1 /*
2  *	fs/libfs.c
3  *	Library for filesystems writers.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/cred.h>
11 #include <linux/mount.h>
12 #include <linux/vfs.h>
13 #include <linux/quotaops.h>
14 #include <linux/mutex.h>
15 #include <linux/namei.h>
16 #include <linux/exportfs.h>
17 #include <linux/writeback.h>
18 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19 
20 #include <linux/uaccess.h>
21 
22 #include "internal.h"
23 
simple_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)24 int simple_getattr(const struct path *path, struct kstat *stat,
25 		   u32 request_mask, unsigned int query_flags)
26 {
27 	struct inode *inode = d_inode(path->dentry);
28 	generic_fillattr(inode, stat);
29 	stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
30 	return 0;
31 }
32 EXPORT_SYMBOL(simple_getattr);
33 
simple_statfs(struct dentry * dentry,struct kstatfs * buf)34 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 {
36 	buf->f_type = dentry->d_sb->s_magic;
37 	buf->f_bsize = PAGE_SIZE;
38 	buf->f_namelen = NAME_MAX;
39 	return 0;
40 }
41 EXPORT_SYMBOL(simple_statfs);
42 
43 /*
44  * Retaining negative dentries for an in-memory filesystem just wastes
45  * memory and lookup time: arrange for them to be deleted immediately.
46  */
always_delete_dentry(const struct dentry * dentry)47 int always_delete_dentry(const struct dentry *dentry)
48 {
49 	return 1;
50 }
51 EXPORT_SYMBOL(always_delete_dentry);
52 
53 const struct dentry_operations simple_dentry_operations = {
54 	.d_delete = always_delete_dentry,
55 };
56 EXPORT_SYMBOL(simple_dentry_operations);
57 
58 /*
59  * Lookup the data. This is trivial - if the dentry didn't already
60  * exist, we know it is negative.  Set d_op to delete negative dentries.
61  */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)62 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 {
64 	if (dentry->d_name.len > NAME_MAX)
65 		return ERR_PTR(-ENAMETOOLONG);
66 	if (!dentry->d_sb->s_d_op)
67 		d_set_d_op(dentry, &simple_dentry_operations);
68 	d_add(dentry, NULL);
69 	return NULL;
70 }
71 EXPORT_SYMBOL(simple_lookup);
72 
dcache_dir_open(struct inode * inode,struct file * file)73 int dcache_dir_open(struct inode *inode, struct file *file)
74 {
75 	file->private_data = d_alloc_cursor(file->f_path.dentry);
76 
77 	return file->private_data ? 0 : -ENOMEM;
78 }
79 EXPORT_SYMBOL(dcache_dir_open);
80 
dcache_dir_close(struct inode * inode,struct file * file)81 int dcache_dir_close(struct inode *inode, struct file *file)
82 {
83 	dput(file->private_data);
84 	return 0;
85 }
86 EXPORT_SYMBOL(dcache_dir_close);
87 
88 /* parent is locked at least shared */
89 /*
90  * Returns an element of siblings' list.
91  * We are looking for <count>th positive after <p>; if
92  * found, dentry is grabbed and passed to caller via *<res>.
93  * If no such element exists, the anchor of list is returned
94  * and *<res> is set to NULL.
95  */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry ** res)96 static struct list_head *scan_positives(struct dentry *cursor,
97 					struct list_head *p,
98 					loff_t count,
99 					struct dentry **res)
100 {
101 	struct dentry *dentry = cursor->d_parent, *found = NULL;
102 
103 	spin_lock(&dentry->d_lock);
104 	while ((p = p->next) != &dentry->d_subdirs) {
105 		struct dentry *d = list_entry(p, struct dentry, d_child);
106 		// we must at least skip cursors, to avoid livelocks
107 		if (d->d_flags & DCACHE_DENTRY_CURSOR)
108 			continue;
109 		if (simple_positive(d) && !--count) {
110 			spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
111 			if (simple_positive(d))
112 				found = dget_dlock(d);
113 			spin_unlock(&d->d_lock);
114 			if (likely(found))
115 				break;
116 			count = 1;
117 		}
118 		if (need_resched()) {
119 			list_move(&cursor->d_child, p);
120 			p = &cursor->d_child;
121 			spin_unlock(&dentry->d_lock);
122 			cond_resched();
123 			spin_lock(&dentry->d_lock);
124 		}
125 	}
126 	spin_unlock(&dentry->d_lock);
127 	dput(*res);
128 	*res = found;
129 	return p;
130 }
131 
dcache_dir_lseek(struct file * file,loff_t offset,int whence)132 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
133 {
134 	struct dentry *dentry = file->f_path.dentry;
135 	switch (whence) {
136 		case 1:
137 			offset += file->f_pos;
138 		case 0:
139 			if (offset >= 0)
140 				break;
141 		default:
142 			return -EINVAL;
143 	}
144 	if (offset != file->f_pos) {
145 		struct dentry *cursor = file->private_data;
146 		struct dentry *to = NULL;
147 		struct list_head *p;
148 
149 		file->f_pos = offset;
150 		inode_lock_shared(dentry->d_inode);
151 
152 		if (file->f_pos > 2) {
153 			p = scan_positives(cursor, &dentry->d_subdirs,
154 					   file->f_pos - 2, &to);
155 			spin_lock(&dentry->d_lock);
156 			list_move(&cursor->d_child, p);
157 			spin_unlock(&dentry->d_lock);
158 		} else {
159 			spin_lock(&dentry->d_lock);
160 			list_del_init(&cursor->d_child);
161 			spin_unlock(&dentry->d_lock);
162 		}
163 
164 		dput(to);
165 
166 		inode_unlock_shared(dentry->d_inode);
167 	}
168 	return offset;
169 }
170 EXPORT_SYMBOL(dcache_dir_lseek);
171 
172 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)173 static inline unsigned char dt_type(struct inode *inode)
174 {
175 	return (inode->i_mode >> 12) & 15;
176 }
177 
178 /*
179  * Directory is locked and all positive dentries in it are safe, since
180  * for ramfs-type trees they can't go away without unlink() or rmdir(),
181  * both impossible due to the lock on directory.
