2019 loff_t isize;
2020 int error;
2021
2022 /* Fail if we don't recognize the flags. */
2023 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2024 return -EOPNOTSUPP;
2025
2026 /* Don't go off the end of the device. */
2027 isize = i_size_read(bdev->bd_inode);
2028 if (start >= isize)
2029 return -EINVAL;
2030 if (end >= isize) {
2031 if (mode & FALLOC_FL_KEEP_SIZE) {
2032 len = isize - start;
2033 end = start + len - 1;
2034 } else
2035 return -EINVAL;
2036 }
2037
2038 /*
2039 * Don't allow IO that isn't aligned to logical block size.
2040 */
2041 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2042 return -EINVAL;
2043
2044 /* Invalidate the page cache, including dirty pages. */
2045 mapping = bdev->bd_inode->i_mapping;
2046 truncate_inode_pages_range(mapping, start, end);
2047
2048 switch (mode) {
2049 case FALLOC_FL_ZERO_RANGE:
2050 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2051 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2052 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2053 break;
2054 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2055 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2056 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2057 break;
2058 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2059 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2060 GFP_KERNEL, 0);
2061 break;
2062 default:
2063 return -EOPNOTSUPP;
2064 }
2065 if (error)
2066 return error;
2067
2068 /*
2069 * Invalidate again; if someone wandered in and dirtied a page,
2070 * the caller will be given -EBUSY. The third argument is
2071 * inclusive, so the rounding here is safe.
2072 */
2073 return invalidate_inode_pages2_range(mapping,
2074 start >> PAGE_SHIFT,
2075 end >> PAGE_SHIFT);
2076 }
2077
2078 const struct file_operations def_blk_fops = {
2079 .open = blkdev_open,
2080 .release = blkdev_close,
2081 .llseek = block_llseek,
2082 .read_iter = blkdev_read_iter,
2083 .write_iter = blkdev_write_iter,
2084 .mmap = generic_file_mmap,
2085 .fsync = blkdev_fsync,
2086 .unlocked_ioctl = block_ioctl,
2087 #ifdef CONFIG_COMPAT
2088 .compat_ioctl = compat_blkdev_ioctl,
2089 #endif
2090 .splice_read = generic_file_splice_read,
2091 .splice_write = iter_file_splice_write,
2092 .fallocate = blkdev_fallocate,
2093 };
2094
ioctl_by_bdev(struct block_device * bdev,unsigned cmd,unsigned long arg)2095 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2096 {
2097 int res;
2098 mm_segment_t old_fs = get_fs();
2099 set_fs(KERNEL_DS);
2100 res = blkdev_ioctl(bdev, 0, cmd, arg);
2101 set_fs(old_fs);
2102 return res;
2103 }
2104
2105 EXPORT_SYMBOL(ioctl_by_bdev);
2106
2107 /**
2108 * lookup_bdev - lookup a struct block_device by name
2109 * @pathname: special file representing the block device
2110 *
2111 * Get a reference to the blockdevice at @pathname in the current
2112 * namespace if possible and return it. Return ERR_PTR(error)
2113 * otherwise.
2114 */
lookup_bdev(const char * pathname)2115 struct block_device *lookup_bdev(const char *pathname)
2116 {
2117 struct block_device *bdev;
2118 struct inode *inode;
2119 struct path path;
2120 int error;
2121
2122 if (!pathname || !*pathname)
2123 return ERR_PTR(-EINVAL);
2124
2125 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2126 if (error)
2127 return ERR_PTR(error);
2128
2129 inode = d_backing_inode(path.dentry);
2130 error = -ENOTBLK;
2131 if (!S_ISBLK(inode->i_mode))
2132 goto fail;
2133 error = -EACCES;
2134 if (!may_open_dev(&path))
2135 goto fail;
2136 error = -ENOMEM;
2137 bdev = bd_acquire(inode);
2138 if (!bdev)
2139 goto fail;
2140 out:
2141 path_put(&path);
2142 return bdev;
2143 fail:
2144 bdev = ERR_PTR(error);
2145 goto out;
2146 }
2147 EXPORT_SYMBOL(lookup_bdev);
2148
__invalidate_device(struct block_device * bdev,bool kill_dirty)2149 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2150 {
2151 struct super_block *sb = get_super(bdev);
2152 int res = 0;
2153
2154 if (sb) {
2155 /*
2156 * no need to lock the super, get_super holds the
2157 * read mutex so the filesystem cannot go away
2158 * under us (->put_super runs with the write lock
2159 * hold).
2160 */
2161 shrink_dcache_sb(sb);
2162 res = invalidate_inodes(sb, kill_dirty);
2163 drop_super(sb);
2164 }
2165 invalidate_bdev(bdev);
2166 return res;
2167 }
2168 EXPORT_SYMBOL(__invalidate_device);
2169
iterate_bdevs(void (* func)(struct block_device *,void *),void * arg)2170 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2171 {
2172 struct inode *inode, *old_inode = NULL;
2173
2174 spin_lock(&blockdev_superblock->s_inode_list_lock);
2175 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2176 struct address_space *mapping = inode->i_mapping;
2177 struct block_device *bdev;
2178
2179 spin_lock(&inode->i_lock);
2180 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2181 mapping->nrpages == 0) {
2182 spin_unlock(&inode->i_lock);
2183 continue;
2184 }
2185 __iget(inode);
2186 spin_unlock(&inode->i_lock);
2187 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2188 /*
2189 * We hold a reference to 'inode' so it couldn't have been
2190 * removed from s_inodes list while we dropped the
2191 * s_inode_list_lock We cannot iput the inode now as we can
2192 * be holding the last reference and we cannot iput it under
2193 * s_inode_list_lock. So we keep the reference and iput it
2194 * later.
2195 */
2196 iput(old_inode);
2197 old_inode = inode;
2198 bdev = I_BDEV(inode);
2199
2200 mutex_lock(&bdev->bd_mutex);
2201 if (bdev->bd_openers)
2202 func(bdev, arg);
2203 mutex_unlock(&bdev->bd_mutex);
2204
2205 spin_lock(&blockdev_superblock->s_inode_list_lock);
2206 }
2207 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2208 iput(old_inode);
2209 }
2210