1 /*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * #!-checking implemented by tytso.
9 */
10 /*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/fdtable.h>
28 #include <linux/mm.h>
29 #include <linux/vmacache.h>
30 #include <linux/stat.h>
31 #include <linux/fcntl.h>
32 #include <linux/swap.h>
33 #include <linux/string.h>
34 #include <linux/init.h>
35 #include <linux/sched/mm.h>
36 #include <linux/sched/coredump.h>
37 #include <linux/sched/signal.h>
38 #include <linux/sched/numa_balancing.h>
39 #include <linux/sched/task.h>
40 #include <linux/pagemap.h>
41 #include <linux/perf_event.h>
42 #include <linux/highmem.h>
43 #include <linux/spinlock.h>
44 #include <linux/key.h>
45 #include <linux/personality.h>
46 #include <linux/binfmts.h>
47 #include <linux/utsname.h>
48 #include <linux/pid_namespace.h>
49 #include <linux/module.h>
50 #include <linux/namei.h>
51 #include <linux/mount.h>
52 #include <linux/security.h>
53 #include <linux/syscalls.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/audit.h>
57 #include <linux/tracehook.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/pipe_fs_i.h>
62 #include <linux/oom.h>
63 #include <linux/compat.h>
64 #include <linux/vmalloc.h>
65
66 #include <linux/uaccess.h>
67 #include <asm/mmu_context.h>
68 #include <asm/tlb.h>
69
70 #include <trace/events/task.h>
71 #include "internal.h"
72
73 #include <trace/events/sched.h>
74
75 int suid_dumpable = 0;
76
77 static LIST_HEAD(formats);
78 static DEFINE_RWLOCK(binfmt_lock);
79
__register_binfmt(struct linux_binfmt * fmt,int insert)80 void __register_binfmt(struct linux_binfmt * fmt, int insert)
81 {
82 BUG_ON(!fmt);
83 if (WARN_ON(!fmt->load_binary))
84 return;
85 write_lock(&binfmt_lock);
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
88 write_unlock(&binfmt_lock);
89 }
90
91 EXPORT_SYMBOL(__register_binfmt);
92
unregister_binfmt(struct linux_binfmt * fmt)93 void unregister_binfmt(struct linux_binfmt * fmt)
94 {
95 write_lock(&binfmt_lock);
96 list_del(&fmt->lh);
97 write_unlock(&binfmt_lock);
98 }
99
100 EXPORT_SYMBOL(unregister_binfmt);
101
put_binfmt(struct linux_binfmt * fmt)102 static inline void put_binfmt(struct linux_binfmt * fmt)
103 {
104 module_put(fmt->module);
105 }
106
path_noexec(const struct path * path)107 bool path_noexec(const struct path *path)
108 {
109 return (path->mnt->mnt_flags & MNT_NOEXEC) ||
110 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
111 }
112
113 #ifdef CONFIG_USELIB
114 /*
115 * Note that a shared library must be both readable and executable due to
116 * security reasons.
117 *
118 * Also note that we take the address to load from from the file itself.
119 */
SYSCALL_DEFINE1(uselib,const char __user *,library)120 SYSCALL_DEFINE1(uselib, const char __user *, library)
121 {
122 struct linux_binfmt *fmt;
123 struct file *file;
124 struct filename *tmp = getname(library);
125 int error = PTR_ERR(tmp);
126 static const struct open_flags uselib_flags = {
127 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
128 .acc_mode = MAY_READ | MAY_EXEC,
129 .intent = LOOKUP_OPEN,
130 .lookup_flags = LOOKUP_FOLLOW,
131 };
132
133 if (IS_ERR(tmp))
134 goto out;
135
136 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
137 putname(tmp);
138 error = PTR_ERR(file);
139 if (IS_ERR(file))
140 goto out;
141
142 error = -EINVAL;
143 if (!S_ISREG(file_inode(file)->i_mode))
144 goto exit;
145
146 error = -EACCES;
147 if (path_noexec(&file->f_path))
148 goto exit;
149
150 fsnotify_open(file);
151
152 error = -ENOEXEC;
153
154 read_lock(&binfmt_lock);
155 list_for_each_entry(fmt, &formats, lh) {
156 if (!fmt->load_shlib)
157 continue;
158 if (!try_module_get(fmt->module))
159 continue;
160 read_unlock(&binfmt_lock);
161 error = fmt->load_shlib(file);
162 read_lock(&binfmt_lock);
163 put_binfmt(fmt);
164 if (error != -ENOEXEC)
165 break;
166 }
167 read_unlock(&binfmt_lock);
168 exit:
169 fput(file);
170 out:
171 return error;
172 }
173 #endif /* #ifdef CONFIG_USELIB */
174
175 #ifdef CONFIG_MMU
176 /*
177 * The nascent bprm->mm is not visible until exec_mmap() but it can
178 * use a lot of memory, account these pages in current->mm temporary
179 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
180 * change the counter back via acct_arg_size(0).
181 */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)182 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
183 {
184 struct mm_struct *mm = current->mm;
185 long diff = (long)(pages - bprm->vma_pages);
186
187 if (!mm || !diff)
188 return;
189
190 bprm->vma_pages = pages;
191 add_mm_counter(mm, MM_ANONPAGES, diff);
192 }
193
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)194 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
195 int write)
196 {
197 struct page *page;
198 int ret;
199 unsigned int gup_flags = FOLL_FORCE;
200
201 #ifdef CONFIG_STACK_GROWSUP
202 if (write) {
203 ret = expand_downwards(bprm->vma, pos);
204 if (ret < 0)
205 return NULL;
206 }
207 #endif
208
209 if (write)
210 gup_flags |= FOLL_WRITE;
211
212 /*
213 * We are doing an exec(). 'current' is the process
214 * doing the exec and bprm->mm is the new process's mm.
215 */
216 ret = get_user_pages_remote(current, bprm->mm, pos, 1, gup_flags,
217 &page, NULL, NULL);
218 if (ret <= 0)
219 return NULL;
220
221 if (write) {
222 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
223 unsigned long ptr_size, limit;
224
225 /*
226 * Since the stack will hold pointers to the strings, we
227 * must account for them as well.
228 *
229 * The size calculation is the entire vma while each arg page is
230 * built, so each time we get here it's calculating how far it
231 * is currently (rather than each call being just the newly
232 * added size from the arg page). As a result, we need to
233 * always add the entire size of the pointers, so that on the
234 * last call to get_arg_page() we'll actually have the entire
235 * correct size.
236 */
237 ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
238 if (ptr_size > ULONG_MAX - size)
239 goto fail;
240 size += ptr_size;
241
242 acct_arg_size(bprm, size / PAGE_SIZE);
243
244 /*
245 * We've historically supported up to 32 pages (ARG_MAX)
246 * of argument strings even with small stacks
247 */
248 if (size <= ARG_MAX)
249 return page;
250
251 /*
252 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
253 * (whichever is smaller) for the argv+env strings.
254 * This ensures that:
255 * - the remaining binfmt code will not run out of stack space,
256 * - the program will have a reasonable amount of stack left
257 * to work from.
258 */
259 limit = _STK_LIM / 4 * 3;
260 limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
261 if (size > limit)
262 goto fail;
263 }
264
265 return page;
266
267 fail:
268 put_page(page);
269 return NULL;
270 }
271
put_arg_page(struct page * page)272 static void put_arg_page(struct page *page)
273 {
274 put_page(page);
275 }
276
free_arg_pages(struct linux_binprm * bprm)277 static void free_arg_pages(struct linux_binprm *bprm)
278 {
279 }
280
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)281 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
282 struct page *page)
283 {
284 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
285 }
286
__bprm_mm_init(struct linux_binprm * bprm)287 static int __bprm_mm_init(struct linux_binprm *bprm)
288 {
289 int err;
290 struct vm_area_struct *vma = NULL;
291 struct mm_struct *mm = bprm->mm;
292
293 bprm->vma = vma = vm_area_alloc(mm);
294 if (!vma)
295 return -ENOMEM;
296 vma_set_anonymous(vma);
297
298 if (down_write_killable(&mm->mmap_sem)) {
299 err = -EINTR;
300 goto err_free;
301 }
302
303 /*
304 * Place the stack at the largest stack address the architecture
305 * supports. Later, we'll move this to an appropriate place. We don't
306 * use STACK_TOP because that can depend on attributes which aren't
307 * configured yet.