182  */
183 
dcache_readdir(struct file * file,struct dir_context * ctx)184 int dcache_readdir(struct file *file, struct dir_context *ctx)
185 {
186 	struct dentry *dentry = file->f_path.dentry;
187 	struct dentry *cursor = file->private_data;
188 	struct list_head *anchor = &dentry->d_subdirs;
189 	struct dentry *next = NULL;
190 	struct list_head *p;
191 
192 	if (!dir_emit_dots(file, ctx))
193 		return 0;
194 
195 	if (ctx->pos == 2)
196 		p = anchor;
197 	else
198 		p = &cursor->d_child;
199 
200 	while ((p = scan_positives(cursor, p, 1, &next)) != anchor) {
201 		if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
202 			      d_inode(next)->i_ino, dt_type(d_inode(next))))
203 			break;
204 		ctx->pos++;
205 	}
206 	spin_lock(&dentry->d_lock);
207 	list_move_tail(&cursor->d_child, p);
208 	spin_unlock(&dentry->d_lock);
209 	dput(next);
210 
211 	return 0;
212 }
213 EXPORT_SYMBOL(dcache_readdir);
214 
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)215 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
216 {
217 	return -EISDIR;
218 }
219 EXPORT_SYMBOL(generic_read_dir);
220 
221 const struct file_operations simple_dir_operations = {
222 	.open		= dcache_dir_open,
223 	.release	= dcache_dir_close,
224 	.llseek		= dcache_dir_lseek,
225 	.read		= generic_read_dir,
226 	.iterate_shared	= dcache_readdir,
227 	.fsync		= noop_fsync,
228 };
229 EXPORT_SYMBOL(simple_dir_operations);
230 
231 const struct inode_operations simple_dir_inode_operations = {
232 	.lookup		= simple_lookup,
233 };
234 EXPORT_SYMBOL(simple_dir_inode_operations);
235 
236 static const struct super_operations simple_super_operations = {
237 	.statfs		= simple_statfs,
238 };
239 
240 /*
241  * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
242  * will never be mountable)
243  */
mount_pseudo_xattr(struct file_system_type * fs_type,char * name,const struct super_operations * ops,const struct xattr_handler ** xattr,const struct dentry_operations * dops,unsigned long magic)244 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
245 	const struct super_operations *ops, const struct xattr_handler **xattr,
246 	const struct dentry_operations *dops, unsigned long magic)
247 {
248 	struct super_block *s;
249 	struct dentry *dentry;
250 	struct inode *root;
251 	struct qstr d_name = QSTR_INIT(name, strlen(name));
252 
253 	s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
254 			&init_user_ns, NULL);
255 	if (IS_ERR(s))
256 		return ERR_CAST(s);
257 
258 	s->s_maxbytes = MAX_LFS_FILESIZE;
259 	s->s_blocksize = PAGE_SIZE;
260 	s->s_blocksize_bits = PAGE_SHIFT;
261 	s->s_magic = magic;
262 	s->s_op = ops ? ops : &simple_super_operations;
263 	s->s_xattr = xattr;
264 	s->s_time_gran = 1;
265 	root = new_inode(s);
266 	if (!root)
267 		goto Enomem;
268 	/*
269 	 * since this is the first inode, make it number 1. New inodes created
270 	 * after this must take care not to collide with it (by passing
271 	 * max_reserved of 1 to iunique).
