1 /*
2 * Copyright (C) 2017, Microsoft Corporation.
3 *
4 * Author(s): Long Li <longli@microsoft.com>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
14 * the GNU General Public License for more details.
15 */
16 #include <linux/module.h>
17 #include <linux/highmem.h>
18 #include "smbdirect.h"
19 #include "cifs_debug.h"
20 #include "cifsproto.h"
21 #include "smb2proto.h"
22
23 static struct smbd_response *get_empty_queue_buffer(
24 struct smbd_connection *info);
25 static struct smbd_response *get_receive_buffer(
26 struct smbd_connection *info);
27 static void put_receive_buffer(
28 struct smbd_connection *info,
29 struct smbd_response *response);
30 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf);
31 static void destroy_receive_buffers(struct smbd_connection *info);
32
33 static void put_empty_packet(
34 struct smbd_connection *info, struct smbd_response *response);
35 static void enqueue_reassembly(
36 struct smbd_connection *info,
37 struct smbd_response *response, int data_length);
38 static struct smbd_response *_get_first_reassembly(
39 struct smbd_connection *info);
40
41 static int smbd_post_recv(
42 struct smbd_connection *info,
43 struct smbd_response *response);
44
45 static int smbd_post_send_empty(struct smbd_connection *info);
46 static int smbd_post_send_data(
47 struct smbd_connection *info,
48 struct kvec *iov, int n_vec, int remaining_data_length);
49 static int smbd_post_send_page(struct smbd_connection *info,
50 struct page *page, unsigned long offset,
51 size_t size, int remaining_data_length);
52
53 static void destroy_mr_list(struct smbd_connection *info);
54 static int allocate_mr_list(struct smbd_connection *info);
55
56 /* SMBD version number */
57 #define SMBD_V1 0x0100
58
59 /* Port numbers for SMBD transport */
60 #define SMB_PORT 445
61 #define SMBD_PORT 5445
62
63 /* Address lookup and resolve timeout in ms */
64 #define RDMA_RESOLVE_TIMEOUT 5000
65
66 /* SMBD negotiation timeout in seconds */
67 #define SMBD_NEGOTIATE_TIMEOUT 120
68
69 /* SMBD minimum receive size and fragmented sized defined in [MS-SMBD] */
70 #define SMBD_MIN_RECEIVE_SIZE 128
71 #define SMBD_MIN_FRAGMENTED_SIZE 131072
72
73 /*
74 * Default maximum number of RDMA read/write outstanding on this connection
75 * This value is possibly decreased during QP creation on hardware limit
76 */
77 #define SMBD_CM_RESPONDER_RESOURCES 32
78
79 /* Maximum number of retries on data transfer operations */
80 #define SMBD_CM_RETRY 6
81 /* No need to retry on Receiver Not Ready since SMBD manages credits */
82 #define SMBD_CM_RNR_RETRY 0
83
84 /*
85 * User configurable initial values per SMBD transport connection
86 * as defined in [MS-SMBD] 3.1.1.1
87 * Those may change after a SMBD negotiation
88 */
89 /* The local peer's maximum number of credits to grant to the peer */
90 int smbd_receive_credit_max = 255;
91
92 /* The remote peer's credit request of local peer */
93 int smbd_send_credit_target = 255;
94
95 /* The maximum single message size can be sent to remote peer */
96 int smbd_max_send_size = 1364;
97
98 /* The maximum fragmented upper-layer payload receive size supported */
99 int smbd_max_fragmented_recv_size = 1024 * 1024;
100
101 /* The maximum single-message size which can be received */
102 int smbd_max_receive_size = 8192;
103
104 /* The timeout to initiate send of a keepalive message on idle */
105 int smbd_keep_alive_interval = 120;
106
107 /*
108 * User configurable initial values for RDMA transport
109 * The actual values used may be lower and are limited to hardware capabilities
110 */
111 /* Default maximum number of SGEs in a RDMA write/read */
112 int smbd_max_frmr_depth = 2048;
113
114 /* If payload is less than this byte, use RDMA send/recv not read/write */
