1 /*
2  *  gendisk handling
3  */
4 
5 #include <linux/module.h>
6 #include <linux/fs.h>
7 #include <linux/genhd.h>
8 #include <linux/kdev_t.h>
9 #include <linux/kernel.h>
10 #include <linux/blkdev.h>
11 #include <linux/backing-dev.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/proc_fs.h>
15 #include <linux/seq_file.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/kobj_map.h>
19 #include <linux/mutex.h>
20 #include <linux/idr.h>
21 #include <linux/log2.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/badblocks.h>
24 
25 #include "blk.h"
26 
27 static DEFINE_MUTEX(block_class_lock);
28 struct kobject *block_depr;
29 
30 /* for extended dynamic devt allocation, currently only one major is used */
31 #define NR_EXT_DEVT		(1 << MINORBITS)
32 
33 /* For extended devt allocation.  ext_devt_lock prevents look up
34  * results from going away underneath its user.
35  */
36 static DEFINE_SPINLOCK(ext_devt_lock);
37 static DEFINE_IDR(ext_devt_idr);
38 
39 static const struct device_type disk_type;
40 
41 static void disk_check_events(struct disk_events *ev,
42 			      unsigned int *clearing_ptr);
43 static void disk_alloc_events(struct gendisk *disk);
44 static void disk_add_events(struct gendisk *disk);
45 static void disk_del_events(struct gendisk *disk);
46 static void disk_release_events(struct gendisk *disk);
47 
part_inc_in_flight(struct request_queue * q,struct hd_struct * part,int rw)48 void part_inc_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
49 {
50 	if (q->mq_ops)
51 		return;
52 
53 	atomic_inc(&part->in_flight[rw]);
54 	if (part->partno)
55 		atomic_inc(&part_to_disk(part)->part0.in_flight[rw]);
56 }
57 
part_dec_in_flight(struct request_queue * q,struct hd_struct * part,int rw)58 void part_dec_in_flight(struct request_queue *q, struct hd_struct *part, int rw)
59 {
60 	if (q->mq_ops)
61 		return;
62 
63 	atomic_dec(&part->in_flight[rw]);
64 	if (part->partno)
65 		atomic_dec(&part_to_disk(part)->part0.in_flight[rw]);
66 }
67 
part_in_flight(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])68 void part_in_flight(struct request_queue *q, struct hd_struct *part,
69 		    unsigned int inflight[2])
70 {
71 	if (q->mq_ops) {
72 		blk_mq_in_flight(q, part, inflight);
73 		return;
74 	}
75 
76 	inflight[0] = atomic_read(&part->in_flight[0]) +
77 			atomic_read(&part->in_flight[1]);
78 	if (part->partno) {
79 		part = &part_to_disk(part)->part0;
80 		inflight[1] = atomic_read(&part->in_flight[0]) +
81 				atomic_read(&part->in_flight[1]);
82 	}
83 }
84 
part_in_flight_rw(struct request_queue * q,struct hd_struct * part,unsigned int inflight[2])85 void part_in_flight_rw(struct request_queue *q, struct hd_struct *part,
86 		       unsigned int inflight[2])
87 {
88 	if (q->mq_ops) {
89 		blk_mq_in_flight_rw(q, part, inflight);
90 		return;
91 	}
92 
93 	inflight[0] = atomic_read(&part->in_flight[0]);
94 	inflight[1] = atomic_read(&part->in_flight[1]);
95 }
96 
__disk_get_part(struct gendisk * disk,int partno)97 struct hd_struct *__disk_get_part(struct gendisk *disk, int partno)
98 {
99 	struct disk_part_tbl *ptbl = rcu_dereference(disk->part_tbl);
100 
101 	if (unlikely(partno < 0 || partno >= ptbl->len))
102 		return NULL;
103 	return rcu_dereference(ptbl->part[partno]);
104 }
105 
106 /**
107  * disk_get_part - get partition
108  * @disk: disk to look partition from
109  * @partno: partition number
110  *
111  * Look for partition @partno from @disk.  If found, increment
112  * reference count and return it.
113  *
114  * CONTEXT:
115  * Don't care.
116  *
117  * RETURNS:
118  * Pointer to the found partition on success, NULL if not found.
119  */
disk_get_part(struct gendisk * disk,int partno)120 struct hd_struct *disk_get_part(struct gendisk *disk, int partno)
121 {
122 	struct hd_struct *part;
123 
124 	rcu_read_lock();
125 	part = __disk_get_part(disk, partno);
126 	if (part)
127 		get_device(part_to_dev(part));
128 	rcu_read_unlock();
129 
130 	return part;
131 }
132 EXPORT_SYMBOL_GPL(disk_get_part);
133 
134 /**
135  * disk_part_iter_init - initialize partition iterator
136  * @piter: iterator to initialize
137  * @disk: disk to iterate over
138  * @flags: DISK_PITER_* flags
139  *
140  * Initialize @piter so that it iterates over partitions of @disk.
141  *
142  * CONTEXT:
143  * Don't care.
144  */
disk_part_iter_init(struct disk_part_iter * piter,struct gendisk * disk,unsigned int flags)145 void disk_part_iter_init(struct disk_part_iter *piter, struct gendisk *disk,
146 			  unsigned int flags)
147 {
148 	struct disk_part_tbl *ptbl;
149 
150 	rcu_read_lock();
151 	ptbl = rcu_dereference(disk->part_tbl);
152 
153 	piter->disk = disk;
154 	piter->part = NULL;
155 
156 	if (flags & DISK_PITER_REVERSE)
157 		piter->idx = ptbl->len - 1;
158 	else if (flags & (DISK_PITER_INCL_PART0 | DISK_PITER_INCL_EMPTY_PART0))
159 		piter->idx = 0;
160 	else
161 		piter->idx = 1;
162 
163 	piter->flags = flags;
164 
165 	rcu_read_unlock();
166 }
167 EXPORT_SYMBOL_GPL(disk_part_iter_init);
168 
169 /**
170  * disk_part_iter_next - proceed iterator to the next partition and return it
171  * @piter: iterator of interest
172  *
173  * Proceed @piter to the next partition and return it.
174  *
175  * CONTEXT:
176  * Don't care.
177  */
disk_part_iter_next(struct disk_part_iter * piter)178 struct hd_struct *disk_part_iter_next(struct disk_part_iter *piter)
179 {
180 	struct disk_part_tbl *ptbl;
181 	int inc, end;
182 
183 	/* put the last partition */
184 	disk_put_part(piter->part);
185 	piter->part = NULL;
186 
187 	/* get part_tbl */
188 	rcu_read_lock();
189 	ptbl = rcu_dereference(piter->disk->part_tbl);
190 
191 	/* determine iteration parameters */
192 	if (piter->flags & DISK_PITER_REVERSE) {
193 		inc = -1;
194 		if (piter->flags & (DISK_PITER_INCL_PART0 |
195 				    DISK_PITER_INCL_EMPTY_PART0))
196 			end = -1;
197 		else
198 			end = 0;
199 	} else {
200 		inc = 1;
201 		end = ptbl->len;
202 	}
203 
204 	/* iterate to the next partition */
205 	for (; piter->idx != end; piter->idx += inc) {
206 		struct hd_struct *part;
207 
208 		part = rcu_dereference(ptbl->part[piter->idx]);
209 		if (!part)
210 			continue;
211 		get_device(part_to_dev(part));
212 		piter->part = part;
213 		if (!part_nr_sects_read(part) &&
214 		    !(piter->flags & DISK_PITER_INCL_EMPTY) &&
215 		    !(piter->flags & DISK_PITER_INCL_EMPTY_PART0 &&
216 		      piter->idx == 0)) {
217 			put_device(part_to_dev(part));
218 			piter->part = NULL;
219 			continue;
220 		}
221 
222 		piter->idx += inc;
223 		break;
224 	}
225 
226 	rcu_read_unlock();
227 
228 	return piter->part;
229 }
230 EXPORT_SYMBOL_GPL(disk_part_iter_next);
231 
232 /**
233  * disk_part_iter_exit - finish up partition iteration
234  * @piter: iter of interest
235  *
236  * Called when iteration is over.  Cleans up @piter.
237  *
238  * CONTEXT:
239  * Don't care.
240  */
disk_part_iter_exit(struct disk_part_iter * piter)241 void disk_part_iter_exit(struct disk_part_iter *piter)
242 {
243 	disk_put_part(piter->part);
244 	piter->part = NULL;
245 }
246 EXPORT_SYMBOL_GPL(disk_part_iter_exit);
247 
sector_in_part(struct hd_struct * part,sector_t sector)248 static inline int sector_in_part(struct hd_struct *part, sector_t sector)
249 {
250 	return part->start_sect <= sector &&
251 		sector < part->start_sect + part_nr_sects_read(part);
252 }
253 
254 /**
255  * disk_map_sector_rcu - map sector to partition
256  * @disk: gendisk of interest
257  * @sector: sector to map
258  *
259  * Find out which partition @sector maps to on @disk.  This is
260  * primarily used for stats accounting.
261  *
262  * CONTEXT:
263  * RCU read locked.  The returned partition pointer is valid only
264  * while preemption is disabled.
265  *
266  * RETURNS:
267  * Found partition on success, part0 is returned if no partition matches
268  */
disk_map_sector_rcu(struct gendisk * disk,sector_t sector)269 struct hd_struct *disk_map_sector_rcu(struct gendisk *disk, sector_t sector)
270 {
271 	struct disk_part_tbl *ptbl;
272 	struct hd_struct *part;
273 	int i;
274 
275 	ptbl = rcu_dereference(disk->part_tbl);
276 
277 	part = rcu_dereference(ptbl->last_lookup);
278 	if (part && sector_in_part(part, sector))
279 		return part;
280 
281 	for (i = 1; i < ptbl->len; i++) {
282 		part = rcu_dereference(ptbl->part[i]);
283 
284 		if (part && sector_in_part(part, sector)) {
285 			rcu_assign_pointer(ptbl->last_lookup, part);
286 			return part;
287 		}
288 	}
289 	return &disk->part0;
290 }
291 EXPORT_SYMBOL_GPL(disk_map_sector_rcu);
292 
293 /*
294  * Can be deleted altogether. Later.