272 	 */
273 	root->i_ino = 1;
274 	root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
275 	root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
276 	dentry = __d_alloc(s, &d_name);
277 	if (!dentry) {
278 		iput(root);
279 		goto Enomem;
280 	}
281 	d_instantiate(dentry, root);
282 	s->s_root = dentry;
283 	s->s_d_op = dops;
284 	s->s_flags |= SB_ACTIVE;
285 	return dget(s->s_root);
286 
287 Enomem:
288 	deactivate_locked_super(s);
289 	return ERR_PTR(-ENOMEM);
290 }
291 EXPORT_SYMBOL(mount_pseudo_xattr);
292 
simple_open(struct inode * inode,struct file * file)293 int simple_open(struct inode *inode, struct file *file)
294 {
295 	if (inode->i_private)
296 		file->private_data = inode->i_private;
297 	return 0;
298 }
299 EXPORT_SYMBOL(simple_open);
300 
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)301 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
302 {
303 	struct inode *inode = d_inode(old_dentry);
304 
305 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
306 	inc_nlink(inode);
307 	ihold(inode);
308 	dget(dentry);
309 	d_instantiate(dentry, inode);
310 	return 0;
311 }
312 EXPORT_SYMBOL(simple_link);
313 
simple_empty(struct dentry * dentry)314 int simple_empty(struct dentry *dentry)
315 {
316 	struct dentry *child;
317 	int ret = 0;
318 
319 	spin_lock(&dentry->d_lock);
320 	list_for_each_entry(child, &dentry->d_subdirs, d_child) {
321 		spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
322 		if (simple_positive(child)) {
323 			spin_unlock(&child->d_lock);
324 			goto out;
325 		}
326 		spin_unlock(&child->d_lock);
327 	}
328 	ret = 1;
329 out:
330 	spin_unlock(&dentry->d_lock);
331 	return ret;
332 }
333 EXPORT_SYMBOL(simple_empty);
334 
simple_unlink(struct inode * dir,struct dentry * dentry)335 int simple_unlink(struct inode *dir, struct dentry *dentry)
336 {
337 	struct inode *inode = d_inode(dentry);
338 
339 	inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
340 	drop_nlink(inode);
341 	dput(dentry);
342 	return 0;
343 }
344 EXPORT_SYMBOL(simple_unlink);
345 
simple_rmdir(struct inode * dir,struct dentry * dentry)346 int simple_rmdir(struct inode *dir, struct dentry *dentry)
347 {
348 	if (!simple_empty(dentry))
349 		return -ENOTEMPTY;
350 
351 	drop_nlink(d_inode(dentry));
352 	simple_unlink(dir, dentry);
353 	drop_nlink(dir);
354 	return 0;
355 }
356 EXPORT_SYMBOL(simple_rmdir);
357 
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)358 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
359 		  struct inode *new_dir, struct dentry *new_dentry,
360 		  unsigned int flags)
361 {
362 	struct inode *inode = d_inode(old_dentry);
363 	int they_are_dirs = d_is_dir(old_dentry);
364 
365 	if (flags & ~RENAME_NOREPLACE)
366 		return -EINVAL;
367 
368 	if (!simple_empty(new_dentry))
369 		return -ENOTEMPTY;
370 
371 	if (d_really_is_positive(new_dentry)) {
372 		simple_unlink(new_dir, new_dentry);
373 		if (they_are_dirs) {
374 			drop_nlink(d_inode(new_dentry));
375 			drop_nlink(old_dir);
376 		}
377 	} else if (they_are_dirs) {
378 		drop_nlink(old_dir);
379 		inc_nlink(new_dir);
380 	}
381 
382 	old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
383 		new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
384 
385 	return 0;
386 }
387 EXPORT_SYMBOL(simple_rename);
388 
389 /**
390  * simple_setattr - setattr for simple filesystem
391  * @dentry: dentry
392  * @iattr: iattr structure
393  *
394  * Returns 0 on success, -error on failure.
395  *
396  * simple_setattr is a simple ->setattr implementation without a proper
397  * implementation of size changes.
398  *
399  * It can either be used for in-memory filesystems or special files
400  * on simple regular filesystems.  Anything that needs to change on-disk
401  * or wire state on size changes needs its own setattr method.
402  */
simple_setattr(struct dentry * dentry,struct iattr * iattr)403 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
404 {
405 	struct inode *inode = d_inode(dentry);
406 	int error;
407 
408 	error = setattr_prepare(dentry, iattr);
409 	if (error)
410 		return error;
411 
412 	if (iattr->ia_valid & ATTR_SIZE)
413 		truncate_setsize(inode, iattr->ia_size);
414 	setattr_copy(inode, iattr);
415 	mark_inode_dirty(inode);
416 	return 0;
417 }
418 EXPORT_SYMBOL(simple_setattr);
419 
simple_readpage(struct file * file,struct page * page)420 int simple_readpage(struct file *file, struct page *page)
421 {
422 	clear_highpage(page);
423 	flush_dcache_page(page);
424 	SetPageUptodate(page);
425 	unlock_page(page);
426 	return 0;
427 }
428 EXPORT_SYMBOL(simple_readpage);
429 
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)430 int simple_write_begin(struct file *file, struct address_space *mapping,
431 			loff_t pos, unsigned len, unsigned flags,
432 			struct page **pagep, void **fsdata)
433 {
434 	struct page *page;
435 	pgoff_t index;
436 
437 	index = pos >> PAGE_SHIFT;
438 
439 	page = grab_cache_page_write_begin(mapping, index, flags);
440 	if (!page)
441 		return -ENOMEM;
442 
443 	*pagep = page;
444 
445 	if (!PageUptodate(page) && (len != PAGE_SIZE)) {
446 		unsigned from = pos & (PAGE_SIZE - 1);
447 
448 		zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
449 	}
450 	return 0;
451 }
452 EXPORT_SYMBOL(simple_write_begin);
453 
454 /**
455  * simple_write_end - .write_end helper for non-block-device FSes
456  * @available: See .write_end of address_space_operations
457  * @file: 		"
458  * @mapping: 		"
459  * @pos: 		"
460  * @len: 		"
461  * @copied: 		"
462  * @page: 		"
463  * @fsdata: 		"
464  *
465  * simple_write_end does the minimum needed for updating a page after writing is
466  * done. It has the same API signature as the .write_end of
467  * address_space_operations vector. So it can just be set onto .write_end for
468  * FSes that don't need any other processing. i_mutex is assumed to be held.
469  * Block based filesystems should use generic_write_end().
470  * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
471  * is not called, so a filesystem that actually does store data in .write_inode
472  * should extend on what's done here with a call to mark_inode_dirty() in the
473  * case that i_size has changed.