115 int rdma_readwrite_threshold = 4096;
116
117 /* Transport logging functions
118 * Logging are defined as classes. They can be OR'ed to define the actual
119 * logging level via module parameter smbd_logging_class
120 * e.g. cifs.smbd_logging_class=0xa0 will log all log_rdma_recv() and
121 * log_rdma_event()
122 */
123 #define LOG_OUTGOING 0x1
124 #define LOG_INCOMING 0x2
125 #define LOG_READ 0x4
126 #define LOG_WRITE 0x8
127 #define LOG_RDMA_SEND 0x10
128 #define LOG_RDMA_RECV 0x20
129 #define LOG_KEEP_ALIVE 0x40
130 #define LOG_RDMA_EVENT 0x80
131 #define LOG_RDMA_MR 0x100
132 static unsigned int smbd_logging_class;
133 module_param(smbd_logging_class, uint, 0644);
134 MODULE_PARM_DESC(smbd_logging_class,
135 "Logging class for SMBD transport 0x0 to 0x100");
136
137 #define ERR 0x0
138 #define INFO 0x1
139 static unsigned int smbd_logging_level = ERR;
140 module_param(smbd_logging_level, uint, 0644);
141 MODULE_PARM_DESC(smbd_logging_level,
142 "Logging level for SMBD transport, 0 (default): error, 1: info");
143
144 #define log_rdma(level, class, fmt, args...) \
145 do { \
146 if (level <= smbd_logging_level || class & smbd_logging_class) \
147 cifs_dbg(VFS, "%s:%d " fmt, __func__, __LINE__, ##args);\
148 } while (0)
149
150 #define log_outgoing(level, fmt, args...) \
151 log_rdma(level, LOG_OUTGOING, fmt, ##args)
152 #define log_incoming(level, fmt, args...) \
153 log_rdma(level, LOG_INCOMING, fmt, ##args)
154 #define log_read(level, fmt, args...) log_rdma(level, LOG_READ, fmt, ##args)
155 #define log_write(level, fmt, args...) log_rdma(level, LOG_WRITE, fmt, ##args)
156 #define log_rdma_send(level, fmt, args...) \
157 log_rdma(level, LOG_RDMA_SEND, fmt, ##args)
158 #define log_rdma_recv(level, fmt, args...) \
159 log_rdma(level, LOG_RDMA_RECV, fmt, ##args)
160 #define log_keep_alive(level, fmt, args...) \
161 log_rdma(level, LOG_KEEP_ALIVE, fmt, ##args)
162 #define log_rdma_event(level, fmt, args...) \
163 log_rdma(level, LOG_RDMA_EVENT, fmt, ##args)
164 #define log_rdma_mr(level, fmt, args...) \
165 log_rdma(level, LOG_RDMA_MR, fmt, ##args)
166
167 /*
168 * Destroy the transport and related RDMA and memory resources
169 * Need to go through all the pending counters and make sure on one is using
170 * the transport while it is destroyed
171 */
smbd_destroy_rdma_work(struct work_struct * work)172 static void smbd_destroy_rdma_work(struct work_struct *work)
173 {
174 struct smbd_response *response;
175 struct smbd_connection *info =
176 container_of(work, struct smbd_connection, destroy_work);
177 unsigned long flags;
178
179 log_rdma_event(INFO, "destroying qp\n");
180 ib_drain_qp(info->id->qp);
181 rdma_destroy_qp(info->id);
182
183 /* Unblock all I/O waiting on the send queue */
184 wake_up_interruptible_all(&info->wait_send_queue);
185
186 log_rdma_event(INFO, "cancelling idle timer\n");
187 cancel_delayed_work_sync(&info->idle_timer_work);
188 log_rdma_event(INFO, "cancelling send immediate work\n");
189 cancel_delayed_work_sync(&info->send_immediate_work);
190
191 log_rdma_event(INFO, "wait for all send to finish\n");
192 wait_event(info->wait_smbd_send_pending,
193 info->smbd_send_pending == 0);
194
195 log_rdma_event(INFO, "wait for all recv to finish\n");
196 wake_up_interruptible(&info->wait_reassembly_queue);
197 wait_event(info->wait_smbd_recv_pending,
198 info->smbd_recv_pending == 0);
199
200 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
201 wait_event(info->wait_send_pending,
202 atomic_read(&info->send_pending) == 0);
203 wait_event(info->wait_send_payload_pending,
204 atomic_read(&info->send_payload_pending) == 0);
205
206 log_rdma_event(INFO, "freeing mr list\n");
207 wake_up_interruptible_all(&info->wait_mr);
