1 /*
2 * fs/libfs.c
3 * Library for filesystems writers.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/export.h>
8 #include <linux/pagemap.h>
9 #include <linux/slab.h>
10 #include <linux/cred.h>
11 #include <linux/mount.h>
12 #include <linux/vfs.h>
13 #include <linux/quotaops.h>
14 #include <linux/mutex.h>
15 #include <linux/namei.h>
16 #include <linux/exportfs.h>
17 #include <linux/writeback.h>
18 #include <linux/buffer_head.h> /* sync_mapping_buffers */
19
20 #include <linux/uaccess.h>
21
22 #include "internal.h"
23
simple_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)24 int simple_getattr(const struct path *path, struct kstat *stat,
25 u32 request_mask, unsigned int query_flags)
26 {
27 struct inode *inode = d_inode(path->dentry);
28 generic_fillattr(inode, stat);
29 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
30 return 0;
31 }
32 EXPORT_SYMBOL(simple_getattr);
33
simple_statfs(struct dentry * dentry,struct kstatfs * buf)34 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
35 {
36 buf->f_type = dentry->d_sb->s_magic;
37 buf->f_bsize = PAGE_SIZE;
38 buf->f_namelen = NAME_MAX;
39 return 0;
40 }
41 EXPORT_SYMBOL(simple_statfs);
42
43 /*
44 * Retaining negative dentries for an in-memory filesystem just wastes
45 * memory and lookup time: arrange for them to be deleted immediately.
46 */
always_delete_dentry(const struct dentry * dentry)47 int always_delete_dentry(const struct dentry *dentry)
48 {
49 return 1;
50 }
51 EXPORT_SYMBOL(always_delete_dentry);
52
53 const struct dentry_operations simple_dentry_operations = {
54 .d_delete = always_delete_dentry,
55 };
56 EXPORT_SYMBOL(simple_dentry_operations);
57
58 /*
59 * Lookup the data. This is trivial - if the dentry didn't already
60 * exist, we know it is negative. Set d_op to delete negative dentries.
61 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)62 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
63 {
64 if (dentry->d_name.len > NAME_MAX)
65 return ERR_PTR(-ENAMETOOLONG);
66 if (!dentry->d_sb->s_d_op)
67 d_set_d_op(dentry, &simple_dentry_operations);
68 d_add(dentry, NULL);
69 return NULL;
70 }
71 EXPORT_SYMBOL(simple_lookup);
72
dcache_dir_open(struct inode * inode,struct file * file)73 int dcache_dir_open(struct inode *inode, struct file *file)
74 {
75 file->private_data = d_alloc_cursor(file->f_path.dentry);
76
77 return file->private_data ? 0 : -ENOMEM;
78 }
79 EXPORT_SYMBOL(dcache_dir_open);
80
dcache_dir_close(struct inode * inode,struct file * file)81 int dcache_dir_close(struct inode *inode, struct file *file)
82 {
83 dput(file->private_data);
84 return 0;
85 }
86 EXPORT_SYMBOL(dcache_dir_close);
87
88 /* parent is locked at least shared */
89 /*
90 * Returns an element of siblings' list.
91 * We are looking for <count>th positive after <p>; if
92 * found, dentry is grabbed and passed to caller via *<res>.
93 * If no such element exists, the anchor of list is returned
94 * and *<res> is set to NULL.
95 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry ** res)96 static struct list_head *scan_positives(struct dentry *cursor,
97 struct list_head *p,
98 loff_t count,
99 struct dentry **res)
100 {
101 struct dentry *dentry = cursor->d_parent, *found = NULL;
102
103 spin_lock(&dentry->d_lock);
104 while ((p = p->next) != &dentry->d_subdirs) {
105 struct dentry *d = list_entry(p, struct dentry, d_child);
106 // we must at least skip cursors, to avoid livelocks
107 if (d->d_flags & DCACHE_DENTRY_CURSOR)
108 continue;
109 if (simple_positive(d) && !--count) {
110 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
111 if (simple_positive(d))
112 found = dget_dlock(d);
113 spin_unlock(&d->d_lock);
114 if (likely(found))
115 break;
116 count = 1;
117 }
118 if (need_resched()) {
119 list_move(&cursor->d_child, p);
120 p = &cursor->d_child;
121 spin_unlock(&dentry->d_lock);
122 cond_resched();
123 spin_lock(&dentry->d_lock);
124 }
125 }
126 spin_unlock(&dentry->d_lock);
127 dput(*res);
128 *res = found;
129 return p;
130 }
131
dcache_dir_lseek(struct file * file,loff_t offset,int whence)132 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
133 {
134 struct dentry *dentry = file->f_path.dentry;
135 switch (whence) {
136 case 1:
137 offset += file->f_pos;
138 case 0:
139 if (offset >= 0)
140 break;
141 default:
142 return -EINVAL;
143 }
144 if (offset != file->f_pos) {
145 struct dentry *cursor = file->private_data;
146 struct dentry *to = NULL;
147 struct list_head *p;
148
149 file->f_pos = offset;
150 inode_lock_shared(dentry->d_inode);
151
152 if (file->f_pos > 2) {
153 p = scan_positives(cursor, &dentry->d_subdirs,
154 file->f_pos - 2, &to);
155 spin_lock(&dentry->d_lock);
156 list_move(&cursor->d_child, p);
157 spin_unlock(&dentry->d_lock);
158 } else {
159 spin_lock(&dentry->d_lock);
160 list_del_init(&cursor->d_child);
161 spin_unlock(&dentry->d_lock);
162 }
163
164 dput(to);
165
166 inode_unlock_shared(dentry->d_inode);
167 }
168 return offset;
169 }
170 EXPORT_SYMBOL(dcache_dir_lseek);
171
172 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)173 static inline unsigned char dt_type(struct inode *inode)
174 {
175 return (inode->i_mode >> 12) & 15;
176 }
177
178 /*
179 * Directory is locked and all positive dentries in it are safe, since
180 * for ramfs-type trees they can't go away without unlink() or rmdir(),
181 * both impossible due to the lock on directory.