295  *
296  */
297 #define BLKDEV_MAJOR_HASH_SIZE 255
298 static struct blk_major_name {
299 	struct blk_major_name *next;
300 	int major;
301 	char name[16];
302 } *major_names[BLKDEV_MAJOR_HASH_SIZE];
303 
304 /* index in the above - for now: assume no multimajor ranges */
major_to_index(unsigned major)305 static inline int major_to_index(unsigned major)
306 {
307 	return major % BLKDEV_MAJOR_HASH_SIZE;
308 }
309 
310 #ifdef CONFIG_PROC_FS
blkdev_show(struct seq_file * seqf,off_t offset)311 void blkdev_show(struct seq_file *seqf, off_t offset)
312 {
313 	struct blk_major_name *dp;
314 
315 	mutex_lock(&block_class_lock);
316 	for (dp = major_names[major_to_index(offset)]; dp; dp = dp->next)
317 		if (dp->major == offset)
318 			seq_printf(seqf, "%3d %s\n", dp->major, dp->name);
319 	mutex_unlock(&block_class_lock);
320 }
321 #endif /* CONFIG_PROC_FS */
322 
323 /**
324  * register_blkdev - register a new block device
325  *
326  * @major: the requested major device number [1..BLKDEV_MAJOR_MAX-1]. If
327  *         @major = 0, try to allocate any unused major number.
328  * @name: the name of the new block device as a zero terminated string
329  *
330  * The @name must be unique within the system.
331  *
332  * The return value depends on the @major input parameter:
333  *
334  *  - if a major device number was requested in range [1..BLKDEV_MAJOR_MAX-1]
335  *    then the function returns zero on success, or a negative error code
336  *  - if any unused major number was requested with @major = 0 parameter
337  *    then the return value is the allocated major number in range
338  *    [1..BLKDEV_MAJOR_MAX-1] or a negative error code otherwise
339  *
340  * See Documentation/admin-guide/devices.txt for the list of allocated
341  * major numbers.
342  */
register_blkdev(unsigned int major,const char * name)343 int register_blkdev(unsigned int major, const char *name)
344 {
345 	struct blk_major_name **n, *p;
346 	int index, ret = 0;
347 
348 	mutex_lock(&block_class_lock);
349 
350 	/* temporary */
351 	if (major == 0) {
352 		for (index = ARRAY_SIZE(major_names)-1; index > 0; index--) {
353 			if (major_names[index] == NULL)
354 				break;
355 		}
356 
357 		if (index == 0) {
358 			printk("register_blkdev: failed to get major for %s\n",
359 			       name);
360 			ret = -EBUSY;
361 			goto out;
362 		}
363 		major = index;
364 		ret = major;
365 	}
366 
367 	if (major >= BLKDEV_MAJOR_MAX) {
368 		pr_err("register_blkdev: major requested (%u) is greater than the maximum (%u) for %s\n",
369 		       major, BLKDEV_MAJOR_MAX-1, name);
370 
371 		ret = -EINVAL;
372 		goto out;
373 	}
374 
375 	p = kmalloc(sizeof(struct blk_major_name), GFP_KERNEL);
376 	if (p == NULL) {
377 		ret = -ENOMEM;
378 		goto out;
379 	}
380 
381 	p->major = major;
382 	strlcpy(p->name, name, sizeof(p->name));
383 	p->next = NULL;
384 	index = major_to_index(major);
385 
386 	for (n = &major_names[index]; *n; n = &(*n)->next) {
387 		if ((*n)->major == major)
388 			break;
389 	}
390 	if (!*n)
391 		*n = p;
392 	else
393 		ret = -EBUSY;
394 
395 	if (ret < 0) {
396 		printk("register_blkdev: cannot get major %u for %s\n",
397 		       major, name);
398 		kfree(p);
399 	}
400 out:
401 	mutex_unlock(&block_class_lock);
402 	return ret;
403 }
404 
405 EXPORT_SYMBOL(register_blkdev);
406 
unregister_blkdev(unsigned int major,const char * name)407 void unregister_blkdev(unsigned int major, const char *name)
408 {
409 	struct blk_major_name **n;
410 	struct blk_major_name *p = NULL;
411 	int index = major_to_index(major);
412 
413 	mutex_lock(&block_class_lock);
414 	for (n = &major_names[index]; *n; n = &(*n)->next)
415 		if ((*n)->major == major)
416 			break;
417 	if (!*n || strcmp((*n)->name, name)) {
418 		WARN_ON(1);
419 	} else {
420 		p = *n;
421 		*n = p->next;
422 	}
423 	mutex_unlock(&block_class_lock);
424 	kfree(p);
425 }
426 
427 EXPORT_SYMBOL(unregister_blkdev);
428 
429 static struct kobj_map *bdev_map;
430 
431 /**
432  * blk_mangle_minor - scatter minor numbers apart
433  * @minor: minor number to mangle
434  *
435  * Scatter consecutively allocated @minor number apart if MANGLE_DEVT
436  * is enabled.  Mangling twice gives the original value.
437  *
438  * RETURNS:
439  * Mangled value.
440  *
441  * CONTEXT:
442  * Don't care.
443  */
blk_mangle_minor(int minor)444 static int blk_mangle_minor(int minor)
445 {
446 #ifdef CONFIG_DEBUG_BLOCK_EXT_DEVT
447 	int i;
448 
449 	for (i = 0; i < MINORBITS / 2; i++) {
450 		int low = minor & (1 << i);
451 		int high = minor & (1 << (MINORBITS - 1 - i));
452 		int distance = MINORBITS - 1 - 2 * i;
453 
454 		minor ^= low | high;	/* clear both bits */
455 		low <<= distance;	/* swap the positions */
456 		high >>= distance;
457 		minor |= low | high;	/* and set */
458 	}
459 #endif
460 	return minor;
461 }
462 
463 /**
464  * blk_alloc_devt - allocate a dev_t for a partition
465  * @part: partition to allocate dev_t for
466  * @devt: out parameter for resulting dev_t
467  *
468  * Allocate a dev_t for block device.
469  *
470  * RETURNS:
471  * 0 on success, allocated dev_t is returned in *@devt.  -errno on
472  * failure.
473  *
474  * CONTEXT:
475  * Might sleep.
476  */
blk_alloc_devt(struct hd_struct * part,dev_t * devt)477 int blk_alloc_devt(struct hd_struct *part, dev_t *devt)
478 {
479 	struct gendisk *disk = part_to_disk(part);
480 	int idx;
481 
482 	/* in consecutive minor range? */
483 	if (part->partno < disk->minors) {
484 		*devt = MKDEV(disk->major, disk->first_minor + part->partno);
485 		return 0;
486 	}
487 
488 	/* allocate ext devt */
489 	idr_preload(GFP_KERNEL);
490 
491 	spin_lock_bh(&ext_devt_lock);
492 	idx = idr_alloc(&ext_devt_idr, part, 0, NR_EXT_DEVT, GFP_NOWAIT);
493 	spin_unlock_bh(&ext_devt_lock);
494 
495 	idr_preload_end();
496 	if (idx < 0)
497 		return idx == -ENOSPC ? -EBUSY : idx;
498 
499 	*devt = MKDEV(BLOCK_EXT_MAJOR, blk_mangle_minor(idx));
500 	return 0;
501 }
502 
503 /**
504  * blk_free_devt - free a dev_t
505  * @devt: dev_t to free
506  *
507  * Free @devt which was allocated using blk_alloc_devt().
508  *
509  * CONTEXT:
510  * Might sleep.
511  */
blk_free_devt(dev_t devt)512 void blk_free_devt(dev_t devt)
513 {
514 	if (devt == MKDEV(0, 0))
515 		return;
516 
517 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
518 		spin_lock_bh(&ext_devt_lock);
519 		idr_remove(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
520 		spin_unlock_bh(&ext_devt_lock);
521 	}
522 }
523 
524 /**
525  *	We invalidate devt by assigning NULL pointer for devt in idr.
526  */
blk_invalidate_devt(dev_t devt)527 void blk_invalidate_devt(dev_t devt)
528 {
529 	if (MAJOR(devt) == BLOCK_EXT_MAJOR) {
530 		spin_lock_bh(&ext_devt_lock);
531 		idr_replace(&ext_devt_idr, NULL, blk_mangle_minor(MINOR(devt)));
532 		spin_unlock_bh(&ext_devt_lock);
533 	}
534 }
535 
bdevt_str(dev_t devt,char * buf)536 static char *bdevt_str(dev_t devt, char *buf)
537 {
538 	if (MAJOR(devt) <= 0xff && MINOR(devt) <= 0xff) {
539 		char tbuf[BDEVT_SIZE];
540 		snprintf(tbuf, BDEVT_SIZE, "%02x%02x", MAJOR(devt), MINOR(devt));
541 		snprintf(buf, BDEVT_SIZE, "%-9s", tbuf);
542 	} else
543 		snprintf(buf, BDEVT_SIZE, "%03x:%05x", MAJOR(devt), MINOR(devt));
544 
545 	return buf;
546 }
547 
548 /*
549  * Register device numbers dev..(dev+range-1)
550  * range must be nonzero
551  * The hash chain is sorted on range, so that subranges can override.