208 wait_event(info->wait_for_mr_cleanup,
209 atomic_read(&info->mr_used_count) == 0);
210 destroy_mr_list(info);
211
212 /* It's not posssible for upper layer to get to reassembly */
213 log_rdma_event(INFO, "drain the reassembly queue\n");
214 do {
215 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
216 response = _get_first_reassembly(info);
217 if (response) {
218 list_del(&response->list);
219 spin_unlock_irqrestore(
220 &info->reassembly_queue_lock, flags);
221 put_receive_buffer(info, response);
222 } else
223 spin_unlock_irqrestore(&info->reassembly_queue_lock, flags);
224 } while (response);
225
226 info->reassembly_data_length = 0;
227
228 log_rdma_event(INFO, "free receive buffers\n");
229 wait_event(info->wait_receive_queues,
230 info->count_receive_queue + info->count_empty_packet_queue
231 == info->receive_credit_max);
232 destroy_receive_buffers(info);
233
234 ib_free_cq(info->send_cq);
235 ib_free_cq(info->recv_cq);
236 ib_dealloc_pd(info->pd);
237 rdma_destroy_id(info->id);
238
239 /* free mempools */
240 mempool_destroy(info->request_mempool);
241 kmem_cache_destroy(info->request_cache);
242
243 mempool_destroy(info->response_mempool);
244 kmem_cache_destroy(info->response_cache);
245
246 info->transport_status = SMBD_DESTROYED;
247 wake_up_all(&info->wait_destroy);
248 }
249
smbd_process_disconnected(struct smbd_connection * info)250 static int smbd_process_disconnected(struct smbd_connection *info)
251 {
252 schedule_work(&info->destroy_work);
253 return 0;
254 }
255
smbd_disconnect_rdma_work(struct work_struct * work)256 static void smbd_disconnect_rdma_work(struct work_struct *work)
257 {
258 struct smbd_connection *info =
259 container_of(work, struct smbd_connection, disconnect_work);
260
261 if (info->transport_status == SMBD_CONNECTED) {
262 info->transport_status = SMBD_DISCONNECTING;
263 rdma_disconnect(info->id);
264 }
265 }
266
smbd_disconnect_rdma_connection(struct smbd_connection * info)267 static void smbd_disconnect_rdma_connection(struct smbd_connection *info)
268 {
269 queue_work(info->workqueue, &info->disconnect_work);
270 }
271
272 /* Upcall from RDMA CM */
smbd_conn_upcall(struct rdma_cm_id * id,struct rdma_cm_event * event)273 static int smbd_conn_upcall(
274 struct rdma_cm_id *id, struct rdma_cm_event *event)
275 {
276 struct smbd_connection *info = id->context;
277
278 log_rdma_event(INFO, "event=%d status=%d\n",
279 event->event, event->status);
280
281 switch (event->event) {
282 case RDMA_CM_EVENT_ADDR_RESOLVED:
283 case RDMA_CM_EVENT_ROUTE_RESOLVED:
284 info->ri_rc = 0;
285 complete(&info->ri_done);
286 break;
287
288 case RDMA_CM_EVENT_ADDR_ERROR:
289 info->ri_rc = -EHOSTUNREACH;
290 complete(&info->ri_done);
291 break;
292
293 case RDMA_CM_EVENT_ROUTE_ERROR:
294 info->ri_rc = -ENETUNREACH;
295 complete(&info->ri_done);
296 break;
297
298 case RDMA_CM_EVENT_ESTABLISHED:
299 log_rdma_event(INFO, "connected event=%d\n", event->event);
300 info->transport_status = SMBD_CONNECTED;
301 wake_up_interruptible(&info->conn_wait);
302 break;
303
304 case RDMA_CM_EVENT_CONNECT_ERROR:
305 case RDMA_CM_EVENT_UNREACHABLE:
306 case RDMA_CM_EVENT_REJECTED:
307 log_rdma_event(INFO, "connecting failed event=%d\n", event->event);
308 info->transport_status = SMBD_DISCONNECTED;
309 wake_up_interruptible(&info->conn_wait);
310 break;
311
312 case RDMA_CM_EVENT_DEVICE_REMOVAL:
313 case RDMA_CM_EVENT_DISCONNECTED:
314 /* This happenes when we fail the negotiation */
315 if (info->transport_status == SMBD_NEGOTIATE_FAILED) {
316 info->transport_status = SMBD_DISCONNECTED;
317 wake_up(&info->conn_wait);
318 break;
319 }
320
321 info->transport_status = SMBD_DISCONNECTED;
322 smbd_process_disconnected(info);
323 wake_up(&info->disconn_wait);
