1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/proc/base.c
4  *
5  *  Copyright (C) 1991, 1992 Linus Torvalds
6  *
7  *  proc base directory handling functions
8  *
9  *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
10  *  Instead of using magical inumbers to determine the kind of object
11  *  we allocate and fill in-core inodes upon lookup. They don't even
12  *  go into icache. We cache the reference to task_struct upon lookup too.
13  *  Eventually it should become a filesystem in its own. We don't use the
14  *  rest of procfs anymore.
15  *
16  *
17  *  Changelog:
18  *  17-Jan-2005
19  *  Allan Bezerra
20  *  Bruna Moreira <bruna.moreira@indt.org.br>
21  *  Edjard Mota <edjard.mota@indt.org.br>
22  *  Ilias Biris <ilias.biris@indt.org.br>
23  *  Mauricio Lin <mauricio.lin@indt.org.br>
24  *
25  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
26  *
27  *  A new process specific entry (smaps) included in /proc. It shows the
28  *  size of rss for each memory area. The maps entry lacks information
29  *  about physical memory size (rss) for each mapped file, i.e.,
30  *  rss information for executables and library files.
31  *  This additional information is useful for any tools that need to know
32  *  about physical memory consumption for a process specific library.
33  *
34  *  Changelog:
35  *  21-Feb-2005
36  *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
37  *  Pud inclusion in the page table walking.
38  *
39  *  ChangeLog:
40  *  10-Mar-2005
41  *  10LE Instituto Nokia de Tecnologia - INdT:
42  *  A better way to walks through the page table as suggested by Hugh Dickins.
43  *
44  *  Simo Piiroinen <simo.piiroinen@nokia.com>:
45  *  Smaps information related to shared, private, clean and dirty pages.
46  *
47  *  Paul Mundt <paul.mundt@nokia.com>:
48  *  Overall revision about smaps.
49  */
50 
51 #include <linux/uaccess.h>
52 
53 #include <linux/errno.h>
54 #include <linux/time.h>
55 #include <linux/proc_fs.h>
56 #include <linux/stat.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/init.h>
59 #include <linux/capability.h>
60 #include <linux/file.h>
61 #include <linux/fdtable.h>
62 #include <linux/string.h>
63 #include <linux/seq_file.h>
64 #include <linux/namei.h>
65 #include <linux/mnt_namespace.h>
66 #include <linux/mm.h>
67 #include <linux/swap.h>
68 #include <linux/rcupdate.h>
69 #include <linux/kallsyms.h>
70 #include <linux/stacktrace.h>
71 #include <linux/resource.h>
72 #include <linux/module.h>
73 #include <linux/mount.h>
74 #include <linux/security.h>
75 #include <linux/ptrace.h>
76 #include <linux/tracehook.h>
77 #include <linux/printk.h>
78 #include <linux/cache.h>
79 #include <linux/cgroup.h>
80 #include <linux/cpuset.h>
81 #include <linux/audit.h>
82 #include <linux/poll.h>
83 #include <linux/nsproxy.h>
84 #include <linux/oom.h>
85 #include <linux/elf.h>
86 #include <linux/pid_namespace.h>
87 #include <linux/user_namespace.h>
88 #include <linux/fs_struct.h>
89 #include <linux/slab.h>
90 #include <linux/sched/autogroup.h>
91 #include <linux/sched/mm.h>
92 #include <linux/sched/coredump.h>
93 #include <linux/sched/debug.h>
94 #include <linux/sched/stat.h>
95 #include <linux/flex_array.h>
96 #include <linux/posix-timers.h>
97 #include <trace/events/oom.h>
98 #include "internal.h"
99 #include "fd.h"
100 
101 #include "../../lib/kstrtox.h"
102 
103 /* NOTE:
104  *	Implementing inode permission operations in /proc is almost
105  *	certainly an error.  Permission checks need to happen during
106  *	each system call not at open time.  The reason is that most of
107  *	what we wish to check for permissions in /proc varies at runtime.
108  *
109  *	The classic example of a problem is opening file descriptors
110  *	in /proc for a task before it execs a suid executable.
111  */
112 
113 static u8 nlink_tid __ro_after_init;
114 static u8 nlink_tgid __ro_after_init;
115 
116 struct pid_entry {
117 	const char *name;
118 	unsigned int len;
119 	umode_t mode;
120 	const struct inode_operations *iop;
121 	const struct file_operations *fop;
122 	union proc_op op;
123 };
124 
125 #define NOD(NAME, MODE, IOP, FOP, OP) {			\
126 	.name = (NAME),					\
127 	.len  = sizeof(NAME) - 1,			\
128 	.mode = MODE,					\
129 	.iop  = IOP,					\
130 	.fop  = FOP,					\
131 	.op   = OP,					\
132 }
133 
134 #define DIR(NAME, MODE, iops, fops)	\
135 	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
136 #define LNK(NAME, get_link)					\
137 	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
138 		&proc_pid_link_inode_operations, NULL,		\
139 		{ .proc_get_link = get_link } )
140 #define REG(NAME, MODE, fops)				\
141 	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
142 #define ONE(NAME, MODE, show)				\
143 	NOD(NAME, (S_IFREG|(MODE)), 			\
144 		NULL, &proc_single_file_operations,	\
145 		{ .proc_show = show } )
146 
147 /*
148  * Count the number of hardlinks for the pid_entry table, excluding the .
149  * and .. links.
150  */
pid_entry_nlink(const struct pid_entry * entries,unsigned int n)151 static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
152 	unsigned int n)
153 {
154 	unsigned int i;
155 	unsigned int count;
156 
157 	count = 2;
158 	for (i = 0; i < n; ++i) {
159 		if (S_ISDIR(entries[i].mode))
160 			++count;
161 	}
162 
163 	return count;
164 }
165 
get_task_root(struct task_struct * task,struct path * root)166 static int get_task_root(struct task_struct *task, struct path *root)
167 {
168 	int result = -ENOENT;
169 
170 	task_lock(task);
171 	if (task->fs) {
172 		get_fs_root(task->fs, root);
173 		result = 0;
174 	}
175 	task_unlock(task);
176 	return result;
177 }
178 
proc_cwd_link(struct dentry * dentry,struct path * path)179 static int proc_cwd_link(struct dentry *dentry, struct path *path)
180 {
181 	struct task_struct *task = get_proc_task(d_inode(dentry));
182 	int result = -ENOENT;
183 
184 	if (task) {
185 		task_lock(task);
186 		if (task->fs) {
187 			get_fs_pwd(task->fs, path);
188 			result = 0;
189 		}
190 		task_unlock(task);
191 		put_task_struct(task);
192 	}
193 	return result;
194 }
195 
proc_root_link(struct dentry * dentry,struct path * path)196 static int proc_root_link(struct dentry *dentry, struct path *path)
197 {
198 	struct task_struct *task = get_proc_task(d_inode(dentry));
199 	int result = -ENOENT;
200 
201 	if (task) {
202 		result = get_task_root(task, path);
203 		put_task_struct(task);
204 	}
205 	return result;
206 }
207 
208 /*
209  * If the user used setproctitle(), we just get the string from
210  * user space at arg_start, and limit it to a maximum of one page.
211  */
get_mm_proctitle(struct mm_struct * mm,char __user * buf,size_t count,unsigned long pos,unsigned long arg_start)212 static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
213 				size_t count, unsigned long pos,
214 				unsigned long arg_start)
215 {
216 	char *page;
217 	int ret, got;
218 
219 	if (pos >= PAGE_SIZE)
220 		return 0;
221 
222 	page = (char *)__get_free_page(GFP_KERNEL);
223 	if (!page)
224 		return -ENOMEM;
225 
226 	ret = 0;
227 	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
228 	if (got > 0) {
229 		int len = strnlen(page, got);
230 
231 		/* Include the NUL character if it was found */
232 		if (len < got)
233 			len++;
234 
235 		if (len > pos) {
236 			len -= pos;
237 			if (len > count)
238 				len = count;
239 			len -= copy_to_user(buf, page+pos, len);
240 			if (!len)
241 				len = -EFAULT;
242 			ret = len;
243 		}
244 	}
245 	free_page((unsigned long)page);
246 	return ret;
247 }
248 
get_mm_cmdline(struct mm_struct * mm,char __user * buf,size_t count,loff_t * ppos)249 static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
250 			      size_t count, loff_t *ppos)
251 {
252 	unsigned long arg_start, arg_end, env_start, env_end;
253 	unsigned long pos, len;
254 	char *page, c;
255 
256 	/* Check if process spawned far enough to have cmdline. */
257 	if (!mm->env_end)
258 		return 0;
259 
260 	spin_lock(&mm->arg_lock);
261 	arg_start = mm->arg_start;
262 	arg_end = mm->arg_end;
263 	env_start = mm->env_start;
264 	env_end = mm->env_end;
265 	spin_unlock(&mm->arg_lock);
266 
267 	if (arg_start >= arg_end)
268 		return 0;
269 
270 	/*
271 	 * We allow setproctitle() to overwrite the argument
272 	 * strings, and overflow past the original end. But
273 	 * only when it overflows into the environment area.
274 	 */
275 	if (env_start != arg_end || env_end < env_start)
276 		env_start = env_end = arg_end;
277 	len = env_end - arg_start;
278 
279 	/* We're not going to care if "*ppos" has high bits set */
280 	pos = *ppos;
281 	if (pos >= len)
282 		return 0;
283 	if (count > len - pos)
284 		count = len - pos;
285 	if (!count)
286 		return 0;
287 
288 	/*
289 	 * Magical special case: if the argv[] end byte is not
290 	 * zero, the user has overwritten it with setproctitle(3).
291 	 *
292 	 * Possible future enhancement: do this only once when
293 	 * pos is 0, and set a flag in the 'struct file'.
294 	 */
295 	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
296 		return get_mm_proctitle(mm, buf, count, pos, arg_start);
297 
298 	/*
299 	 * For the non-setproctitle() case we limit things strictly
300 	 * to the [arg_start, arg_end[ range.
301 	 */
302 	pos += arg_start;
303 	if (pos < arg_start || pos >= arg_end)
304 		return 0;
305 	if (count > arg_end - pos)
306 		count = arg_end - pos;
307 
308 	page = (char *)__get_free_page(GFP_KERNEL);
309 	if (!page)
310 		return -ENOMEM;
311 
312 	len = 0;
313 	while (count) {
314 		int got;
315 		size_t size = min_t(size_t, PAGE_SIZE, count);
316 
317 		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
318 		if (got <= 0)
319 			break;
320 		got -= copy_to_user(buf, page, got);
321 		if (unlikely(!got)) {
322 			if (!len)
323 				len = -EFAULT;
324 			break;
325 		}
326 		pos += got;
327 		buf += got;
328 		len += got;
329 		count -= got;
330 	}
331 
332 	free_page((unsigned long)page);
333 	return len;
334 }
335 
get_task_cmdline(struct task_struct * tsk,char __user * buf,size_t count,loff_t * pos)336 static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
337 				size_t count, loff_t *pos)
338 {
339 	struct mm_struct *mm;
340 	ssize_t ret;
341 
342 	mm = get_task_mm(tsk);
343 	if (!mm)
344 		return 0;
345 
346 	ret = get_mm_cmdline(mm, buf, count, pos);
347 	mmput(mm);
348 	return ret;
349 }
350 
proc_pid_cmdline_read(struct file * file,char __user * buf,size_t count,loff_t * pos)351 static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
352 				     size_t count, loff_t *pos)
353 {
354 	struct task_struct *tsk;
355 	ssize_t ret;
356 
357 	BUG_ON(*pos < 0);
358 
359 	tsk = get_proc_task(file_inode(file));
360 	if (!tsk)
361 		return -ESRCH;
362 	ret = get_task_cmdline(tsk, buf, count, pos);
363 	put_task_struct(tsk);
364 	if (ret > 0)
365 		*pos += ret;
366 	return ret;
367 }
368 
369 static const struct file_operations proc_pid_cmdline_ops = {
370 	.read	= proc_pid_cmdline_read,
371 	.llseek	= generic_file_llseek,
372 };
373 
374 #ifdef CONFIG_KALLSYMS
375 /*
376  * Provides a wchan file via kallsyms in a proper one-value-per-file format.
377  * Returns the resolved symbol.  If that fails, simply return the address.
378  */
proc_pid_wchan(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)379 static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
380 			  struct pid *pid, struct task_struct *task)
381 {
382 	unsigned long wchan;
383 	char symname[KSYM_NAME_LEN];
384 
385 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
386 		goto print0;
387 
388 	wchan = get_wchan(task);
389 	if (wchan && !lookup_symbol_name(wchan, symname)) {
390 		seq_puts(m, symname);
391 		return 0;
392 	}
393 
394 print0:
395 	seq_putc(m, '0');
396 	return 0;
397 }
398 #endif /* CONFIG_KALLSYMS */
399 
lock_trace(struct task_struct * task)400 static int lock_trace(struct task_struct *task)
401 {
402 	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
403 	if (err)
404 		return err;
405 	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
406 		mutex_unlock(&task->signal->cred_guard_mutex);
407 		return -EPERM;
408 	}
409 	return 0;
410 }
411 
unlock_trace(struct task_struct * task)412 static void unlock_trace(struct task_struct *task)
413 {
414 	mutex_unlock(&task->signal->cred_guard_mutex);
415 }
416 
417 #ifdef CONFIG_STACKTRACE
418 
419 #define MAX_STACK_TRACE_DEPTH	64
420 
proc_pid_stack(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)421 static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
422 			  struct pid *pid, struct task_struct *task)
423 {
424 	struct stack_trace trace;
425 	unsigned long *entries;
426 	int err;
427 
428 	/*
429 	 * The ability to racily run the kernel stack unwinder on a running task
430 	 * and then observe the unwinder output is scary; while it is useful for
431 	 * debugging kernel issues, it can also allow an attacker to leak kernel
432 	 * stack contents.
433 	 * Doing this in a manner that is at least safe from races would require
434 	 * some work to ensure that the remote task can not be scheduled; and
435 	 * even then, this would still expose the unwinder as local attack
436 	 * surface.
437 	 * Therefore, this interface is restricted to root.