552  */
blk_register_region(dev_t devt,unsigned long range,struct module * module,struct kobject * (* probe)(dev_t,int *,void *),int (* lock)(dev_t,void *),void * data)553 void blk_register_region(dev_t devt, unsigned long range, struct module *module,
554 			 struct kobject *(*probe)(dev_t, int *, void *),
555 			 int (*lock)(dev_t, void *), void *data)
556 {
557 	kobj_map(bdev_map, devt, range, module, probe, lock, data);
558 }
559 
560 EXPORT_SYMBOL(blk_register_region);
561 
blk_unregister_region(dev_t devt,unsigned long range)562 void blk_unregister_region(dev_t devt, unsigned long range)
563 {
564 	kobj_unmap(bdev_map, devt, range);
565 }
566 
567 EXPORT_SYMBOL(blk_unregister_region);
568 
exact_match(dev_t devt,int * partno,void * data)569 static struct kobject *exact_match(dev_t devt, int *partno, void *data)
570 {
571 	struct gendisk *p = data;
572 
573 	return &disk_to_dev(p)->kobj;
574 }
575 
exact_lock(dev_t devt,void * data)576 static int exact_lock(dev_t devt, void *data)
577 {
578 	struct gendisk *p = data;
579 
580 	if (!get_disk_and_module(p))
581 		return -1;
582 	return 0;
583 }
584 
register_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups)585 static void register_disk(struct device *parent, struct gendisk *disk,
586 			  const struct attribute_group **groups)
587 {
588 	struct device *ddev = disk_to_dev(disk);
589 	struct block_device *bdev;
590 	struct disk_part_iter piter;
591 	struct hd_struct *part;
592 	int err;
593 
594 	ddev->parent = parent;
595 
596 	dev_set_name(ddev, "%s", disk->disk_name);
597 
598 	/* delay uevents, until we scanned partition table */
599 	dev_set_uevent_suppress(ddev, 1);
600 
601 	if (groups) {
602 		WARN_ON(ddev->groups);
603 		ddev->groups = groups;
604 	}
605 	if (device_add(ddev))
606 		return;
607 	if (!sysfs_deprecated) {
608 		err = sysfs_create_link(block_depr, &ddev->kobj,
609 					kobject_name(&ddev->kobj));
610 		if (err) {
611 			device_del(ddev);
612 			return;
613 		}
614 	}
615 
616 	/*
617 	 * avoid probable deadlock caused by allocating memory with
618 	 * GFP_KERNEL in runtime_resume callback of its all ancestor
619 	 * devices
620 	 */
621 	pm_runtime_set_memalloc_noio(ddev, true);
622 
623 	disk->part0.holder_dir = kobject_create_and_add("holders", &ddev->kobj);
624 	disk->slave_dir = kobject_create_and_add("slaves", &ddev->kobj);
625 
626 	if (disk->flags & GENHD_FL_HIDDEN)
627 		return;
628 
629 	/* No minors to use for partitions */
630 	if (!disk_part_scan_enabled(disk))
631 		goto exit;
632 
633 	/* No such device (e.g., media were just removed) */
634 	if (!get_capacity(disk))
635 		goto exit;
636 
637 	bdev = bdget_disk(disk, 0);
638 	if (!bdev)
639 		goto exit;
640 
641 	bdev->bd_invalidated = 1;
642 	err = blkdev_get(bdev, FMODE_READ, NULL);
643 	if (err < 0)
644 		goto exit;
645 	blkdev_put(bdev, FMODE_READ);
646 
647 exit:
648 	/* announce disk after possible partitions are created */
649 	dev_set_uevent_suppress(ddev, 0);
650 	kobject_uevent(&ddev->kobj, KOBJ_ADD);
651 
652 	/* announce possible partitions */
653 	disk_part_iter_init(&piter, disk, 0);
654 	while ((part = disk_part_iter_next(&piter)))
655 		kobject_uevent(&part_to_dev(part)->kobj, KOBJ_ADD);
656 	disk_part_iter_exit(&piter);
657 
658 	if (disk->queue->backing_dev_info->dev) {
659 		err = sysfs_create_link(&ddev->kobj,
660 			  &disk->queue->backing_dev_info->dev->kobj,
661 			  "bdi");
662 		WARN_ON(err);
663 	}
664 }
665 
666 /**
667  * __device_add_disk - add disk information to kernel list
668  * @parent: parent device for the disk
669  * @disk: per-device partitioning information
670  * @groups: Additional per-device sysfs groups
671  * @register_queue: register the queue if set to true
672  *
673  * This function registers the partitioning information in @disk
674  * with the kernel.
675  *
676  * FIXME: error handling
677  */
__device_add_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups,bool register_queue)678 static void __device_add_disk(struct device *parent, struct gendisk *disk,
679 			      const struct attribute_group **groups,
680 			      bool register_queue)
681 {
682 	dev_t devt;
683 	int retval;
684 
685 	/* minors == 0 indicates to use ext devt from part0 and should
686 	 * be accompanied with EXT_DEVT flag.  Make sure all
687 	 * parameters make sense.
688 	 */
689 	WARN_ON(disk->minors && !(disk->major || disk->first_minor));
690 	WARN_ON(!disk->minors &&
691 		!(disk->flags & (GENHD_FL_EXT_DEVT | GENHD_FL_HIDDEN)));
692 
693 	disk->flags |= GENHD_FL_UP;
694 
695 	retval = blk_alloc_devt(&disk->part0, &devt);
696 	if (retval) {
697 		WARN_ON(1);
698 		return;
699 	}
700 	disk->major = MAJOR(devt);
701 	disk->first_minor = MINOR(devt);
702 
703 	disk_alloc_events(disk);
704 
705 	if (disk->flags & GENHD_FL_HIDDEN) {
706 		/*
707 		 * Don't let hidden disks show up in /proc/partitions,
708 		 * and don't bother scanning for partitions either.
709 		 */
710 		disk->flags |= GENHD_FL_SUPPRESS_PARTITION_INFO;
711 		disk->flags |= GENHD_FL_NO_PART_SCAN;
712 	} else {
713 		int ret;
714 
715 		/* Register BDI before referencing it from bdev */
716 		disk_to_dev(disk)->devt = devt;
717 		ret = bdi_register_owner(disk->queue->backing_dev_info,
718 						disk_to_dev(disk));
719 		WARN_ON(ret);
720 		blk_register_region(disk_devt(disk), disk->minors, NULL,
721 				    exact_match, exact_lock, disk);
722 	}
723 	register_disk(parent, disk, groups);
724 	if (register_queue)
725 		blk_register_queue(disk);
726 
727 	/*
728 	 * Take an extra ref on queue which will be put on disk_release()
729 	 * so that it sticks around as long as @disk is there.
730 	 */
731 	WARN_ON_ONCE(!blk_get_queue(disk->queue));
732 
733 	disk_add_events(disk);
734 	blk_integrity_add(disk);
735 }
736 
device_add_disk(struct device * parent,struct gendisk * disk,const struct attribute_group ** groups)737 void device_add_disk(struct device *parent, struct gendisk *disk,
738 		     const struct attribute_group **groups)
739 
740 {
741 	__device_add_disk(parent, disk, groups, true);
742 }
743 EXPORT_SYMBOL(device_add_disk);
744 
device_add_disk_no_queue_reg(struct device * parent,struct gendisk * disk)745 void device_add_disk_no_queue_reg(struct device *parent, struct gendisk *disk)
746 {
747 	__device_add_disk(parent, disk, NULL, false);
748 }
749 EXPORT_SYMBOL(device_add_disk_no_queue_reg);
750 
del_gendisk(struct gendisk * disk)751 void del_gendisk(struct gendisk *disk)
752 {
753 	struct disk_part_iter piter;
754 	struct hd_struct *part;
755 
756 	blk_integrity_del(disk);
757 	disk_del_events(disk);
758 
759 	/*
760 	 * Block lookups of the disk until all bdevs are unhashed and the
761 	 * disk is marked as dead (GENHD_FL_UP cleared).
762 	 */
763 	down_write(&disk->lookup_sem);
764 	/* invalidate stuff */
765 	disk_part_iter_init(&piter, disk,
766 			     DISK_PITER_INCL_EMPTY | DISK_PITER_REVERSE);
767 	while ((part = disk_part_iter_next(&piter))) {
768 		invalidate_partition(disk, part->partno);
769 		bdev_unhash_inode(part_devt(part));
770 		delete_partition(disk, part->partno);
771 	}
772 	disk_part_iter_exit(&piter);
773 
774 	invalidate_partition(disk, 0);
775 	bdev_unhash_inode(disk_devt(disk));
776 	set_capacity(disk, 0);
777 	disk->flags &= ~GENHD_FL_UP;
778 	up_write(&disk->lookup_sem);
779 
780 	if (!(disk->flags & GENHD_FL_HIDDEN))
781 		sysfs_remove_link(&disk_to_dev(disk)->kobj, "bdi");
782 	if (disk->queue) {
783 		/*
784 		 * Unregister bdi before releasing device numbers (as they can
785 		 * get reused and we'd get clashes in sysfs).
786 		 */
787 		if (!(disk->flags & GENHD_FL_HIDDEN))
788 			bdi_unregister(disk->queue->backing_dev_info);
789 		blk_unregister_queue(disk);
790 	} else {
791 		WARN_ON(1);
792 	}
793 
794 	if (!(disk->flags & GENHD_FL_HIDDEN))
795 		blk_unregister_region(disk_devt(disk), disk->minors);
796 	/*
797 	 * Remove gendisk pointer from idr so that it cannot be looked up
798 	 * while RCU period before freeing gendisk is running to prevent
799 	 * use-after-free issues. Note that the device number stays
800 	 * "in-use" until we really free the gendisk.
801 	 */
802 	blk_invalidate_devt(disk_devt(disk));
803 
804 	kobject_put(disk->part0.holder_dir);
805 	kobject_put(disk->slave_dir);
806 
807 	part_stat_set_all(&disk->part0, 0);
808 	disk->part0.stamp = 0;
809 	if (!sysfs_deprecated)
810 		sysfs_remove_link(block_depr, dev_name(disk_to_dev(disk)));
811 	pm_runtime_set_memalloc_noio(disk_to_dev(disk), false);
812 	device_del(disk_to_dev(disk));
813 }
814 EXPORT_SYMBOL(del_gendisk);
815 
816 /* sysfs access to bad-blocks list. */
disk_badblocks_show(struct device * dev,struct device_attribute * attr,char * page)817 static ssize_t disk_badblocks_show(struct device *dev,
818 					struct device_attribute *attr,
819 					char *page)
820 {
821 	struct gendisk *disk = dev_to_disk(dev);
822 
823 	if (!disk->bb)
824 		return sprintf(page, "\n");
825 
826 	return badblocks_show(disk->bb, page, 0);
827 }
828 
disk_badblocks_store(struct device * dev,struct device_attribute * attr,const char * page,size_t len)829 static ssize_t disk_badblocks_store(struct device *dev,
830 					struct device_attribute *attr,
831 					const char *page, size_t len)
832 {
833 	struct gendisk *disk = dev_to_disk(dev);
834 
835 	if (!disk->bb)
836 		return -ENXIO;
837 
838 	return badblocks_store(disk->bb, page, len, 0);
839 }
840 
841 /**
842  * get_gendisk - get partitioning information for a given device
843  * @devt: device to get partitioning information for
844  * @partno: returned partition index
845  *
846  * This function gets the structure containing partitioning
847  * information for the given device @devt.