182 */
183
dcache_readdir(struct file * file,struct dir_context * ctx)184 int dcache_readdir(struct file *file, struct dir_context *ctx)
185 {
186 struct dentry *dentry = file->f_path.dentry;
187 struct dentry *cursor = file->private_data;
188 struct list_head *anchor = &dentry->d_subdirs;
189 struct dentry *next = NULL;
190 struct list_head *p;
191
192 if (!dir_emit_dots(file, ctx))
193 return 0;
194
195 if (ctx->pos == 2)
196 p = anchor;
197 else
198 p = &cursor->d_child;
199
200 while ((p = scan_positives(cursor, p, 1, &next)) != anchor) {
201 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
202 d_inode(next)->i_ino, dt_type(d_inode(next))))
203 break;
204 ctx->pos++;
205 }
206 spin_lock(&dentry->d_lock);
207 list_move_tail(&cursor->d_child, p);
208 spin_unlock(&dentry->d_lock);
209 dput(next);
210
211 return 0;
212 }
213 EXPORT_SYMBOL(dcache_readdir);
214
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)215 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
216 {
217 return -EISDIR;
218 }
219 EXPORT_SYMBOL(generic_read_dir);
220
221 const struct file_operations simple_dir_operations = {
222 .open = dcache_dir_open,
223 .release = dcache_dir_close,
224 .llseek = dcache_dir_lseek,
225 .read = generic_read_dir,
226 .iterate_shared = dcache_readdir,
227 .fsync = noop_fsync,
228 };
229 EXPORT_SYMBOL(simple_dir_operations);
230
231 const struct inode_operations simple_dir_inode_operations = {
232 .lookup = simple_lookup,
233 };
234 EXPORT_SYMBOL(simple_dir_inode_operations);
235
236 static const struct super_operations simple_super_operations = {
237 .statfs = simple_statfs,
238 };
239
240 /*
241 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
242 * will never be mountable)
243 */
mount_pseudo_xattr(struct file_system_type * fs_type,char * name,const struct super_operations * ops,const struct xattr_handler ** xattr,const struct dentry_operations * dops,unsigned long magic)244 struct dentry *mount_pseudo_xattr(struct file_system_type *fs_type, char *name,
245 const struct super_operations *ops, const struct xattr_handler **xattr,
246 const struct dentry_operations *dops, unsigned long magic)
247 {
248 struct super_block *s;
249 struct dentry *dentry;
250 struct inode *root;
251 struct qstr d_name = QSTR_INIT(name, strlen(name));
252
253 s = sget_userns(fs_type, NULL, set_anon_super, SB_KERNMOUNT|SB_NOUSER,
254 &init_user_ns, NULL);
255 if (IS_ERR(s))
256 return ERR_CAST(s);
257
258 s->s_maxbytes = MAX_LFS_FILESIZE;
259 s->s_blocksize = PAGE_SIZE;
260 s->s_blocksize_bits = PAGE_SHIFT;
261 s->s_magic = magic;
262 s->s_op = ops ? ops : &simple_super_operations;
263 s->s_xattr = xattr;
264 s->s_time_gran = 1;
265 root = new_inode(s);
266 if (!root)
267 goto Enomem;
268 /*
269 * since this is the first inode, make it number 1. New inodes created
270 * after this must take care not to collide with it (by passing
271 * max_reserved of 1 to iunique).