438 	 */
439 	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
440 		return -EACCES;
441 
442 	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
443 				GFP_KERNEL);
444 	if (!entries)
445 		return -ENOMEM;
446 
447 	trace.nr_entries	= 0;
448 	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
449 	trace.entries		= entries;
450 	trace.skip		= 0;
451 
452 	err = lock_trace(task);
453 	if (!err) {
454 		unsigned int i;
455 
456 		save_stack_trace_tsk(task, &trace);
457 
458 		for (i = 0; i < trace.nr_entries; i++) {
459 			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
460 		}
461 		unlock_trace(task);
462 	}
463 	kfree(entries);
464 
465 	return err;
466 }
467 #endif
468 
469 #ifdef CONFIG_SCHED_INFO
470 /*
471  * Provides /proc/PID/schedstat
472  */
proc_pid_schedstat(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)473 static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
474 			      struct pid *pid, struct task_struct *task)
475 {
476 	if (unlikely(!sched_info_on()))
477 		seq_printf(m, "0 0 0\n");
478 	else
479 		seq_printf(m, "%llu %llu %lu\n",
480 		   (unsigned long long)task->se.sum_exec_runtime,
481 		   (unsigned long long)task->sched_info.run_delay,
482 		   task->sched_info.pcount);
483 
484 	return 0;
485 }
486 #endif
487 
488 #ifdef CONFIG_LATENCYTOP
lstats_show_proc(struct seq_file * m,void * v)489 static int lstats_show_proc(struct seq_file *m, void *v)
490 {
491 	int i;
492 	struct inode *inode = m->private;
493 	struct task_struct *task = get_proc_task(inode);
494 
495 	if (!task)
496 		return -ESRCH;
497 	seq_puts(m, "Latency Top version : v0.1\n");
498 	for (i = 0; i < LT_SAVECOUNT; i++) {
499 		struct latency_record *lr = &task->latency_record[i];
500 		if (lr->backtrace[0]) {
501 			int q;
502 			seq_printf(m, "%i %li %li",
503 				   lr->count, lr->time, lr->max);
504 			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
505 				unsigned long bt = lr->backtrace[q];
506 				if (!bt)
507 					break;
508 				if (bt == ULONG_MAX)
509 					break;
510 				seq_printf(m, " %ps", (void *)bt);
511 			}
512 			seq_putc(m, '\n');
513 		}
514 
515 	}
516 	put_task_struct(task);
517 	return 0;
518 }
519 
lstats_open(struct inode * inode,struct file * file)520 static int lstats_open(struct inode *inode, struct file *file)
521 {
522 	return single_open(file, lstats_show_proc, inode);
523 }
524 
lstats_write(struct file * file,const char __user * buf,size_t count,loff_t * offs)525 static ssize_t lstats_write(struct file *file, const char __user *buf,
526 			    size_t count, loff_t *offs)
527 {
528 	struct task_struct *task = get_proc_task(file_inode(file));
529 
530 	if (!task)
531 		return -ESRCH;
532 	clear_all_latency_tracing(task);
533 	put_task_struct(task);
534 
535 	return count;
536 }
537 
538 static const struct file_operations proc_lstats_operations = {
539 	.open		= lstats_open,
540 	.read		= seq_read,
541 	.write		= lstats_write,
542 	.llseek		= seq_lseek,
543 	.release	= single_release,
544 };
545 
546 #endif
547 
proc_oom_score(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)548 static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
549 			  struct pid *pid, struct task_struct *task)
550 {
551 	unsigned long totalpages = totalram_pages + total_swap_pages;
552 	unsigned long points = 0;
553 
554 	points = oom_badness(task, NULL, NULL, totalpages) *
555 					1000 / totalpages;
556 	seq_printf(m, "%lu\n", points);
557 
558 	return 0;
559 }
560 
561 struct limit_names {
562 	const char *name;
563 	const char *unit;
564 };
565 
566 static const struct limit_names lnames[RLIM_NLIMITS] = {
567 	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
568 	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
569 	[RLIMIT_DATA] = {"Max data size", "bytes"},
570 	[RLIMIT_STACK] = {"Max stack size", "bytes"},
571 	[RLIMIT_CORE] = {"Max core file size", "bytes"},
572 	[RLIMIT_RSS] = {"Max resident set", "bytes"},
573 	[RLIMIT_NPROC] = {"Max processes", "processes"},
574 	[RLIMIT_NOFILE] = {"Max open files", "files"},
575 	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
576 	[RLIMIT_AS] = {"Max address space", "bytes"},
577 	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
578 	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
579 	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
580 	[RLIMIT_NICE] = {"Max nice priority", NULL},
581 	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
582 	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
583 };
584 
585 /* Display limits for a process */
proc_pid_limits(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)586 static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
587 			   struct pid *pid, struct task_struct *task)
588 {
589 	unsigned int i;
590 	unsigned long flags;
591 
592 	struct rlimit rlim[RLIM_NLIMITS];
593 
594 	if (!lock_task_sighand(task, &flags))
595 		return 0;
596 	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
597 	unlock_task_sighand(task, &flags);
598 
599 	/*
600 	 * print the file header
601 	 */
602        seq_printf(m, "%-25s %-20s %-20s %-10s\n",
603 		  "Limit", "Soft Limit", "Hard Limit", "Units");
604 
605 	for (i = 0; i < RLIM_NLIMITS; i++) {
606 		if (rlim[i].rlim_cur == RLIM_INFINITY)
607 			seq_printf(m, "%-25s %-20s ",
608 				   lnames[i].name, "unlimited");
609 		else
610 			seq_printf(m, "%-25s %-20lu ",
611 				   lnames[i].name, rlim[i].rlim_cur);
612 
613 		if (rlim[i].rlim_max == RLIM_INFINITY)
614 			seq_printf(m, "%-20s ", "unlimited");
615 		else
616 			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
617 
618 		if (lnames[i].unit)
619 			seq_printf(m, "%-10s\n", lnames[i].unit);
620 		else
621 			seq_putc(m, '\n');
622 	}
623 
624 	return 0;
625 }
626 
627 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
proc_pid_syscall(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)628 static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
629 			    struct pid *pid, struct task_struct *task)
630 {
631 	long nr;
632 	unsigned long args[6], sp, pc;
633 	int res;
634 
635 	res = lock_trace(task);
636 	if (res)
637 		return res;
638 
639 	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
640 		seq_puts(m, "running\n");
641 	else if (nr < 0)
642 		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
643 	else
644 		seq_printf(m,
645 		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
646 		       nr,
647 		       args[0], args[1], args[2], args[3], args[4], args[5],
648 		       sp, pc);
649 	unlock_trace(task);
650 
651 	return 0;
652 }
653 #endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
654 
655 /************************************************************************/
656 /*                       Here the fs part begins                        */
657 /************************************************************************/
658 
659 /* permission checks */
proc_fd_access_allowed(struct inode * inode)660 static int proc_fd_access_allowed(struct inode *inode)
661 {
662 	struct task_struct *task;
663 	int allowed = 0;
664 	/* Allow access to a task's file descriptors if it is us or we
665 	 * may use ptrace attach to the process and find out that
666 	 * information.
667 	 */
668 	task = get_proc_task(inode);
669 	if (task) {
670 		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
671 		put_task_struct(task);
672 	}
673 	return allowed;
674 }
675 
proc_setattr(struct dentry * dentry,struct iattr * attr)676 int proc_setattr(struct dentry *dentry, struct iattr *attr)
677 {
678 	int error;
679 	struct inode *inode = d_inode(dentry);
680 
681 	if (attr->ia_valid & ATTR_MODE)
682 		return -EPERM;
683 
684 	error = setattr_prepare(dentry, attr);
685 	if (error)
686 		return error;
687 
688 	setattr_copy(inode, attr);
689 	mark_inode_dirty(inode);
690 	return 0;
691 }
692 
693 /*
694  * May current process learn task's sched/cmdline info (for hide_pid_min=1)
695  * or euid/egid (for hide_pid_min=2)?
696  */
has_pid_permissions(struct pid_namespace * pid,struct task_struct * task,int hide_pid_min)697 static bool has_pid_permissions(struct pid_namespace *pid,
698 				 struct task_struct *task,
699 				 int hide_pid_min)
700 {
701 	if (pid->hide_pid < hide_pid_min)
702 		return true;
703 	if (in_group_p(pid->pid_gid))
704 		return true;
705 	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
706 }
707 
708 
proc_pid_permission(struct inode * inode,int mask)709 static int proc_pid_permission(struct inode *inode, int mask)
710 {
711 	struct pid_namespace *pid = proc_pid_ns(inode);
712 	struct task_struct *task;
713 	bool has_perms;
714 
715 	task = get_proc_task(inode);
716 	if (!task)
717 		return -ESRCH;
718 	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
719 	put_task_struct(task);
720 
721 	if (!has_perms) {
722 		if (pid->hide_pid == HIDEPID_INVISIBLE) {
723 			/*
724 			 * Let's make getdents(), stat(), and open()
725 			 * consistent with each other.  If a process
726 			 * may not stat() a file, it shouldn't be seen
727 			 * in procfs at all.
728 			 */
729 			return -ENOENT;
730 		}
731 
732 		return -EPERM;
733 	}
734 	return generic_permission(inode, mask);
735 }
736 
737 
738 
739 static const struct inode_operations proc_def_inode_operations = {
740 	.setattr	= proc_setattr,
741 };
742 
proc_single_show(struct seq_file * m,void * v)743 static int proc_single_show(struct seq_file *m, void *v)
744 {
745 	struct inode *inode = m->private;
746 	struct pid_namespace *ns = proc_pid_ns(inode);
747 	struct pid *pid = proc_pid(inode);
748 	struct task_struct *task;
749 	int ret;
750 
751 	task = get_pid_task(pid, PIDTYPE_PID);
752 	if (!task)
753 		return -ESRCH;
754 
755 	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
756 
757 	put_task_struct(task);
758 	return ret;
759 }
760 
proc_single_open(struct inode * inode,struct file * filp)761 static int proc_single_open(struct inode *inode, struct file *filp)
762 {
763 	return single_open(filp, proc_single_show, inode);
764 }
765 
766 static const struct file_operations proc_single_file_operations = {
767 	.open		= proc_single_open,
768 	.read		= seq_read,
769 	.llseek		= seq_lseek,
770 	.release	= single_release,
771 };
772 
773 
proc_mem_open(struct inode * inode,unsigned int mode)774 struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
775 {
776 	struct task_struct *task = get_proc_task(inode);
777 	struct mm_struct *mm = ERR_PTR(-ESRCH);
778 
779 	if (task) {
780 		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
781 		put_task_struct(task);
782 
783 		if (!IS_ERR_OR_NULL(mm)) {
784 			/* ensure this mm_struct can't be freed */
785 			mmgrab(mm);
786 			/* but do not pin its memory */
787 			mmput(mm);
788 		}
789 	}
790 
791 	return mm;
792 }
793 
__mem_open(struct inode * inode,struct file * file,unsigned int mode)794 static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
795 {
796 	struct mm_struct *mm = proc_mem_open(inode, mode);
797 
798 	if (IS_ERR(mm))
799 		return PTR_ERR(mm);
800 
801 	file->private_data = mm;
802 	return 0;
803 }
804 
mem_open(struct inode * inode,struct file * file)805 static int mem_open(struct inode *inode, struct file *file)
806 {
807 	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
808 
809 	/* OK to pass negative loff_t, we can catch out-of-range */
810 	file->f_mode |= FMODE_UNSIGNED_OFFSET;
811 
812 	return ret;
813 }
814 
mem_rw(struct file * file,char __user * buf,size_t count,loff_t * ppos,int write)815 static ssize_t mem_rw(struct file *file, char __user *buf,
816 			size_t count, loff_t *ppos, int write)
817 {
818 	struct mm_struct *mm = file->private_data;
819 	unsigned long addr = *ppos;
820 	ssize_t copied;
821 	char *page;
822 	unsigned int flags;
823 
824 	if (!mm)
825 		return 0;
826 
827 	page = (char *)__get_free_page(GFP_KERNEL);
828 	if (!page)
829 		return -ENOMEM;
830 
831 	copied = 0;
832 	if (!mmget_not_zero(mm))
833 		goto free;
834 
835 	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
836 
837 	while (count > 0) {
838 		size_t this_len = min_t(size_t, count, PAGE_SIZE);
839 
840 		if (write && copy_from_user(page, buf, this_len)) {
841 			copied = -EFAULT;
842 			break;
843 		}
844 
845 		this_len = access_remote_vm(mm, addr, page, this_len, flags);
846 		if (!this_len) {
847 			if (!copied)
848 				copied = -EIO;
849 			break;
850 		}
851 
852 		if (!write && copy_to_user(buf, page, this_len)) {
853 			copied = -EFAULT;
854 			break;
855 		}
856 
857 		buf += this_len;
858 		addr += this_len;
859 		copied += this_len;
860 		count -= this_len;
861 	}
862 	*ppos = addr;
863 
864 	mmput(mm);
865 free:
866 	free_page((unsigned long) page);
867 	return copied;
868 }
869 
mem_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)870 static ssize_t mem_read(struct file *file, char __user *buf,
871 			size_t count, loff_t *ppos)
872 {
873 	return mem_rw(file, buf, count, ppos, 0);
874 }
875 
mem_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)876 static ssize_t mem_write(struct file *file, const char __user *buf,
877 			 size_t count, loff_t *ppos)
878 {
879 	return mem_rw(file, (char __user*)buf, count, ppos, 1);
880 }
881 
mem_lseek(struct file * file,loff_t offset,int orig)882 loff_t mem_lseek(struct file *file, loff_t offset, int orig)
883 {
884 	switch (orig) {
885 	case 0:
886 		file->f_pos = offset;
887 		break;
888 	case 1:
889 		file->f_pos += offset;
890 		break;
891 	default:
892 		return -EINVAL;
893 	}
894 	force_successful_syscall_return();
895 	return file->f_pos;
896 }
897 
mem_release(struct inode * inode,struct file * file)898 static int mem_release(struct inode *inode, struct file *file)
899 {
900 	struct mm_struct *mm = file->private_data;
901 	if (mm)
902 		mmdrop(mm);
903 	return 0;
904 }
905 
906 static const struct file_operations proc_mem_operations = {
907 	.llseek		= mem_lseek,
908 	.read		= mem_read,
909 	.write		= mem_write,
910 	.open		= mem_open,
911 	.release	= mem_release,
912 };
913 
environ_open(struct inode * inode,struct file * file)914 static int environ_open(struct inode *inode, struct file *file)
915 {
916 	return __mem_open(inode, file, PTRACE_MODE_READ);
917 }
918 
environ_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)919 static ssize_t environ_read(struct file *file, char __user *buf,
920 			size_t count, loff_t *ppos)
921 {
922 	char *page;
923 	unsigned long src = *ppos;
924 	int ret = 0;
925 	struct mm_struct *mm = file->private_data;
926 	unsigned long env_start, env_end;
927 
928 	/* Ensure the process spawned far enough to have an environment. */
929 	if (!mm || !mm->env_end)
930 		return 0;
931 
932 	page = (char *)__get_free_page(GFP_KERNEL);
933 	if (!page)
934 		return -ENOMEM;
935 
936 	ret = 0;
937 	if (!mmget_not_zero(mm))
938 		goto free;
939 
940 	spin_lock(&mm->arg_lock);
941 	env_start = mm->env_start;
942 	env_end = mm->env_end;
943 	spin_unlock(&mm->arg_lock);
944 
945 	while (count > 0) {
946 		size_t this_len, max_len;
947 		int retval;
948 
949 		if (src >= (env_end - env_start))
950 			break;
951 
952 		this_len = env_end - (env_start + src);
953 
954 		max_len = min_t(size_t, PAGE_SIZE, count);
955 		this_len = min(max_len, this_len);
956 
957 		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
958 
959 		if (retval <= 0) {
960 			ret = retval;
961 			break;
962 		}
963 
964 		if (copy_to_user(buf, page, retval)) {
965 			ret = -EFAULT;
966 			break;
967 		}
968 
969 		ret += retval;
970 		src += retval;
971 		buf += retval;
972 		count -= retval;
973 	}
974 	*ppos = src;
975 	mmput(mm);
976 
977 free:
978 	free_page((unsigned long) page);
979 	return ret;
980 }
981 
982 static const struct file_operations proc_environ_operations = {
983 	.open		= environ_open,
984 	.read		= environ_read,
985 	.llseek		= generic_file_llseek,
986 	.release	= mem_release,
987 };
988 
auxv_open(struct inode * inode,struct file * file)989 static int auxv_open(struct inode *inode, struct file *file)
990 {
991 	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
992 }
993 
auxv_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)994 static ssize_t auxv_read(struct file *file, char __user *buf,
995 			size_t count, loff_t *ppos)
996 {
997 	struct mm_struct *mm = file->private_data;
998 	unsigned int nwords = 0;
999 
1000 	if (!mm)
1001 		return 0;
1002 	do {
1003 		nwords += 2;
1004 	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1005 	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1006 				       nwords * sizeof(mm->saved_auxv[0]));
1007 }
1008 
1009 static const struct file_operations proc_auxv_operations = {
1010 	.open		= auxv_open,
1011 	.read		= auxv_read,
1012 	.llseek		= generic_file_llseek,
1013 	.release	= mem_release,
1014 };
1015 
oom_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1016 static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1017 			    loff_t *ppos)
1018 {
1019 	struct task_struct *task = get_proc_task(file_inode(file));
1020 	char buffer[PROC_NUMBUF];
1021 	int oom_adj = OOM_ADJUST_MIN;
1022 	size_t len;
1023 
1024 	if (!task)
1025 		return -ESRCH;
1026 	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1027 		oom_adj = OOM_ADJUST_MAX;
1028 	else
1029 		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1030 			  OOM_SCORE_ADJ_MAX;
1031 	put_task_struct(task);
1032 	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1033 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1034 }
1035 
__set_oom_adj(struct file * file,int oom_adj,bool legacy)1036 static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1037 {
1038 	struct mm_struct *mm = NULL;
1039 	struct task_struct *task;
1040 	int err = 0;
1041 
1042 	task = get_proc_task(file_inode(file));
1043 	if (!task)
1044 		return -ESRCH;
1045 
1046 	mutex_lock(&oom_adj_mutex);
1047 	if (legacy) {
1048 		if (oom_adj < task->signal->oom_score_adj &&
1049 				!capable(CAP_SYS_RESOURCE)) {
1050 			err = -EACCES;
1051 			goto err_unlock;
1052 		}
1053 		/*
1054 		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1055 		 * /proc/pid/oom_score_adj instead.