474  *
475  * Use *ONLY* with simple_readpage()
476  */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)477 int simple_write_end(struct file *file, struct address_space *mapping,
478 			loff_t pos, unsigned len, unsigned copied,
479 			struct page *page, void *fsdata)
480 {
481 	struct inode *inode = page->mapping->host;
482 	loff_t last_pos = pos + copied;
483 
484 	/* zero the stale part of the page if we did a short copy */
485 	if (!PageUptodate(page)) {
486 		if (copied < len) {
487 			unsigned from = pos & (PAGE_SIZE - 1);
488 
489 			zero_user(page, from + copied, len - copied);
490 		}
491 		SetPageUptodate(page);
492 	}
493 	/*
494 	 * No need to use i_size_read() here, the i_size
495 	 * cannot change under us because we hold the i_mutex.
496 	 */
497 	if (last_pos > inode->i_size)
498 		i_size_write(inode, last_pos);
499 
500 	set_page_dirty(page);
501 	unlock_page(page);
502 	put_page(page);
503 
504 	return copied;
505 }
506 EXPORT_SYMBOL(simple_write_end);
507 
508 /*
509  * the inodes created here are not hashed. If you use iunique to generate
510  * unique inode values later for this filesystem, then you must take care
511  * to pass it an appropriate max_reserved value to avoid collisions.
512  */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)513 int simple_fill_super(struct super_block *s, unsigned long magic,
514 		      const struct tree_descr *files)
515 {
516 	struct inode *inode;
517 	struct dentry *root;
518 	struct dentry *dentry;
519 	int i;
520 
521 	s->s_blocksize = PAGE_SIZE;
522 	s->s_blocksize_bits = PAGE_SHIFT;
523 	s->s_magic = magic;
524 	s->s_op = &simple_super_operations;
525 	s->s_time_gran = 1;
526 
527 	inode = new_inode(s);
528 	if (!inode)
529 		return -ENOMEM;
530 	/*
531 	 * because the root inode is 1, the files array must not contain an
532 	 * entry at index 1
533 	 */
534 	inode->i_ino = 1;
535 	inode->i_mode = S_IFDIR | 0755;
536 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
537 	inode->i_op = &simple_dir_inode_operations;
538 	inode->i_fop = &simple_dir_operations;
539 	set_nlink(inode, 2);
540 	root = d_make_root(inode);
541 	if (!root)
542 		return -ENOMEM;
543 	for (i = 0; !files->name || files->name[0]; i++, files++) {
544 		if (!files->name)
545 			continue;
546 
547 		/* warn if it tries to conflict with the root inode */
548 		if (unlikely(i == 1))
549 			printk(KERN_WARNING "%s: %s passed in a files array"
550 				"with an index of 1!\n", __func__,
551 				s->s_type->name);
552 
553 		dentry = d_alloc_name(root, files->name);
554 		if (!dentry)
555 			goto out;
556 		inode = new_inode(s);
557 		if (!inode) {
558 			dput(dentry);
559 			goto out;
560 		}
561 		inode->i_mode = S_IFREG | files->mode;
562 		inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
563 		inode->i_fop = files->ops;
564 		inode->i_ino = i;
565 		d_add(dentry, inode);
566 	}
567 	s->s_root = root;
568 	return 0;
569 out:
570 	d_genocide(root);
571 	shrink_dcache_parent(root);
572 	dput(root);
573 	return -ENOMEM;
574 }
575 EXPORT_SYMBOL(simple_fill_super);
576 
577 static DEFINE_SPINLOCK(pin_fs_lock);
578 
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)579 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
580 {
581 	struct vfsmount *mnt = NULL;
582 	spin_lock(&pin_fs_lock);
583 	if (unlikely(!*mount)) {
584 		spin_unlock(&pin_fs_lock);
585 		mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
586 		if (IS_ERR(mnt))
587 			return PTR_ERR(mnt);
588 		spin_lock(&pin_fs_lock);
589 		if (!*mount)
590 			*mount = mnt;
591 	}
592 	mntget(*mount);
593 	++*count;
594 	spin_unlock(&pin_fs_lock);
595 	mntput(mnt);
596 	return 0;
597 }
598 EXPORT_SYMBOL(simple_pin_fs);
599 
simple_release_fs(struct vfsmount ** mount,int * count)600 void simple_release_fs(struct vfsmount **mount, int *count)
601 {
602 	struct vfsmount *mnt;
603 	spin_lock(&pin_fs_lock);
604 	mnt = *mount;
605 	if (!--*count)
606 		*mount = NULL;
607 	spin_unlock(&pin_fs_lock);
608 	mntput(mnt);
609 }
610 EXPORT_SYMBOL(simple_release_fs);
611 
612 /**
613  * simple_read_from_buffer - copy data from the buffer to user space
614  * @to: the user space buffer to read to
615  * @count: the maximum number of bytes to read
616  * @ppos: the current position in the buffer
617  * @from: the buffer to read from
618  * @available: the size of the buffer
619  *
620  * The simple_read_from_buffer() function reads up to @count bytes from the
621  * buffer @from at offset @ppos into the user space address starting at @to.
622  *
623  * On success, the number of bytes read is returned and the offset @ppos is
624  * advanced by this number, or negative value is returned on error.