308 */
309 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
310 vma->vm_end = STACK_TOP_MAX;
311 vma->vm_start = vma->vm_end - PAGE_SIZE;
312 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
313 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
314
315 err = insert_vm_struct(mm, vma);
316 if (err)
317 goto err;
318
319 mm->stack_vm = mm->total_vm = 1;
320 arch_bprm_mm_init(mm, vma);
321 up_write(&mm->mmap_sem);
322 bprm->p = vma->vm_end - sizeof(void *);
323 return 0;
324 err:
325 up_write(&mm->mmap_sem);
326 err_free:
327 bprm->vma = NULL;
328 vm_area_free(vma);
329 return err;
330 }
331
valid_arg_len(struct linux_binprm * bprm,long len)332 static bool valid_arg_len(struct linux_binprm *bprm, long len)
333 {
334 return len <= MAX_ARG_STRLEN;
335 }
336
337 #else
338
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)339 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
340 {
341 }
342
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)343 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
344 int write)
345 {
346 struct page *page;
347
348 page = bprm->page[pos / PAGE_SIZE];
349 if (!page && write) {
350 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
351 if (!page)
352 return NULL;
353 bprm->page[pos / PAGE_SIZE] = page;
354 }
355
356 return page;
357 }
358
put_arg_page(struct page * page)359 static void put_arg_page(struct page *page)
360 {
361 }
362
free_arg_page(struct linux_binprm * bprm,int i)363 static void free_arg_page(struct linux_binprm *bprm, int i)
364 {
365 if (bprm->page[i]) {
366 __free_page(bprm->page[i]);
367 bprm->page[i] = NULL;
368 }
369 }
370
free_arg_pages(struct linux_binprm * bprm)371 static void free_arg_pages(struct linux_binprm *bprm)
372 {
373 int i;
374
375 for (i = 0; i < MAX_ARG_PAGES; i++)
376 free_arg_page(bprm, i);
377 }
378
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)379 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
380 struct page *page)
381 {
382 }
383
__bprm_mm_init(struct linux_binprm * bprm)384 static int __bprm_mm_init(struct linux_binprm *bprm)
385 {
386 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
387 return 0;
388 }
389
valid_arg_len(struct linux_binprm * bprm,long len)390 static bool valid_arg_len(struct linux_binprm *bprm, long len)
391 {
392 return len <= bprm->p;
393 }
394
395 #endif /* CONFIG_MMU */
396
397 /*
398 * Create a new mm_struct and populate it with a temporary stack
399 * vm_area_struct. We don't have enough context at this point to set the stack
400 * flags, permissions, and offset, so we use temporary values. We'll update
401 * them later in setup_arg_pages().
402 */
bprm_mm_init(struct linux_binprm * bprm)403 static int bprm_mm_init(struct linux_binprm *bprm)
404 {
405 int err;
406 struct mm_struct *mm = NULL;
407
408 bprm->mm = mm = mm_alloc();
409 err = -ENOMEM;
410 if (!mm)
411 goto err;
412
413 /* Save current stack limit for all calculations made during exec. */
414 task_lock(current->group_leader);
415 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
416 task_unlock(current->group_leader);
417
418 err = __bprm_mm_init(bprm);
419 if (err)
420 goto err;
421
422 return 0;
423
424 err:
425 if (mm) {
426 bprm->mm = NULL;
427 mmdrop(mm);
428 }
429
430 return err;
431 }
432
433 struct user_arg_ptr {
434 #ifdef CONFIG_COMPAT
435 bool is_compat;
436 #endif
437 union {
438 const char __user *const __user *native;
439 #ifdef CONFIG_COMPAT
440 const compat_uptr_t __user *compat;
441 #endif
442 } ptr;
443 };
444
get_user_arg_ptr(struct user_arg_ptr argv,int nr)445 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
446 {
447 const char __user *native;
448
449 #ifdef CONFIG_COMPAT
450 if (unlikely(argv.is_compat)) {
451 compat_uptr_t compat;
452
453 if (get_user(compat, argv.ptr.compat + nr))
454 return ERR_PTR(-EFAULT);
455
456 return compat_ptr(compat);
457 }
458 #endif
459
460 if (get_user(native, argv.ptr.native + nr))
461 return ERR_PTR(-EFAULT);
462
463 return native;
464 }
465
466 /*
467 * count() counts the number of strings in array ARGV.
468 */
count(struct user_arg_ptr argv,int max)469 static int count(struct user_arg_ptr argv, int max)
470 {
471 int i = 0;
472
473 if (argv.ptr.native != NULL) {
474 for (;;) {
475 const char __user *p = get_user_arg_ptr(argv, i);
476
477 if (!p)
478 break;
479
480 if (IS_ERR(p))
481 return -EFAULT;
482
483 if (i >= max)
484 return -E2BIG;
485 ++i;
486
487 if (fatal_signal_pending(current))
488 return -ERESTARTNOHAND;
489 cond_resched();
490 }
491 }
492 return i;
493 }
494
495 /*
496 * 'copy_strings()' copies argument/environment strings from the old
497 * processes's memory to the new process's stack. The call to get_user_pages()
498 * ensures the destination page is created and not swapped out.
499 */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)500 static int copy_strings(int argc, struct user_arg_ptr argv,
501 struct linux_binprm *bprm)
502 {
503 struct page *kmapped_page = NULL;
504 char *kaddr = NULL;
505 unsigned long kpos = 0;
506 int ret;
507
508 while (argc-- > 0) {
509 const char __user *str;
510 int len;
511 unsigned long pos;
512
513 ret = -EFAULT;
514 str = get_user_arg_ptr(argv, argc);
515 if (IS_ERR(str))
516 goto out;
517
518 len = strnlen_user(str, MAX_ARG_STRLEN);
519 if (!len)
520 goto out;
521
522 ret = -E2BIG;
523 if (!valid_arg_len(bprm, len))
524 goto out;
525
526 /* We're going to work our way backwords. */
527 pos = bprm->p;
528 str += len;
529 bprm->p -= len;
530
531 while (len > 0) {
532 int offset, bytes_to_copy;
533
534 if (fatal_signal_pending(current)) {
535 ret = -ERESTARTNOHAND;
536 goto out;
537 }
538 cond_resched();
539
540 offset = pos % PAGE_SIZE;
541 if (offset == 0)
542 offset = PAGE_SIZE;
543
544 bytes_to_copy = offset;
545 if (bytes_to_copy > len)
546 bytes_to_copy = len;
547
548 offset -= bytes_to_copy;
549 pos -= bytes_to_copy;
550 str -= bytes_to_copy;
551 len -= bytes_to_copy;
552
553 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
554 struct page *page;
555
556 page = get_arg_page(bprm, pos, 1);
557 if (!page) {
558 ret = -E2BIG;
559 goto out;
560 }
561
562 if (kmapped_page) {
563 flush_kernel_dcache_page(kmapped_page);
564 kunmap(kmapped_page);
565 put_arg_page(kmapped_page);
566 }
567 kmapped_page = page;
568 kaddr = kmap(kmapped_page);
569 kpos = pos & PAGE_MASK;
570 flush_arg_page(bprm, kpos, kmapped_page);
571 }
572 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
573 ret = -EFAULT;
574 goto out;
575 }
576 }
577 }
578 ret = 0;
579 out:
580 if (kmapped_page) {
581 flush_kernel_dcache_page(kmapped_page);
582 kunmap(kmapped_page);
583 put_arg_page(kmapped_page);
584 }
585 return ret;
586 }
587
588 /*
589 * Like copy_strings, but get argv and its values from kernel memory.