1056 		 */
1057 		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1058 			  current->comm, task_pid_nr(current), task_pid_nr(task),
1059 			  task_pid_nr(task));
1060 	} else {
1061 		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1062 				!capable(CAP_SYS_RESOURCE)) {
1063 			err = -EACCES;
1064 			goto err_unlock;
1065 		}
1066 	}
1067 
1068 	/*
1069 	 * Make sure we will check other processes sharing the mm if this is
1070 	 * not vfrok which wants its own oom_score_adj.
1071 	 * pin the mm so it doesn't go away and get reused after task_unlock
1072 	 */
1073 	if (!task->vfork_done) {
1074 		struct task_struct *p = find_lock_task_mm(task);
1075 
1076 		if (p) {
1077 			if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) {
1078 				mm = p->mm;
1079 				mmgrab(mm);
1080 			}
1081 			task_unlock(p);
1082 		}
1083 	}
1084 
1085 	task->signal->oom_score_adj = oom_adj;
1086 	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1087 		task->signal->oom_score_adj_min = (short)oom_adj;
1088 	trace_oom_score_adj_update(task);
1089 
1090 	if (mm) {
1091 		struct task_struct *p;
1092 
1093 		rcu_read_lock();
1094 		for_each_process(p) {
1095 			if (same_thread_group(task, p))
1096 				continue;
1097 
1098 			/* do not touch kernel threads or the global init */
1099 			if (p->flags & PF_KTHREAD || is_global_init(p))
1100 				continue;
1101 
1102 			task_lock(p);
1103 			if (!p->vfork_done && process_shares_mm(p, mm)) {
1104 				p->signal->oom_score_adj = oom_adj;
1105 				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1106 					p->signal->oom_score_adj_min = (short)oom_adj;
1107 			}
1108 			task_unlock(p);
1109 		}
1110 		rcu_read_unlock();
1111 		mmdrop(mm);
1112 	}
1113 err_unlock:
1114 	mutex_unlock(&oom_adj_mutex);
1115 	put_task_struct(task);
1116 	return err;
1117 }
1118 
1119 /*
1120  * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1121  * kernels.  The effective policy is defined by oom_score_adj, which has a
1122  * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1123  * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1124  * Processes that become oom disabled via oom_adj will still be oom disabled
1125  * with this implementation.
1126  *
1127  * oom_adj cannot be removed since existing userspace binaries use it.
1128  */
oom_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1129 static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1130 			     size_t count, loff_t *ppos)
1131 {
1132 	char buffer[PROC_NUMBUF];
1133 	int oom_adj;
1134 	int err;
1135 
1136 	memset(buffer, 0, sizeof(buffer));
1137 	if (count > sizeof(buffer) - 1)
1138 		count = sizeof(buffer) - 1;
1139 	if (copy_from_user(buffer, buf, count)) {
1140 		err = -EFAULT;
1141 		goto out;
1142 	}
1143 
1144 	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1145 	if (err)
1146 		goto out;
1147 	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1148 	     oom_adj != OOM_DISABLE) {
1149 		err = -EINVAL;
1150 		goto out;
1151 	}
1152 
1153 	/*
1154 	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1155 	 * value is always attainable.
1156 	 */
1157 	if (oom_adj == OOM_ADJUST_MAX)
1158 		oom_adj = OOM_SCORE_ADJ_MAX;
1159 	else
1160 		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1161 
1162 	err = __set_oom_adj(file, oom_adj, true);
1163 out:
1164 	return err < 0 ? err : count;
1165 }
1166 
1167 static const struct file_operations proc_oom_adj_operations = {
1168 	.read		= oom_adj_read,
1169 	.write		= oom_adj_write,
1170 	.llseek		= generic_file_llseek,
1171 };
1172 
oom_score_adj_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1173 static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1174 					size_t count, loff_t *ppos)
1175 {
1176 	struct task_struct *task = get_proc_task(file_inode(file));
1177 	char buffer[PROC_NUMBUF];
1178 	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1179 	size_t len;
1180 
1181 	if (!task)
1182 		return -ESRCH;
1183 	oom_score_adj = task->signal->oom_score_adj;
1184 	put_task_struct(task);
1185 	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1186 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1187 }
1188 
oom_score_adj_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1189 static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1190 					size_t count, loff_t *ppos)
1191 {
1192 	char buffer[PROC_NUMBUF];
1193 	int oom_score_adj;
1194 	int err;
1195 
1196 	memset(buffer, 0, sizeof(buffer));
1197 	if (count > sizeof(buffer) - 1)
1198 		count = sizeof(buffer) - 1;
1199 	if (copy_from_user(buffer, buf, count)) {
1200 		err = -EFAULT;
1201 		goto out;
1202 	}
1203 
1204 	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1205 	if (err)
1206 		goto out;
1207 	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1208 			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1209 		err = -EINVAL;
1210 		goto out;
1211 	}
1212 
1213 	err = __set_oom_adj(file, oom_score_adj, false);
1214 out:
1215 	return err < 0 ? err : count;
1216 }
1217 
1218 static const struct file_operations proc_oom_score_adj_operations = {
1219 	.read		= oom_score_adj_read,
1220 	.write		= oom_score_adj_write,
1221 	.llseek		= default_llseek,
1222 };
1223 
1224 #ifdef CONFIG_AUDITSYSCALL
1225 #define TMPBUFLEN 11
proc_loginuid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1226 static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1227 				  size_t count, loff_t *ppos)
1228 {
1229 	struct inode * inode = file_inode(file);
1230 	struct task_struct *task = get_proc_task(inode);
1231 	ssize_t length;
1232 	char tmpbuf[TMPBUFLEN];
1233 
1234 	if (!task)
1235 		return -ESRCH;
1236 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1237 			   from_kuid(file->f_cred->user_ns,
1238 				     audit_get_loginuid(task)));
1239 	put_task_struct(task);
1240 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1241 }
1242 
proc_loginuid_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1243 static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1244 				   size_t count, loff_t *ppos)
1245 {
1246 	struct inode * inode = file_inode(file);
1247 	uid_t loginuid;
1248 	kuid_t kloginuid;
1249 	int rv;
1250 
1251 	rcu_read_lock();
1252 	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1253 		rcu_read_unlock();
1254 		return -EPERM;
1255 	}
1256 	rcu_read_unlock();
1257 
1258 	if (*ppos != 0) {
1259 		/* No partial writes. */
1260 		return -EINVAL;
1261 	}
1262 
1263 	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1264 	if (rv < 0)
1265 		return rv;
1266 
1267 	/* is userspace tring to explicitly UNSET the loginuid? */
1268 	if (loginuid == AUDIT_UID_UNSET) {
1269 		kloginuid = INVALID_UID;
1270 	} else {
1271 		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1272 		if (!uid_valid(kloginuid))
1273 			return -EINVAL;
1274 	}
1275 
1276 	rv = audit_set_loginuid(kloginuid);
1277 	if (rv < 0)
1278 		return rv;
1279 	return count;
1280 }
1281 
1282 static const struct file_operations proc_loginuid_operations = {
1283 	.read		= proc_loginuid_read,
1284 	.write		= proc_loginuid_write,
1285 	.llseek		= generic_file_llseek,
1286 };
1287 
proc_sessionid_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1288 static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1289 				  size_t count, loff_t *ppos)
1290 {
1291 	struct inode * inode = file_inode(file);
1292 	struct task_struct *task = get_proc_task(inode);
1293 	ssize_t length;
1294 	char tmpbuf[TMPBUFLEN];
1295 
1296 	if (!task)
1297 		return -ESRCH;
1298 	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1299 				audit_get_sessionid(task));
1300 	put_task_struct(task);
1301 	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1302 }
1303 
1304 static const struct file_operations proc_sessionid_operations = {
1305 	.read		= proc_sessionid_read,
1306 	.llseek		= generic_file_llseek,
1307 };
1308 #endif
1309 
1310 #ifdef CONFIG_FAULT_INJECTION
proc_fault_inject_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1311 static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1312 				      size_t count, loff_t *ppos)
1313 {
1314 	struct task_struct *task = get_proc_task(file_inode(file));
1315 	char buffer[PROC_NUMBUF];
1316 	size_t len;
1317 	int make_it_fail;
1318 
1319 	if (!task)
1320 		return -ESRCH;
1321 	make_it_fail = task->make_it_fail;
1322 	put_task_struct(task);
1323 
1324 	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1325 
1326 	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1327 }
1328 
proc_fault_inject_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1329 static ssize_t proc_fault_inject_write(struct file * file,
1330 			const char __user * buf, size_t count, loff_t *ppos)
1331 {
1332 	struct task_struct *task;
1333 	char buffer[PROC_NUMBUF];
1334 	int make_it_fail;
1335 	int rv;
1336 
1337 	if (!capable(CAP_SYS_RESOURCE))
1338 		return -EPERM;
1339 	memset(buffer, 0, sizeof(buffer));
1340 	if (count > sizeof(buffer) - 1)
1341 		count = sizeof(buffer) - 1;
1342 	if (copy_from_user(buffer, buf, count))
1343 		return -EFAULT;
1344 	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1345 	if (rv < 0)
1346 		return rv;
1347 	if (make_it_fail < 0 || make_it_fail > 1)
1348 		return -EINVAL;
1349 
1350 	task = get_proc_task(file_inode(file));
1351 	if (!task)
1352 		return -ESRCH;
1353 	task->make_it_fail = make_it_fail;
1354 	put_task_struct(task);
1355 
1356 	return count;
1357 }
1358 
1359 static const struct file_operations proc_fault_inject_operations = {
1360 	.read		= proc_fault_inject_read,
1361 	.write		= proc_fault_inject_write,
1362 	.llseek		= generic_file_llseek,
1363 };
1364 
proc_fail_nth_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1365 static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1366 				   size_t count, loff_t *ppos)
1367 {
1368 	struct task_struct *task;
1369 	int err;
1370 	unsigned int n;
1371 
1372 	err = kstrtouint_from_user(buf, count, 0, &n);
1373 	if (err)
1374 		return err;
1375 
1376 	task = get_proc_task(file_inode(file));
1377 	if (!task)
1378 		return -ESRCH;
1379 	task->fail_nth = n;
1380 	put_task_struct(task);
1381 
1382 	return count;
1383 }
1384 
proc_fail_nth_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1385 static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1386 				  size_t count, loff_t *ppos)
1387 {
1388 	struct task_struct *task;
1389 	char numbuf[PROC_NUMBUF];
1390 	ssize_t len;
1391 
1392 	task = get_proc_task(file_inode(file));
1393 	if (!task)
1394 		return -ESRCH;
1395 	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1396 	put_task_struct(task);
1397 	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1398 }
1399 
1400 static const struct file_operations proc_fail_nth_operations = {
1401 	.read		= proc_fail_nth_read,
1402 	.write		= proc_fail_nth_write,
1403 };
1404 #endif
1405 
1406 
1407 #ifdef CONFIG_SCHED_DEBUG
1408 /*
1409  * Print out various scheduling related per-task fields:
1410  */
sched_show(struct seq_file * m,void * v)1411 static int sched_show(struct seq_file *m, void *v)
1412 {
1413 	struct inode *inode = m->private;
1414 	struct pid_namespace *ns = proc_pid_ns(inode);
1415 	struct task_struct *p;
1416 
1417 	p = get_proc_task(inode);
1418 	if (!p)
1419 		return -ESRCH;
1420 	proc_sched_show_task(p, ns, m);
1421 
1422 	put_task_struct(p);
1423 
1424 	return 0;
1425 }
1426 
1427 static ssize_t
sched_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1428 sched_write(struct file *file, const char __user *buf,
1429 	    size_t count, loff_t *offset)
1430 {
1431 	struct inode *inode = file_inode(file);
1432 	struct task_struct *p;
1433 
1434 	p = get_proc_task(inode);
1435 	if (!p)
1436 		return -ESRCH;
1437 	proc_sched_set_task(p);
1438 
1439 	put_task_struct(p);
1440 
1441 	return count;
1442 }
1443 
sched_open(struct inode * inode,struct file * filp)1444 static int sched_open(struct inode *inode, struct file *filp)
1445 {
1446 	return single_open(filp, sched_show, inode);
1447 }
1448 