848  */
get_gendisk(dev_t devt,int * partno)849 struct gendisk *get_gendisk(dev_t devt, int *partno)
850 {
851 	struct gendisk *disk = NULL;
852 
853 	if (MAJOR(devt) != BLOCK_EXT_MAJOR) {
854 		struct kobject *kobj;
855 
856 		kobj = kobj_lookup(bdev_map, devt, partno);
857 		if (kobj)
858 			disk = dev_to_disk(kobj_to_dev(kobj));
859 	} else {
860 		struct hd_struct *part;
861 
862 		spin_lock_bh(&ext_devt_lock);
863 		part = idr_find(&ext_devt_idr, blk_mangle_minor(MINOR(devt)));
864 		if (part && get_disk_and_module(part_to_disk(part))) {
865 			*partno = part->partno;
866 			disk = part_to_disk(part);
867 		}
868 		spin_unlock_bh(&ext_devt_lock);
869 	}
870 
871 	if (!disk)
872 		return NULL;
873 
874 	/*
875 	 * Synchronize with del_gendisk() to not return disk that is being
876 	 * destroyed.
877 	 */
878 	down_read(&disk->lookup_sem);
879 	if (unlikely((disk->flags & GENHD_FL_HIDDEN) ||
880 		     !(disk->flags & GENHD_FL_UP))) {
881 		up_read(&disk->lookup_sem);
882 		put_disk_and_module(disk);
883 		disk = NULL;
884 	} else {
885 		up_read(&disk->lookup_sem);
886 	}
887 	return disk;
888 }
889 EXPORT_SYMBOL(get_gendisk);
890 
891 /**
892  * bdget_disk - do bdget() by gendisk and partition number
893  * @disk: gendisk of interest
894  * @partno: partition number
895  *
896  * Find partition @partno from @disk, do bdget() on it.
897  *
898  * CONTEXT:
899  * Don't care.
900  *
901  * RETURNS:
902  * Resulting block_device on success, NULL on failure.
903  */
bdget_disk(struct gendisk * disk,int partno)904 struct block_device *bdget_disk(struct gendisk *disk, int partno)
905 {
906 	struct hd_struct *part;
907 	struct block_device *bdev = NULL;
908 
909 	part = disk_get_part(disk, partno);
910 	if (part)
911 		bdev = bdget(part_devt(part));
912 	disk_put_part(part);
913 
914 	return bdev;
915 }
916 EXPORT_SYMBOL(bdget_disk);
917 
918 /*
919  * print a full list of all partitions - intended for places where the root
920  * filesystem can't be mounted and thus to give the victim some idea of what
921  * went wrong
922  */
printk_all_partitions(void)923 void __init printk_all_partitions(void)
924 {
925 	struct class_dev_iter iter;
926 	struct device *dev;
927 
928 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
929 	while ((dev = class_dev_iter_next(&iter))) {
930 		struct gendisk *disk = dev_to_disk(dev);
931 		struct disk_part_iter piter;
932 		struct hd_struct *part;
933 		char name_buf[BDEVNAME_SIZE];
934 		char devt_buf[BDEVT_SIZE];
935 
936 		/*
937 		 * Don't show empty devices or things that have been
938 		 * suppressed
939 		 */
940 		if (get_capacity(disk) == 0 ||
941 		    (disk->flags & GENHD_FL_SUPPRESS_PARTITION_INFO))
942 			continue;
943 
944 		/*
945 		 * Note, unlike /proc/partitions, I am showing the
946 		 * numbers in hex - the same format as the root=
947 		 * option takes.
948 		 */
949 		disk_part_iter_init(&piter, disk, DISK_PITER_INCL_PART0);
950 		while ((part = disk_part_iter_next(&piter))) {
951 			bool is_part0 = part == &disk->part0;
952 
953 			printk("%s%s %10llu %s %s", is_part0 ? "" : "  ",
954 			       bdevt_str(part_devt(part), devt_buf),
955 			       (unsigned long long)part_nr_sects_read(part) >> 1
956 			       , disk_name(disk, part->partno, name_buf),
957 			       part->info ? part->info->uuid : "");
958 			if (is_part0) {
959 				if (dev->parent && dev->parent->driver)
960 					printk(" driver: %s\n",
961 					      dev->parent->driver->name);
962 				else
963 					printk(" (driver?)\n");
964 			} else
965 				printk("\n");
966 		}
967 		disk_part_iter_exit(&piter);
968 	}
969 	class_dev_iter_exit(&iter);
970 }
971 
972 #ifdef CONFIG_PROC_FS
973 /* iterator */
disk_seqf_start(struct seq_file * seqf,loff_t * pos)974 static void *disk_seqf_start(struct seq_file *seqf, loff_t *pos)
975 {
976 	loff_t skip = *pos;
977 	struct class_dev_iter *iter;
978 	struct device *dev;
979 
980 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
981 	if (!iter)
982 		return ERR_PTR(-ENOMEM);
983 
984 	seqf->private = iter;
985 	class_dev_iter_init(iter, &block_class, NULL, &disk_type);
986 	do {
987 		dev = class_dev_iter_next(iter);
988 		if (!dev)
989 			return NULL;
990 	} while (skip--);
991 
992 	return dev_to_disk(dev);
993 }
994 
disk_seqf_next(struct seq_file * seqf,void * v,loff_t * pos)995 static void *disk_seqf_next(struct seq_file *seqf, void *v, loff_t *pos)
996 {
997 	struct device *dev;
998 
999 	(*pos)++;
1000 	dev = class_dev_iter_next(seqf->private);
1001 	if (dev)
1002 		return dev_to_disk(dev);
1003 
1004 	return NULL;
1005 }
1006 
disk_seqf_stop(struct seq_file * seqf,void * v)1007 static void disk_seqf_stop(struct seq_file *seqf, void *v)
1008 {
1009 	struct class_dev_iter *iter = seqf->private;
1010 
1011 	/* stop is called even after start failed :-( */
1012 	if (iter) {
1013 		class_dev_iter_exit(iter);
1014 		kfree(iter);
1015 		seqf->private = NULL;
1016 	}
1017 }
1018 
show_partition_start(struct seq_file * seqf,loff_t * pos)1019 static void *show_partition_start(struct seq_file *seqf, loff_t *pos)
1020 {
1021 	void *p;
1022 
1023 	p = disk_seqf_start(seqf, pos);
1024 	if (!IS_ERR_OR_NULL(p) && !*pos)
1025 		seq_puts(seqf, "major minor  #blocks  name\n\n");
1026 	return p;
1027 }
1028 
show_partition(struct seq_file * seqf,void * v)1029 static int show_partition(struct seq_file *seqf, void *v)
1030 {
1031 	struct gendisk *sgp = v;
1032 	struct disk_part_iter piter;
1033 	struct hd_struct *part;
1034 	char buf[BDEVNAME_SIZE];
1035 
1036 	/* Don't show non-partitionable removeable devices or empty devices */
1037 	if (!get_capacity(sgp) || (!disk_max_parts(sgp) &&
1038 				   (sgp->flags & GENHD_FL_REMOVABLE)))
1039 		return 0;
1040 	if (sgp->flags & GENHD_FL_SUPPRESS_PARTITION_INFO)
1041 		return 0;
1042 
1043 	/* show the full disk and all non-0 size partitions of it */
1044 	disk_part_iter_init(&piter, sgp, DISK_PITER_INCL_PART0);
1045 	while ((part = disk_part_iter_next(&piter)))
1046 		seq_printf(seqf, "%4d  %7d %10llu %s\n",
1047 			   MAJOR(part_devt(part)), MINOR(part_devt(part)),
1048 			   (unsigned long long)part_nr_sects_read(part) >> 1,
1049 			   disk_name(sgp, part->partno, buf));
1050 	disk_part_iter_exit(&piter);
1051 
1052 	return 0;
1053 }
1054 
1055 static const struct seq_operations partitions_op = {
1056 	.start	= show_partition_start,
1057 	.next	= disk_seqf_next,
1058 	.stop	= disk_seqf_stop,
1059 	.show	= show_partition
1060 };
1061 #endif
1062 
1063 
base_probe(dev_t devt,int * partno,void * data)1064 static struct kobject *base_probe(dev_t devt, int *partno, void *data)
1065 {
1066 	if (request_module("block-major-%d-%d", MAJOR(devt), MINOR(devt)) > 0)
1067 		/* Make old-style 2.4 aliases work */
1068 		request_module("block-major-%d", MAJOR(devt));
1069 	return NULL;
1070 }
1071 
genhd_device_init(void)1072 static int __init genhd_device_init(void)
1073 {
1074 	int error;
1075 
1076 	block_class.dev_kobj = sysfs_dev_block_kobj;
1077 	error = class_register(&block_class);
1078 	if (unlikely(error))
1079 		return error;
1080 	bdev_map = kobj_map_init(base_probe, &block_class_lock);
1081 	blk_dev_init();
1082 
1083 	register_blkdev(BLOCK_EXT_MAJOR, "blkext");
1084 