590 */
copy_strings_kernel(int argc,const char * const * __argv,struct linux_binprm * bprm)591 int copy_strings_kernel(int argc, const char *const *__argv,
592 struct linux_binprm *bprm)
593 {
594 int r;
595 mm_segment_t oldfs = get_fs();
596 struct user_arg_ptr argv = {
597 .ptr.native = (const char __user *const __user *)__argv,
598 };
599
600 set_fs(KERNEL_DS);
601 r = copy_strings(argc, argv, bprm);
602 set_fs(oldfs);
603
604 return r;
605 }
606 EXPORT_SYMBOL(copy_strings_kernel);
607
608 #ifdef CONFIG_MMU
609
610 /*
611 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
612 * the binfmt code determines where the new stack should reside, we shift it to
613 * its final location. The process proceeds as follows:
614 *
615 * 1) Use shift to calculate the new vma endpoints.
616 * 2) Extend vma to cover both the old and new ranges. This ensures the
617 * arguments passed to subsequent functions are consistent.
618 * 3) Move vma's page tables to the new range.
619 * 4) Free up any cleared pgd range.
620 * 5) Shrink the vma to cover only the new range.
621 */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)622 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
623 {
624 struct mm_struct *mm = vma->vm_mm;
625 unsigned long old_start = vma->vm_start;
626 unsigned long old_end = vma->vm_end;
627 unsigned long length = old_end - old_start;
628 unsigned long new_start = old_start - shift;
629 unsigned long new_end = old_end - shift;
630 struct mmu_gather tlb;
631
632 BUG_ON(new_start > new_end);
633
634 /*
635 * ensure there are no vmas between where we want to go
636 * and where we are
637 */
638 if (vma != find_vma(mm, new_start))
639 return -EFAULT;
640
641 /*
642 * cover the whole range: [new_start, old_end)
643 */
644 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
645 return -ENOMEM;
646
647 /*
648 * move the page tables downwards, on failure we rely on
649 * process cleanup to remove whatever mess we made.
650 */
651 if (length != move_page_tables(vma, old_start,
652 vma, new_start, length, false))
653 return -ENOMEM;
654
655 lru_add_drain();
656 tlb_gather_mmu(&tlb, mm, old_start, old_end);
657 if (new_end > old_start) {
658 /*
659 * when the old and new regions overlap clear from new_end.
660 */
661 free_pgd_range(&tlb, new_end, old_end, new_end,
662 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
663 } else {
664 /*
665 * otherwise, clean from old_start; this is done to not touch
666 * the address space in [new_end, old_start) some architectures
667 * have constraints on va-space that make this illegal (IA64) -
668 * for the others its just a little faster.
669 */
670 free_pgd_range(&tlb, old_start, old_end, new_end,
671 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
672 }
673 tlb_finish_mmu(&tlb, old_start, old_end);
674
675 /*
676 * Shrink the vma to just the new range. Always succeeds.
677 */
678 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
679
680 return 0;
681 }
682
683 /*
684 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
685 * the stack is optionally relocated, and some extra space is added.
686 */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)687 int setup_arg_pages(struct linux_binprm *bprm,
688 unsigned long stack_top,
689 int executable_stack)
690 {
691 unsigned long ret;
692 unsigned long stack_shift;
693 struct mm_struct *mm = current->mm;
694 struct vm_area_struct *vma = bprm->vma;
695 struct vm_area_struct *prev = NULL;
696 unsigned long vm_flags;
697 unsigned long stack_base;
698 unsigned long stack_size;
699 unsigned long stack_expand;
700 unsigned long rlim_stack;
701
702 #ifdef CONFIG_STACK_GROWSUP
703 /* Limit stack size */
704 stack_base = bprm->rlim_stack.rlim_max;
705 if (stack_base > STACK_SIZE_MAX)
706 stack_base = STACK_SIZE_MAX;
707
708 /* Add space for stack randomization. */
709 stack_base += (STACK_RND_MASK << PAGE_SHIFT);
710
711 /* Make sure we didn't let the argument array grow too large. */
712 if (vma->vm_end - vma->vm_start > stack_base)
713 return -ENOMEM;
714
715 stack_base = PAGE_ALIGN(stack_top - stack_base);
716
717 stack_shift = vma->vm_start - stack_base;
718 mm->arg_start = bprm->p - stack_shift;
719 bprm->p = vma->vm_end - stack_shift;
720 #else
721 stack_top = arch_align_stack(stack_top);
722 stack_top = PAGE_ALIGN(stack_top);
723
724 if (unlikely(stack_top < mmap_min_addr) ||
725 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
726 return -ENOMEM;
727
728 stack_shift = vma->vm_end - stack_top;
729
730 bprm->p -= stack_shift;
731 mm->arg_start = bprm->p;
732 #endif
733
734 if (bprm->loader)
735 bprm->loader -= stack_shift;
736 bprm->exec -= stack_shift;
737
738 if (down_write_killable(&mm->mmap_sem))
739 return -EINTR;
740
741 vm_flags = VM_STACK_FLAGS;
742
743 /*
744 * Adjust stack execute permissions; explicitly enable for
745 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
746 * (arch default) otherwise.
747 */
748 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
749 vm_flags |= VM_EXEC;
750 else if (executable_stack == EXSTACK_DISABLE_X)
751 vm_flags &= ~VM_EXEC;
752 vm_flags |= mm->def_flags;
753 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
754
755 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
756 vm_flags);
757 if (ret)
758 goto out_unlock;
759 BUG_ON(prev != vma);
760
761 /* Move stack pages down in memory. */
762 if (stack_shift) {
763 ret = shift_arg_pages(vma, stack_shift);
764 if (ret)
765 goto out_unlock;
766 }
767
768 /* mprotect_fixup is overkill to remove the temporary stack flags */
769 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
770
771 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
772 stack_size = vma->vm_end - vma->vm_start;
773 /*
774 * Align this down to a page boundary as expand_stack
775 * will align it up.
776 */
777 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
778 #ifdef CONFIG_STACK_GROWSUP
779 if (stack_size + stack_expand > rlim_stack)
780 stack_base = vma->vm_start + rlim_stack;
781 else
782 stack_base = vma->vm_end + stack_expand;
783 #else
784 if (stack_size + stack_expand > rlim_stack)
785 stack_base = vma->vm_end - rlim_stack;
786 else
787 stack_base = vma->vm_start - stack_expand;
788 #endif
789 current->mm->start_stack = bprm->p;
790 ret = expand_stack(vma, stack_base);
791 if (ret)
792 ret = -EFAULT;
793
794 out_unlock:
795 up_write(&mm->mmap_sem);
796 return ret;
797 }
798 EXPORT_SYMBOL(setup_arg_pages);
799
800 #else
801
802 /*
803 * Transfer the program arguments and environment from the holding pages
804 * onto the stack. The provided stack pointer is adjusted accordingly.