272 */
273 root->i_ino = 1;
274 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
275 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
276 dentry = __d_alloc(s, &d_name);
277 if (!dentry) {
278 iput(root);
279 goto Enomem;
280 }
281 d_instantiate(dentry, root);
282 s->s_root = dentry;
283 s->s_d_op = dops;
284 s->s_flags |= SB_ACTIVE;
285 return dget(s->s_root);
286
287 Enomem:
288 deactivate_locked_super(s);
289 return ERR_PTR(-ENOMEM);
290 }
291 EXPORT_SYMBOL(mount_pseudo_xattr);
292
simple_open(struct inode * inode,struct file * file)293 int simple_open(struct inode *inode, struct file *file)
294 {
295 if (inode->i_private)
296 file->private_data = inode->i_private;
297 return 0;
298 }
299 EXPORT_SYMBOL(simple_open);
300
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)301 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
302 {
303 struct inode *inode = d_inode(old_dentry);
304
305 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
306 inc_nlink(inode);
307 ihold(inode);
308 dget(dentry);
309 d_instantiate(dentry, inode);
310 return 0;
311 }
312 EXPORT_SYMBOL(simple_link);
313
simple_empty(struct dentry * dentry)314 int simple_empty(struct dentry *dentry)
315 {
316 struct dentry *child;
317 int ret = 0;
318
319 spin_lock(&dentry->d_lock);
320 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
321 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
322 if (simple_positive(child)) {
323 spin_unlock(&child->d_lock);
324 goto out;
325 }
326 spin_unlock(&child->d_lock);
327 }
328 ret = 1;
329 out:
330 spin_unlock(&dentry->d_lock);
331 return ret;
332 }
333 EXPORT_SYMBOL(simple_empty);
334
simple_unlink(struct inode * dir,struct dentry * dentry)335 int simple_unlink(struct inode *dir, struct dentry *dentry)
336 {
337 struct inode *inode = d_inode(dentry);
338
339 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
340 drop_nlink(inode);
341 dput(dentry);
342 return 0;
343 }
344 EXPORT_SYMBOL(simple_unlink);
345
simple_rmdir(struct inode * dir,struct dentry * dentry)346 int simple_rmdir(struct inode *dir, struct dentry *dentry)
347 {
348 if (!simple_empty(dentry))
349 return -ENOTEMPTY;
350
351 drop_nlink(d_inode(dentry));
352 simple_unlink(dir, dentry);
353 drop_nlink(dir);
354 return 0;
355 }
356 EXPORT_SYMBOL(simple_rmdir);
357
simple_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)358 int simple_rename(struct inode *old_dir, struct dentry *old_dentry,
359 struct inode *new_dir, struct dentry *new_dentry,
360 unsigned int flags)
361 {
362 struct inode *inode = d_inode(old_dentry);
363 int they_are_dirs = d_is_dir(old_dentry);
364
365 if (flags & ~RENAME_NOREPLACE)
366 return -EINVAL;
367
368 if (!simple_empty(new_dentry))
369 return -ENOTEMPTY;
370
371 if (d_really_is_positive(new_dentry)) {
372 simple_unlink(new_dir, new_dentry);
373 if (they_are_dirs) {
374 drop_nlink(d_inode(new_dentry));
375 drop_nlink(old_dir);
376 }
377 } else if (they_are_dirs) {
378 drop_nlink(old_dir);
379 inc_nlink(new_dir);
380 }
381
382 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
383 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
384
385 return 0;
386 }
387 EXPORT_SYMBOL(simple_rename);
388
389 /**
390 * simple_setattr - setattr for simple filesystem
391 * @dentry: dentry
392 * @iattr: iattr structure
393 *
394 * Returns 0 on success, -error on failure.
395 *
396 * simple_setattr is a simple ->setattr implementation without a proper
397 * implementation of size changes.
398 *
399 * It can either be used for in-memory filesystems or special files
400 * on simple regular filesystems. Anything that needs to change on-disk
401 * or wire state on size changes needs its own setattr method.
402 */
simple_setattr(struct dentry * dentry,struct iattr * iattr)403 int simple_setattr(struct dentry *dentry, struct iattr *iattr)
404 {
405 struct inode *inode = d_inode(dentry);
406 int error;
407
408 error = setattr_prepare(dentry, iattr);
409 if (error)
410 return error;
411
412 if (iattr->ia_valid & ATTR_SIZE)
413 truncate_setsize(inode, iattr->ia_size);
414 setattr_copy(inode, iattr);
415 mark_inode_dirty(inode);
416 return 0;
417 }
418 EXPORT_SYMBOL(simple_setattr);
419
simple_readpage(struct file * file,struct page * page)420 int simple_readpage(struct file *file, struct page *page)
421 {
422 clear_highpage(page);
423 flush_dcache_page(page);
424 SetPageUptodate(page);
425 unlock_page(page);
426 return 0;
427 }
428 EXPORT_SYMBOL(simple_readpage);
429
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)430 int simple_write_begin(struct file *file, struct address_space *mapping,
431 loff_t pos, unsigned len, unsigned flags,
432 struct page **pagep, void **fsdata)
433 {
434 struct page *page;
435 pgoff_t index;
436
437 index = pos >> PAGE_SHIFT;
438
439 page = grab_cache_page_write_begin(mapping, index, flags);
440 if (!page)
441 return -ENOMEM;
442
443 *pagep = page;
444
445 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
446 unsigned from = pos & (PAGE_SIZE - 1);
447
448 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
449 }
450 return 0;
451 }
452 EXPORT_SYMBOL(simple_write_begin);
453
454 /**
455 * simple_write_end - .write_end helper for non-block-device FSes
456 * @available: See .write_end of address_space_operations
457 * @file: "
458 * @mapping: "
459 * @pos: "
460 * @len: "
461 * @copied: "
462 * @page: "
463 * @fsdata: "
464 *
465 * simple_write_end does the minimum needed for updating a page after writing is
466 * done. It has the same API signature as the .write_end of
467 * address_space_operations vector. So it can just be set onto .write_end for
468 * FSes that don't need any other processing. i_mutex is assumed to be held.