1449 static const struct file_operations proc_pid_sched_operations = {
1450 	.open		= sched_open,
1451 	.read		= seq_read,
1452 	.write		= sched_write,
1453 	.llseek		= seq_lseek,
1454 	.release	= single_release,
1455 };
1456 
1457 #endif
1458 
1459 #ifdef CONFIG_SCHED_AUTOGROUP
1460 /*
1461  * Print out autogroup related information:
1462  */
sched_autogroup_show(struct seq_file * m,void * v)1463 static int sched_autogroup_show(struct seq_file *m, void *v)
1464 {
1465 	struct inode *inode = m->private;
1466 	struct task_struct *p;
1467 
1468 	p = get_proc_task(inode);
1469 	if (!p)
1470 		return -ESRCH;
1471 	proc_sched_autogroup_show_task(p, m);
1472 
1473 	put_task_struct(p);
1474 
1475 	return 0;
1476 }
1477 
1478 static ssize_t
sched_autogroup_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1479 sched_autogroup_write(struct file *file, const char __user *buf,
1480 	    size_t count, loff_t *offset)
1481 {
1482 	struct inode *inode = file_inode(file);
1483 	struct task_struct *p;
1484 	char buffer[PROC_NUMBUF];
1485 	int nice;
1486 	int err;
1487 
1488 	memset(buffer, 0, sizeof(buffer));
1489 	if (count > sizeof(buffer) - 1)
1490 		count = sizeof(buffer) - 1;
1491 	if (copy_from_user(buffer, buf, count))
1492 		return -EFAULT;
1493 
1494 	err = kstrtoint(strstrip(buffer), 0, &nice);
1495 	if (err < 0)
1496 		return err;
1497 
1498 	p = get_proc_task(inode);
1499 	if (!p)
1500 		return -ESRCH;
1501 
1502 	err = proc_sched_autogroup_set_nice(p, nice);
1503 	if (err)
1504 		count = err;
1505 
1506 	put_task_struct(p);
1507 
1508 	return count;
1509 }
1510 
sched_autogroup_open(struct inode * inode,struct file * filp)1511 static int sched_autogroup_open(struct inode *inode, struct file *filp)
1512 {
1513 	int ret;
1514 
1515 	ret = single_open(filp, sched_autogroup_show, NULL);
1516 	if (!ret) {
1517 		struct seq_file *m = filp->private_data;
1518 
1519 		m->private = inode;
1520 	}
1521 	return ret;
1522 }
1523 
1524 static const struct file_operations proc_pid_sched_autogroup_operations = {
1525 	.open		= sched_autogroup_open,
1526 	.read		= seq_read,
1527 	.write		= sched_autogroup_write,
1528 	.llseek		= seq_lseek,
1529 	.release	= single_release,
1530 };
1531 
1532 #endif /* CONFIG_SCHED_AUTOGROUP */
1533 
comm_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)1534 static ssize_t comm_write(struct file *file, const char __user *buf,
1535 				size_t count, loff_t *offset)
1536 {
1537 	struct inode *inode = file_inode(file);
1538 	struct task_struct *p;
1539 	char buffer[TASK_COMM_LEN];
1540 	const size_t maxlen = sizeof(buffer) - 1;
1541 
1542 	memset(buffer, 0, sizeof(buffer));
1543 	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1544 		return -EFAULT;
1545 
1546 	p = get_proc_task(inode);
1547 	if (!p)
1548 		return -ESRCH;
1549 
1550 	if (same_thread_group(current, p))
1551 		set_task_comm(p, buffer);
1552 	else
1553 		count = -EINVAL;
1554 
1555 	put_task_struct(p);
1556 
1557 	return count;
1558 }
1559 
comm_show(struct seq_file * m,void * v)1560 static int comm_show(struct seq_file *m, void *v)
1561 {
1562 	struct inode *inode = m->private;
1563 	struct task_struct *p;
1564 
1565 	p = get_proc_task(inode);
1566 	if (!p)
1567 		return -ESRCH;
1568 
1569 	proc_task_name(m, p, false);
1570 	seq_putc(m, '\n');
1571 
1572 	put_task_struct(p);
1573 
1574 	return 0;
1575 }
1576 
comm_open(struct inode * inode,struct file * filp)1577 static int comm_open(struct inode *inode, struct file *filp)
1578 {
1579 	return single_open(filp, comm_show, inode);
1580 }
1581 
1582 static const struct file_operations proc_pid_set_comm_operations = {
1583 	.open		= comm_open,
1584 	.read		= seq_read,
1585 	.write		= comm_write,
1586 	.llseek		= seq_lseek,
1587 	.release	= single_release,
1588 };
1589 
proc_exe_link(struct dentry * dentry,struct path * exe_path)1590 static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1591 {
1592 	struct task_struct *task;
1593 	struct file *exe_file;
1594 
1595 	task = get_proc_task(d_inode(dentry));
1596 	if (!task)
1597 		return -ENOENT;
1598 	exe_file = get_task_exe_file(task);
1599 	put_task_struct(task);
1600 	if (exe_file) {
1601 		*exe_path = exe_file->f_path;
1602 		path_get(&exe_file->f_path);
1603 		fput(exe_file);
1604 		return 0;
1605 	} else
1606 		return -ENOENT;
1607 }
1608 
proc_pid_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1609 static const char *proc_pid_get_link(struct dentry *dentry,
1610 				     struct inode *inode,
1611 				     struct delayed_call *done)
1612 {
1613 	struct path path;
1614 	int error = -EACCES;
1615 
1616 	if (!dentry)
1617 		return ERR_PTR(-ECHILD);
1618 
1619 	/* Are we allowed to snoop on the tasks file descriptors? */
1620 	if (!proc_fd_access_allowed(inode))
1621 		goto out;
1622 
1623 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1624 	if (error)
1625 		goto out;
1626 
1627 	nd_jump_link(&path);
1628 	return NULL;
1629 out:
1630 	return ERR_PTR(error);
1631 }
1632 
do_proc_readlink(struct path * path,char __user * buffer,int buflen)1633 static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1634 {
1635 	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1636 	char *pathname;
1637 	int len;
1638 
1639 	if (!tmp)
1640 		return -ENOMEM;
1641 
1642 	pathname = d_path(path, tmp, PAGE_SIZE);
1643 	len = PTR_ERR(pathname);
1644 	if (IS_ERR(pathname))
1645 		goto out;
1646 	len = tmp + PAGE_SIZE - 1 - pathname;
1647 
1648 	if (len > buflen)
1649 		len = buflen;
1650 	if (copy_to_user(buffer, pathname, len))
1651 		len = -EFAULT;
1652  out:
1653 	free_page((unsigned long)tmp);
1654 	return len;
1655 }
1656 
proc_pid_readlink(struct dentry * dentry,char __user * buffer,int buflen)1657 static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1658 {
1659 	int error = -EACCES;
1660 	struct inode *inode = d_inode(dentry);
1661 	struct path path;
1662 
1663 	/* Are we allowed to snoop on the tasks file descriptors? */
1664 	if (!proc_fd_access_allowed(inode))
1665 		goto out;
1666 
1667 	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1668 	if (error)
1669 		goto out;
1670 
1671 	error = do_proc_readlink(&path, buffer, buflen);
1672 	path_put(&path);
1673 out:
1674 	return error;
1675 }
1676 
1677 const struct inode_operations proc_pid_link_inode_operations = {
1678 	.readlink	= proc_pid_readlink,
1679 	.get_link	= proc_pid_get_link,
1680 	.setattr	= proc_setattr,
1681 };
1682 
1683 
1684 /* building an inode */
1685 
task_dump_owner(struct task_struct * task,umode_t mode,kuid_t * ruid,kgid_t * rgid)1686 void task_dump_owner(struct task_struct *task, umode_t mode,
1687 		     kuid_t *ruid, kgid_t *rgid)
1688 {
1689 	/* Depending on the state of dumpable compute who should own a
1690 	 * proc file for a task.
1691 	 */
1692 	const struct cred *cred;
1693 	kuid_t uid;
1694 	kgid_t gid;
1695 
1696 	if (unlikely(task->flags & PF_KTHREAD)) {
1697 		*ruid = GLOBAL_ROOT_UID;
1698 		*rgid = GLOBAL_ROOT_GID;
1699 		return;
1700 	}
1701 
1702 	/* Default to the tasks effective ownership */
1703 	rcu_read_lock();
1704 	cred = __task_cred(task);
1705 	uid = cred->euid;
1706 	gid = cred->egid;
1707 	rcu_read_unlock();
1708 
1709 	/*
1710 	 * Before the /proc/pid/status file was created the only way to read
1711 	 * the effective uid of a /process was to stat /proc/pid.  Reading
1712 	 * /proc/pid/status is slow enough that procps and other packages
1713 	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1714 	 * made this apply to all per process world readable and executable
1715 	 * directories.
1716 	 */
1717 	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1718 		struct mm_struct *mm;
1719 		task_lock(task);
1720 		mm = task->mm;
1721 		/* Make non-dumpable tasks owned by some root */
1722 		if (mm) {
1723 			if (get_dumpable(mm) != SUID_DUMP_USER) {
1724 				struct user_namespace *user_ns = mm->user_ns;
1725 
1726 				uid = make_kuid(user_ns, 0);
1727 				if (!uid_valid(uid))
1728 					uid = GLOBAL_ROOT_UID;
1729 
1730 				gid = make_kgid(user_ns, 0);
1731 				if (!gid_valid(gid))
1732 					gid = GLOBAL_ROOT_GID;
1733 			}
1734 		} else {
1735 			uid = GLOBAL_ROOT_UID;
1736 			gid = GLOBAL_ROOT_GID;
1737 		}
1738 		task_unlock(task);
1739 	}
1740 	*ruid = uid;
1741 	*rgid = gid;
1742 }
1743 
proc_pid_make_inode(struct super_block * sb,struct task_struct * task,umode_t mode)1744 struct inode *proc_pid_make_inode(struct super_block * sb,
1745 				  struct task_struct *task, umode_t mode)
1746 {
1747 	struct inode * inode;
1748 	struct proc_inode *ei;
1749 
1750 	/* We need a new inode */
1751 
1752 	inode = new_inode(sb);
1753 	if (!inode)
1754 		goto out;
1755 
1756 	/* Common stuff */
1757 	ei = PROC_I(inode);
1758 	inode->i_mode = mode;
1759 	inode->i_ino = get_next_ino();
1760 	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1761 	inode->i_op = &proc_def_inode_operations;
1762 
1763 	/*
1764 	 * grab the reference to task.
1765 	 */
1766 	ei->pid = get_task_pid(task, PIDTYPE_PID);
1767 	if (!ei->pid)
1768 		goto out_unlock;
1769 
1770 	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1771 	security_task_to_inode(task, inode);
1772 
1773 out:
1774 	return inode;
1775 
1776 out_unlock:
1777 	iput(inode);
1778 	return NULL;
1779 }
1780 
pid_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1781 int pid_getattr(const struct path *path, struct kstat *stat,
1782 		u32 request_mask, unsigned int query_flags)
1783 {
1784 	struct inode *inode = d_inode(path->dentry);
1785 	struct pid_namespace *pid = proc_pid_ns(inode);
1786 	struct task_struct *task;
1787 
1788 	generic_fillattr(inode, stat);
1789 
1790 	stat->uid = GLOBAL_ROOT_UID;
1791 	stat->gid = GLOBAL_ROOT_GID;
1792 	rcu_read_lock();
1793 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1794 	if (task) {
1795 		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1796 			rcu_read_unlock();
1797 			/*
1798 			 * This doesn't prevent learning whether PID exists,
1799 			 * it only makes getattr() consistent with readdir().
1800 			 */
1801 			return -ENOENT;
1802 		}
1803 		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
1804 	}
1805 	rcu_read_unlock();
1806 	return 0;
1807 }
1808 
1809 /* dentry stuff */
1810 
1811 /*
1812  * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1813  */
pid_update_inode(struct task_struct * task,struct inode * inode)1814 void pid_update_inode(struct task_struct *task, struct inode *inode)
1815 {
1816 	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1817 
1818 	inode->i_mode &= ~(S_ISUID | S_ISGID);
1819 	security_task_to_inode(task, inode);
1820 }
1821 
1822 /*
1823  * Rewrite the inode's ownerships here because the owning task may have
1824  * performed a setuid(), etc.
1825  *
1826  */
pid_revalidate(struct dentry * dentry,unsigned int flags)1827 static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1828 {
1829 	struct inode *inode;
1830 	struct task_struct *task;
1831 
1832 	if (flags & LOOKUP_RCU)
1833 		return -ECHILD;
1834 
1835 	inode = d_inode(dentry);
1836 	task = get_proc_task(inode);
1837 
1838 	if (task) {
1839 		pid_update_inode(task, inode);
1840 		put_task_struct(task);
1841 		return 1;
1842 	}
1843 	return 0;
1844 }
1845 
proc_inode_is_dead(struct inode * inode)1846 static inline bool proc_inode_is_dead(struct inode *inode)
1847 {
1848 	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1849 }
1850 
pid_delete_dentry(const struct dentry * dentry)1851 int pid_delete_dentry(const struct dentry *dentry)
1852 {
1853 	/* Is the task we represent dead?
1854 	 * If so, then don't put the dentry on the lru list,
1855 	 * kill it immediately.
1856 	 */
1857 	return proc_inode_is_dead(d_inode(dentry));
1858 }
1859 
1860 const struct dentry_operations pid_dentry_operations =
1861 {
1862 	.d_revalidate	= pid_revalidate,
1863 	.d_delete	= pid_delete_dentry,
1864 };
1865 
1866 /* Lookups */
1867 
1868 /*
1869  * Fill a directory entry.
1870  *
1871  * If possible create the dcache entry and derive our inode number and
1872  * file type from dcache entry.