805 */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)806 int transfer_args_to_stack(struct linux_binprm *bprm,
807 unsigned long *sp_location)
808 {
809 unsigned long index, stop, sp;
810 int ret = 0;
811
812 stop = bprm->p >> PAGE_SHIFT;
813 sp = *sp_location;
814
815 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
816 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
817 char *src = kmap(bprm->page[index]) + offset;
818 sp -= PAGE_SIZE - offset;
819 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
820 ret = -EFAULT;
821 kunmap(bprm->page[index]);
822 if (ret)
823 goto out;
824 }
825
826 *sp_location = sp;
827
828 out:
829 return ret;
830 }
831 EXPORT_SYMBOL(transfer_args_to_stack);
832
833 #endif /* CONFIG_MMU */
834
do_open_execat(int fd,struct filename * name,int flags)835 static struct file *do_open_execat(int fd, struct filename *name, int flags)
836 {
837 struct file *file;
838 int err;
839 struct open_flags open_exec_flags = {
840 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
841 .acc_mode = MAY_EXEC,
842 .intent = LOOKUP_OPEN,
843 .lookup_flags = LOOKUP_FOLLOW,
844 };
845
846 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
847 return ERR_PTR(-EINVAL);
848 if (flags & AT_SYMLINK_NOFOLLOW)
849 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
850 if (flags & AT_EMPTY_PATH)
851 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
852
853 file = do_filp_open(fd, name, &open_exec_flags);
854 if (IS_ERR(file))
855 goto out;
856
857 err = -EACCES;
858 if (!S_ISREG(file_inode(file)->i_mode))
859 goto exit;
860
861 if (path_noexec(&file->f_path))
862 goto exit;
863
864 err = deny_write_access(file);
865 if (err)
866 goto exit;
867
868 if (name->name[0] != '\0')
869 fsnotify_open(file);
870
871 out:
872 return file;
873
874 exit:
875 fput(file);
876 return ERR_PTR(err);
877 }
878
open_exec(const char * name)879 struct file *open_exec(const char *name)
880 {
881 struct filename *filename = getname_kernel(name);
882 struct file *f = ERR_CAST(filename);
883
884 if (!IS_ERR(filename)) {
885 f = do_open_execat(AT_FDCWD, filename, 0);
886 putname(filename);
887 }
888 return f;
889 }
890 EXPORT_SYMBOL(open_exec);
891
kernel_read_file(struct file * file,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)892 int kernel_read_file(struct file *file, void **buf, loff_t *size,
893 loff_t max_size, enum kernel_read_file_id id)
894 {
895 loff_t i_size, pos;
896 ssize_t bytes = 0;
897 int ret;
898
899 if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
900 return -EINVAL;
901
902 ret = deny_write_access(file);
903 if (ret)
904 return ret;
905
906 ret = security_kernel_read_file(file, id);
907 if (ret)
908 goto out;
909
910 i_size = i_size_read(file_inode(file));
911 if (max_size > 0 && i_size > max_size) {
912 ret = -EFBIG;
913 goto out;
914 }
915 if (i_size <= 0) {
916 ret = -EINVAL;
917 goto out;
918 }
919
920 if (id != READING_FIRMWARE_PREALLOC_BUFFER)
921 *buf = vmalloc(i_size);
922 if (!*buf) {
923 ret = -ENOMEM;
924 goto out;
925 }
926
927 pos = 0;
928 while (pos < i_size) {
929 bytes = kernel_read(file, *buf + pos, i_size - pos, &pos);
930 if (bytes < 0) {
931 ret = bytes;
932 goto out_free;
933 }
934
935 if (bytes == 0)
936 break;
937 }
938
939 if (pos != i_size) {
940 ret = -EIO;
941 goto out_free;
942 }
943
944 ret = security_kernel_post_read_file(file, *buf, i_size, id);
945 if (!ret)
946 *size = pos;
947
948 out_free:
949 if (ret < 0) {
950 if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
951 vfree(*buf);
952 *buf = NULL;
953 }
954 }
955
956 out:
957 allow_write_access(file);
958 return ret;
959 }
960 EXPORT_SYMBOL_GPL(kernel_read_file);
961
kernel_read_file_from_path(const char * path,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)962 int kernel_read_file_from_path(const char *path, void **buf, loff_t *size,
963 loff_t max_size, enum kernel_read_file_id id)
964 {
965 struct file *file;
966 int ret;
967
968 if (!path || !*path)
969 return -EINVAL;
970
971 file = filp_open(path, O_RDONLY, 0);
972 if (IS_ERR(file))
973 return PTR_ERR(file);
974
975 ret = kernel_read_file(file, buf, size, max_size, id);
976 fput(file);
977 return ret;
978 }
979 EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
980
kernel_read_file_from_fd(int fd,void ** buf,loff_t * size,loff_t max_size,enum kernel_read_file_id id)981 int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
982 enum kernel_read_file_id id)
983 {
984 struct fd f = fdget(fd);
985 int ret = -EBADF;
986
987 if (!f.file || !(f.file->f_mode & FMODE_READ))
988 goto out;
989
990 ret = kernel_read_file(f.file, buf, size, max_size, id);
991 out:
992 fdput(f);
993 return ret;
994 }
995 EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
996
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)997 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
998 {
999 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
1000 if (res > 0)
1001 flush_icache_range(addr, addr + len);
1002 return res;
1003 }
1004 EXPORT_SYMBOL(read_code);
1005
exec_mmap(struct mm_struct * mm)1006 static int exec_mmap(struct mm_struct *mm)
1007 {
1008 struct task_struct *tsk;
1009 struct mm_struct *old_mm, *active_mm;
1010
1011 /* Notify parent that we're no longer interested in the old VM */
1012 tsk = current;
1013 old_mm = current->mm;
1014 exec_mm_release(tsk, old_mm);
1015
1016 if (old_mm) {
1017 sync_mm_rss(old_mm);
1018 /*
1019 * Make sure that if there is a core dump in progress
1020 * for the old mm, we get out and die instead of going
1021 * through with the exec. We must hold mmap_sem around
1022 * checking core_state and changing tsk->mm.
1023 */
1024 down_read(&old_mm->mmap_sem);
1025 if (unlikely(old_mm->core_state)) {
1026 up_read(&old_mm->mmap_sem);
1027 return -EINTR;
1028 }
1029 }
1030 task_lock(tsk);
1031
1032 local_irq_disable();
1033 active_mm = tsk->active_mm;
1034 tsk->active_mm = mm;
1035 tsk->mm = mm;
1036 /*
1037 * This prevents preemption while active_mm is being loaded and
1038 * it and mm are being updated, which could cause problems for
1039 * lazy tlb mm refcounting when these are updated by context
1040 * switches. Not all architectures can handle irqs off over
1041 * activate_mm yet.
1042 */
1043 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1044 local_irq_enable();
1045 activate_mm(active_mm, mm);
1046 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1047 local_irq_enable();
1048 tsk->mm->vmacache_seqnum = 0;
1049 vmacache_flush(tsk);
1050 task_unlock(tsk);
1051 if (old_mm) {
1052 up_read(&old_mm->mmap_sem);
1053 BUG_ON(active_mm != old_mm);
1054 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1055 mm_update_next_owner(old_mm);
1056 mmput(old_mm);
1057 return 0;
1058 }
1059 mmdrop(active_mm);
1060 return 0;
1061 }
1062
1063 /*
1064 * This function makes sure the current process has its own signal table,
1065 * so that flush_signal_handlers can later reset the handlers without
1066 * disturbing other processes. (Other processes might share the signal
1067 * table via the CLONE_SIGHAND option to clone().)
1068 */
de_thread(struct task_struct * tsk)1069 static int de_thread(struct task_struct *tsk)
1070 {
1071 struct signal_struct *sig = tsk->signal;
1072 struct sighand_struct *oldsighand = tsk->sighand;
1073 spinlock_t *lock = &oldsighand->siglock;
1074
1075 if (thread_group_empty(tsk))
1076 goto no_thread_group;
1077
1078 /*
1079 * Kill all other threads in the thread group.
1080 */
1081 spin_lock_irq(lock);
1082 if (signal_group_exit(sig)) {
1083 /*
1084 * Another group action in progress, just
1085 * return so that the signal is processed.