1085 	/* create top-level block dir */
1086 	if (!sysfs_deprecated)
1087 		block_depr = kobject_create_and_add("block", NULL);
1088 	return 0;
1089 }
1090 
1091 subsys_initcall(genhd_device_init);
1092 
disk_range_show(struct device * dev,struct device_attribute * attr,char * buf)1093 static ssize_t disk_range_show(struct device *dev,
1094 			       struct device_attribute *attr, char *buf)
1095 {
1096 	struct gendisk *disk = dev_to_disk(dev);
1097 
1098 	return sprintf(buf, "%d\n", disk->minors);
1099 }
1100 
disk_ext_range_show(struct device * dev,struct device_attribute * attr,char * buf)1101 static ssize_t disk_ext_range_show(struct device *dev,
1102 				   struct device_attribute *attr, char *buf)
1103 {
1104 	struct gendisk *disk = dev_to_disk(dev);
1105 
1106 	return sprintf(buf, "%d\n", disk_max_parts(disk));
1107 }
1108 
disk_removable_show(struct device * dev,struct device_attribute * attr,char * buf)1109 static ssize_t disk_removable_show(struct device *dev,
1110 				   struct device_attribute *attr, char *buf)
1111 {
1112 	struct gendisk *disk = dev_to_disk(dev);
1113 
1114 	return sprintf(buf, "%d\n",
1115 		       (disk->flags & GENHD_FL_REMOVABLE ? 1 : 0));
1116 }
1117 
disk_hidden_show(struct device * dev,struct device_attribute * attr,char * buf)1118 static ssize_t disk_hidden_show(struct device *dev,
1119 				   struct device_attribute *attr, char *buf)
1120 {
1121 	struct gendisk *disk = dev_to_disk(dev);
1122 
1123 	return sprintf(buf, "%d\n",
1124 		       (disk->flags & GENHD_FL_HIDDEN ? 1 : 0));
1125 }
1126 
disk_ro_show(struct device * dev,struct device_attribute * attr,char * buf)1127 static ssize_t disk_ro_show(struct device *dev,
1128 				   struct device_attribute *attr, char *buf)
1129 {
1130 	struct gendisk *disk = dev_to_disk(dev);
1131 
1132 	return sprintf(buf, "%d\n", get_disk_ro(disk) ? 1 : 0);
1133 }
1134 
disk_capability_show(struct device * dev,struct device_attribute * attr,char * buf)1135 static ssize_t disk_capability_show(struct device *dev,
1136 				    struct device_attribute *attr, char *buf)
1137 {
1138 	struct gendisk *disk = dev_to_disk(dev);
1139 
1140 	return sprintf(buf, "%x\n", disk->flags);
1141 }
1142 
disk_alignment_offset_show(struct device * dev,struct device_attribute * attr,char * buf)1143 static ssize_t disk_alignment_offset_show(struct device *dev,
1144 					  struct device_attribute *attr,
1145 					  char *buf)
1146 {
1147 	struct gendisk *disk = dev_to_disk(dev);
1148 
1149 	return sprintf(buf, "%d\n", queue_alignment_offset(disk->queue));
1150 }
1151 
disk_discard_alignment_show(struct device * dev,struct device_attribute * attr,char * buf)1152 static ssize_t disk_discard_alignment_show(struct device *dev,
1153 					   struct device_attribute *attr,
1154 					   char *buf)
1155 {
1156 	struct gendisk *disk = dev_to_disk(dev);
1157 
1158 	return sprintf(buf, "%d\n", queue_discard_alignment(disk->queue));
1159 }
1160 
1161 static DEVICE_ATTR(range, 0444, disk_range_show, NULL);
1162 static DEVICE_ATTR(ext_range, 0444, disk_ext_range_show, NULL);
1163 static DEVICE_ATTR(removable, 0444, disk_removable_show, NULL);
1164 static DEVICE_ATTR(hidden, 0444, disk_hidden_show, NULL);
1165 static DEVICE_ATTR(ro, 0444, disk_ro_show, NULL);
1166 static DEVICE_ATTR(size, 0444, part_size_show, NULL);
1167 static DEVICE_ATTR(alignment_offset, 0444, disk_alignment_offset_show, NULL);
1168 static DEVICE_ATTR(discard_alignment, 0444, disk_discard_alignment_show, NULL);
1169 static DEVICE_ATTR(capability, 0444, disk_capability_show, NULL);
1170 static DEVICE_ATTR(stat, 0444, part_stat_show, NULL);
1171 static DEVICE_ATTR(inflight, 0444, part_inflight_show, NULL);
1172 static DEVICE_ATTR(badblocks, 0644, disk_badblocks_show, disk_badblocks_store);
1173 #ifdef CONFIG_FAIL_MAKE_REQUEST
1174 static struct device_attribute dev_attr_fail =
1175 	__ATTR(make-it-fail, 0644, part_fail_show, part_fail_store);
1176 #endif
1177 #ifdef CONFIG_FAIL_IO_TIMEOUT
1178 static struct device_attribute dev_attr_fail_timeout =
1179 	__ATTR(io-timeout-fail, 0644, part_timeout_show, part_timeout_store);
1180 #endif
1181 
1182 static struct attribute *disk_attrs[] = {
1183 	&dev_attr_range.attr,
1184 	&dev_attr_ext_range.attr,
1185 	&dev_attr_removable.attr,
1186 	&dev_attr_hidden.attr,
1187 	&dev_attr_ro.attr,
1188 	&dev_attr_size.attr,
1189 	&dev_attr_alignment_offset.attr,
1190 	&dev_attr_discard_alignment.attr,
1191 	&dev_attr_capability.attr,
1192 	&dev_attr_stat.attr,
1193 	&dev_attr_inflight.attr,
1194 	&dev_attr_badblocks.attr,
1195 #ifdef CONFIG_FAIL_MAKE_REQUEST
1196 	&dev_attr_fail.attr,
1197 #endif
1198 #ifdef CONFIG_FAIL_IO_TIMEOUT
1199 	&dev_attr_fail_timeout.attr,
1200 #endif
1201 	NULL
1202 };
1203 
disk_visible(struct kobject * kobj,struct attribute * a,int n)1204 static umode_t disk_visible(struct kobject *kobj, struct attribute *a, int n)
1205 {
1206 	struct device *dev = container_of(kobj, typeof(*dev), kobj);
1207 	struct gendisk *disk = dev_to_disk(dev);
1208 
1209 	if (a == &dev_attr_badblocks.attr && !disk->bb)
1210 		return 0;
1211 	return a->mode;
1212 }
1213 
1214 static struct attribute_group disk_attr_group = {
1215 	.attrs = disk_attrs,
1216 	.is_visible = disk_visible,
1217 };
1218 
1219 static const struct attribute_group *disk_attr_groups[] = {
1220 	&disk_attr_group,
1221 	NULL
1222 };
1223 
1224 /**
1225  * disk_replace_part_tbl - replace disk->part_tbl in RCU-safe way
1226  * @disk: disk to replace part_tbl for
1227  * @new_ptbl: new part_tbl to install
1228  *
1229  * Replace disk->part_tbl with @new_ptbl in RCU-safe way.  The
1230  * original ptbl is freed using RCU callback.
1231  *
1232  * LOCKING:
1233  * Matching bd_mutex locked or the caller is the only user of @disk.
1234  */
disk_replace_part_tbl(struct gendisk * disk,struct disk_part_tbl * new_ptbl)1235 static void disk_replace_part_tbl(struct gendisk *disk,
1236 				  struct disk_part_tbl *new_ptbl)
1237 {
1238 	struct disk_part_tbl *old_ptbl =
1239 		rcu_dereference_protected(disk->part_tbl, 1);
1240 
1241 	rcu_assign_pointer(disk->part_tbl, new_ptbl);
1242 
1243 	if (old_ptbl) {
1244 		rcu_assign_pointer(old_ptbl->last_lookup, NULL);
1245 		kfree_rcu(old_ptbl, rcu_head);
1246 	}
1247 }
1248 
1249 /**
1250  * disk_expand_part_tbl - expand disk->part_tbl
1251  * @disk: disk to expand part_tbl for
1252  * @partno: expand such that this partno can fit in
1253  *
1254  * Expand disk->part_tbl such that @partno can fit in.  disk->part_tbl
1255  * uses RCU to allow unlocked dereferencing for stats and other stuff.
1256  *
1257  * LOCKING:
1258  * Matching bd_mutex locked or the caller is the only user of @disk.
1259  * Might sleep.
1260  *
1261  * RETURNS:
1262  * 0 on success, -errno on failure.
1263  */
disk_expand_part_tbl(struct gendisk * disk,int partno)1264 int disk_expand_part_tbl(struct gendisk *disk, int partno)
1265 {
1266 	struct disk_part_tbl *old_ptbl =
1267 		rcu_dereference_protected(disk->part_tbl, 1);
1268 	struct disk_part_tbl *new_ptbl;
1269 	int len = old_ptbl ? old_ptbl->len : 0;
1270 	int i, target;
1271 	size_t size;
1272 
1273 	/*
1274 	 * check for int overflow, since we can get here from blkpg_ioctl()
1275 	 * with a user passed 'partno'.