324 wake_up_interruptible(&info->wait_reassembly_queue);
325 wake_up_interruptible_all(&info->wait_send_queue);
326 break;
327
328 default:
329 break;
330 }
331
332 return 0;
333 }
334
335 /* Upcall from RDMA QP */
336 static void
smbd_qp_async_error_upcall(struct ib_event * event,void * context)337 smbd_qp_async_error_upcall(struct ib_event *event, void *context)
338 {
339 struct smbd_connection *info = context;
340
341 log_rdma_event(ERR, "%s on device %s info %p\n",
342 ib_event_msg(event->event), event->device->name, info);
343
344 switch (event->event) {
345 case IB_EVENT_CQ_ERR:
346 case IB_EVENT_QP_FATAL:
347 smbd_disconnect_rdma_connection(info);
348
349 default:
350 break;
351 }
352 }
353
smbd_request_payload(struct smbd_request * request)354 static inline void *smbd_request_payload(struct smbd_request *request)
355 {
356 return (void *)request->packet;
357 }
358
smbd_response_payload(struct smbd_response * response)359 static inline void *smbd_response_payload(struct smbd_response *response)
360 {
361 return (void *)response->packet;
362 }
363
364 /* Called when a RDMA send is done */
send_done(struct ib_cq * cq,struct ib_wc * wc)365 static void send_done(struct ib_cq *cq, struct ib_wc *wc)
366 {
367 int i;
368 struct smbd_request *request =
369 container_of(wc->wr_cqe, struct smbd_request, cqe);
370
371 log_rdma_send(INFO, "smbd_request %p completed wc->status=%d\n",
372 request, wc->status);
373
374 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_SEND) {
375 log_rdma_send(ERR, "wc->status=%d wc->opcode=%d\n",
376 wc->status, wc->opcode);
377 smbd_disconnect_rdma_connection(request->info);
378 }
379
380 for (i = 0; i < request->num_sge; i++)
381 ib_dma_unmap_single(request->info->id->device,
382 request->sge[i].addr,
383 request->sge[i].length,
384 DMA_TO_DEVICE);
385
386 if (request->has_payload) {
387 if (atomic_dec_and_test(&request->info->send_payload_pending))
388 wake_up(&request->info->wait_send_payload_pending);
389 } else {
390 if (atomic_dec_and_test(&request->info->send_pending))
391 wake_up(&request->info->wait_send_pending);
392 }
393
394 mempool_free(request, request->info->request_mempool);
395 }
396
dump_smbd_negotiate_resp(struct smbd_negotiate_resp * resp)397 static void dump_smbd_negotiate_resp(struct smbd_negotiate_resp *resp)
398 {
399 log_rdma_event(INFO, "resp message min_version %u max_version %u "
400 "negotiated_version %u credits_requested %u "
401 "credits_granted %u status %u max_readwrite_size %u "
402 "preferred_send_size %u max_receive_size %u "
403 "max_fragmented_size %u\n",
404 resp->min_version, resp->max_version, resp->negotiated_version,
405 resp->credits_requested, resp->credits_granted, resp->status,
406 resp->max_readwrite_size, resp->preferred_send_size,
407 resp->max_receive_size, resp->max_fragmented_size);
408 }
409
410 /*
411 * Process a negotiation response message, according to [MS-SMBD]3.1.5.7
412 * response, packet_length: the negotiation response message
413 * return value: true if negotiation is a success, false if failed
414 */
process_negotiation_response(struct smbd_response * response,int packet_length)415 static bool process_negotiation_response(
416 struct smbd_response *response, int packet_length)
417 {
418 struct smbd_connection *info = response->info;
419 struct smbd_negotiate_resp *packet = smbd_response_payload(response);
420
421 if (packet_length < sizeof(struct smbd_negotiate_resp)) {
422 log_rdma_event(ERR,
423 "error: packet_length=%d\n", packet_length);
424 return false;
425 }
426
427 if (le16_to_cpu(packet->negotiated_version) != SMBD_V1) {
428 log_rdma_event(ERR, "error: negotiated_version=%x\n",
429 le16_to_cpu(packet->negotiated_version));
430 return false;
431 }