1873  *
1874  * Since all of the proc inode numbers are dynamically generated, the inode
1875  * numbers do not exist until the inode is cache.  This means creating the
1876  * the dcache entry in readdir is necessary to keep the inode numbers
1877  * reported by readdir in sync with the inode numbers reported
1878  * by stat.
1879  */
proc_fill_cache(struct file * file,struct dir_context * ctx,const char * name,unsigned int len,instantiate_t instantiate,struct task_struct * task,const void * ptr)1880 bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1881 	const char *name, unsigned int len,
1882 	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1883 {
1884 	struct dentry *child, *dir = file->f_path.dentry;
1885 	struct qstr qname = QSTR_INIT(name, len);
1886 	struct inode *inode;
1887 	unsigned type = DT_UNKNOWN;
1888 	ino_t ino = 1;
1889 
1890 	child = d_hash_and_lookup(dir, &qname);
1891 	if (!child) {
1892 		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1893 		child = d_alloc_parallel(dir, &qname, &wq);
1894 		if (IS_ERR(child))
1895 			goto end_instantiate;
1896 		if (d_in_lookup(child)) {
1897 			struct dentry *res;
1898 			res = instantiate(child, task, ptr);
1899 			d_lookup_done(child);
1900 			if (unlikely(res)) {
1901 				dput(child);
1902 				child = res;
1903 				if (IS_ERR(child))
1904 					goto end_instantiate;
1905 			}
1906 		}
1907 	}
1908 	inode = d_inode(child);
1909 	ino = inode->i_ino;
1910 	type = inode->i_mode >> 12;
1911 	dput(child);
1912 end_instantiate:
1913 	return dir_emit(ctx, name, len, ino, type);
1914 }
1915 
1916 /*
1917  * dname_to_vma_addr - maps a dentry name into two unsigned longs
1918  * which represent vma start and end addresses.
1919  */
dname_to_vma_addr(struct dentry * dentry,unsigned long * start,unsigned long * end)1920 static int dname_to_vma_addr(struct dentry *dentry,
1921 			     unsigned long *start, unsigned long *end)
1922 {
1923 	const char *str = dentry->d_name.name;
1924 	unsigned long long sval, eval;
1925 	unsigned int len;
1926 
1927 	if (str[0] == '0' && str[1] != '-')
1928 		return -EINVAL;
1929 	len = _parse_integer(str, 16, &sval);
1930 	if (len & KSTRTOX_OVERFLOW)
1931 		return -EINVAL;
1932 	if (sval != (unsigned long)sval)
1933 		return -EINVAL;
1934 	str += len;
1935 
1936 	if (*str != '-')
1937 		return -EINVAL;
1938 	str++;
1939 
1940 	if (str[0] == '0' && str[1])
1941 		return -EINVAL;
1942 	len = _parse_integer(str, 16, &eval);
1943 	if (len & KSTRTOX_OVERFLOW)
1944 		return -EINVAL;
1945 	if (eval != (unsigned long)eval)
1946 		return -EINVAL;
1947 	str += len;
1948 
1949 	if (*str != '\0')
1950 		return -EINVAL;
1951 
1952 	*start = sval;
1953 	*end = eval;
1954 
1955 	return 0;
1956 }
1957 
map_files_d_revalidate(struct dentry * dentry,unsigned int flags)1958 static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1959 {
1960 	unsigned long vm_start, vm_end;
1961 	bool exact_vma_exists = false;
1962 	struct mm_struct *mm = NULL;
1963 	struct task_struct *task;
1964 	struct inode *inode;
1965 	int status = 0;
1966 
1967 	if (flags & LOOKUP_RCU)
1968 		return -ECHILD;
1969 
1970 	inode = d_inode(dentry);
1971 	task = get_proc_task(inode);
1972 	if (!task)
1973 		goto out_notask;
1974 
1975 	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1976 	if (IS_ERR_OR_NULL(mm))
1977 		goto out;
1978 
1979 	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1980 		status = down_read_killable(&mm->mmap_sem);
1981 		if (!status) {
1982 			exact_vma_exists = !!find_exact_vma(mm, vm_start,
1983 							    vm_end);
1984 			up_read(&mm->mmap_sem);
1985 		}
1986 	}
1987 
1988 	mmput(mm);
1989 
1990 	if (exact_vma_exists) {
1991 		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1992 
1993 		security_task_to_inode(task, inode);
1994 		status = 1;
1995 	}
1996 
1997 out:
1998 	put_task_struct(task);
1999 
2000 out_notask:
2001 	return status;
2002 }
2003 
2004 static const struct dentry_operations tid_map_files_dentry_operations = {
2005 	.d_revalidate	= map_files_d_revalidate,
2006 	.d_delete	= pid_delete_dentry,
2007 };
2008 
map_files_get_link(struct dentry * dentry,struct path * path)2009 static int map_files_get_link(struct dentry *dentry, struct path *path)
2010 {
2011 	unsigned long vm_start, vm_end;
2012 	struct vm_area_struct *vma;
2013 	struct task_struct *task;
2014 	struct mm_struct *mm;
2015 	int rc;
2016 
2017 	rc = -ENOENT;
2018 	task = get_proc_task(d_inode(dentry));
2019 	if (!task)
2020 		goto out;
2021 
2022 	mm = get_task_mm(task);
2023 	put_task_struct(task);
2024 	if (!mm)
2025 		goto out;
2026 
2027 	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2028 	if (rc)
2029 		goto out_mmput;
2030 
2031 	rc = down_read_killable(&mm->mmap_sem);
2032 	if (rc)
2033 		goto out_mmput;
2034 
2035 	rc = -ENOENT;
2036 	vma = find_exact_vma(mm, vm_start, vm_end);
2037 	if (vma && vma->vm_file) {
2038 		*path = vma->vm_file->f_path;
2039 		path_get(path);
2040 		rc = 0;
2041 	}
2042 	up_read(&mm->mmap_sem);
2043 
2044 out_mmput:
2045 	mmput(mm);
2046 out:
2047 	return rc;
2048 }
2049 
2050 struct map_files_info {
2051 	unsigned long	start;
2052 	unsigned long	end;
2053 	fmode_t		mode;
2054 };
2055 
2056 /*
2057  * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2058  * symlinks may be used to bypass permissions on ancestor directories in the
2059  * path to the file in question.
2060  */
2061 static const char *
proc_map_files_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)2062 proc_map_files_get_link(struct dentry *dentry,
2063 			struct inode *inode,
2064 		        struct delayed_call *done)
2065 {
2066 	if (!capable(CAP_SYS_ADMIN))
2067 		return ERR_PTR(-EPERM);
2068 
2069 	return proc_pid_get_link(dentry, inode, done);
2070 }
2071 
2072 /*
2073  * Identical to proc_pid_link_inode_operations except for get_link()
2074  */
2075 static const struct inode_operations proc_map_files_link_inode_operations = {
2076 	.readlink	= proc_pid_readlink,
2077 	.get_link	= proc_map_files_get_link,
2078 	.setattr	= proc_setattr,
2079 };
2080 
2081 static struct dentry *
proc_map_files_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2082 proc_map_files_instantiate(struct dentry *dentry,
2083 			   struct task_struct *task, const void *ptr)
2084 {
2085 	fmode_t mode = (fmode_t)(unsigned long)ptr;
2086 	struct proc_inode *ei;
2087 	struct inode *inode;
2088 
2089 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2090 				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2091 				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2092 	if (!inode)
2093 		return ERR_PTR(-ENOENT);
2094 
2095 	ei = PROC_I(inode);
2096 	ei->op.proc_get_link = map_files_get_link;
2097 
2098 	inode->i_op = &proc_map_files_link_inode_operations;
2099 	inode->i_size = 64;
2100 
2101 	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2102 	return d_splice_alias(inode, dentry);
2103 }
2104 
proc_map_files_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2105 static struct dentry *proc_map_files_lookup(struct inode *dir,
2106 		struct dentry *dentry, unsigned int flags)
2107 {
2108 	unsigned long vm_start, vm_end;
2109 	struct vm_area_struct *vma;
2110 	struct task_struct *task;
2111 	struct dentry *result;
2112 	struct mm_struct *mm;
2113 
2114 	result = ERR_PTR(-ENOENT);
2115 	task = get_proc_task(dir);
2116 	if (!task)
2117 		goto out;
2118 
2119 	result = ERR_PTR(-EACCES);
2120 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2121 		goto out_put_task;
2122 
2123 	result = ERR_PTR(-ENOENT);
2124 	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2125 		goto out_put_task;
2126 
2127 	mm = get_task_mm(task);
2128 	if (!mm)
2129 		goto out_put_task;
2130 
2131 	result = ERR_PTR(-EINTR);
2132 	if (down_read_killable(&mm->mmap_sem))
2133 		goto out_put_mm;
2134 
2135 	result = ERR_PTR(-ENOENT);
2136 	vma = find_exact_vma(mm, vm_start, vm_end);
2137 	if (!vma)
2138 		goto out_no_vma;
2139 
2140 	if (vma->vm_file)
2141 		result = proc_map_files_instantiate(dentry, task,
2142 				(void *)(unsigned long)vma->vm_file->f_mode);
2143 
2144 out_no_vma:
2145 	up_read(&mm->mmap_sem);
2146 out_put_mm:
2147 	mmput(mm);
2148 out_put_task:
2149 	put_task_struct(task);
2150 out:
2151 	return result;
2152 }
2153 
2154 static const struct inode_operations proc_map_files_inode_operations = {
2155 	.lookup		= proc_map_files_lookup,
2156 	.permission	= proc_fd_permission,
2157 	.setattr	= proc_setattr,
2158 };
2159 
2160 static int
proc_map_files_readdir(struct file * file,struct dir_context * ctx)2161 proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2162 {
2163 	struct vm_area_struct *vma;
2164 	struct task_struct *task;
2165 	struct mm_struct *mm;
2166 	unsigned long nr_files, pos, i;
2167 	struct flex_array *fa = NULL;
2168 	struct map_files_info info;
2169 	struct map_files_info *p;
2170 	int ret;
2171 
2172 	ret = -ENOENT;
2173 	task = get_proc_task(file_inode(file));
2174 	if (!task)
2175 		goto out;
2176 
2177 	ret = -EACCES;
2178 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2179 		goto out_put_task;
2180 
2181 	ret = 0;
2182 	if (!dir_emit_dots(file, ctx))
2183 		goto out_put_task;
2184 
2185 	mm = get_task_mm(task);
2186 	if (!mm)
2187 		goto out_put_task;
2188 
2189 	ret = down_read_killable(&mm->mmap_sem);
2190 	if (ret) {
2191 		mmput(mm);
2192 		goto out_put_task;
2193 	}
2194 
2195 	nr_files = 0;
2196 
2197 	/*
2198 	 * We need two passes here:
2199 	 *
2200 	 *  1) Collect vmas of mapped files with mmap_sem taken
2201 	 *  2) Release mmap_sem and instantiate entries
2202 	 *
2203 	 * otherwise we get lockdep complained, since filldir()
2204 	 * routine might require mmap_sem taken in might_fault().