1276 	 */
1277 	target = partno + 1;
1278 	if (target < 0)
1279 		return -EINVAL;
1280 
1281 	/* disk_max_parts() is zero during initialization, ignore if so */
1282 	if (disk_max_parts(disk) && target > disk_max_parts(disk))
1283 		return -EINVAL;
1284 
1285 	if (target <= len)
1286 		return 0;
1287 
1288 	size = sizeof(*new_ptbl) + target * sizeof(new_ptbl->part[0]);
1289 	new_ptbl = kzalloc_node(size, GFP_KERNEL, disk->node_id);
1290 	if (!new_ptbl)
1291 		return -ENOMEM;
1292 
1293 	new_ptbl->len = target;
1294 
1295 	for (i = 0; i < len; i++)
1296 		rcu_assign_pointer(new_ptbl->part[i], old_ptbl->part[i]);
1297 
1298 	disk_replace_part_tbl(disk, new_ptbl);
1299 	return 0;
1300 }
1301 
disk_release(struct device * dev)1302 static void disk_release(struct device *dev)
1303 {
1304 	struct gendisk *disk = dev_to_disk(dev);
1305 
1306 	blk_free_devt(dev->devt);
1307 	disk_release_events(disk);
1308 	kfree(disk->random);
1309 	disk_replace_part_tbl(disk, NULL);
1310 	hd_free_part(&disk->part0);
1311 	if (disk->queue)
1312 		blk_put_queue(disk->queue);
1313 	kfree(disk);
1314 }
1315 struct class block_class = {
1316 	.name		= "block",
1317 };
1318 
block_devnode(struct device * dev,umode_t * mode,kuid_t * uid,kgid_t * gid)1319 static char *block_devnode(struct device *dev, umode_t *mode,
1320 			   kuid_t *uid, kgid_t *gid)
1321 {
1322 	struct gendisk *disk = dev_to_disk(dev);
1323 
1324 	if (disk->devnode)
1325 		return disk->devnode(disk, mode);
1326 	return NULL;
1327 }
1328 
1329 static const struct device_type disk_type = {
1330 	.name		= "disk",
1331 	.groups		= disk_attr_groups,
1332 	.release	= disk_release,
1333 	.devnode	= block_devnode,
1334 };
1335 
1336 #ifdef CONFIG_PROC_FS
1337 /*
1338  * aggregate disk stat collector.  Uses the same stats that the sysfs
1339  * entries do, above, but makes them available through one seq_file.
1340  *
1341  * The output looks suspiciously like /proc/partitions with a bunch of
1342  * extra fields.
1343  */
diskstats_show(struct seq_file * seqf,void * v)1344 static int diskstats_show(struct seq_file *seqf, void *v)
1345 {
1346 	struct gendisk *gp = v;
1347 	struct disk_part_iter piter;
1348 	struct hd_struct *hd;
1349 	char buf[BDEVNAME_SIZE];
1350 	unsigned int inflight[2];
1351 	int cpu;
1352 
1353 	/*
1354 	if (&disk_to_dev(gp)->kobj.entry == block_class.devices.next)
1355 		seq_puts(seqf,	"major minor name"
1356 				"     rio rmerge rsect ruse wio wmerge "
1357 				"wsect wuse running use aveq"
1358 				"\n\n");
1359 	*/
1360 
1361 	disk_part_iter_init(&piter, gp, DISK_PITER_INCL_EMPTY_PART0);
1362 	while ((hd = disk_part_iter_next(&piter))) {
1363 		cpu = part_stat_lock();
1364 		part_round_stats(gp->queue, cpu, hd);
1365 		part_stat_unlock();
1366 		part_in_flight(gp->queue, hd, inflight);
1367 		seq_printf(seqf, "%4d %7d %s "
1368 			   "%lu %lu %lu %u "
1369 			   "%lu %lu %lu %u "
1370 			   "%u %u %u "
1371 			   "%lu %lu %lu %u\n",
1372 			   MAJOR(part_devt(hd)), MINOR(part_devt(hd)),
1373 			   disk_name(gp, hd->partno, buf),
1374 			   part_stat_read(hd, ios[STAT_READ]),
1375 			   part_stat_read(hd, merges[STAT_READ]),
1376 			   part_stat_read(hd, sectors[STAT_READ]),
1377 			   (unsigned int)part_stat_read_msecs(hd, STAT_READ),
1378 			   part_stat_read(hd, ios[STAT_WRITE]),
1379 			   part_stat_read(hd, merges[STAT_WRITE]),
1380 			   part_stat_read(hd, sectors[STAT_WRITE]),
1381 			   (unsigned int)part_stat_read_msecs(hd, STAT_WRITE),
1382 			   inflight[0],
1383 			   jiffies_to_msecs(part_stat_read(hd, io_ticks)),
1384 			   jiffies_to_msecs(part_stat_read(hd, time_in_queue)),
1385 			   part_stat_read(hd, ios[STAT_DISCARD]),
1386 			   part_stat_read(hd, merges[STAT_DISCARD]),
1387 			   part_stat_read(hd, sectors[STAT_DISCARD]),
1388 			   (unsigned int)part_stat_read_msecs(hd, STAT_DISCARD)
1389 			);
1390 	}
1391 	disk_part_iter_exit(&piter);
1392 
1393 	return 0;
1394 }
1395 
1396 static const struct seq_operations diskstats_op = {
1397 	.start	= disk_seqf_start,
1398 	.next	= disk_seqf_next,
1399 	.stop	= disk_seqf_stop,
1400 	.show	= diskstats_show
1401 };
1402 
proc_genhd_init(void)1403 static int __init proc_genhd_init(void)
1404 {
1405 	proc_create_seq("diskstats", 0, NULL, &diskstats_op);
1406 	proc_create_seq("partitions", 0, NULL, &partitions_op);
1407 	return 0;
1408 }
1409 module_init(proc_genhd_init);
1410 #endif /* CONFIG_PROC_FS */
1411 
blk_lookup_devt(const char * name,int partno)1412 dev_t blk_lookup_devt(const char *name, int partno)
1413 {
1414 	dev_t devt = MKDEV(0, 0);
1415 	struct class_dev_iter iter;
1416 	struct device *dev;
1417 
1418 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1419 	while ((dev = class_dev_iter_next(&iter))) {
1420 		struct gendisk *disk = dev_to_disk(dev);
1421 		struct hd_struct *part;
1422 
1423 		if (strcmp(dev_name(dev), name))
1424 			continue;
1425 
1426 		if (partno < disk->minors) {
1427 			/* We need to return the right devno, even
1428 			 * if the partition doesn't exist yet.
1429 			 */
1430 			devt = MKDEV(MAJOR(dev->devt),
1431 				     MINOR(dev->devt) + partno);
1432 			break;
1433 		}
1434 		part = disk_get_part(disk, partno);
1435 		if (part) {
1436 			devt = part_devt(part);
1437 			disk_put_part(part);
1438 			break;
1439 		}
1440 		disk_put_part(part);
1441 	}
1442 	class_dev_iter_exit(&iter);
1443 	return devt;
1444 }
1445 EXPORT_SYMBOL(blk_lookup_devt);
1446 
__alloc_disk_node(int minors,int node_id)1447 struct gendisk *__alloc_disk_node(int minors, int node_id)
1448 {
1449 	struct gendisk *disk;
1450 	struct disk_part_tbl *ptbl;
1451 
1452 	if (minors > DISK_MAX_PARTS) {
1453 		printk(KERN_ERR
1454 			"block: can't allocate more than %d partitions\n",
1455 			DISK_MAX_PARTS);
1456 		minors = DISK_MAX_PARTS;
1457 	}
1458 
1459 	disk = kzalloc_node(sizeof(struct gendisk), GFP_KERNEL, node_id);
1460 	if (disk) {
1461 		if (!init_part_stats(&disk->part0)) {
1462 			kfree(disk);
1463 			return NULL;
1464 		}
1465 		init_rwsem(&disk->lookup_sem);
1466 		disk->node_id = node_id;
1467 		if (disk_expand_part_tbl(disk, 0)) {
1468 			free_part_stats(&disk->part0);
1469 			kfree(disk);
1470 			return NULL;
1471 		}
1472 		ptbl = rcu_dereference_protected(disk->part_tbl, 1);
1473 		rcu_assign_pointer(ptbl->part[0], &disk->part0);
1474 
1475 		/*
1476 		 * set_capacity() and get_capacity() currently don't use
1477 		 * seqcounter to read/update the part0->nr_sects. Still init
1478 		 * the counter as we can read the sectors in IO submission
1479 		 * patch using seqence counters.
1480 		 *
1481 		 * TODO: Ideally set_capacity() and get_capacity() should be
1482 		 * converted to make use of bd_mutex and sequence counters.
1483 		 */
1484 		seqcount_init(&disk->part0.nr_sects_seq);
1485 		if (hd_ref_init(&disk->part0)) {
1486 			hd_free_part(&disk->part0);
1487 			kfree(disk);
1488 			return NULL;
1489 		}
1490 
1491 		disk->minors = minors;
1492 		rand_initialize_disk(disk);
1493 		disk_to_dev(disk)->class = &block_class;
1494 		disk_to_dev(disk)->type = &disk_type;
1495 		device_initialize(disk_to_dev(disk));
1496 	}
1497 	return disk;
1498 }
1499 EXPORT_SYMBOL(__alloc_disk_node);
1500 
get_disk_and_module(struct gendisk * disk)1501 struct kobject *get_disk_and_module(struct gendisk *disk)
1502 {
1503 	struct module *owner;
1504 	struct kobject *kobj;
1505 
1506 	if (!disk->fops)
1507 		return NULL;
1508 	owner = disk->fops->owner;
1509 	if (owner && !try_module_get(owner))
1510 		return NULL;
1511 	kobj = kobject_get_unless_zero(&disk_to_dev(disk)->kobj);
1512 	if (kobj == NULL) {
1513 		module_put(owner);
1514 		return NULL;
1515 	}
1516 	return kobj;
1517 
1518 }
1519 EXPORT_SYMBOL(get_disk_and_module);
1520 
put_disk(struct gendisk * disk)1521 void put_disk(struct gendisk *disk)
1522 {
1523 	if (disk)
1524 		kobject_put(&disk_to_dev(disk)->kobj);
1525 }
1526 EXPORT_SYMBOL(put_disk);
1527 
1528 /*
1529  * This is a counterpart of get_disk_and_module() and thus also of
1530  * get_gendisk().