625  **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)626 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
627 				const void *from, size_t available)
628 {
629 	loff_t pos = *ppos;
630 	size_t ret;
631 
632 	if (pos < 0)
633 		return -EINVAL;
634 	if (pos >= available || !count)
635 		return 0;
636 	if (count > available - pos)
637 		count = available - pos;
638 	ret = copy_to_user(to, from + pos, count);
639 	if (ret == count)
640 		return -EFAULT;
641 	count -= ret;
642 	*ppos = pos + count;
643 	return count;
644 }
645 EXPORT_SYMBOL(simple_read_from_buffer);
646 
647 /**
648  * simple_write_to_buffer - copy data from user space to the buffer
649  * @to: the buffer to write to
650  * @available: the size of the buffer
651  * @ppos: the current position in the buffer
652  * @from: the user space buffer to read from
653  * @count: the maximum number of bytes to read
654  *
655  * The simple_write_to_buffer() function reads up to @count bytes from the user
656  * space address starting at @from into the buffer @to at offset @ppos.
657  *
658  * On success, the number of bytes written is returned and the offset @ppos is
659  * advanced by this number, or negative value is returned on error.
660  **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)661 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
662 		const void __user *from, size_t count)
663 {
664 	loff_t pos = *ppos;
665 	size_t res;
666 
667 	if (pos < 0)
668 		return -EINVAL;
669 	if (pos >= available || !count)
670 		return 0;
671 	if (count > available - pos)
672 		count = available - pos;
673 	res = copy_from_user(to + pos, from, count);
674 	if (res == count)
675 		return -EFAULT;
676 	count -= res;
677 	*ppos = pos + count;
678 	return count;
679 }
680 EXPORT_SYMBOL(simple_write_to_buffer);
681 
682 /**
683  * memory_read_from_buffer - copy data from the buffer
684  * @to: the kernel space buffer to read to
685  * @count: the maximum number of bytes to read
686  * @ppos: the current position in the buffer
687  * @from: the buffer to read from
688  * @available: the size of the buffer
689  *
690  * The memory_read_from_buffer() function reads up to @count bytes from the
691  * buffer @from at offset @ppos into the kernel space address starting at @to.
692  *
693  * On success, the number of bytes read is returned and the offset @ppos is
694  * advanced by this number, or negative value is returned on error.
695  **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)696 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
697 				const void *from, size_t available)
698 {
699 	loff_t pos = *ppos;
700 
701 	if (pos < 0)
702 		return -EINVAL;
703 	if (pos >= available)
704 		return 0;
705 	if (count > available - pos)
706 		count = available - pos;
707 	memcpy(to, from + pos, count);
708 	*ppos = pos + count;
709 
710 	return count;
711 }
712 EXPORT_SYMBOL(memory_read_from_buffer);
713 
714 /*
715  * Transaction based IO.
716  * The file expects a single write which triggers the transaction, and then
717  * possibly a read which collects the result - which is stored in a
718  * file-local buffer.
719  */
720 
simple_transaction_set(struct file * file,size_t n)721 void simple_transaction_set(struct file *file, size_t n)
722 {
723 	struct simple_transaction_argresp *ar = file->private_data;
724 
725 	BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
726 
727 	/*
728 	 * The barrier ensures that ar->size will really remain zero until
729 	 * ar->data is ready for reading.
730 	 */
731 	smp_mb();
732 	ar->size = n;
733 }
734 EXPORT_SYMBOL(simple_transaction_set);
735 
simple_transaction_get(struct file * file,const char __user * buf,size_t size)736 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
737 {
738 	struct simple_transaction_argresp *ar;
739 	static DEFINE_SPINLOCK(simple_transaction_lock);
740 
741 	if (size > SIMPLE_TRANSACTION_LIMIT - 1)
742 		return ERR_PTR(-EFBIG);
743 
744 	ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
745 	if (!ar)
746 		return ERR_PTR(-ENOMEM);
747 
748 	spin_lock(&simple_transaction_lock);
749 
750 	/* only one write allowed per open */
751 	if (file->private_data) {
752 		spin_unlock(&simple_transaction_lock);
753 		free_page((unsigned long)ar);
754 		return ERR_PTR(-EBUSY);
755 	}
756 
757 	file->private_data = ar;
758 
759 	spin_unlock(&simple_transaction_lock);
760 
761 	if (copy_from_user(ar->data, buf, size))
762 		return ERR_PTR(-EFAULT);
763 
764 	return ar->data;
765 }
766 EXPORT_SYMBOL(simple_transaction_get);
767 
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)768 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
769 {
770 	struct simple_transaction_argresp *ar = file->private_data;
771 
772 	if (!ar)
773 		return 0;
774 	return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
775 }
776 EXPORT_SYMBOL(simple_transaction_read);
777 
simple_transaction_release(struct inode * inode,struct file * file)778 int simple_transaction_release(struct inode *inode, struct file *file)
779 {
780 	free_page((unsigned long)file->private_data);
781 	return 0;
782 }
783 EXPORT_SYMBOL(simple_transaction_release);
784 
785 /* Simple attribute files */
786 
787 struct simple_attr {
788 	int (*get)(void *, u64 *);
789 	int (*set)(void *, u64);
790 	char get_buf[24];	/* enough to store a u64 and "\n\0" */