1086 */
1087 spin_unlock_irq(lock);
1088 return -EAGAIN;
1089 }
1090
1091 sig->group_exit_task = tsk;
1092 sig->notify_count = zap_other_threads(tsk);
1093 if (!thread_group_leader(tsk))
1094 sig->notify_count--;
1095
1096 while (sig->notify_count) {
1097 __set_current_state(TASK_KILLABLE);
1098 spin_unlock_irq(lock);
1099 schedule();
1100 if (unlikely(__fatal_signal_pending(tsk)))
1101 goto killed;
1102 spin_lock_irq(lock);
1103 }
1104 spin_unlock_irq(lock);
1105
1106 /*
1107 * At this point all other threads have exited, all we have to
1108 * do is to wait for the thread group leader to become inactive,
1109 * and to assume its PID:
1110 */
1111 if (!thread_group_leader(tsk)) {
1112 struct task_struct *leader = tsk->group_leader;
1113
1114 for (;;) {
1115 cgroup_threadgroup_change_begin(tsk);
1116 write_lock_irq(&tasklist_lock);
1117 /*
1118 * Do this under tasklist_lock to ensure that
1119 * exit_notify() can't miss ->group_exit_task
1120 */
1121 sig->notify_count = -1;
1122 if (likely(leader->exit_state))
1123 break;
1124 __set_current_state(TASK_KILLABLE);
1125 write_unlock_irq(&tasklist_lock);
1126 cgroup_threadgroup_change_end(tsk);
1127 schedule();
1128 if (unlikely(__fatal_signal_pending(tsk)))
1129 goto killed;
1130 }
1131
1132 /*
1133 * The only record we have of the real-time age of a
1134 * process, regardless of execs it's done, is start_time.
1135 * All the past CPU time is accumulated in signal_struct
1136 * from sister threads now dead. But in this non-leader
1137 * exec, nothing survives from the original leader thread,
1138 * whose birth marks the true age of this process now.
1139 * When we take on its identity by switching to its PID, we
1140 * also take its birthdate (always earlier than our own).
1141 */
1142 tsk->start_time = leader->start_time;
1143 tsk->real_start_time = leader->real_start_time;
1144
1145 BUG_ON(!same_thread_group(leader, tsk));
1146 BUG_ON(has_group_leader_pid(tsk));
1147 /*
1148 * An exec() starts a new thread group with the
1149 * TGID of the previous thread group. Rehash the
1150 * two threads with a switched PID, and release
1151 * the former thread group leader:
1152 */
1153
1154 /* Become a process group leader with the old leader's pid.
1155 * The old leader becomes a thread of the this thread group.
1156 * Note: The old leader also uses this pid until release_task
1157 * is called. Odd but simple and correct.
1158 */
1159 tsk->pid = leader->pid;
1160 change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1161 transfer_pid(leader, tsk, PIDTYPE_TGID);
1162 transfer_pid(leader, tsk, PIDTYPE_PGID);
1163 transfer_pid(leader, tsk, PIDTYPE_SID);
1164
1165 list_replace_rcu(&leader->tasks, &tsk->tasks);
1166 list_replace_init(&leader->sibling, &tsk->sibling);
1167
1168 tsk->group_leader = tsk;
1169 leader->group_leader = tsk;
1170
1171 tsk->exit_signal = SIGCHLD;
1172 leader->exit_signal = -1;
1173
1174 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1175 leader->exit_state = EXIT_DEAD;
1176
1177 /*
1178 * We are going to release_task()->ptrace_unlink() silently,
1179 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1180 * the tracer wont't block again waiting for this thread.
1181 */
1182 if (unlikely(leader->ptrace))
1183 __wake_up_parent(leader, leader->parent);
1184 write_unlock_irq(&tasklist_lock);
1185 cgroup_threadgroup_change_end(tsk);
1186
1187 release_task(leader);
1188 }
1189
1190 sig->group_exit_task = NULL;
1191 sig->notify_count = 0;
1192
1193 no_thread_group:
1194 /* we have changed execution domain */
1195 tsk->exit_signal = SIGCHLD;
1196
1197 #ifdef CONFIG_POSIX_TIMERS
1198 exit_itimers(sig);
1199 flush_itimer_signals();
1200 #endif
1201
1202 if (atomic_read(&oldsighand->count) != 1) {
1203 struct sighand_struct *newsighand;
1204 /*
1205 * This ->sighand is shared with the CLONE_SIGHAND
1206 * but not CLONE_THREAD task, switch to the new one.
1207 */
1208 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1209 if (!newsighand)
1210 return -ENOMEM;
1211
1212 atomic_set(&newsighand->count, 1);
1213 memcpy(newsighand->action, oldsighand->action,
1214 sizeof(newsighand->action));
1215
1216 write_lock_irq(&tasklist_lock);
1217 spin_lock(&oldsighand->siglock);
1218 rcu_assign_pointer(tsk->sighand, newsighand);
1219 spin_unlock(&oldsighand->siglock);
1220 write_unlock_irq(&tasklist_lock);
1221
1222 __cleanup_sighand(oldsighand);
1223 }
1224
1225 BUG_ON(!thread_group_leader(tsk));
1226 return 0;
1227
1228 killed:
1229 /* protects against exit_notify() and __exit_signal() */
1230 read_lock(&tasklist_lock);
1231 sig->group_exit_task = NULL;
1232 sig->notify_count = 0;
1233 read_unlock(&tasklist_lock);
1234 return -EAGAIN;
1235 }
1236
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1237 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1238 {
1239 task_lock(tsk);
1240 strncpy(buf, tsk->comm, buf_size);
1241 task_unlock(tsk);
1242 return buf;
1243 }
1244 EXPORT_SYMBOL_GPL(__get_task_comm);
1245
1246 /*
1247 * These functions flushes out all traces of the currently running executable
1248 * so that a new one can be started
1249 */
1250
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1251 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1252 {
1253 task_lock(tsk);
1254 trace_task_rename(tsk, buf);
1255 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1256 task_unlock(tsk);
1257 perf_event_comm(tsk, exec);
1258 }
1259
1260 /*
1261 * Calling this is the point of no return. None of the failures will be
1262 * seen by userspace since either the process is already taking a fatal
1263 * signal (via de_thread() or coredump), or will have SEGV raised
1264 * (after exec_mmap()) by search_binary_handlers (see below).
1265 */
flush_old_exec(struct linux_binprm * bprm)1266 int flush_old_exec(struct linux_binprm * bprm)
1267 {
1268 int retval;
1269
1270 /*
1271 * Make sure we have a private signal table and that
1272 * we are unassociated from the previous thread group.
1273 */
1274 retval = de_thread(current);
1275 if (retval)
1276 goto out;
1277
1278 /*
1279 * Must be called _before_ exec_mmap() as bprm->mm is
1280 * not visibile until then. This also enables the update
1281 * to be lockless.
1282 */
1283 set_mm_exe_file(bprm->mm, bprm->file);
1284
1285 would_dump(bprm, bprm->file);
1286
1287 /*
1288 * Release all of the old mmap stuff
1289 */
1290 acct_arg_size(bprm, 0);
1291 retval = exec_mmap(bprm->mm);
1292 if (retval)
1293 goto out;
1294
1295 /*
1296 * After clearing bprm->mm (to mark that current is using the
1297 * prepared mm now), we have nothing left of the original
1298 * process. If anything from here on returns an error, the check
1299 * in search_binary_handler() will SEGV current.
1300 */
1301 bprm->mm = NULL;
1302
1303 set_fs(USER_DS);
1304 current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1305 PF_NOFREEZE | PF_NO_SETAFFINITY);
1306 flush_thread();
1307 current->personality &= ~bprm->per_clear;
1308
1309 /*
1310 * We have to apply CLOEXEC before we change whether the process is
1311 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1312 * trying to access the should-be-closed file descriptors of a process
1313 * undergoing exec(2).