1531  */
put_disk_and_module(struct gendisk * disk)1532 void put_disk_and_module(struct gendisk *disk)
1533 {
1534 	if (disk) {
1535 		struct module *owner = disk->fops->owner;
1536 
1537 		put_disk(disk);
1538 		module_put(owner);
1539 	}
1540 }
1541 EXPORT_SYMBOL(put_disk_and_module);
1542 
set_disk_ro_uevent(struct gendisk * gd,int ro)1543 static void set_disk_ro_uevent(struct gendisk *gd, int ro)
1544 {
1545 	char event[] = "DISK_RO=1";
1546 	char *envp[] = { event, NULL };
1547 
1548 	if (!ro)
1549 		event[8] = '0';
1550 	kobject_uevent_env(&disk_to_dev(gd)->kobj, KOBJ_CHANGE, envp);
1551 }
1552 
set_device_ro(struct block_device * bdev,int flag)1553 void set_device_ro(struct block_device *bdev, int flag)
1554 {
1555 	bdev->bd_part->policy = flag;
1556 }
1557 
1558 EXPORT_SYMBOL(set_device_ro);
1559 
set_disk_ro(struct gendisk * disk,int flag)1560 void set_disk_ro(struct gendisk *disk, int flag)
1561 {
1562 	struct disk_part_iter piter;
1563 	struct hd_struct *part;
1564 
1565 	if (disk->part0.policy != flag) {
1566 		set_disk_ro_uevent(disk, flag);
1567 		disk->part0.policy = flag;
1568 	}
1569 
1570 	disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
1571 	while ((part = disk_part_iter_next(&piter)))
1572 		part->policy = flag;
1573 	disk_part_iter_exit(&piter);
1574 }
1575 
1576 EXPORT_SYMBOL(set_disk_ro);
1577 
bdev_read_only(struct block_device * bdev)1578 int bdev_read_only(struct block_device *bdev)
1579 {
1580 	if (!bdev)
1581 		return 0;
1582 	return bdev->bd_part->policy;
1583 }
1584 
1585 EXPORT_SYMBOL(bdev_read_only);
1586 
invalidate_partition(struct gendisk * disk,int partno)1587 int invalidate_partition(struct gendisk *disk, int partno)
1588 {
1589 	int res = 0;
1590 	struct block_device *bdev = bdget_disk(disk, partno);
1591 	if (bdev) {
1592 		fsync_bdev(bdev);
1593 		res = __invalidate_device(bdev, true);
1594 		bdput(bdev);
1595 	}
1596 	return res;
1597 }
1598 
1599 EXPORT_SYMBOL(invalidate_partition);
1600 
1601 /*
1602  * Disk events - monitor disk events like media change and eject request.
1603  */
1604 struct disk_events {
1605 	struct list_head	node;		/* all disk_event's */
1606 	struct gendisk		*disk;		/* the associated disk */
1607 	spinlock_t		lock;
1608 
1609 	struct mutex		block_mutex;	/* protects blocking */
1610 	int			block;		/* event blocking depth */
1611 	unsigned int		pending;	/* events already sent out */
1612 	unsigned int		clearing;	/* events being cleared */
1613 
1614 	long			poll_msecs;	/* interval, -1 for default */
1615 	struct delayed_work	dwork;
1616 };
1617 
1618 static const char *disk_events_strs[] = {
1619 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "media_change",
1620 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "eject_request",
1621 };
1622 
1623 static char *disk_uevents[] = {
1624 	[ilog2(DISK_EVENT_MEDIA_CHANGE)]	= "DISK_MEDIA_CHANGE=1",
1625 	[ilog2(DISK_EVENT_EJECT_REQUEST)]	= "DISK_EJECT_REQUEST=1",
1626 };
1627 
1628 /* list of all disk_events */
1629 static DEFINE_MUTEX(disk_events_mutex);
1630 static LIST_HEAD(disk_events);
1631 
1632 /* disable in-kernel polling by default */
1633 static unsigned long disk_events_dfl_poll_msecs;
1634 
disk_events_poll_jiffies(struct gendisk * disk)1635 static unsigned long disk_events_poll_jiffies(struct gendisk *disk)
1636 {
1637 	struct disk_events *ev = disk->ev;
1638 	long intv_msecs = 0;
1639 
1640 	/*
1641 	 * If device-specific poll interval is set, always use it.  If
1642 	 * the default is being used, poll iff there are events which
1643 	 * can't be monitored asynchronously.
1644 	 */
1645 	if (ev->poll_msecs >= 0)
1646 		intv_msecs = ev->poll_msecs;
1647 	else if (disk->events & ~disk->async_events)
1648 		intv_msecs = disk_events_dfl_poll_msecs;
1649 
1650 	return msecs_to_jiffies(intv_msecs);
1651 }
1652 
1653 /**
1654  * disk_block_events - block and flush disk event checking
1655  * @disk: disk to block events for
1656  *
1657  * On return from this function, it is guaranteed that event checking
1658  * isn't in progress and won't happen until unblocked by
1659  * disk_unblock_events().  Events blocking is counted and the actual
1660  * unblocking happens after the matching number of unblocks are done.
1661  *
1662  * Note that this intentionally does not block event checking from
1663  * disk_clear_events().
1664  *
1665  * CONTEXT:
1666  * Might sleep.
1667  */
disk_block_events(struct gendisk * disk)1668 void disk_block_events(struct gendisk *disk)
1669 {
1670 	struct disk_events *ev = disk->ev;
1671 	unsigned long flags;
1672 	bool cancel;
1673 
1674 	if (!ev)
1675 		return;
1676 
1677 	/*
1678 	 * Outer mutex ensures that the first blocker completes canceling
1679 	 * the event work before further blockers are allowed to finish.
1680 	 */
1681 	mutex_lock(&ev->block_mutex);
1682 
1683 	spin_lock_irqsave(&ev->lock, flags);
1684 	cancel = !ev->block++;
1685 	spin_unlock_irqrestore(&ev->lock, flags);
1686 
1687 	if (cancel)
1688 		cancel_delayed_work_sync(&disk->ev->dwork);
1689 
1690 	mutex_unlock(&ev->block_mutex);
1691 }
1692 
__disk_unblock_events(struct gendisk * disk,bool check_now)1693 static void __disk_unblock_events(struct gendisk *disk, bool check_now)
1694 {
1695 	struct disk_events *ev = disk->ev;
1696 	unsigned long intv;
1697 	unsigned long flags;
1698 
1699 	spin_lock_irqsave(&ev->lock, flags);
1700 
1701 	if (WARN_ON_ONCE(ev->block <= 0))
1702 		goto out_unlock;
1703 
1704 	if (--ev->block)
1705 		goto out_unlock;
1706 
1707 	intv = disk_events_poll_jiffies(disk);
1708 	if (check_now)
1709 		queue_delayed_work(system_freezable_power_efficient_wq,
1710 				&ev->dwork, 0);
1711 	else if (intv)
1712 		queue_delayed_work(system_freezable_power_efficient_wq,
1713 				&ev->dwork, intv);
1714 out_unlock:
1715 	spin_unlock_irqrestore(&ev->lock, flags);
1716 }
1717 
1718 /**
1719  * disk_unblock_events - unblock disk event checking
1720  * @disk: disk to unblock events for
1721  *
1722  * Undo disk_block_events().  When the block count reaches zero, it
1723  * starts events polling if configured.
1724  *
1725  * CONTEXT:
1726  * Don't care.  Safe to call from irq context.
1727  */
disk_unblock_events(struct gendisk * disk)1728 void disk_unblock_events(struct gendisk *disk)
1729 {
1730 	if (disk->ev)
1731 		__disk_unblock_events(disk, false);
1732 }
1733 
1734 /**
1735  * disk_flush_events - schedule immediate event checking and flushing
1736  * @disk: disk to check and flush events for
1737  * @mask: events to flush
1738  *
1739  * Schedule immediate event checking on @disk if not blocked.  Events in
1740  * @mask are scheduled to be cleared from the driver.  Note that this
1741  * doesn't clear the events from @disk->ev.
1742  *
1743  * CONTEXT:
1744  * If @mask is non-zero must be called with bdev->bd_mutex held.
1745  */
disk_flush_events(struct gendisk * disk,unsigned int mask)1746 void disk_flush_events(struct gendisk *disk, unsigned int mask)
1747 {
1748 	struct disk_events *ev = disk->ev;
1749 
1750 	if (!ev)
1751 		return;
1752 
1753 	spin_lock_irq(&ev->lock);
1754 	ev->clearing |= mask;
1755 	if (!ev->block)
1756 		mod_delayed_work(system_freezable_power_efficient_wq,
1757 				&ev->dwork, 0);
1758 	spin_unlock_irq(&ev->lock);
1759 }
1760 
1761 /**
1762  * disk_clear_events - synchronously check, clear and return pending events
1763  * @disk: disk to fetch and clear events from
1764  * @mask: mask of events to be fetched and cleared
1765  *
1766  * Disk events are synchronously checked and pending events in @mask
1767  * are cleared and returned.  This ignores the block count.
1768  *
1769  * CONTEXT:
1770  * Might sleep.
1771  */
disk_clear_events(struct gendisk * disk,unsigned int mask)1772 unsigned int disk_clear_events(struct gendisk *disk, unsigned int mask)
1773 {
1774 	const struct block_device_operations *bdops = disk->fops;
1775 	struct disk_events *ev = disk->ev;
1776 	unsigned int pending;
1777 	unsigned int clearing = mask;
1778 
1779 	if (!ev) {
1780 		/* for drivers still using the old ->media_changed method */
1781 		if ((mask & DISK_EVENT_MEDIA_CHANGE) &&
1782 		    bdops->media_changed && bdops->media_changed(disk))
1783 			return DISK_EVENT_MEDIA_CHANGE;
1784 		return 0;
1785 	}
1786 
1787 	disk_block_events(disk);
1788 
1789 	/*
1790 	 * store the union of mask and ev->clearing on the stack so that the
1791 	 * race with disk_flush_events does not cause ambiguity (ev->clearing
1792 	 * can still be modified even if events are blocked).
1793 	 */
1794 	spin_lock_irq(&ev->lock);
1795 	clearing |= ev->clearing;
1796 	ev->clearing = 0;
1797 	spin_unlock_irq(&ev->lock);
1798 
1799 	disk_check_events(ev, &clearing);
1800 	/*
1801 	 * if ev->clearing is not 0, the disk_flush_events got called in the
1802 	 * middle of this function, so we want to run the workfn without delay.