791 	char set_buf[24];
792 	void *data;
793 	const char *fmt;	/* format for read operation */
794 	struct mutex mutex;	/* protects access to these buffers */
795 };
796 
797 /* simple_attr_open is called by an actual attribute open file operation
798  * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)799 int simple_attr_open(struct inode *inode, struct file *file,
800 		     int (*get)(void *, u64 *), int (*set)(void *, u64),
801 		     const char *fmt)
802 {
803 	struct simple_attr *attr;
804 
805 	attr = kzalloc(sizeof(*attr), GFP_KERNEL);
806 	if (!attr)
807 		return -ENOMEM;
808 
809 	attr->get = get;
810 	attr->set = set;
811 	attr->data = inode->i_private;
812 	attr->fmt = fmt;
813 	mutex_init(&attr->mutex);
814 
815 	file->private_data = attr;
816 
817 	return nonseekable_open(inode, file);
818 }
819 EXPORT_SYMBOL_GPL(simple_attr_open);
820 
simple_attr_release(struct inode * inode,struct file * file)821 int simple_attr_release(struct inode *inode, struct file *file)
822 {
823 	kfree(file->private_data);
824 	return 0;
825 }
826 EXPORT_SYMBOL_GPL(simple_attr_release);	/* GPL-only?  This?  Really? */
827 
828 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)829 ssize_t simple_attr_read(struct file *file, char __user *buf,
830 			 size_t len, loff_t *ppos)
831 {
832 	struct simple_attr *attr;
833 	size_t size;
834 	ssize_t ret;
835 
836 	attr = file->private_data;
837 
838 	if (!attr->get)
839 		return -EACCES;
840 
841 	ret = mutex_lock_interruptible(&attr->mutex);
842 	if (ret)
843 		return ret;
844 
845 	if (*ppos && attr->get_buf[0]) {
846 		/* continued read */
847 		size = strlen(attr->get_buf);
848 	} else {
849 		/* first read */
850 		u64 val;
851 		ret = attr->get(attr->data, &val);
852 		if (ret)
853 			goto out;
854 
855 		size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
856 				 attr->fmt, (unsigned long long)val);
857 	}
858 
859 	ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
860 out:
861 	mutex_unlock(&attr->mutex);
862 	return ret;
863 }
864 EXPORT_SYMBOL_GPL(simple_attr_read);
865 
866 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)867 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
868 			  size_t len, loff_t *ppos, bool is_signed)
869 {
870 	struct simple_attr *attr;
871 	unsigned long long val;
872 	size_t size;
873 	ssize_t ret;
874 
875 	attr = file->private_data;
876 	if (!attr->set)
877 		return -EACCES;
878 
879 	ret = mutex_lock_interruptible(&attr->mutex);
880 	if (ret)
881 		return ret;
882 
883 	ret = -EFAULT;
884 	size = min(sizeof(attr->set_buf) - 1, len);
885 	if (copy_from_user(attr->set_buf, buf, size))
886 		goto out;
887 
888 	attr->set_buf[size] = '\0';
889 	if (is_signed)
890 		ret = kstrtoll(attr->set_buf, 0, &val);
891 	else
892 		ret = kstrtoull(attr->set_buf, 0, &val);
893 	if (ret)
894 		goto out;
895 	ret = attr->set(attr->data, val);
896 	if (ret == 0)
897 		ret = len; /* on success, claim we got the whole input */
898 out:
899 	mutex_unlock(&attr->mutex);
900 	return ret;
901 }
902 
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)903 ssize_t simple_attr_write(struct file *file, const char __user *buf,
904 			  size_t len, loff_t *ppos)
905 {
906 	return simple_attr_write_xsigned(file, buf, len, ppos, false);
907 }
908 EXPORT_SYMBOL_GPL(simple_attr_write);
909 
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)910 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
911 			  size_t len, loff_t *ppos)
912 {
913 	return simple_attr_write_xsigned(file, buf, len, ppos, true);
914 }
915 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
916 
917 /**
918  * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
919  * @sb:		filesystem to do the file handle conversion on
920  * @fid:	file handle to convert
921  * @fh_len:	length of the file handle in bytes
922  * @fh_type:	type of file handle
923  * @get_inode:	filesystem callback to retrieve inode
924  *
925  * This function decodes @fid as long as it has one of the well-known
926  * Linux filehandle types and calls @get_inode on it to retrieve the
927  * inode for the object specified in the file handle.
928  */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))929 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
930 		int fh_len, int fh_type, struct inode *(*get_inode)
931 			(struct super_block *sb, u64 ino, u32 gen))
932 {
933 	struct inode *inode = NULL;
934 
935 	if (fh_len < 2)
936 		return NULL;
937 
938 	switch (fh_type) {
939 	case FILEID_INO32_GEN:
940 	case FILEID_INO32_GEN_PARENT:
941 		inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
942 		break;
943 	}
944 
945 	return d_obtain_alias(inode);
946 }
947 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
948 
949 /**
950  * generic_fh_to_parent - generic helper for the fh_to_parent export operation
951  * @sb:		filesystem to do the file handle conversion on
952  * @fid:	file handle to convert
953  * @fh_len:	length of the file handle in bytes
954  * @fh_type:	type of file handle
955  * @get_inode:	filesystem callback to retrieve inode
956  *
957  * This function decodes @fid as long as it has one of the well-known
958  * Linux filehandle types and calls @get_inode on it to retrieve the
959  * inode for the _parent_ object specified in the file handle if it
960  * is specified in the file handle, or NULL otherwise.