2205 	 */
2206 
2207 	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2208 		if (vma->vm_file && ++pos > ctx->pos)
2209 			nr_files++;
2210 	}
2211 
2212 	if (nr_files) {
2213 		fa = flex_array_alloc(sizeof(info), nr_files,
2214 					GFP_KERNEL);
2215 		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2216 						GFP_KERNEL)) {
2217 			ret = -ENOMEM;
2218 			if (fa)
2219 				flex_array_free(fa);
2220 			up_read(&mm->mmap_sem);
2221 			mmput(mm);
2222 			goto out_put_task;
2223 		}
2224 		for (i = 0, vma = mm->mmap, pos = 2; vma;
2225 				vma = vma->vm_next) {
2226 			if (!vma->vm_file)
2227 				continue;
2228 			if (++pos <= ctx->pos)
2229 				continue;
2230 
2231 			info.start = vma->vm_start;
2232 			info.end = vma->vm_end;
2233 			info.mode = vma->vm_file->f_mode;
2234 			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2235 				BUG();
2236 		}
2237 	}
2238 	up_read(&mm->mmap_sem);
2239 	mmput(mm);
2240 
2241 	for (i = 0; i < nr_files; i++) {
2242 		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2243 		unsigned int len;
2244 
2245 		p = flex_array_get(fa, i);
2246 		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2247 		if (!proc_fill_cache(file, ctx,
2248 				      buf, len,
2249 				      proc_map_files_instantiate,
2250 				      task,
2251 				      (void *)(unsigned long)p->mode))
2252 			break;
2253 		ctx->pos++;
2254 	}
2255 	if (fa)
2256 		flex_array_free(fa);
2257 
2258 out_put_task:
2259 	put_task_struct(task);
2260 out:
2261 	return ret;
2262 }
2263 
2264 static const struct file_operations proc_map_files_operations = {
2265 	.read		= generic_read_dir,
2266 	.iterate_shared	= proc_map_files_readdir,
2267 	.llseek		= generic_file_llseek,
2268 };
2269 
2270 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2271 struct timers_private {
2272 	struct pid *pid;
2273 	struct task_struct *task;
2274 	struct sighand_struct *sighand;
2275 	struct pid_namespace *ns;
2276 	unsigned long flags;
2277 };
2278 
timers_start(struct seq_file * m,loff_t * pos)2279 static void *timers_start(struct seq_file *m, loff_t *pos)
2280 {
2281 	struct timers_private *tp = m->private;
2282 
2283 	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2284 	if (!tp->task)
2285 		return ERR_PTR(-ESRCH);
2286 
2287 	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2288 	if (!tp->sighand)
2289 		return ERR_PTR(-ESRCH);
2290 
2291 	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2292 }
2293 
timers_next(struct seq_file * m,void * v,loff_t * pos)2294 static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2295 {
2296 	struct timers_private *tp = m->private;
2297 	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2298 }
2299 
timers_stop(struct seq_file * m,void * v)2300 static void timers_stop(struct seq_file *m, void *v)
2301 {
2302 	struct timers_private *tp = m->private;
2303 
2304 	if (tp->sighand) {
2305 		unlock_task_sighand(tp->task, &tp->flags);
2306 		tp->sighand = NULL;
2307 	}
2308 
2309 	if (tp->task) {
2310 		put_task_struct(tp->task);
2311 		tp->task = NULL;
2312 	}
2313 }
2314 
show_timer(struct seq_file * m,void * v)2315 static int show_timer(struct seq_file *m, void *v)
2316 {
2317 	struct k_itimer *timer;
2318 	struct timers_private *tp = m->private;
2319 	int notify;
2320 	static const char * const nstr[] = {
2321 		[SIGEV_SIGNAL] = "signal",
2322 		[SIGEV_NONE] = "none",
2323 		[SIGEV_THREAD] = "thread",
2324 	};
2325 
2326 	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2327 	notify = timer->it_sigev_notify;
2328 
2329 	seq_printf(m, "ID: %d\n", timer->it_id);
2330 	seq_printf(m, "signal: %d/%px\n",
2331 		   timer->sigq->info.si_signo,
2332 		   timer->sigq->info.si_value.sival_ptr);
2333 	seq_printf(m, "notify: %s/%s.%d\n",
2334 		   nstr[notify & ~SIGEV_THREAD_ID],
2335 		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2336 		   pid_nr_ns(timer->it_pid, tp->ns));
2337 	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2338 
2339 	return 0;
2340 }
2341 
2342 static const struct seq_operations proc_timers_seq_ops = {
2343 	.start	= timers_start,
2344 	.next	= timers_next,
2345 	.stop	= timers_stop,
2346 	.show	= show_timer,
2347 };
2348 
proc_timers_open(struct inode * inode,struct file * file)2349 static int proc_timers_open(struct inode *inode, struct file *file)
2350 {
2351 	struct timers_private *tp;
2352 
2353 	tp = __seq_open_private(file, &proc_timers_seq_ops,
2354 			sizeof(struct timers_private));
2355 	if (!tp)
2356 		return -ENOMEM;
2357 
2358 	tp->pid = proc_pid(inode);
2359 	tp->ns = proc_pid_ns(inode);
2360 	return 0;
2361 }
2362 
2363 static const struct file_operations proc_timers_operations = {
2364 	.open		= proc_timers_open,
2365 	.read		= seq_read,
2366 	.llseek		= seq_lseek,
2367 	.release	= seq_release_private,
2368 };
2369 #endif
2370 
timerslack_ns_write(struct file * file,const char __user * buf,size_t count,loff_t * offset)2371 static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2372 					size_t count, loff_t *offset)
2373 {
2374 	struct inode *inode = file_inode(file);
2375 	struct task_struct *p;
2376 	u64 slack_ns;
2377 	int err;
2378 
2379 	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2380 	if (err < 0)
2381 		return err;
2382 
2383 	p = get_proc_task(inode);
2384 	if (!p)
2385 		return -ESRCH;
2386 
2387 	if (p != current) {
2388 		if (!capable(CAP_SYS_NICE)) {
2389 			count = -EPERM;
2390 			goto out;
2391 		}
2392 
2393 		err = security_task_setscheduler(p);
2394 		if (err) {
2395 			count = err;
2396 			goto out;
2397 		}
2398 	}
2399 
2400 	task_lock(p);
2401 	if (slack_ns == 0)
2402 		p->timer_slack_ns = p->default_timer_slack_ns;
2403 	else
2404 		p->timer_slack_ns = slack_ns;
2405 	task_unlock(p);
2406 
2407 out:
2408 	put_task_struct(p);
2409 
2410 	return count;
2411 }
2412 
timerslack_ns_show(struct seq_file * m,void * v)2413 static int timerslack_ns_show(struct seq_file *m, void *v)
2414 {
2415 	struct inode *inode = m->private;
2416 	struct task_struct *p;
2417 	int err = 0;
2418 
2419 	p = get_proc_task(inode);
2420 	if (!p)
2421 		return -ESRCH;
2422 
2423 	if (p != current) {
2424 
2425 		if (!capable(CAP_SYS_NICE)) {
2426 			err = -EPERM;
2427 			goto out;
2428 		}
2429 		err = security_task_getscheduler(p);
2430 		if (err)
2431 			goto out;
2432 	}
2433 
2434 	task_lock(p);
2435 	seq_printf(m, "%llu\n", p->timer_slack_ns);
2436 	task_unlock(p);
2437 
2438 out:
2439 	put_task_struct(p);
2440 
2441 	return err;
2442 }
2443 
timerslack_ns_open(struct inode * inode,struct file * filp)2444 static int timerslack_ns_open(struct inode *inode, struct file *filp)
2445 {
2446 	return single_open(filp, timerslack_ns_show, inode);
2447 }
2448 
2449 static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2450 	.open		= timerslack_ns_open,
2451 	.read		= seq_read,
2452 	.write		= timerslack_ns_write,
2453 	.llseek		= seq_lseek,
2454 	.release	= single_release,
2455 };
2456 
proc_pident_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)2457 static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2458 	struct task_struct *task, const void *ptr)
2459 {
2460 	const struct pid_entry *p = ptr;
2461 	struct inode *inode;
2462 	struct proc_inode *ei;
2463 
2464 	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2465 	if (!inode)
2466 		return ERR_PTR(-ENOENT);
2467 
2468 	ei = PROC_I(inode);
2469 	if (S_ISDIR(inode->i_mode))
2470 		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2471 	if (p->iop)
2472 		inode->i_op = p->iop;
2473 	if (p->fop)
2474 		inode->i_fop = p->fop;
2475 	ei->op = p->op;
2476 	pid_update_inode(task, inode);
2477 	d_set_d_op(dentry, &pid_dentry_operations);
2478 	return d_splice_alias(inode, dentry);
2479 }
2480 
proc_pident_lookup(struct inode * dir,struct dentry * dentry,const struct pid_entry * ents,unsigned int nents)2481 static struct dentry *proc_pident_lookup(struct inode *dir,
2482 					 struct dentry *dentry,
2483 					 const struct pid_entry *ents,
2484 					 unsigned int nents)
2485 {
2486 	struct task_struct *task = get_proc_task(dir);
2487 	const struct pid_entry *p, *last;
2488 	struct dentry *res = ERR_PTR(-ENOENT);
2489 
2490 	if (!task)
2491 		goto out_no_task;
2492 
2493 	/*
2494 	 * Yes, it does not scale. And it should not. Don't add
2495 	 * new entries into /proc/<tgid>/ without very good reasons.
2496 	 */
2497 	last = &ents[nents];
2498 	for (p = ents; p < last; p++) {
2499 		if (p->len != dentry->d_name.len)
2500 			continue;
2501 		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2502 			res = proc_pident_instantiate(dentry, task, p);
2503 			break;
2504 		}
2505 	}
2506 	put_task_struct(task);
2507 out_no_task:
2508 	return res;
2509 }
2510 
proc_pident_readdir(struct file * file,struct dir_context * ctx,const struct pid_entry * ents,unsigned int nents)2511 static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2512 		const struct pid_entry *ents, unsigned int nents)
2513 {
2514 	struct task_struct *task = get_proc_task(file_inode(file));
2515 	const struct pid_entry *p;
2516 
2517 	if (!task)
2518 		return -ENOENT;
2519 
2520 	if (!dir_emit_dots(file, ctx))
2521 		goto out;
2522 
2523 	if (ctx->pos >= nents + 2)
2524 		goto out;
2525 
2526 	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2527 		if (!proc_fill_cache(file, ctx, p->name, p->len,
2528 				proc_pident_instantiate, task, p))
2529 			break;
2530 		ctx->pos++;
2531 	}
2532 out:
2533 	put_task_struct(task);
2534 	return 0;
2535 }
2536 
2537 #ifdef CONFIG_SECURITY
proc_pid_attr_open(struct inode * inode,struct file * file)2538 static int proc_pid_attr_open(struct inode *inode, struct file *file)
2539 {
2540 	file->private_data = NULL;
2541 	__mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
2542 	return 0;
2543 }
2544 
proc_pid_attr_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2545 static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2546 				  size_t count, loff_t *ppos)
2547 {
2548 	struct inode * inode = file_inode(file);
2549 	char *p = NULL;
2550 	ssize_t length;
2551 	struct task_struct *task = get_proc_task(inode);
2552 
2553 	if (!task)
2554 		return -ESRCH;
2555 
2556 	length = security_getprocattr(task,
2557 				      (char*)file->f_path.dentry->d_name.name,
2558 				      &p);
2559 	put_task_struct(task);
2560 	if (length > 0)
2561 		length = simple_read_from_buffer(buf, count, ppos, p, length);
2562 	kfree(p);
2563 	return length;
2564 }
2565 
proc_pid_attr_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2566 static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2567 				   size_t count, loff_t *ppos)
2568 {
2569 	struct inode * inode = file_inode(file);
2570 	struct task_struct *task;
2571 	void *page;
2572 	int rv;
2573 
2574 	/* A task may only write when it was the opener. */
2575 	if (file->private_data != current->mm)
2576 		return -EPERM;
2577 
2578 	rcu_read_lock();
2579 	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2580 	if (!task) {
2581 		rcu_read_unlock();
2582 		return -ESRCH;
2583 	}
2584 	/* A task may only write its own attributes. */
2585 	if (current != task) {
2586 		rcu_read_unlock();
2587 		return -EACCES;
2588 	}
2589 	/* Prevent changes to overridden credentials. */
2590 	if (current_cred() != current_real_cred()) {
2591 		rcu_read_unlock();
2592 		return -EBUSY;
2593 	}
2594 	rcu_read_unlock();
2595 
2596 	if (count > PAGE_SIZE)
2597 		count = PAGE_SIZE;
2598 
2599 	/* No partial writes. */
2600 	if (*ppos != 0)
2601 		return -EINVAL;
2602 
2603 	page = memdup_user(buf, count);
2604 	if (IS_ERR(page)) {
2605 		rv = PTR_ERR(page);
2606 		goto out;
2607 	}
2608 
2609 	/* Guard against adverse ptrace interaction */
2610 	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2611 	if (rv < 0)
2612 		goto out_free;
2613 
2614 	rv = security_setprocattr(file->f_path.dentry->d_name.name, page, count);
2615 	mutex_unlock(&current->signal->cred_guard_mutex);
2616 out_free:
2617 	kfree(page);
2618 out:
2619 	return rv;
2620 }
2621 
2622 static const struct file_operations proc_pid_attr_operations = {
2623 	.open		= proc_pid_attr_open,
2624 	.read		= proc_pid_attr_read,
2625 	.write		= proc_pid_attr_write,
2626 	.llseek		= generic_file_llseek,
2627 	.release	= mem_release,
2628 };
2629 
2630 static const struct pid_entry attr_dir_stuff[] = {
2631 	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2632 	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2633 	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2634 	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2635 	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2636 	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2637 };
2638 
proc_attr_dir_readdir(struct file * file,struct dir_context * ctx)2639 static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2640 {
2641 	return proc_pident_readdir(file, ctx,
2642 				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2643 }
2644 
2645 static const struct file_operations proc_attr_dir_operations = {
2646 	.read		= generic_read_dir,
2647 	.iterate_shared	= proc_attr_dir_readdir,
2648 	.llseek		= generic_file_llseek,
2649 };
2650 
proc_attr_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)2651 static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2652 				struct dentry *dentry, unsigned int flags)
2653 {
2654 	return proc_pident_lookup(dir, dentry,
2655 				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2656 }
2657 
2658 static const struct inode_operations proc_attr_dir_inode_operations = {
2659 	.lookup		= proc_attr_dir_lookup,
2660 	.getattr	= pid_getattr,
2661 	.setattr	= proc_setattr,
2662 };
2663 
2664 #endif
2665 
2666 #ifdef CONFIG_ELF_CORE
proc_coredump_filter_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)2667 static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2668 					 size_t count, loff_t *ppos)
2669 {
2670 	struct task_struct *task = get_proc_task(file_inode(file));
2671 	struct mm_struct *mm;
2672 	char buffer[PROC_NUMBUF];
2673 	size_t len;
2674 	int ret;
2675 
2676 	if (!task)
2677 		return -ESRCH;
2678 
2679 	ret = 0;
2680 	mm = get_task_mm(task);
2681 	if (mm) {
2682 		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2683 			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2684 				MMF_DUMP_FILTER_SHIFT));
2685 		mmput(mm);
2686 		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2687 	}
2688 
2689 	put_task_struct(task);
2690 
2691 	return ret;
2692 }
2693 
proc_coredump_filter_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)2694 static ssize_t proc_coredump_filter_write(struct file *file,
2695 					  const char __user *buf,
2696 					  size_t count,
2697 					  loff_t *ppos)
2698 {
2699 	struct task_struct *task;
2700 	struct mm_struct *mm;
2701 	unsigned int val;
2702 	int ret;
2703 	int i;
2704 	unsigned long mask;
2705 
2706 	ret = kstrtouint_from_user(buf, count, 0, &val);
2707 	if (ret < 0)
2708 		return ret;
2709 
2710 	ret = -ESRCH;
2711 	task = get_proc_task(file_inode(file));
2712 	if (!task)
2713 		goto out_no_task;
2714 
2715 	mm = get_task_mm(task);
2716 	if (!mm)
2717 		goto out_no_mm;
2718 	ret = 0;
2719 
2720 	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2721 		if (val & mask)
2722 			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2723 		else
2724 			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2725 	}
2726 
2727 	mmput(mm);
2728  out_no_mm:
2729 	put_task_struct(task);
2730  out_no_task:
2731 	if (ret < 0)
2732 		return ret;
2733 	return count;
2734 }
2735 
2736 static const struct file_operations proc_coredump_filter_operations = {
2737 	.read		= proc_coredump_filter_read,
2738 	.write		= proc_coredump_filter_write,
2739 	.llseek		= generic_file_llseek,
2740 };
2741 #endif
2742 
2743 #ifdef CONFIG_TASK_IO_ACCOUNTING
do_io_accounting(struct task_struct * task,struct seq_file * m,int whole)2744 static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2745 {
2746 	struct task_io_accounting acct = task->ioac;
2747 	unsigned long flags;
2748 	int result;
2749 
2750 	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2751 	if (result)
2752 		return result;
2753 
2754 	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2755 		result = -EACCES;
2756 		goto out_unlock;
2757 	}
2758 
2759 	if (whole && lock_task_sighand(task, &flags)) {