1803 	 */
1804 	__disk_unblock_events(disk, ev->clearing ? true : false);
1805 
1806 	/* then, fetch and clear pending events */
1807 	spin_lock_irq(&ev->lock);
1808 	pending = ev->pending & mask;
1809 	ev->pending &= ~mask;
1810 	spin_unlock_irq(&ev->lock);
1811 	WARN_ON_ONCE(clearing & mask);
1812 
1813 	return pending;
1814 }
1815 
1816 /*
1817  * Separate this part out so that a different pointer for clearing_ptr can be
1818  * passed in for disk_clear_events.
1819  */
disk_events_workfn(struct work_struct * work)1820 static void disk_events_workfn(struct work_struct *work)
1821 {
1822 	struct delayed_work *dwork = to_delayed_work(work);
1823 	struct disk_events *ev = container_of(dwork, struct disk_events, dwork);
1824 
1825 	disk_check_events(ev, &ev->clearing);
1826 }
1827 
disk_check_events(struct disk_events * ev,unsigned int * clearing_ptr)1828 static void disk_check_events(struct disk_events *ev,
1829 			      unsigned int *clearing_ptr)
1830 {
1831 	struct gendisk *disk = ev->disk;
1832 	char *envp[ARRAY_SIZE(disk_uevents) + 1] = { };
1833 	unsigned int clearing = *clearing_ptr;
1834 	unsigned int events;
1835 	unsigned long intv;
1836 	int nr_events = 0, i;
1837 
1838 	/* check events */
1839 	events = disk->fops->check_events(disk, clearing);
1840 
1841 	/* accumulate pending events and schedule next poll if necessary */
1842 	spin_lock_irq(&ev->lock);
1843 
1844 	events &= ~ev->pending;
1845 	ev->pending |= events;
1846 	*clearing_ptr &= ~clearing;
1847 
1848 	intv = disk_events_poll_jiffies(disk);
1849 	if (!ev->block && intv)
1850 		queue_delayed_work(system_freezable_power_efficient_wq,
1851 				&ev->dwork, intv);
1852 
1853 	spin_unlock_irq(&ev->lock);
1854 
1855 	/*
1856 	 * Tell userland about new events.  Only the events listed in
1857 	 * @disk->events are reported.  Unlisted events are processed the
1858 	 * same internally but never get reported to userland.
1859 	 */
1860 	for (i = 0; i < ARRAY_SIZE(disk_uevents); i++)
1861 		if (events & disk->events & (1 << i))
1862 			envp[nr_events++] = disk_uevents[i];
1863 
1864 	if (nr_events)
1865 		kobject_uevent_env(&disk_to_dev(disk)->kobj, KOBJ_CHANGE, envp);
1866 }
1867 
1868 /*
1869  * A disk events enabled device has the following sysfs nodes under
1870  * its /sys/block/X/ directory.
1871  *
1872  * events		: list of all supported events
1873  * events_async		: list of events which can be detected w/o polling
1874  * events_poll_msecs	: polling interval, 0: disable, -1: system default
1875  */
__disk_events_show(unsigned int events,char * buf)1876 static ssize_t __disk_events_show(unsigned int events, char *buf)
1877 {
1878 	const char *delim = "";
1879 	ssize_t pos = 0;
1880 	int i;
1881 
1882 	for (i = 0; i < ARRAY_SIZE(disk_events_strs); i++)
1883 		if (events & (1 << i)) {
1884 			pos += sprintf(buf + pos, "%s%s",
1885 				       delim, disk_events_strs[i]);
1886 			delim = " ";
1887 		}
1888 	if (pos)
1889 		pos += sprintf(buf + pos, "\n");
1890 	return pos;
1891 }
1892 
disk_events_show(struct device * dev,struct device_attribute * attr,char * buf)1893 static ssize_t disk_events_show(struct device *dev,
1894 				struct device_attribute *attr, char *buf)
1895 {
1896 	struct gendisk *disk = dev_to_disk(dev);
1897 
1898 	return __disk_events_show(disk->events, buf);
1899 }
1900 
disk_events_async_show(struct device * dev,struct device_attribute * attr,char * buf)1901 static ssize_t disk_events_async_show(struct device *dev,
1902 				      struct device_attribute *attr, char *buf)
1903 {
1904 	struct gendisk *disk = dev_to_disk(dev);
1905 
1906 	return __disk_events_show(disk->async_events, buf);
1907 }
1908 
disk_events_poll_msecs_show(struct device * dev,struct device_attribute * attr,char * buf)1909 static ssize_t disk_events_poll_msecs_show(struct device *dev,
1910 					   struct device_attribute *attr,
1911 					   char *buf)
1912 {
1913 	struct gendisk *disk = dev_to_disk(dev);
1914 
1915 	return sprintf(buf, "%ld\n", disk->ev->poll_msecs);
1916 }
1917 
disk_events_poll_msecs_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)1918 static ssize_t disk_events_poll_msecs_store(struct device *dev,
1919 					    struct device_attribute *attr,
1920 					    const char *buf, size_t count)
1921 {
1922 	struct gendisk *disk = dev_to_disk(dev);
1923 	long intv;
1924 
1925 	if (!count || !sscanf(buf, "%ld", &intv))
1926 		return -EINVAL;
1927 
1928 	if (intv < 0 && intv != -1)
1929 		return -EINVAL;
1930 
1931 	disk_block_events(disk);
1932 	disk->ev->poll_msecs = intv;
1933 	__disk_unblock_events(disk, true);
1934 
1935 	return count;
1936 }
1937 
1938 static const DEVICE_ATTR(events, 0444, disk_events_show, NULL);
1939 static const DEVICE_ATTR(events_async, 0444, disk_events_async_show, NULL);
1940 static const DEVICE_ATTR(events_poll_msecs, 0644,
1941 			 disk_events_poll_msecs_show,
1942 			 disk_events_poll_msecs_store);
1943 
1944 static const struct attribute *disk_events_attrs[] = {
1945 	&dev_attr_events.attr,
1946 	&dev_attr_events_async.attr,
1947 	&dev_attr_events_poll_msecs.attr,
1948 	NULL,
1949 };
1950 
1951 /*
1952  * The default polling interval can be specified by the kernel
1953  * parameter block.events_dfl_poll_msecs which defaults to 0
1954  * (disable).  This can also be modified runtime by writing to
1955  * /sys/module/block/events_dfl_poll_msecs.
1956  */
disk_events_set_dfl_poll_msecs(const char * val,const struct kernel_param * kp)1957 static int disk_events_set_dfl_poll_msecs(const char *val,
1958 					  const struct kernel_param *kp)
1959 {
1960 	struct disk_events *ev;
1961 	int ret;
1962 
1963 	ret = param_set_ulong(val, kp);
1964 	if (ret < 0)
1965 		return ret;
1966 
1967 	mutex_lock(&disk_events_mutex);
1968 
1969 	list_for_each_entry(ev, &disk_events, node)
1970 		disk_flush_events(ev->disk, 0);
1971 
1972 	mutex_unlock(&disk_events_mutex);
1973 
1974 	return 0;
1975 }
1976 
1977 static const struct kernel_param_ops disk_events_dfl_poll_msecs_param_ops = {
1978 	.set	= disk_events_set_dfl_poll_msecs,
1979 	.get	= param_get_ulong,
1980 };
1981 
1982 #undef MODULE_PARAM_PREFIX
1983 #define MODULE_PARAM_PREFIX	"block."
1984 
1985 module_param_cb(events_dfl_poll_msecs, &disk_events_dfl_poll_msecs_param_ops,
1986 		&disk_events_dfl_poll_msecs, 0644);
1987 
1988 /*
1989  * disk_{alloc|add|del|release}_events - initialize and destroy disk_events.
1990  */
disk_alloc_events(struct gendisk * disk)1991 static void disk_alloc_events(struct gendisk *disk)
1992 {
1993 	struct disk_events *ev;
1994 
1995 	if (!disk->fops->check_events)
1996 		return;
1997 
1998 	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
1999 	if (!ev) {
2000 		pr_warn("%s: failed to initialize events\n", disk->disk_name);
2001 		return;
2002 	}
2003 
2004 	INIT_LIST_HEAD(&ev->node);
2005 	ev->disk = disk;
2006 	spin_lock_init(&ev->lock);
2007 	mutex_init(&ev->block_mutex);
2008 	ev->block = 1;
2009 	ev->poll_msecs = -1;
2010 	INIT_DELAYED_WORK(&ev->dwork, disk_events_workfn);
2011 
2012 	disk->ev = ev;
2013 }
2014 
disk_add_events(struct gendisk * disk)2015 static void disk_add_events(struct gendisk *disk)
2016 {
2017 	if (!disk->ev)
2018 		return;
2019 
2020 	/* FIXME: error handling */
2021 	if (sysfs_create_files(&disk_to_dev(disk)->kobj, disk_events_attrs) < 0)
2022 		pr_warn("%s: failed to create sysfs files for events\n",
2023 			disk->disk_name);
2024 
2025 	mutex_lock(&disk_events_mutex);
2026 	list_add_tail(&disk->ev->node, &disk_events);
2027 	mutex_unlock(&disk_events_mutex);
2028 
2029 	/*
2030 	 * Block count is initialized to 1 and the following initial
2031 	 * unblock kicks it into action.
2032 	 */
2033 	__disk_unblock_events(disk, true);
2034 }
2035 
disk_del_events(struct gendisk * disk)2036 static void disk_del_events(struct gendisk *disk)
2037 {
2038 	if (!disk->ev)
2039 		return;
2040 
2041 	disk_block_events(disk);
2042 
2043 	mutex_lock(&disk_events_mutex);
2044 	list_del_init(&disk->ev->node);
2045 	mutex_unlock(&disk_events_mutex);
2046 
2047 	sysfs_remove_files(&disk_to_dev(disk)->kobj, disk_events_attrs);
2048 }
2049 
disk_release_events(struct gendisk * disk)2050 static void disk_release_events(struct gendisk *disk)
2051 {
2052 	/* the block count should be 1 from disk_del_events() */
2053 	WARN_ON_ONCE(disk->ev && disk->ev->block != 1);
2054 	kfree(disk->ev);
2055 }
2056