432 info->protocol = le16_to_cpu(packet->negotiated_version);
433
434 if (packet->credits_requested == 0) {
435 log_rdma_event(ERR, "error: credits_requested==0\n");
436 return false;
437 }
438 info->receive_credit_target = le16_to_cpu(packet->credits_requested);
439
440 if (packet->credits_granted == 0) {
441 log_rdma_event(ERR, "error: credits_granted==0\n");
442 return false;
443 }
444 atomic_set(&info->send_credits, le16_to_cpu(packet->credits_granted));
445
446 atomic_set(&info->receive_credits, 0);
447
448 if (le32_to_cpu(packet->preferred_send_size) > info->max_receive_size) {
449 log_rdma_event(ERR, "error: preferred_send_size=%d\n",
450 le32_to_cpu(packet->preferred_send_size));
451 return false;
452 }
453 info->max_receive_size = le32_to_cpu(packet->preferred_send_size);
454
455 if (le32_to_cpu(packet->max_receive_size) < SMBD_MIN_RECEIVE_SIZE) {
456 log_rdma_event(ERR, "error: max_receive_size=%d\n",
457 le32_to_cpu(packet->max_receive_size));
458 return false;
459 }
460 info->max_send_size = min_t(int, info->max_send_size,
461 le32_to_cpu(packet->max_receive_size));
462
463 if (le32_to_cpu(packet->max_fragmented_size) <
464 SMBD_MIN_FRAGMENTED_SIZE) {
465 log_rdma_event(ERR, "error: max_fragmented_size=%d\n",
466 le32_to_cpu(packet->max_fragmented_size));
467 return false;
468 }
469 info->max_fragmented_send_size =
470 le32_to_cpu(packet->max_fragmented_size);
471 info->rdma_readwrite_threshold =
472 rdma_readwrite_threshold > info->max_fragmented_send_size ?
473 info->max_fragmented_send_size :
474 rdma_readwrite_threshold;
475
476
477 info->max_readwrite_size = min_t(u32,
478 le32_to_cpu(packet->max_readwrite_size),
479 info->max_frmr_depth * PAGE_SIZE);
480 info->max_frmr_depth = info->max_readwrite_size / PAGE_SIZE;
481
482 return true;
483 }
484
485 /*
486 * Check and schedule to send an immediate packet
487 * This is used to extend credtis to remote peer to keep the transport busy
488 */
check_and_send_immediate(struct smbd_connection * info)489 static void check_and_send_immediate(struct smbd_connection *info)
490 {
491 if (info->transport_status != SMBD_CONNECTED)
492 return;
493
494 info->send_immediate = true;
495
496 /*
497 * Promptly send a packet if our peer is running low on receive
498 * credits
499 */
500 if (atomic_read(&info->receive_credits) <
501 info->receive_credit_target - 1)
502 queue_delayed_work(
503 info->workqueue, &info->send_immediate_work, 0);
504 }
505
smbd_post_send_credits(struct work_struct * work)506 static void smbd_post_send_credits(struct work_struct *work)
507 {
508 int ret = 0;
509 int use_receive_queue = 1;
510 int rc;
511 struct smbd_response *response;
512 struct smbd_connection *info =
513 container_of(work, struct smbd_connection,
514 post_send_credits_work);
515
516 if (info->transport_status != SMBD_CONNECTED) {
517 wake_up(&info->wait_receive_queues);
518 return;
519 }
520
521 if (info->receive_credit_target >
522 atomic_read(&info->receive_credits)) {
523 while (true) {
524 if (use_receive_queue)
525 response = get_receive_buffer(info);
526 else
527 response = get_empty_queue_buffer(info);
528 if (!response) {
529 /* now switch to emtpy packet queue */
530 if (use_receive_queue) {
531 use_receive_queue = 0;
532 continue;
533 } else
534 break;
535 }
536
537 response->type = SMBD_TRANSFER_DATA;
538 response->first_segment = false;
539 rc = smbd_post_recv(info, response);
540 if (rc) {
541 log_rdma_recv(ERR,
542 "post_recv failed rc=%d\n", rc);
543 put_receive_buffer(info, response);
544 break;
545 }
546
547 ret++;
548 }
549 }
550
551 spin_lock(&info->lock_new_credits_offered);
552 info->new_credits_offered += ret;
553 spin_unlock(&info->lock_new_credits_offered);
554
555 atomic_add(ret, &info->receive_credits);