2760 		struct task_struct *t = task;
2761 
2762 		task_io_accounting_add(&acct, &task->signal->ioac);
2763 		while_each_thread(task, t)
2764 			task_io_accounting_add(&acct, &t->ioac);
2765 
2766 		unlock_task_sighand(task, &flags);
2767 	}
2768 	seq_printf(m,
2769 		   "rchar: %llu\n"
2770 		   "wchar: %llu\n"
2771 		   "syscr: %llu\n"
2772 		   "syscw: %llu\n"
2773 		   "read_bytes: %llu\n"
2774 		   "write_bytes: %llu\n"
2775 		   "cancelled_write_bytes: %llu\n",
2776 		   (unsigned long long)acct.rchar,
2777 		   (unsigned long long)acct.wchar,
2778 		   (unsigned long long)acct.syscr,
2779 		   (unsigned long long)acct.syscw,
2780 		   (unsigned long long)acct.read_bytes,
2781 		   (unsigned long long)acct.write_bytes,
2782 		   (unsigned long long)acct.cancelled_write_bytes);
2783 	result = 0;
2784 
2785 out_unlock:
2786 	mutex_unlock(&task->signal->cred_guard_mutex);
2787 	return result;
2788 }
2789 
proc_tid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2790 static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2791 				  struct pid *pid, struct task_struct *task)
2792 {
2793 	return do_io_accounting(task, m, 0);
2794 }
2795 
proc_tgid_io_accounting(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2796 static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2797 				   struct pid *pid, struct task_struct *task)
2798 {
2799 	return do_io_accounting(task, m, 1);
2800 }
2801 #endif /* CONFIG_TASK_IO_ACCOUNTING */
2802 
2803 #ifdef CONFIG_USER_NS
proc_id_map_open(struct inode * inode,struct file * file,const struct seq_operations * seq_ops)2804 static int proc_id_map_open(struct inode *inode, struct file *file,
2805 	const struct seq_operations *seq_ops)
2806 {
2807 	struct user_namespace *ns = NULL;
2808 	struct task_struct *task;
2809 	struct seq_file *seq;
2810 	int ret = -EINVAL;
2811 
2812 	task = get_proc_task(inode);
2813 	if (task) {
2814 		rcu_read_lock();
2815 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2816 		rcu_read_unlock();
2817 		put_task_struct(task);
2818 	}
2819 	if (!ns)
2820 		goto err;
2821 
2822 	ret = seq_open(file, seq_ops);
2823 	if (ret)
2824 		goto err_put_ns;
2825 
2826 	seq = file->private_data;
2827 	seq->private = ns;
2828 
2829 	return 0;
2830 err_put_ns:
2831 	put_user_ns(ns);
2832 err:
2833 	return ret;
2834 }
2835 
proc_id_map_release(struct inode * inode,struct file * file)2836 static int proc_id_map_release(struct inode *inode, struct file *file)
2837 {
2838 	struct seq_file *seq = file->private_data;
2839 	struct user_namespace *ns = seq->private;
2840 	put_user_ns(ns);
2841 	return seq_release(inode, file);
2842 }
2843 
proc_uid_map_open(struct inode * inode,struct file * file)2844 static int proc_uid_map_open(struct inode *inode, struct file *file)
2845 {
2846 	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2847 }
2848 
proc_gid_map_open(struct inode * inode,struct file * file)2849 static int proc_gid_map_open(struct inode *inode, struct file *file)
2850 {
2851 	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2852 }
2853 
proc_projid_map_open(struct inode * inode,struct file * file)2854 static int proc_projid_map_open(struct inode *inode, struct file *file)
2855 {
2856 	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2857 }
2858 
2859 static const struct file_operations proc_uid_map_operations = {
2860 	.open		= proc_uid_map_open,
2861 	.write		= proc_uid_map_write,
2862 	.read		= seq_read,
2863 	.llseek		= seq_lseek,
2864 	.release	= proc_id_map_release,
2865 };
2866 
2867 static const struct file_operations proc_gid_map_operations = {
2868 	.open		= proc_gid_map_open,
2869 	.write		= proc_gid_map_write,
2870 	.read		= seq_read,
2871 	.llseek		= seq_lseek,
2872 	.release	= proc_id_map_release,
2873 };
2874 
2875 static const struct file_operations proc_projid_map_operations = {
2876 	.open		= proc_projid_map_open,
2877 	.write		= proc_projid_map_write,
2878 	.read		= seq_read,
2879 	.llseek		= seq_lseek,
2880 	.release	= proc_id_map_release,
2881 };
2882 
proc_setgroups_open(struct inode * inode,struct file * file)2883 static int proc_setgroups_open(struct inode *inode, struct file *file)
2884 {
2885 	struct user_namespace *ns = NULL;
2886 	struct task_struct *task;
2887 	int ret;
2888 
2889 	ret = -ESRCH;
2890 	task = get_proc_task(inode);
2891 	if (task) {
2892 		rcu_read_lock();
2893 		ns = get_user_ns(task_cred_xxx(task, user_ns));
2894 		rcu_read_unlock();
2895 		put_task_struct(task);
2896 	}
2897 	if (!ns)
2898 		goto err;
2899 
2900 	if (file->f_mode & FMODE_WRITE) {
2901 		ret = -EACCES;
2902 		if (!ns_capable(ns, CAP_SYS_ADMIN))
2903 			goto err_put_ns;
2904 	}
2905 
2906 	ret = single_open(file, &proc_setgroups_show, ns);
2907 	if (ret)
2908 		goto err_put_ns;
2909 
2910 	return 0;
2911 err_put_ns:
2912 	put_user_ns(ns);
2913 err:
2914 	return ret;
2915 }
2916 
proc_setgroups_release(struct inode * inode,struct file * file)2917 static int proc_setgroups_release(struct inode *inode, struct file *file)
2918 {
2919 	struct seq_file *seq = file->private_data;
2920 	struct user_namespace *ns = seq->private;
2921 	int ret = single_release(inode, file);
2922 	put_user_ns(ns);
2923 	return ret;
2924 }
2925 
2926 static const struct file_operations proc_setgroups_operations = {
2927 	.open		= proc_setgroups_open,
2928 	.write		= proc_setgroups_write,
2929 	.read		= seq_read,
2930 	.llseek		= seq_lseek,
2931 	.release	= proc_setgroups_release,
2932 };
2933 #endif /* CONFIG_USER_NS */
2934 
proc_pid_personality(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2935 static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2936 				struct pid *pid, struct task_struct *task)
2937 {
2938 	int err = lock_trace(task);
2939 	if (!err) {
2940 		seq_printf(m, "%08x\n", task->personality);
2941 		unlock_trace(task);
2942 	}
2943 	return err;
2944 }
2945 
2946 #ifdef CONFIG_LIVEPATCH
proc_pid_patch_state(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2947 static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2948 				struct pid *pid, struct task_struct *task)
2949 {
2950 	seq_printf(m, "%d\n", task->patch_state);
2951 	return 0;
2952 }
2953 #endif /* CONFIG_LIVEPATCH */
2954 
2955 /*
2956  * Thread groups
2957  */
2958 static const struct file_operations proc_task_operations;
2959 static const struct inode_operations proc_task_inode_operations;
2960 
2961 static const struct pid_entry tgid_base_stuff[] = {
2962 	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2963 	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2964 	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2965 	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2966 	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2967 #ifdef CONFIG_NET
2968 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2969 #endif
2970 	REG("environ",    S_IRUSR, proc_environ_operations),
2971 	REG("auxv",       S_IRUSR, proc_auxv_operations),
2972 	ONE("status",     S_IRUGO, proc_pid_status),
2973 	ONE("personality", S_IRUSR, proc_pid_personality),
2974 	ONE("limits",	  S_IRUGO, proc_pid_limits),
2975 #ifdef CONFIG_SCHED_DEBUG
2976 	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2977 #endif
2978 #ifdef CONFIG_SCHED_AUTOGROUP
2979 	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2980 #endif
2981 	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2982 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2983 	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2984 #endif
2985 	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2986 	ONE("stat",       S_IRUGO, proc_tgid_stat),
2987 	ONE("statm",      S_IRUGO, proc_pid_statm),
2988 	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2989 #ifdef CONFIG_NUMA
2990 	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2991 #endif
2992 	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2993 	LNK("cwd",        proc_cwd_link),
2994 	LNK("root",       proc_root_link),
2995 	LNK("exe",        proc_exe_link),
2996 	REG("mounts",     S_IRUGO, proc_mounts_operations),
2997 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2998 	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2999 #ifdef CONFIG_PROC_PAGE_MONITOR
3000 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3001 	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3002 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3003 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3004 #endif
3005 #ifdef CONFIG_SECURITY
3006 	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3007 #endif
3008 #ifdef CONFIG_KALLSYMS
3009 	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3010 #endif
3011 #ifdef CONFIG_STACKTRACE
3012 	ONE("stack",      S_IRUSR, proc_pid_stack),
3013 #endif
3014 #ifdef CONFIG_SCHED_INFO
3015 	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3016 #endif
3017 #ifdef CONFIG_LATENCYTOP
3018 	REG("latency",  S_IRUGO, proc_lstats_operations),
3019 #endif
3020 #ifdef CONFIG_PROC_PID_CPUSET
3021 	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3022 #endif
3023 #ifdef CONFIG_CGROUPS
3024 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3025 #endif
3026 	ONE("oom_score",  S_IRUGO, proc_oom_score),
3027 	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3028 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3029 #ifdef CONFIG_AUDITSYSCALL
3030 	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3031 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3032 #endif
3033 #ifdef CONFIG_FAULT_INJECTION
3034 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3035 	REG("fail-nth", 0644, proc_fail_nth_operations),
3036 #endif
3037 #ifdef CONFIG_ELF_CORE
3038 	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3039 #endif
3040 #ifdef CONFIG_TASK_IO_ACCOUNTING
3041 	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3042 #endif
3043 #ifdef CONFIG_USER_NS
3044 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3045 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3046 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3047 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3048 #endif
3049 #if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3050 	REG("timers",	  S_IRUGO, proc_timers_operations),
3051 #endif
3052 	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3053 #ifdef CONFIG_LIVEPATCH
3054 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3055 #endif
3056 };
3057 
proc_tgid_base_readdir(struct file * file,struct dir_context * ctx)3058 static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3059 {
3060 	return proc_pident_readdir(file, ctx,
3061 				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3062 }
3063 
3064 static const struct file_operations proc_tgid_base_operations = {
3065 	.read		= generic_read_dir,
3066 	.iterate_shared	= proc_tgid_base_readdir,
3067 	.llseek		= generic_file_llseek,
3068 };
3069 
proc_tgid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3070 static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3071 {
3072 	return proc_pident_lookup(dir, dentry,
3073 				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3074 }
3075 
3076 static const struct inode_operations proc_tgid_base_inode_operations = {
3077 	.lookup		= proc_tgid_base_lookup,
3078 	.getattr	= pid_getattr,
3079 	.setattr	= proc_setattr,
3080 	.permission	= proc_pid_permission,
3081 };
3082 
proc_flush_task_mnt(struct vfsmount * mnt,pid_t pid,pid_t tgid)3083 static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3084 {
3085 	struct dentry *dentry, *leader, *dir;
3086 	char buf[10 + 1];
3087 	struct qstr name;
3088 
3089 	name.name = buf;
3090 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3091 	/* no ->d_hash() rejects on procfs */
3092 	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3093 	if (dentry) {
3094 		d_invalidate(dentry);
3095 		dput(dentry);
3096 	}
3097 
3098 	if (pid == tgid)
3099 		return;
3100 
3101 	name.name = buf;
3102 	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3103 	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3104 	if (!leader)
3105 		goto out;
3106 
3107 	name.name = "task";
3108 	name.len = strlen(name.name);
3109 	dir = d_hash_and_lookup(leader, &name);
3110 	if (!dir)
3111 		goto out_put_leader;
3112 
3113 	name.name = buf;
3114 	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3115 	dentry = d_hash_and_lookup(dir, &name);
3116 	if (dentry) {
3117 		d_invalidate(dentry);
3118 		dput(dentry);
3119 	}
3120 
3121 	dput(dir);
3122 out_put_leader:
3123 	dput(leader);
3124 out:
3125 	return;
3126 }
3127 
3128 /**
3129  * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3130  * @task: task that should be flushed.
3131  *
3132  * When flushing dentries from proc, one needs to flush them from global
3133  * proc (proc_mnt) and from all the namespaces' procs this task was seen
3134  * in. This call is supposed to do all of this job.
3135  *
3136  * Looks in the dcache for
3137  * /proc/@pid
3138  * /proc/@tgid/task/@pid
3139  * if either directory is present flushes it and all of it'ts children
3140  * from the dcache.
3141  *
3142  * It is safe and reasonable to cache /proc entries for a task until
3143  * that task exits.  After that they just clog up the dcache with
3144  * useless entries, possibly causing useful dcache entries to be
3145  * flushed instead.  This routine is proved to flush those useless
3146  * dcache entries at process exit time.
3147  *
3148  * NOTE: This routine is just an optimization so it does not guarantee
3149  *       that no dcache entries will exist at process exit time it
3150  *       just makes it very unlikely that any will persist.
3151  */
3152 
proc_flush_task(struct task_struct * task)3153 void proc_flush_task(struct task_struct *task)
3154 {
3155 	int i;
3156 	struct pid *pid, *tgid;
3157 	struct upid *upid;
3158 
3159 	pid = task_pid(task);
3160 	tgid = task_tgid(task);
3161 
3162 	for (i = 0; i <= pid->level; i++) {
3163 		upid = &pid->numbers[i];
3164 		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3165 					tgid->numbers[i].nr);
3166 	}
3167 }
3168 
proc_pid_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3169 static struct dentry *proc_pid_instantiate(struct dentry * dentry,
3170 				   struct task_struct *task, const void *ptr)
3171 {
3172 	struct inode *inode;
3173 
3174 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3175 	if (!inode)
3176 		return ERR_PTR(-ENOENT);
3177 
3178 	inode->i_op = &proc_tgid_base_inode_operations;
3179 	inode->i_fop = &proc_tgid_base_operations;
3180 	inode->i_flags|=S_IMMUTABLE;
3181 
3182 	set_nlink(inode, nlink_tgid);
3183 	pid_update_inode(task, inode);
3184 
3185 	d_set_d_op(dentry, &pid_dentry_operations);
3186 	return d_splice_alias(inode, dentry);
3187 }
3188 
proc_pid_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3189 struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3190 {
3191 	struct task_struct *task;
3192 	unsigned tgid;
3193 	struct pid_namespace *ns;
3194 	struct dentry *result = ERR_PTR(-ENOENT);
3195 
3196 	tgid = name_to_int(&dentry->d_name);
3197 	if (tgid == ~0U)
3198 		goto out;
3199 
3200 	ns = dentry->d_sb->s_fs_info;
3201 	rcu_read_lock();
3202 	task = find_task_by_pid_ns(tgid, ns);
3203 	if (task)
3204 		get_task_struct(task);
3205 	rcu_read_unlock();
3206 	if (!task)
3207 		goto out;
3208 
3209 	result = proc_pid_instantiate(dentry, task, NULL);
3210 	put_task_struct(task);
3211 out:
3212 	return result;
3213 }
3214 
3215 /*
3216  * Find the first task with tgid >= tgid
3217  *
3218  */
3219 struct tgid_iter {
3220 	unsigned int tgid;
3221 	struct task_struct *task;
3222 };
next_tgid(struct pid_namespace * ns,struct tgid_iter iter)3223 static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3224 {
3225 	struct pid *pid;
3226 
3227 	if (iter.task)
3228 		put_task_struct(iter.task);
3229 	rcu_read_lock();
3230 retry:
3231 	iter.task = NULL;
3232 	pid = find_ge_pid(iter.tgid, ns);
3233 	if (pid) {
3234 		iter.tgid = pid_nr_ns(pid, ns);
3235 		iter.task = pid_task(pid, PIDTYPE_PID);
3236 		/* What we to know is if the pid we have find is the
3237 		 * pid of a thread_group_leader.  Testing for task
3238 		 * being a thread_group_leader is the obvious thing
3239 		 * todo but there is a window when it fails, due to
3240 		 * the pid transfer logic in de_thread.