1314 */
1315 do_close_on_exec(current->files);
1316 return 0;
1317
1318 out:
1319 return retval;
1320 }
1321 EXPORT_SYMBOL(flush_old_exec);
1322
would_dump(struct linux_binprm * bprm,struct file * file)1323 void would_dump(struct linux_binprm *bprm, struct file *file)
1324 {
1325 struct inode *inode = file_inode(file);
1326 if (inode_permission(inode, MAY_READ) < 0) {
1327 struct user_namespace *old, *user_ns;
1328 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1329
1330 /* Ensure mm->user_ns contains the executable */
1331 user_ns = old = bprm->mm->user_ns;
1332 while ((user_ns != &init_user_ns) &&
1333 !privileged_wrt_inode_uidgid(user_ns, inode))
1334 user_ns = user_ns->parent;
1335
1336 if (old != user_ns) {
1337 bprm->mm->user_ns = get_user_ns(user_ns);
1338 put_user_ns(old);
1339 }
1340 }
1341 }
1342 EXPORT_SYMBOL(would_dump);
1343
setup_new_exec(struct linux_binprm * bprm)1344 void setup_new_exec(struct linux_binprm * bprm)
1345 {
1346 /*
1347 * Once here, prepare_binrpm() will not be called any more, so
1348 * the final state of setuid/setgid/fscaps can be merged into the
1349 * secureexec flag.
1350 */
1351 bprm->secureexec |= bprm->cap_elevated;
1352
1353 if (bprm->secureexec) {
1354 /* Make sure parent cannot signal privileged process. */
1355 current->pdeath_signal = 0;
1356
1357 /*
1358 * For secureexec, reset the stack limit to sane default to
1359 * avoid bad behavior from the prior rlimits. This has to
1360 * happen before arch_pick_mmap_layout(), which examines
1361 * RLIMIT_STACK, but after the point of no return to avoid
1362 * needing to clean up the change on failure.
1363 */
1364 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1365 bprm->rlim_stack.rlim_cur = _STK_LIM;
1366 }
1367
1368 arch_pick_mmap_layout(current->mm, &bprm->rlim_stack);
1369
1370 current->sas_ss_sp = current->sas_ss_size = 0;
1371
1372 /*
1373 * Figure out dumpability. Note that this checking only of current
1374 * is wrong, but userspace depends on it. This should be testing
1375 * bprm->secureexec instead.
1376 */
1377 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1378 !(uid_eq(current_euid(), current_uid()) &&
1379 gid_eq(current_egid(), current_gid())))
1380 set_dumpable(current->mm, suid_dumpable);
1381 else
1382 set_dumpable(current->mm, SUID_DUMP_USER);
1383
1384 arch_setup_new_exec();
1385 perf_event_exec();
1386 __set_task_comm(current, kbasename(bprm->filename), true);
1387
1388 /* Set the new mm task size. We have to do that late because it may
1389 * depend on TIF_32BIT which is only updated in flush_thread() on
1390 * some architectures like powerpc
1391 */
1392 current->mm->task_size = TASK_SIZE;
1393
1394 /* An exec changes our domain. We are no longer part of the thread
1395 group */
1396 WRITE_ONCE(current->self_exec_id, current->self_exec_id + 1);
1397 flush_signal_handlers(current, 0);
1398 }
1399 EXPORT_SYMBOL(setup_new_exec);
1400
1401 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1402 void finalize_exec(struct linux_binprm *bprm)
1403 {
1404 /* Store any stack rlimit changes before starting thread. */
1405 task_lock(current->group_leader);
1406 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1407 task_unlock(current->group_leader);
1408 }
1409 EXPORT_SYMBOL(finalize_exec);
1410
1411 /*
1412 * Prepare credentials and lock ->cred_guard_mutex.
1413 * install_exec_creds() commits the new creds and drops the lock.
1414 * Or, if exec fails before, free_bprm() should release ->cred and
1415 * and unlock.
1416 */
prepare_bprm_creds(struct linux_binprm * bprm)1417 int prepare_bprm_creds(struct linux_binprm *bprm)
1418 {
1419 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex))
1420 return -ERESTARTNOINTR;
1421
1422 bprm->cred = prepare_exec_creds();
1423 if (likely(bprm->cred))
1424 return 0;
1425
1426 mutex_unlock(¤t->signal->cred_guard_mutex);
1427 return -ENOMEM;
1428 }
1429
free_bprm(struct linux_binprm * bprm)1430 static void free_bprm(struct linux_binprm *bprm)
1431 {
1432 free_arg_pages(bprm);
1433 if (bprm->cred) {
1434 mutex_unlock(¤t->signal->cred_guard_mutex);
1435 abort_creds(bprm->cred);
1436 }
1437 if (bprm->file) {
1438 allow_write_access(bprm->file);
1439 fput(bprm->file);
1440 }
1441 /* If a binfmt changed the interp, free it. */
1442 if (bprm->interp != bprm->filename)
1443 kfree(bprm->interp);
1444 kfree(bprm);
1445 }
1446
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1447 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1448 {
1449 /* If a binfmt changed the interp, free it first. */
1450 if (bprm->interp != bprm->filename)
1451 kfree(bprm->interp);
1452 bprm->interp = kstrdup(interp, GFP_KERNEL);
1453 if (!bprm->interp)
1454 return -ENOMEM;
1455 return 0;
1456 }
1457 EXPORT_SYMBOL(bprm_change_interp);
1458
1459 /*
1460 * install the new credentials for this executable
1461 */
install_exec_creds(struct linux_binprm * bprm)1462 void install_exec_creds(struct linux_binprm *bprm)
1463 {
1464 security_bprm_committing_creds(bprm);
1465
1466 commit_creds(bprm->cred);
1467 bprm->cred = NULL;
1468
1469 /*
1470 * Disable monitoring for regular users
1471 * when executing setuid binaries. Must
1472 * wait until new credentials are committed
1473 * by commit_creds() above
1474 */
1475 if (get_dumpable(current->mm) != SUID_DUMP_USER)
1476 perf_event_exit_task(current);
1477 /*
1478 * cred_guard_mutex must be held at least to this point to prevent
1479 * ptrace_attach() from altering our determination of the task's
1480 * credentials; any time after this it may be unlocked.
1481 */
1482 security_bprm_committed_creds(bprm);
1483 mutex_unlock(¤t->signal->cred_guard_mutex);
1484 }
1485 EXPORT_SYMBOL(install_exec_creds);
1486
1487 /*
1488 * determine how safe it is to execute the proposed program
1489 * - the caller must hold ->cred_guard_mutex to protect against
1490 * PTRACE_ATTACH or seccomp thread-sync
1491 */
check_unsafe_exec(struct linux_binprm * bprm)1492 static void check_unsafe_exec(struct linux_binprm *bprm)
1493 {
1494 struct task_struct *p = current, *t;
1495 unsigned n_fs;
1496
1497 if (p->ptrace)
1498 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1499
1500 /*
1501 * This isn't strictly necessary, but it makes it harder for LSMs to
1502 * mess up.
1503 */
1504 if (task_no_new_privs(current))
1505 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1506
1507 t = p;
1508 n_fs = 1;
1509 spin_lock(&p->fs->lock);
1510 rcu_read_lock();
1511 while_each_thread(p, t) {
1512 if (t->fs == p->fs)
1513 n_fs++;
1514 }
1515 rcu_read_unlock();
1516
1517 if (p->fs->users > n_fs)
1518 bprm->unsafe |= LSM_UNSAFE_SHARE;
1519 else
1520 p->fs->in_exec = 1;
1521 spin_unlock(&p->fs->lock);
1522 }
1523
bprm_fill_uid(struct linux_binprm * bprm)1524 static void bprm_fill_uid(struct linux_binprm *bprm)
1525 {
1526 struct inode *inode;
1527 unsigned int mode;
1528 kuid_t uid;
1529 kgid_t gid;
1530
1531 /*
1532 * Since this can be called multiple times (via prepare_binprm),
1533 * we must clear any previous work done when setting set[ug]id
1534 * bits from any earlier bprm->file uses (for example when run
1535 * first for a setuid script then again for its interpreter).