469 * Block based filesystems should use generic_write_end().
470 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
471 * is not called, so a filesystem that actually does store data in .write_inode
472 * should extend on what's done here with a call to mark_inode_dirty() in the
473 * case that i_size has changed.
474 *
475 * Use *ONLY* with simple_readpage()
476 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)477 int simple_write_end(struct file *file, struct address_space *mapping,
478 loff_t pos, unsigned len, unsigned copied,
479 struct page *page, void *fsdata)
480 {
481 struct inode *inode = page->mapping->host;
482 loff_t last_pos = pos + copied;
483
484 /* zero the stale part of the page if we did a short copy */
485 if (!PageUptodate(page)) {
486 if (copied < len) {
487 unsigned from = pos & (PAGE_SIZE - 1);
488
489 zero_user(page, from + copied, len - copied);
490 }
491 SetPageUptodate(page);
492 }
493 /*
494 * No need to use i_size_read() here, the i_size
495 * cannot change under us because we hold the i_mutex.
496 */
497 if (last_pos > inode->i_size)
498 i_size_write(inode, last_pos);
499
500 set_page_dirty(page);
501 unlock_page(page);
502 put_page(page);
503
504 return copied;
505 }
506 EXPORT_SYMBOL(simple_write_end);
507
508 /*
509 * the inodes created here are not hashed. If you use iunique to generate
510 * unique inode values later for this filesystem, then you must take care
511 * to pass it an appropriate max_reserved value to avoid collisions.
512 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)513 int simple_fill_super(struct super_block *s, unsigned long magic,
514 const struct tree_descr *files)
515 {
516 struct inode *inode;
517 struct dentry *root;
518 struct dentry *dentry;
519 int i;
520
521 s->s_blocksize = PAGE_SIZE;
522 s->s_blocksize_bits = PAGE_SHIFT;
523 s->s_magic = magic;
524 s->s_op = &simple_super_operations;
525 s->s_time_gran = 1;
526
527 inode = new_inode(s);
528 if (!inode)
529 return -ENOMEM;
530 /*
531 * because the root inode is 1, the files array must not contain an
532 * entry at index 1
533 */
534 inode->i_ino = 1;
535 inode->i_mode = S_IFDIR | 0755;
536 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
537 inode->i_op = &simple_dir_inode_operations;
538 inode->i_fop = &simple_dir_operations;
539 set_nlink(inode, 2);
540 root = d_make_root(inode);
541 if (!root)
542 return -ENOMEM;
543 for (i = 0; !files->name || files->name[0]; i++, files++) {
544 if (!files->name)
545 continue;
546
547 /* warn if it tries to conflict with the root inode */
548 if (unlikely(i == 1))
549 printk(KERN_WARNING "%s: %s passed in a files array"
550 "with an index of 1!\n", __func__,
551 s->s_type->name);
552
553 dentry = d_alloc_name(root, files->name);
554 if (!dentry)
555 goto out;
556 inode = new_inode(s);
557 if (!inode) {
558 dput(dentry);
559 goto out;
560 }
561 inode->i_mode = S_IFREG | files->mode;
562 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
563 inode->i_fop = files->ops;
564 inode->i_ino = i;
565 d_add(dentry, inode);
566 }
567 s->s_root = root;
568 return 0;
569 out:
570 d_genocide(root);
571 shrink_dcache_parent(root);
572 dput(root);
573 return -ENOMEM;
574 }
575 EXPORT_SYMBOL(simple_fill_super);
576
577 static DEFINE_SPINLOCK(pin_fs_lock);
578
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)579 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
580 {
581 struct vfsmount *mnt = NULL;
582 spin_lock(&pin_fs_lock);
583 if (unlikely(!*mount)) {
584 spin_unlock(&pin_fs_lock);
585 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
586 if (IS_ERR(mnt))
587 return PTR_ERR(mnt);
588 spin_lock(&pin_fs_lock);
589 if (!*mount)
590 *mount = mnt;
591 }
592 mntget(*mount);
593 ++*count;
594 spin_unlock(&pin_fs_lock);
595 mntput(mnt);
596 return 0;
597 }
598 EXPORT_SYMBOL(simple_pin_fs);
599
simple_release_fs(struct vfsmount ** mount,int * count)600 void simple_release_fs(struct vfsmount **mount, int *count)
601 {
602 struct vfsmount *mnt;
603 spin_lock(&pin_fs_lock);
604 mnt = *mount;
605 if (!--*count)
606 *mount = NULL;
607 spin_unlock(&pin_fs_lock);
608 mntput(mnt);
609 }
610 EXPORT_SYMBOL(simple_release_fs);
611
612 /**
613 * simple_read_from_buffer - copy data from the buffer to user space
614 * @to: the user space buffer to read to
615 * @count: the maximum number of bytes to read
616 * @ppos: the current position in the buffer
617 * @from: the buffer to read from
618 * @available: the size of the buffer
619 *
620 * The simple_read_from_buffer() function reads up to @count bytes from the
621 * buffer @from at offset @ppos into the user space address starting at @to.
622 *
623 * On success, the number of bytes read is returned and the offset @ppos is
624 * advanced by this number, or negative value is returned on error.