3241 		 *
3242 		 * So we perform the straight forward test of seeing
3243 		 * if the pid we have found is the pid of a thread
3244 		 * group leader, and don't worry if the task we have
3245 		 * found doesn't happen to be a thread group leader.
3246 		 * As we don't care in the case of readdir.
3247 		 */
3248 		if (!iter.task || !has_group_leader_pid(iter.task)) {
3249 			iter.tgid += 1;
3250 			goto retry;
3251 		}
3252 		get_task_struct(iter.task);
3253 	}
3254 	rcu_read_unlock();
3255 	return iter;
3256 }
3257 
3258 #define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3259 
3260 /* for the /proc/ directory itself, after non-process stuff has been done */
proc_pid_readdir(struct file * file,struct dir_context * ctx)3261 int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3262 {
3263 	struct tgid_iter iter;
3264 	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3265 	loff_t pos = ctx->pos;
3266 
3267 	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3268 		return 0;
3269 
3270 	if (pos == TGID_OFFSET - 2) {
3271 		struct inode *inode = d_inode(ns->proc_self);
3272 		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3273 			return 0;
3274 		ctx->pos = pos = pos + 1;
3275 	}
3276 	if (pos == TGID_OFFSET - 1) {
3277 		struct inode *inode = d_inode(ns->proc_thread_self);
3278 		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3279 			return 0;
3280 		ctx->pos = pos = pos + 1;
3281 	}
3282 	iter.tgid = pos - TGID_OFFSET;
3283 	iter.task = NULL;
3284 	for (iter = next_tgid(ns, iter);
3285 	     iter.task;
3286 	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3287 		char name[10 + 1];
3288 		unsigned int len;
3289 
3290 		cond_resched();
3291 		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3292 			continue;
3293 
3294 		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3295 		ctx->pos = iter.tgid + TGID_OFFSET;
3296 		if (!proc_fill_cache(file, ctx, name, len,
3297 				     proc_pid_instantiate, iter.task, NULL)) {
3298 			put_task_struct(iter.task);
3299 			return 0;
3300 		}
3301 	}
3302 	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3303 	return 0;
3304 }
3305 
3306 /*
3307  * proc_tid_comm_permission is a special permission function exclusively
3308  * used for the node /proc/<pid>/task/<tid>/comm.
3309  * It bypasses generic permission checks in the case where a task of the same
3310  * task group attempts to access the node.
3311  * The rationale behind this is that glibc and bionic access this node for
3312  * cross thread naming (pthread_set/getname_np(!self)). However, if
3313  * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3314  * which locks out the cross thread naming implementation.
3315  * This function makes sure that the node is always accessible for members of
3316  * same thread group.
3317  */
proc_tid_comm_permission(struct inode * inode,int mask)3318 static int proc_tid_comm_permission(struct inode *inode, int mask)
3319 {
3320 	bool is_same_tgroup;
3321 	struct task_struct *task;
3322 
3323 	task = get_proc_task(inode);
3324 	if (!task)
3325 		return -ESRCH;
3326 	is_same_tgroup = same_thread_group(current, task);
3327 	put_task_struct(task);
3328 
3329 	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3330 		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3331 		 * read or written by the members of the corresponding
3332 		 * thread group.
3333 		 */
3334 		return 0;
3335 	}
3336 
3337 	return generic_permission(inode, mask);
3338 }
3339 
3340 static const struct inode_operations proc_tid_comm_inode_operations = {
3341 		.setattr	= proc_setattr,
3342 		.permission	= proc_tid_comm_permission,
3343 };
3344 
3345 /*
3346  * Tasks
3347  */
3348 static const struct pid_entry tid_base_stuff[] = {
3349 	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3350 	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3351 	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3352 #ifdef CONFIG_NET
3353 	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3354 #endif
3355 	REG("environ",   S_IRUSR, proc_environ_operations),
3356 	REG("auxv",      S_IRUSR, proc_auxv_operations),
3357 	ONE("status",    S_IRUGO, proc_pid_status),
3358 	ONE("personality", S_IRUSR, proc_pid_personality),
3359 	ONE("limits",	 S_IRUGO, proc_pid_limits),
3360 #ifdef CONFIG_SCHED_DEBUG
3361 	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3362 #endif
3363 	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3364 			 &proc_tid_comm_inode_operations,
3365 			 &proc_pid_set_comm_operations, {}),
3366 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3367 	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3368 #endif
3369 	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3370 	ONE("stat",      S_IRUGO, proc_tid_stat),
3371 	ONE("statm",     S_IRUGO, proc_pid_statm),
3372 	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3373 #ifdef CONFIG_PROC_CHILDREN
3374 	REG("children",  S_IRUGO, proc_tid_children_operations),
3375 #endif
3376 #ifdef CONFIG_NUMA
3377 	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3378 #endif
3379 	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3380 	LNK("cwd",       proc_cwd_link),
3381 	LNK("root",      proc_root_link),
3382 	LNK("exe",       proc_exe_link),
3383 	REG("mounts",    S_IRUGO, proc_mounts_operations),
3384 	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3385 #ifdef CONFIG_PROC_PAGE_MONITOR
3386 	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3387 	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3388 	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3389 	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3390 #endif
3391 #ifdef CONFIG_SECURITY
3392 	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3393 #endif
3394 #ifdef CONFIG_KALLSYMS
3395 	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3396 #endif
3397 #ifdef CONFIG_STACKTRACE
3398 	ONE("stack",      S_IRUSR, proc_pid_stack),
3399 #endif
3400 #ifdef CONFIG_SCHED_INFO
3401 	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3402 #endif
3403 #ifdef CONFIG_LATENCYTOP
3404 	REG("latency",  S_IRUGO, proc_lstats_operations),
3405 #endif
3406 #ifdef CONFIG_PROC_PID_CPUSET
3407 	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3408 #endif
3409 #ifdef CONFIG_CGROUPS
3410 	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3411 #endif
3412 	ONE("oom_score", S_IRUGO, proc_oom_score),
3413 	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3414 	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3415 #ifdef CONFIG_AUDITSYSCALL
3416 	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3417 	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3418 #endif
3419 #ifdef CONFIG_FAULT_INJECTION
3420 	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3421 	REG("fail-nth", 0644, proc_fail_nth_operations),
3422 #endif
3423 #ifdef CONFIG_TASK_IO_ACCOUNTING
3424 	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3425 #endif
3426 #ifdef CONFIG_USER_NS
3427 	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3428 	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3429 	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3430 	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3431 #endif
3432 #ifdef CONFIG_LIVEPATCH
3433 	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3434 #endif
3435 };
3436 
proc_tid_base_readdir(struct file * file,struct dir_context * ctx)3437 static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3438 {
3439 	return proc_pident_readdir(file, ctx,
3440 				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3441 }
3442 
proc_tid_base_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3443 static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3444 {
3445 	return proc_pident_lookup(dir, dentry,
3446 				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3447 }
3448 
3449 static const struct file_operations proc_tid_base_operations = {
3450 	.read		= generic_read_dir,
3451 	.iterate_shared	= proc_tid_base_readdir,
3452 	.llseek		= generic_file_llseek,
3453 };
3454 
3455 static const struct inode_operations proc_tid_base_inode_operations = {
3456 	.lookup		= proc_tid_base_lookup,
3457 	.getattr	= pid_getattr,
3458 	.setattr	= proc_setattr,
3459 };
3460 
proc_task_instantiate(struct dentry * dentry,struct task_struct * task,const void * ptr)3461 static struct dentry *proc_task_instantiate(struct dentry *dentry,
3462 	struct task_struct *task, const void *ptr)
3463 {
3464 	struct inode *inode;
3465 	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3466 	if (!inode)
3467 		return ERR_PTR(-ENOENT);
3468 
3469 	inode->i_op = &proc_tid_base_inode_operations;
3470 	inode->i_fop = &proc_tid_base_operations;
3471 	inode->i_flags |= S_IMMUTABLE;
3472 
3473 	set_nlink(inode, nlink_tid);
3474 	pid_update_inode(task, inode);
3475 
3476 	d_set_d_op(dentry, &pid_dentry_operations);
3477 	return d_splice_alias(inode, dentry);
3478 }
3479 
proc_task_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)3480 static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3481 {
3482 	struct task_struct *task;
3483 	struct task_struct *leader = get_proc_task(dir);
3484 	unsigned tid;
3485 	struct pid_namespace *ns;
3486 	struct dentry *result = ERR_PTR(-ENOENT);
3487 
3488 	if (!leader)
3489 		goto out_no_task;
3490 
3491 	tid = name_to_int(&dentry->d_name);
3492 	if (tid == ~0U)
3493 		goto out;
3494 
3495 	ns = dentry->d_sb->s_fs_info;
3496 	rcu_read_lock();
3497 	task = find_task_by_pid_ns(tid, ns);
3498 	if (task)
3499 		get_task_struct(task);
3500 	rcu_read_unlock();
3501 	if (!task)
3502 		goto out;
3503 	if (!same_thread_group(leader, task))
3504 		goto out_drop_task;
3505 
3506 	result = proc_task_instantiate(dentry, task, NULL);
3507 out_drop_task:
3508 	put_task_struct(task);
3509 out:
3510 	put_task_struct(leader);
3511 out_no_task:
3512 	return result;
3513 }
3514 
3515 /*
3516  * Find the first tid of a thread group to return to user space.
3517  *
3518  * Usually this is just the thread group leader, but if the users
3519  * buffer was too small or there was a seek into the middle of the
3520  * directory we have more work todo.
3521  *
3522  * In the case of a short read we start with find_task_by_pid.
3523  *
3524  * In the case of a seek we start with the leader and walk nr
3525  * threads past it.
3526  */
first_tid(struct pid * pid,int tid,loff_t f_pos,struct pid_namespace * ns)3527 static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3528 					struct pid_namespace *ns)
3529 {
3530 	struct task_struct *pos, *task;
3531 	unsigned long nr = f_pos;
3532 
3533 	if (nr != f_pos)	/* 32bit overflow? */
3534 		return NULL;
3535 
3536 	rcu_read_lock();
3537 	task = pid_task(pid, PIDTYPE_PID);
3538 	if (!task)
3539 		goto fail;
3540 
3541 	/* Attempt to start with the tid of a thread */
3542 	if (tid && nr) {
3543 		pos = find_task_by_pid_ns(tid, ns);
3544 		if (pos && same_thread_group(pos, task))
3545 			goto found;
3546 	}
3547 
3548 	/* If nr exceeds the number of threads there is nothing todo */
3549 	if (nr >= get_nr_threads(task))
3550 		goto fail;
3551 
3552 	/* If we haven't found our starting place yet start
3553 	 * with the leader and walk nr threads forward.
3554 	 */
3555 	pos = task = task->group_leader;
3556 	do {
3557 		if (!nr--)
3558 			goto found;
3559 	} while_each_thread(task, pos);
3560 fail:
3561 	pos = NULL;
3562 	goto out;
3563 found:
3564 	get_task_struct(pos);
3565 out:
3566 	rcu_read_unlock();
3567 	return pos;
3568 }
3569 
3570 /*
3571  * Find the next thread in the thread list.
3572  * Return NULL if there is an error or no next thread.
3573  *
3574  * The reference to the input task_struct is released.
3575  */
next_tid(struct task_struct * start)3576 static struct task_struct *next_tid(struct task_struct *start)
3577 {
3578 	struct task_struct *pos = NULL;
3579 	rcu_read_lock();
3580 	if (pid_alive(start)) {
3581 		pos = next_thread(start);
3582 		if (thread_group_leader(pos))
3583 			pos = NULL;
3584 		else
3585 			get_task_struct(pos);
3586 	}
3587 	rcu_read_unlock();
3588 	put_task_struct(start);
3589 	return pos;
3590 }
3591 
3592 /* for the /proc/TGID/task/ directories */
proc_task_readdir(struct file * file,struct dir_context * ctx)3593 static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3594 {
3595 	struct inode *inode = file_inode(file);
3596 	struct task_struct *task;
3597 	struct pid_namespace *ns;
3598 	int tid;
3599 
3600 	if (proc_inode_is_dead(inode))
3601 		return -ENOENT;
3602 
3603 	if (!dir_emit_dots(file, ctx))
3604 		return 0;
3605 
3606 	/* f_version caches the tgid value that the last readdir call couldn't
3607 	 * return. lseek aka telldir automagically resets f_version to 0.
3608 	 */
3609 	ns = proc_pid_ns(inode);
3610 	tid = (int)file->f_version;
3611 	file->f_version = 0;
3612 	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3613 	     task;
3614 	     task = next_tid(task), ctx->pos++) {
3615 		char name[10 + 1];
3616 		unsigned int len;
3617 		tid = task_pid_nr_ns(task, ns);
3618 		len = snprintf(name, sizeof(name), "%u", tid);
3619 		if (!proc_fill_cache(file, ctx, name, len,
3620 				proc_task_instantiate, task, NULL)) {
3621 			/* returning this tgid failed, save it as the first
3622 			 * pid for the next readir call */
3623 			file->f_version = (u64)tid;
3624 			put_task_struct(task);
3625 			break;
3626 		}
3627 	}
3628 
3629 	return 0;
3630 }
3631 
proc_task_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)3632 static int proc_task_getattr(const struct path *path, struct kstat *stat,
3633 			     u32 request_mask, unsigned int query_flags)
3634 {
3635 	struct inode *inode = d_inode(path->dentry);
3636 	struct task_struct *p = get_proc_task(inode);
3637 	generic_fillattr(inode, stat);
3638 
3639 	if (p) {
3640 		stat->nlink += get_nr_threads(p);
3641 		put_task_struct(p);
3642 	}
3643 
3644 	return 0;
3645 }
3646 
3647 static const struct inode_operations proc_task_inode_operations = {
3648 	.lookup		= proc_task_lookup,
3649 	.getattr	= proc_task_getattr,
3650 	.setattr	= proc_setattr,
3651 	.permission	= proc_pid_permission,
3652 };
3653 
3654 static const struct file_operations proc_task_operations = {
3655 	.read		= generic_read_dir,
3656 	.iterate_shared	= proc_task_readdir,
3657 	.llseek		= generic_file_llseek,
3658 };
3659 
set_proc_pid_nlink(void)3660 void __init set_proc_pid_nlink(void)
3661 {
3662 	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3663 	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3664 }
3665