961  */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))962 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
963 		int fh_len, int fh_type, struct inode *(*get_inode)
964 			(struct super_block *sb, u64 ino, u32 gen))
965 {
966 	struct inode *inode = NULL;
967 
968 	if (fh_len <= 2)
969 		return NULL;
970 
971 	switch (fh_type) {
972 	case FILEID_INO32_GEN_PARENT:
973 		inode = get_inode(sb, fid->i32.parent_ino,
974 				  (fh_len > 3 ? fid->i32.parent_gen : 0));
975 		break;
976 	}
977 
978 	return d_obtain_alias(inode);
979 }
980 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
981 
982 /**
983  * __generic_file_fsync - generic fsync implementation for simple filesystems
984  *
985  * @file:	file to synchronize
986  * @start:	start offset in bytes
987  * @end:	end offset in bytes (inclusive)
988  * @datasync:	only synchronize essential metadata if true
989  *
990  * This is a generic implementation of the fsync method for simple
991  * filesystems which track all non-inode metadata in the buffers list
992  * hanging off the address_space structure.
993  */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)994 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
995 				 int datasync)
996 {
997 	struct inode *inode = file->f_mapping->host;
998 	int err;
999 	int ret;
1000 
1001 	err = file_write_and_wait_range(file, start, end);
1002 	if (err)
1003 		return err;
1004 
1005 	inode_lock(inode);
1006 	ret = sync_mapping_buffers(inode->i_mapping);
1007 	if (!(inode->i_state & I_DIRTY_ALL))
1008 		goto out;
1009 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1010 		goto out;
1011 
1012 	err = sync_inode_metadata(inode, 1);
1013 	if (ret == 0)
1014 		ret = err;
1015 
1016 out:
1017 	inode_unlock(inode);
1018 	/* check and advance again to catch errors after syncing out buffers */
1019 	err = file_check_and_advance_wb_err(file);
1020 	if (ret == 0)
1021 		ret = err;
1022 	return ret;
1023 }
1024 EXPORT_SYMBOL(__generic_file_fsync);
1025 
1026 /**
1027  * generic_file_fsync - generic fsync implementation for simple filesystems
1028  *			with flush
1029  * @file:	file to synchronize
1030  * @start:	start offset in bytes
1031  * @end:	end offset in bytes (inclusive)
1032  * @datasync:	only synchronize essential metadata if true
1033  *
1034  */
1035 
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1036 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1037 		       int datasync)
1038 {
1039 	struct inode *inode = file->f_mapping->host;
1040 	int err;
1041 
1042 	err = __generic_file_fsync(file, start, end, datasync);
1043 	if (err)
1044 		return err;
1045 	return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1046 }
1047 EXPORT_SYMBOL(generic_file_fsync);
1048 
1049 /**
1050  * generic_check_addressable - Check addressability of file system
1051  * @blocksize_bits:	log of file system block size
1052  * @num_blocks:		number of blocks in file system
1053  *
1054  * Determine whether a file system with @num_blocks blocks (and a
1055  * block size of 2**@blocksize_bits) is addressable by the sector_t
1056  * and page cache of the system.  Return 0 if so and -EFBIG otherwise.
1057  */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1058 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1059 {
1060 	u64 last_fs_block = num_blocks - 1;
1061 	u64 last_fs_page =
1062 		last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1063 
1064 	if (unlikely(num_blocks == 0))
1065 		return 0;
1066 
1067 	if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1068 		return -EINVAL;
1069 
1070 	if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1071 	    (last_fs_page > (pgoff_t)(~0ULL))) {
1072 		return -EFBIG;
1073 	}
1074 	return 0;
1075 }
1076 EXPORT_SYMBOL(generic_check_addressable);
1077 
1078 /*
1079  * No-op implementation of ->fsync for in-memory filesystems.
1080  */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1081 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1082 {
1083 	return 0;
1084 }
1085 EXPORT_SYMBOL(noop_fsync);
1086 
noop_set_page_dirty(struct page * page)1087 int noop_set_page_dirty(struct page *page)
1088 {
1089 	/*
1090 	 * Unlike __set_page_dirty_no_writeback that handles dirty page
1091 	 * tracking in the page object, dax does all dirty tracking in
1092 	 * the inode address_space in response to mkwrite faults. In the
1093 	 * dax case we only need to worry about potentially dirty CPU
1094 	 * caches, not dirty page cache pages to write back.
1095 	 *
1096 	 * This callback is defined to prevent fallback to
1097 	 * __set_page_dirty_buffers() in set_page_dirty().
1098 	 */
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1102 
noop_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1103 void noop_invalidatepage(struct page *page, unsigned int offset,
1104 		unsigned int length)
1105 {
1106 	/*
1107 	 * There is no page cache to invalidate in the dax case, however
1108 	 * we need this callback defined to prevent falling back to
1109 	 * block_invalidatepage() in do_invalidatepage().
1110 	 */
1111 }
1112 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1113 
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1114 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1115 {
1116 	/*
1117 	 * iomap based filesystems support direct I/O without need for
1118 	 * this callback. However, it still needs to be set in
1119 	 * inode->a_ops so that open/fcntl know that direct I/O is
1120 	 * generally supported.
1121 	 */
1122 	return -EINVAL;
1123 }
1124 EXPORT_SYMBOL_GPL(noop_direct_IO);
1125 
1126 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1127 void kfree_link(void *p)
1128 {
1129 	kfree(p);
1130 }
1131 EXPORT_SYMBOL(kfree_link);
1132 
1133 /*
1134  * nop .set_page_dirty method so that people can use .page_mkwrite on
1135  * anon inodes.