625 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)626 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
627 const void *from, size_t available)
628 {
629 loff_t pos = *ppos;
630 size_t ret;
631
632 if (pos < 0)
633 return -EINVAL;
634 if (pos >= available || !count)
635 return 0;
636 if (count > available - pos)
637 count = available - pos;
638 ret = copy_to_user(to, from + pos, count);
639 if (ret == count)
640 return -EFAULT;
641 count -= ret;
642 *ppos = pos + count;
643 return count;
644 }
645 EXPORT_SYMBOL(simple_read_from_buffer);
646
647 /**
648 * simple_write_to_buffer - copy data from user space to the buffer
649 * @to: the buffer to write to
650 * @available: the size of the buffer
651 * @ppos: the current position in the buffer
652 * @from: the user space buffer to read from
653 * @count: the maximum number of bytes to read
654 *
655 * The simple_write_to_buffer() function reads up to @count bytes from the user
656 * space address starting at @from into the buffer @to at offset @ppos.
657 *
658 * On success, the number of bytes written is returned and the offset @ppos is
659 * advanced by this number, or negative value is returned on error.
660 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)661 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
662 const void __user *from, size_t count)
663 {
664 loff_t pos = *ppos;
665 size_t res;
666
667 if (pos < 0)
668 return -EINVAL;
669 if (pos >= available || !count)
670 return 0;
671 if (count > available - pos)
672 count = available - pos;
673 res = copy_from_user(to + pos, from, count);
674 if (res == count)
675 return -EFAULT;
676 count -= res;
677 *ppos = pos + count;
678 return count;
679 }
680 EXPORT_SYMBOL(simple_write_to_buffer);
681
682 /**
683 * memory_read_from_buffer - copy data from the buffer
684 * @to: the kernel space buffer to read to
685 * @count: the maximum number of bytes to read
686 * @ppos: the current position in the buffer
687 * @from: the buffer to read from
688 * @available: the size of the buffer
689 *
690 * The memory_read_from_buffer() function reads up to @count bytes from the
691 * buffer @from at offset @ppos into the kernel space address starting at @to.
692 *
693 * On success, the number of bytes read is returned and the offset @ppos is
694 * advanced by this number, or negative value is returned on error.
695 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)696 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
697 const void *from, size_t available)
698 {
699 loff_t pos = *ppos;
700
701 if (pos < 0)
702 return -EINVAL;
703 if (pos >= available)
704 return 0;
705 if (count > available - pos)
706 count = available - pos;
707 memcpy(to, from + pos, count);
708 *ppos = pos + count;
709
710 return count;
711 }
712 EXPORT_SYMBOL(memory_read_from_buffer);
713
714 /*
715 * Transaction based IO.
716 * The file expects a single write which triggers the transaction, and then
717 * possibly a read which collects the result - which is stored in a
718 * file-local buffer.
719 */
720
simple_transaction_set(struct file * file,size_t n)721 void simple_transaction_set(struct file *file, size_t n)
722 {
723 struct simple_transaction_argresp *ar = file->private_data;
724
725 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
726
727 /*
728 * The barrier ensures that ar->size will really remain zero until
729 * ar->data is ready for reading.
730 */
731 smp_mb();
732 ar->size = n;
733 }
734 EXPORT_SYMBOL(simple_transaction_set);
735
simple_transaction_get(struct file * file,const char __user * buf,size_t size)736 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
737 {
738 struct simple_transaction_argresp *ar;
739 static DEFINE_SPINLOCK(simple_transaction_lock);
740
741 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
742 return ERR_PTR(-EFBIG);
743
744 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
745 if (!ar)
746 return ERR_PTR(-ENOMEM);
747
748 spin_lock(&simple_transaction_lock);
749
750 /* only one write allowed per open */
751 if (file->private_data) {
752 spin_unlock(&simple_transaction_lock);
753 free_page((unsigned long)ar);
754 return ERR_PTR(-EBUSY);
755 }
756
757 file->private_data = ar;
758
759 spin_unlock(&simple_transaction_lock);
760
761 if (copy_from_user(ar->data, buf, size))
762 return ERR_PTR(-EFAULT);
763
764 return ar->data;
765 }
766 EXPORT_SYMBOL(simple_transaction_get);
767
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)768 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
769 {
770 struct simple_transaction_argresp *ar = file->private_data;
771
772 if (!ar)
773 return 0;
774 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
775 }
776 EXPORT_SYMBOL(simple_transaction_read);
777
simple_transaction_release(struct inode * inode,struct file * file)778 int simple_transaction_release(struct inode *inode, struct file *file)
779 {
780 free_page((unsigned long)file->private_data);
781 return 0;
782 }
783 EXPORT_SYMBOL(simple_transaction_release);
784
785 /* Simple attribute files */
786
787 struct simple_attr {
788 int (*get)(void *, u64 *);
789 int (*set)(void *, u64);
790 char get_buf[24]; /* enough to store a u64 and "\n\0" */
791 char set_buf[24];
792 void *data;