1536 */
1537 bprm->cred->euid = current_euid();
1538 bprm->cred->egid = current_egid();
1539
1540 if (!mnt_may_suid(bprm->file->f_path.mnt))
1541 return;
1542
1543 if (task_no_new_privs(current))
1544 return;
1545
1546 inode = bprm->file->f_path.dentry->d_inode;
1547 mode = READ_ONCE(inode->i_mode);
1548 if (!(mode & (S_ISUID|S_ISGID)))
1549 return;
1550
1551 /* Be careful if suid/sgid is set */
1552 inode_lock(inode);
1553
1554 /* reload atomically mode/uid/gid now that lock held */
1555 mode = inode->i_mode;
1556 uid = inode->i_uid;
1557 gid = inode->i_gid;
1558 inode_unlock(inode);
1559
1560 /* We ignore suid/sgid if there are no mappings for them in the ns */
1561 if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1562 !kgid_has_mapping(bprm->cred->user_ns, gid))
1563 return;
1564
1565 if (mode & S_ISUID) {
1566 bprm->per_clear |= PER_CLEAR_ON_SETID;
1567 bprm->cred->euid = uid;
1568 }
1569
1570 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1571 bprm->per_clear |= PER_CLEAR_ON_SETID;
1572 bprm->cred->egid = gid;
1573 }
1574 }
1575
1576 /*
1577 * Fill the binprm structure from the inode.
1578 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1579 *
1580 * This may be called multiple times for binary chains (scripts for example).
1581 */
prepare_binprm(struct linux_binprm * bprm)1582 int prepare_binprm(struct linux_binprm *bprm)
1583 {
1584 int retval;
1585 loff_t pos = 0;
1586
1587 bprm_fill_uid(bprm);
1588
1589 /* fill in binprm security blob */
1590 retval = security_bprm_set_creds(bprm);
1591 if (retval)
1592 return retval;
1593 bprm->called_set_creds = 1;
1594
1595 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1596 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1597 }
1598
1599 EXPORT_SYMBOL(prepare_binprm);
1600
1601 /*
1602 * Arguments are '\0' separated strings found at the location bprm->p
1603 * points to; chop off the first by relocating brpm->p to right after
1604 * the first '\0' encountered.
1605 */
remove_arg_zero(struct linux_binprm * bprm)1606 int remove_arg_zero(struct linux_binprm *bprm)
1607 {
1608 int ret = 0;
1609 unsigned long offset;
1610 char *kaddr;
1611 struct page *page;
1612
1613 if (!bprm->argc)
1614 return 0;
1615
1616 do {
1617 offset = bprm->p & ~PAGE_MASK;
1618 page = get_arg_page(bprm, bprm->p, 0);
1619 if (!page) {
1620 ret = -EFAULT;
1621 goto out;
1622 }
1623 kaddr = kmap_atomic(page);
1624
1625 for (; offset < PAGE_SIZE && kaddr[offset];
1626 offset++, bprm->p++)
1627 ;
1628
1629 kunmap_atomic(kaddr);
1630 put_arg_page(page);
1631 } while (offset == PAGE_SIZE);
1632
1633 bprm->p++;
1634 bprm->argc--;
1635 ret = 0;
1636
1637 out:
1638 return ret;
1639 }
1640 EXPORT_SYMBOL(remove_arg_zero);
1641
1642 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1643 /*
1644 * cycle the list of binary formats handler, until one recognizes the image
1645 */
search_binary_handler(struct linux_binprm * bprm)1646 int search_binary_handler(struct linux_binprm *bprm)
1647 {
1648 bool need_retry = IS_ENABLED(CONFIG_MODULES);
1649 struct linux_binfmt *fmt;
1650 int retval;
1651
1652 /* This allows 4 levels of binfmt rewrites before failing hard. */
1653 if (bprm->recursion_depth > 5)
1654 return -ELOOP;
1655
1656 retval = security_bprm_check(bprm);
1657 if (retval)
1658 return retval;
1659
1660 retval = -ENOENT;
1661 retry:
1662 read_lock(&binfmt_lock);
1663 list_for_each_entry(fmt, &formats, lh) {
1664 if (!try_module_get(fmt->module))
1665 continue;
1666 read_unlock(&binfmt_lock);
1667 bprm->recursion_depth++;
1668 retval = fmt->load_binary(bprm);
1669 read_lock(&binfmt_lock);
1670 put_binfmt(fmt);
1671 bprm->recursion_depth--;
1672 if (retval < 0 && !bprm->mm) {
1673 /* we got to flush_old_exec() and failed after it */
1674 read_unlock(&binfmt_lock);
1675 force_sigsegv(SIGSEGV, current);
1676 return retval;
1677 }
1678 if (retval != -ENOEXEC || !bprm->file) {
1679 read_unlock(&binfmt_lock);
1680 return retval;
1681 }
1682 }
1683 read_unlock(&binfmt_lock);
1684
1685 if (need_retry) {
1686 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1687 printable(bprm->buf[2]) && printable(bprm->buf[3]))
1688 return retval;
1689 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1690 return retval;
1691 need_retry = false;
1692 goto retry;
1693 }
1694
1695 return retval;
1696 }
1697 EXPORT_SYMBOL(search_binary_handler);
1698
exec_binprm(struct linux_binprm * bprm)1699 static int exec_binprm(struct linux_binprm *bprm)
1700 {
1701 pid_t old_pid, old_vpid;
1702 int ret;
1703
1704 /* Need to fetch pid before load_binary changes it */
1705 old_pid = current->pid;
1706 rcu_read_lock();
1707 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1708 rcu_read_unlock();
1709
1710 ret = search_binary_handler(bprm);
1711 if (ret >= 0) {
1712 audit_bprm(bprm);
1713 trace_sched_process_exec(current, old_pid, bprm);
1714 ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1715 proc_exec_connector(current);
1716 }
1717
1718 return ret;
1719 }
1720
1721 /*
1722 * sys_execve() executes a new program.
1723 */
__do_execve_file(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags,struct file * file)1724 static int __do_execve_file(int fd, struct filename *filename,
1725 struct user_arg_ptr argv,
1726 struct user_arg_ptr envp,
1727 int flags, struct file *file)
1728 {
1729 char *pathbuf = NULL;
1730 struct linux_binprm *bprm;
1731 struct files_struct *displaced;
1732 int retval;
1733
1734 if (IS_ERR(filename))
1735 return PTR_ERR(filename);
1736
1737 /*
1738 * We move the actual failure in case of RLIMIT_NPROC excess from
1739 * set*uid() to execve() because too many poorly written programs
1740 * don't check setuid() return code. Here we additionally recheck
1741 * whether NPROC limit is still exceeded.
1742 */
1743 if ((current->flags & PF_NPROC_EXCEEDED) &&
1744 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) {
1745 retval = -EAGAIN;
1746 goto out_ret;
1747 }
1748
1749 /* We're below the limit (still or again), so we don't want to make
1750 * further execve() calls fail. */
1751 current->flags &= ~PF_NPROC_EXCEEDED;
1752
1753 retval = unshare_files(&displaced);
1754 if (retval)
1755 goto out_ret;
1756
1757 retval = -ENOMEM;
1758 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1759 if (!bprm)
1760 goto out_files;
1761
1762 retval = prepare_bprm_creds(bprm);
1763 if (retval)
1764 goto out_free;
1765
1766 check_unsafe_exec(bprm);
1767 current->in_execve = 1;
1768
1769 if (!file)
1770 file = do_open_execat(fd, filename, flags);
1771 retval = PTR_ERR(file);
1772 if (IS_ERR(file))
1773 goto out_unmark;
1774
1775 sched_exec();
1776
1777 bprm->file = file;
1778 if (!filename) {
1779 bprm->filename = "none";
1780 } else if (fd == AT_FDCWD || filename->name[0] == '/') {
1781 bprm->filename = filename->name;
1782 } else {
1783 if (filename->name[0] == '\0')
1784 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1785 else
1786 pathbuf = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1787 fd, filename->name);
1788 if (!pathbuf) {
1789 retval = -ENOMEM;
1790 goto out_unmark;
1791 }
1792 /*
1793 * Record that a name derived from an O_CLOEXEC fd will be
1794 * inaccessible after exec. Relies on having exclusive access to
1795 * current->files (due to unshare_files above).