1136  */
anon_set_page_dirty(struct page * page)1137 static int anon_set_page_dirty(struct page *page)
1138 {
1139 	return 0;
1140 };
1141 
1142 /*
1143  * A single inode exists for all anon_inode files. Contrary to pipes,
1144  * anon_inode inodes have no associated per-instance data, so we need
1145  * only allocate one of them.
1146  */
alloc_anon_inode(struct super_block * s)1147 struct inode *alloc_anon_inode(struct super_block *s)
1148 {
1149 	static const struct address_space_operations anon_aops = {
1150 		.set_page_dirty = anon_set_page_dirty,
1151 	};
1152 	struct inode *inode = new_inode_pseudo(s);
1153 
1154 	if (!inode)
1155 		return ERR_PTR(-ENOMEM);
1156 
1157 	inode->i_ino = get_next_ino();
1158 	inode->i_mapping->a_ops = &anon_aops;
1159 
1160 	/*
1161 	 * Mark the inode dirty from the very beginning,
1162 	 * that way it will never be moved to the dirty
1163 	 * list because mark_inode_dirty() will think
1164 	 * that it already _is_ on the dirty list.
1165 	 */
1166 	inode->i_state = I_DIRTY;
1167 	inode->i_mode = S_IRUSR | S_IWUSR;
1168 	inode->i_uid = current_fsuid();
1169 	inode->i_gid = current_fsgid();
1170 	inode->i_flags |= S_PRIVATE;
1171 	inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1172 	return inode;
1173 }
1174 EXPORT_SYMBOL(alloc_anon_inode);
1175 
1176 /**
1177  * simple_nosetlease - generic helper for prohibiting leases
1178  * @filp: file pointer
1179  * @arg: type of lease to obtain
1180  * @flp: new lease supplied for insertion
1181  * @priv: private data for lm_setup operation
1182  *
1183  * Generic helper for filesystems that do not wish to allow leases to be set.
1184  * All arguments are ignored and it just returns -EINVAL.
1185  */
1186 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1187 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1188 		  void **priv)
1189 {
1190 	return -EINVAL;
1191 }
1192 EXPORT_SYMBOL(simple_nosetlease);
1193 
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1194 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1195 			    struct delayed_call *done)
1196 {
1197 	return inode->i_link;
1198 }
1199 EXPORT_SYMBOL(simple_get_link);
1200 
1201 const struct inode_operations simple_symlink_inode_operations = {
1202 	.get_link = simple_get_link,
1203 };
1204 EXPORT_SYMBOL(simple_symlink_inode_operations);
1205 
1206 /*
1207  * Operations for a permanently empty directory.
1208  */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1209 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1210 {
1211 	return ERR_PTR(-ENOENT);
1212 }
1213 
empty_dir_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1214 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1215 			     u32 request_mask, unsigned int query_flags)
1216 {
1217 	struct inode *inode = d_inode(path->dentry);
1218 	generic_fillattr(inode, stat);
1219 	return 0;
1220 }
1221 
empty_dir_setattr(struct dentry * dentry,struct iattr * attr)1222 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1223 {
1224 	return -EPERM;
1225 }
1226 
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1227 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1228 {
1229 	return -EOPNOTSUPP;
1230 }
1231 
1232 static const struct inode_operations empty_dir_inode_operations = {
1233 	.lookup		= empty_dir_lookup,
1234 	.permission	= generic_permission,
1235 	.setattr	= empty_dir_setattr,
1236 	.getattr	= empty_dir_getattr,
1237 	.listxattr	= empty_dir_listxattr,
1238 };
1239 
empty_dir_llseek(struct file * file,loff_t offset,int whence)1240 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1241 {
1242 	/* An empty directory has two entries . and .. at offsets 0 and 1 */
1243 	return generic_file_llseek_size(file, offset, whence, 2, 2);
1244 }
1245 
empty_dir_readdir(struct file * file,struct dir_context * ctx)1246 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1247 {
1248 	dir_emit_dots(file, ctx);
1249 	return 0;
1250 }
1251 
1252 static const struct file_operations empty_dir_operations = {
1253 	.llseek		= empty_dir_llseek,
1254 	.read		= generic_read_dir,
1255 	.iterate_shared	= empty_dir_readdir,
1256 	.fsync		= noop_fsync,
1257 };
1258 
1259 
make_empty_dir_inode(struct inode * inode)1260 void make_empty_dir_inode(struct inode *inode)
1261 {
1262 	set_nlink(inode, 2);
1263 	inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1264 	inode->i_uid = GLOBAL_ROOT_UID;
1265 	inode->i_gid = GLOBAL_ROOT_GID;
1266 	inode->i_rdev = 0;
1267 	inode->i_size = 0;
1268 	inode->i_blkbits = PAGE_SHIFT;
1269 	inode->i_blocks = 0;
1270 
1271 	inode->i_op = &empty_dir_inode_operations;
1272 	inode->i_opflags &= ~IOP_XATTR;
1273 	inode->i_fop = &empty_dir_operations;
1274 }
1275 
is_empty_dir_inode(struct inode * inode)1276 bool is_empty_dir_inode(struct inode *inode)
1277 {
1278 	return (inode->i_fop == &empty_dir_operations) &&
1279 		(inode->i_op == &empty_dir_inode_operations);
1280 }
1281