793 const char *fmt; /* format for read operation */
794 struct mutex mutex; /* protects access to these buffers */
795 };
796
797 /* simple_attr_open is called by an actual attribute open file operation
798 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)799 int simple_attr_open(struct inode *inode, struct file *file,
800 int (*get)(void *, u64 *), int (*set)(void *, u64),
801 const char *fmt)
802 {
803 struct simple_attr *attr;
804
805 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
806 if (!attr)
807 return -ENOMEM;
808
809 attr->get = get;
810 attr->set = set;
811 attr->data = inode->i_private;
812 attr->fmt = fmt;
813 mutex_init(&attr->mutex);
814
815 file->private_data = attr;
816
817 return nonseekable_open(inode, file);
818 }
819 EXPORT_SYMBOL_GPL(simple_attr_open);
820
simple_attr_release(struct inode * inode,struct file * file)821 int simple_attr_release(struct inode *inode, struct file *file)
822 {
823 kfree(file->private_data);
824 return 0;
825 }
826 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
827
828 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)829 ssize_t simple_attr_read(struct file *file, char __user *buf,
830 size_t len, loff_t *ppos)
831 {
832 struct simple_attr *attr;
833 size_t size;
834 ssize_t ret;
835
836 attr = file->private_data;
837
838 if (!attr->get)
839 return -EACCES;
840
841 ret = mutex_lock_interruptible(&attr->mutex);
842 if (ret)
843 return ret;
844
845 if (*ppos && attr->get_buf[0]) {
846 /* continued read */
847 size = strlen(attr->get_buf);
848 } else {
849 /* first read */
850 u64 val;
851 ret = attr->get(attr->data, &val);
852 if (ret)
853 goto out;
854
855 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
856 attr->fmt, (unsigned long long)val);
857 }
858
859 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
860 out:
861 mutex_unlock(&attr->mutex);
862 return ret;
863 }
864 EXPORT_SYMBOL_GPL(simple_attr_read);
865
866 /* interpret the buffer as a number to call the set function with */
simple_attr_write_xsigned(struct file * file,const char __user * buf,size_t len,loff_t * ppos,bool is_signed)867 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf,
868 size_t len, loff_t *ppos, bool is_signed)
869 {
870 struct simple_attr *attr;
871 unsigned long long val;
872 size_t size;
873 ssize_t ret;
874
875 attr = file->private_data;
876 if (!attr->set)
877 return -EACCES;
878
879 ret = mutex_lock_interruptible(&attr->mutex);
880 if (ret)
881 return ret;
882
883 ret = -EFAULT;
884 size = min(sizeof(attr->set_buf) - 1, len);
885 if (copy_from_user(attr->set_buf, buf, size))
886 goto out;
887
888 attr->set_buf[size] = '\0';
889 if (is_signed)
890 ret = kstrtoll(attr->set_buf, 0, &val);
891 else
892 ret = kstrtoull(attr->set_buf, 0, &val);
893 if (ret)
894 goto out;
895 ret = attr->set(attr->data, val);
896 if (ret == 0)
897 ret = len; /* on success, claim we got the whole input */
898 out:
899 mutex_unlock(&attr->mutex);
900 return ret;
901 }
902
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)903 ssize_t simple_attr_write(struct file *file, const char __user *buf,
904 size_t len, loff_t *ppos)
905 {
906 return simple_attr_write_xsigned(file, buf, len, ppos, false);
907 }
908 EXPORT_SYMBOL_GPL(simple_attr_write);
909
simple_attr_write_signed(struct file * file,const char __user * buf,size_t len,loff_t * ppos)910 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf,
911 size_t len, loff_t *ppos)
912 {
913 return simple_attr_write_xsigned(file, buf, len, ppos, true);
914 }
915 EXPORT_SYMBOL_GPL(simple_attr_write_signed);
916
917 /**
918 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
919 * @sb: filesystem to do the file handle conversion on
920 * @fid: file handle to convert
921 * @fh_len: length of the file handle in bytes
922 * @fh_type: type of file handle
923 * @get_inode: filesystem callback to retrieve inode
924 *
925 * This function decodes @fid as long as it has one of the well-known
926 * Linux filehandle types and calls @get_inode on it to retrieve the
927 * inode for the object specified in the file handle.
928 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))929 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
930 int fh_len, int fh_type, struct inode *(*get_inode)
931 (struct super_block *sb, u64 ino, u32 gen))
932 {
933 struct inode *inode = NULL;
934
935 if (fh_len < 2)
936 return NULL;
937
938 switch (fh_type) {
939 case FILEID_INO32_GEN:
940 case FILEID_INO32_GEN_PARENT:
941 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
942 break;
943 }
944
945 return d_obtain_alias(inode);
946 }
947 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
948
949 /**
950 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
951 * @sb: filesystem to do the file handle conversion on
952 * @fid: file handle to convert
953 * @fh_len: length of the file handle in bytes
954 * @fh_type: type of file handle
955 * @get_inode: filesystem callback to retrieve inode
956 *
957 * This function decodes @fid as long as it has one of the well-known
958 * Linux filehandle types and calls @get_inode on it to retrieve the
959 * inode for the _parent_ object specified in the file handle if it
960 * is specified in the file handle, or NULL otherwise.