1796 */
1797 if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1798 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1799 bprm->filename = pathbuf;
1800 }
1801 bprm->interp = bprm->filename;
1802
1803 retval = bprm_mm_init(bprm);
1804 if (retval)
1805 goto out_unmark;
1806
1807 bprm->argc = count(argv, MAX_ARG_STRINGS);
1808 if (bprm->argc == 0)
1809 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1810 current->comm, bprm->filename);
1811 if ((retval = bprm->argc) < 0)
1812 goto out;
1813
1814 bprm->envc = count(envp, MAX_ARG_STRINGS);
1815 if ((retval = bprm->envc) < 0)
1816 goto out;
1817
1818 retval = prepare_binprm(bprm);
1819 if (retval < 0)
1820 goto out;
1821
1822 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1823 if (retval < 0)
1824 goto out;
1825
1826 bprm->exec = bprm->p;
1827 retval = copy_strings(bprm->envc, envp, bprm);
1828 if (retval < 0)
1829 goto out;
1830
1831 retval = copy_strings(bprm->argc, argv, bprm);
1832 if (retval < 0)
1833 goto out;
1834
1835 /*
1836 * When argv is empty, add an empty string ("") as argv[0] to
1837 * ensure confused userspace programs that start processing
1838 * from argv[1] won't end up walking envp. See also
1839 * bprm_stack_limits().
1840 */
1841 if (bprm->argc == 0) {
1842 const char *argv[] = { "", NULL };
1843 retval = copy_strings_kernel(1, argv, bprm);
1844 if (retval < 0)
1845 goto out;
1846 bprm->argc = 1;
1847 }
1848
1849 retval = exec_binprm(bprm);
1850 if (retval < 0)
1851 goto out;
1852
1853 /* execve succeeded */
1854 current->fs->in_exec = 0;
1855 current->in_execve = 0;
1856 membarrier_execve(current);
1857 rseq_execve(current);
1858 acct_update_integrals(current);
1859 task_numa_free(current, false);
1860 free_bprm(bprm);
1861 kfree(pathbuf);
1862 if (filename)
1863 putname(filename);
1864 if (displaced)
1865 put_files_struct(displaced);
1866 return retval;
1867
1868 out:
1869 if (bprm->mm) {
1870 acct_arg_size(bprm, 0);
1871 mmput(bprm->mm);
1872 }
1873
1874 out_unmark:
1875 current->fs->in_exec = 0;
1876 current->in_execve = 0;
1877
1878 out_free:
1879 free_bprm(bprm);
1880 kfree(pathbuf);
1881
1882 out_files:
1883 if (displaced)
1884 reset_files_struct(displaced);
1885 out_ret:
1886 if (filename)
1887 putname(filename);
1888 return retval;
1889 }
1890
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1891 static int do_execveat_common(int fd, struct filename *filename,
1892 struct user_arg_ptr argv,
1893 struct user_arg_ptr envp,
1894 int flags)
1895 {
1896 return __do_execve_file(fd, filename, argv, envp, flags, NULL);
1897 }
1898
do_execve_file(struct file * file,void * __argv,void * __envp)1899 int do_execve_file(struct file *file, void *__argv, void *__envp)
1900 {
1901 struct user_arg_ptr argv = { .ptr.native = __argv };
1902 struct user_arg_ptr envp = { .ptr.native = __envp };
1903
1904 return __do_execve_file(AT_FDCWD, NULL, argv, envp, 0, file);
1905 }
1906
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)1907 int do_execve(struct filename *filename,
1908 const char __user *const __user *__argv,
1909 const char __user *const __user *__envp)
1910 {
1911 struct user_arg_ptr argv = { .ptr.native = __argv };
1912 struct user_arg_ptr envp = { .ptr.native = __envp };
1913 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1914 }
1915
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)1916 int do_execveat(int fd, struct filename *filename,
1917 const char __user *const __user *__argv,
1918 const char __user *const __user *__envp,
1919 int flags)
1920 {
1921 struct user_arg_ptr argv = { .ptr.native = __argv };
1922 struct user_arg_ptr envp = { .ptr.native = __envp };
1923
1924 return do_execveat_common(fd, filename, argv, envp, flags);
1925 }
1926
1927 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)1928 static int compat_do_execve(struct filename *filename,
1929 const compat_uptr_t __user *__argv,
1930 const compat_uptr_t __user *__envp)
1931 {
1932 struct user_arg_ptr argv = {
1933 .is_compat = true,
1934 .ptr.compat = __argv,
1935 };
1936 struct user_arg_ptr envp = {
1937 .is_compat = true,
1938 .ptr.compat = __envp,
1939 };
1940 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1941 }
1942
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)1943 static int compat_do_execveat(int fd, struct filename *filename,
1944 const compat_uptr_t __user *__argv,
1945 const compat_uptr_t __user *__envp,
1946 int flags)
1947 {
1948 struct user_arg_ptr argv = {
1949 .is_compat = true,
1950 .ptr.compat = __argv,
1951 };
1952 struct user_arg_ptr envp = {
1953 .is_compat = true,
1954 .ptr.compat = __envp,
1955 };
1956 return do_execveat_common(fd, filename, argv, envp, flags);
1957 }
1958 #endif
1959
set_binfmt(struct linux_binfmt * new)1960 void set_binfmt(struct linux_binfmt *new)
1961 {
1962 struct mm_struct *mm = current->mm;
1963
1964 if (mm->binfmt)
1965 module_put(mm->binfmt->module);
1966
1967 mm->binfmt = new;
1968 if (new)
1969 __module_get(new->module);
1970 }
1971 EXPORT_SYMBOL(set_binfmt);
1972
1973 /*
1974 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1975 */
set_dumpable(struct mm_struct * mm,int value)1976 void set_dumpable(struct mm_struct *mm, int value)
1977 {
1978 unsigned long old, new;
1979
1980 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1981 return;
1982
1983 do {
1984 old = READ_ONCE(mm->flags);
1985 new = (old & ~MMF_DUMPABLE_MASK) | value;
1986 } while (cmpxchg(&mm->flags, old, new) != old);
1987 }
1988
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)1989 SYSCALL_DEFINE3(execve,
1990 const char __user *, filename,
1991 const char __user *const __user *, argv,
1992 const char __user *const __user *, envp)
1993 {
1994 return do_execve(getname(filename), argv, envp);
1995 }
1996
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)1997 SYSCALL_DEFINE5(execveat,
1998 int, fd, const char __user *, filename,
1999 const char __user *const __user *, argv,
2000 const char __user *const __user *, envp,
2001 int, flags)
2002 {
2003 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2004
2005 return do_execveat(fd,
2006 getname_flags(filename, lookup_flags, NULL),
2007 argv, envp, flags);
2008 }
2009
2010 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2011 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2012 const compat_uptr_t __user *, argv,
2013 const compat_uptr_t __user *, envp)
2014 {
2015 return compat_do_execve(getname(filename), argv, envp);
2016 }
2017
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2018 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2019 const char __user *, filename,
2020 const compat_uptr_t __user *, argv,
2021 const compat_uptr_t __user *, envp,
2022 int, flags)
2023 {
2024 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2025
2026 return compat_do_execveat(fd,
2027 getname_flags(filename, lookup_flags, NULL),
2028 argv, envp, flags);
2029 }
2030 #endif
2031