961 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))962 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
963 int fh_len, int fh_type, struct inode *(*get_inode)
964 (struct super_block *sb, u64 ino, u32 gen))
965 {
966 struct inode *inode = NULL;
967
968 if (fh_len <= 2)
969 return NULL;
970
971 switch (fh_type) {
972 case FILEID_INO32_GEN_PARENT:
973 inode = get_inode(sb, fid->i32.parent_ino,
974 (fh_len > 3 ? fid->i32.parent_gen : 0));
975 break;
976 }
977
978 return d_obtain_alias(inode);
979 }
980 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
981
982 /**
983 * __generic_file_fsync - generic fsync implementation for simple filesystems
984 *
985 * @file: file to synchronize
986 * @start: start offset in bytes
987 * @end: end offset in bytes (inclusive)
988 * @datasync: only synchronize essential metadata if true
989 *
990 * This is a generic implementation of the fsync method for simple
991 * filesystems which track all non-inode metadata in the buffers list
992 * hanging off the address_space structure.
993 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)994 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
995 int datasync)
996 {
997 struct inode *inode = file->f_mapping->host;
998 int err;
999 int ret;
1000
1001 err = file_write_and_wait_range(file, start, end);
1002 if (err)
1003 return err;
1004
1005 inode_lock(inode);
1006 ret = sync_mapping_buffers(inode->i_mapping);
1007 if (!(inode->i_state & I_DIRTY_ALL))
1008 goto out;
1009 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1010 goto out;
1011
1012 err = sync_inode_metadata(inode, 1);
1013 if (ret == 0)
1014 ret = err;
1015
1016 out:
1017 inode_unlock(inode);
1018 /* check and advance again to catch errors after syncing out buffers */
1019 err = file_check_and_advance_wb_err(file);
1020 if (ret == 0)
1021 ret = err;
1022 return ret;
1023 }
1024 EXPORT_SYMBOL(__generic_file_fsync);
1025
1026 /**
1027 * generic_file_fsync - generic fsync implementation for simple filesystems
1028 * with flush
1029 * @file: file to synchronize
1030 * @start: start offset in bytes
1031 * @end: end offset in bytes (inclusive)
1032 * @datasync: only synchronize essential metadata if true
1033 *
1034 */
1035
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1036 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1037 int datasync)
1038 {
1039 struct inode *inode = file->f_mapping->host;
1040 int err;
1041
1042 err = __generic_file_fsync(file, start, end, datasync);
1043 if (err)
1044 return err;
1045 return blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL, NULL);
1046 }
1047 EXPORT_SYMBOL(generic_file_fsync);
1048
1049 /**
1050 * generic_check_addressable - Check addressability of file system
1051 * @blocksize_bits: log of file system block size
1052 * @num_blocks: number of blocks in file system
1053 *
1054 * Determine whether a file system with @num_blocks blocks (and a
1055 * block size of 2**@blocksize_bits) is addressable by the sector_t
1056 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1057 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1058 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1059 {
1060 u64 last_fs_block = num_blocks - 1;
1061 u64 last_fs_page =
1062 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1063
1064 if (unlikely(num_blocks == 0))
1065 return 0;
1066
1067 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1068 return -EINVAL;
1069
1070 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1071 (last_fs_page > (pgoff_t)(~0ULL))) {
1072 return -EFBIG;
1073 }
1074 return 0;
1075 }
1076 EXPORT_SYMBOL(generic_check_addressable);
1077
1078 /*
1079 * No-op implementation of ->fsync for in-memory filesystems.
1080 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1081 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1082 {
1083 return 0;
1084 }
1085 EXPORT_SYMBOL(noop_fsync);
1086
noop_set_page_dirty(struct page * page)1087 int noop_set_page_dirty(struct page *page)
1088 {
1089 /*
1090 * Unlike __set_page_dirty_no_writeback that handles dirty page
1091 * tracking in the page object, dax does all dirty tracking in
1092 * the inode address_space in response to mkwrite faults. In the
1093 * dax case we only need to worry about potentially dirty CPU
1094 * caches, not dirty page cache pages to write back.
1095 *
1096 * This callback is defined to prevent fallback to
1097 * __set_page_dirty_buffers() in set_page_dirty().
1098 */
1099 return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(noop_set_page_dirty);
1102
noop_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1103 void noop_invalidatepage(struct page *page, unsigned int offset,
1104 unsigned int length)
1105 {
1106 /*
1107 * There is no page cache to invalidate in the dax case, however
1108 * we need this callback defined to prevent falling back to
1109 * block_invalidatepage() in do_invalidatepage().
1110 */
1111 }
1112 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1113
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1114 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1115 {
1116 /*
1117 * iomap based filesystems support direct I/O without need for
1118 * this callback. However, it still needs to be set in
1119 * inode->a_ops so that open/fcntl know that direct I/O is
1120 * generally supported.
1121 */
1122 return -EINVAL;
1123 }
1124 EXPORT_SYMBOL_GPL(noop_direct_IO);
1125
1126 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1127 void kfree_link(void *p)
1128 {
1129 kfree(p);
1130 }
1131 EXPORT_SYMBOL(kfree_link);
1132
1133 /*
1134 * nop .set_page_dirty method so that people can use .page_mkwrite on
1135 * anon inodes.
1136 */
anon_set_page_dirty(struct page * page)1137 static int anon_set_page_dirty(struct page *page)
1138 {
1139 return 0;
1140 };
1141
1142 /*
1143 * A single inode exists for all anon_inode files. Contrary to pipes,
1144 * anon_inode inodes have no associated per-instance data, so we need
1145 * only allocate one of them.
1146 */
alloc_anon_inode(struct super_block * s)1147 struct inode *alloc_anon_inode(struct super_block *s)
1148 {
1149 static const struct address_space_operations anon_aops = {
1150 .set_page_dirty = anon_set_page_dirty,
1151 };
1152 struct inode *inode = new_inode_pseudo(s);
1153
1154 if (!inode)
1155 return ERR_PTR(-ENOMEM);
1156
1157 inode->i_ino = get_next_ino();
1158 inode->i_mapping->a_ops = &anon_aops;
1159
1160 /*
1161 * Mark the inode dirty from the very beginning,
1162 * that way it will never be moved to the dirty
1163 * list because mark_inode_dirty() will think
1164 * that it already _is_ on the dirty list.
1165 */
1166 inode->i_state = I_DIRTY;
1167 inode->i_mode = S_IRUSR | S_IWUSR;
1168 inode->i_uid = current_fsuid();
1169 inode->i_gid = current_fsgid();
1170 inode->i_flags |= S_PRIVATE;
1171 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1172 return inode;
1173 }
1174 EXPORT_SYMBOL(alloc_anon_inode);
1175
1176 /**
1177 * simple_nosetlease - generic helper for prohibiting leases
1178 * @filp: file pointer
1179 * @arg: type of lease to obtain
1180 * @flp: new lease supplied for insertion
1181 * @priv: private data for lm_setup operation
1182 *
1183 * Generic helper for filesystems that do not wish to allow leases to be set.
1184 * All arguments are ignored and it just returns -EINVAL.
1185 */
1186 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1187 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1188 void **priv)
1189 {
1190 return -EINVAL;
1191 }
1192 EXPORT_SYMBOL(simple_nosetlease);
1193
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1194 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1195 struct delayed_call *done)
1196 {
1197 return inode->i_link;
1198 }
1199 EXPORT_SYMBOL(simple_get_link);
1200
1201 const struct inode_operations simple_symlink_inode_operations = {
1202 .get_link = simple_get_link,
1203 };
1204 EXPORT_SYMBOL(simple_symlink_inode_operations);
1205
1206 /*
1207 * Operations for a permanently empty directory.
1208 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1209 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1210 {
1211 return ERR_PTR(-ENOENT);
1212 }
1213
empty_dir_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1214 static int empty_dir_getattr(const struct path *path, struct kstat *stat,
1215 u32 request_mask, unsigned int query_flags)
1216 {
1217 struct inode *inode = d_inode(path->dentry);
1218 generic_fillattr(inode, stat);
1219 return 0;
1220 }
1221
empty_dir_setattr(struct dentry * dentry,struct iattr * attr)1222 static int empty_dir_setattr(struct dentry *dentry, struct iattr *attr)
1223 {
1224 return -EPERM;
1225 }
1226
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1227 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1228 {
1229 return -EOPNOTSUPP;
1230 }
1231
1232 static const struct inode_operations empty_dir_inode_operations = {
1233 .lookup = empty_dir_lookup,
1234 .permission = generic_permission,
1235 .setattr = empty_dir_setattr,
1236 .getattr = empty_dir_getattr,
1237 .listxattr = empty_dir_listxattr,
1238 };
1239
empty_dir_llseek(struct file * file,loff_t offset,int whence)1240 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1241 {
1242 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1243 return generic_file_llseek_size(file, offset, whence, 2, 2);
1244 }
1245
empty_dir_readdir(struct file * file,struct dir_context * ctx)1246 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1247 {
1248 dir_emit_dots(file, ctx);
1249 return 0;
1250 }
1251
1252 static const struct file_operations empty_dir_operations = {
1253 .llseek = empty_dir_llseek,
1254 .read = generic_read_dir,
1255 .iterate_shared = empty_dir_readdir,
1256 .fsync = noop_fsync,
1257 };
1258
1259
make_empty_dir_inode(struct inode * inode)1260 void make_empty_dir_inode(struct inode *inode)
1261 {
1262 set_nlink(inode, 2);
1263 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1264 inode->i_uid = GLOBAL_ROOT_UID;
1265 inode->i_gid = GLOBAL_ROOT_GID;
1266 inode->i_rdev = 0;
1267 inode->i_size = 0;
1268 inode->i_blkbits = PAGE_SHIFT;
1269 inode->i_blocks = 0;
1270
1271 inode->i_op = &empty_dir_inode_operations;
1272 inode->i_opflags &= ~IOP_XATTR;
1273 inode->i_fop = &empty_dir_operations;
1274 }
1275
is_empty_dir_inode(struct inode * inode)1276 bool is_empty_dir_inode(struct inode *inode)
1277 {
1278 return (inode->i_fop == &empty_dir_operations) &&
1279 (inode->i_op == &empty_dir_inode_operations);
1280 }
1281