556
557 /* Check if we can post new receive and grant credits to peer */
558 check_and_send_immediate(info);
559 }
560
smbd_recv_done_work(struct work_struct * work)561 static void smbd_recv_done_work(struct work_struct *work)
562 {
563 struct smbd_connection *info =
564 container_of(work, struct smbd_connection, recv_done_work);
565
566 /*
567 * We may have new send credits granted from remote peer
568 * If any sender is blcoked on lack of credets, unblock it
569 */
570 if (atomic_read(&info->send_credits))
571 wake_up_interruptible(&info->wait_send_queue);
572
573 /*
574 * Check if we need to send something to remote peer to
575 * grant more credits or respond to KEEP_ALIVE packet
576 */
577 check_and_send_immediate(info);
578 }
579
580 /* Called from softirq, when recv is done */
recv_done(struct ib_cq * cq,struct ib_wc * wc)581 static void recv_done(struct ib_cq *cq, struct ib_wc *wc)
582 {
583 struct smbd_data_transfer *data_transfer;
584 struct smbd_response *response =
585 container_of(wc->wr_cqe, struct smbd_response, cqe);
586 struct smbd_connection *info = response->info;
587 int data_length = 0;
588
589 log_rdma_recv(INFO, "response=%p type=%d wc status=%d wc opcode %d "
590 "byte_len=%d pkey_index=%x\n",
591 response, response->type, wc->status, wc->opcode,
592 wc->byte_len, wc->pkey_index);
593
594 if (wc->status != IB_WC_SUCCESS || wc->opcode != IB_WC_RECV) {
595 log_rdma_recv(INFO, "wc->status=%d opcode=%d\n",
596 wc->status, wc->opcode);
597 smbd_disconnect_rdma_connection(info);
598 goto error;
599 }
600
601 ib_dma_sync_single_for_cpu(
602 wc->qp->device,
603 response->sge.addr,
604 response->sge.length,
605 DMA_FROM_DEVICE);
606
607 switch (response->type) {
608 /* SMBD negotiation response */
609 case SMBD_NEGOTIATE_RESP:
610 dump_smbd_negotiate_resp(smbd_response_payload(response));
611 info->full_packet_received = true;
612 info->negotiate_done =
613 process_negotiation_response(response, wc->byte_len);
614 complete(&info->negotiate_completion);
615 break;
616
617 /* SMBD data transfer packet */
618 case SMBD_TRANSFER_DATA:
619 data_transfer = smbd_response_payload(response);
620 data_length = le32_to_cpu(data_transfer->data_length);
621
622 /*
623 * If this is a packet with data playload place the data in
624 * reassembly queue and wake up the reading thread
625 */
626 if (data_length) {
627 if (info->full_packet_received)
628 response->first_segment = true;
629
630 if (le32_to_cpu(data_transfer->remaining_data_length))
631 info->full_packet_received = false;
632 else
633 info->full_packet_received = true;
634
635 enqueue_reassembly(
636 info,
637 response,
638 data_length);
639 } else
640 put_empty_packet(info, response);
641
642 if (data_length)
643 wake_up_interruptible(&info->wait_reassembly_queue);
644
645 atomic_dec(&info->receive_credits);
646 info->receive_credit_target =
647 le16_to_cpu(data_transfer->credits_requested);
648 atomic_add(le16_to_cpu(data_transfer->credits_granted),
649 &info->send_credits);
650
651 log_incoming(INFO, "data flags %d data_offset %d "
652 "data_length %d remaining_data_length %d\n",
653 le16_to_cpu(data_transfer->flags),
654 le32_to_cpu(data_transfer->data_offset),
655 le32_to_cpu(data_transfer->data_length),
656 le32_to_cpu(data_transfer->remaining_data_length));
657
658 /* Send a KEEP_ALIVE response right away if requested */
659 info->keep_alive_requested = KEEP_ALIVE_NONE;
660 if (le16_to_cpu(data_transfer->flags) &
661 SMB_DIRECT_RESPONSE_REQUESTED) {
662 info->keep_alive_requested = KEEP_ALIVE_PENDING;
663 }
664
665 queue_work(info->workqueue, &info->recv_done_work);
666 return;
667
668 default:
669 log_rdma_recv(ERR,
670 "unexpected response type=%d\n", response->type);
671 }
672
673 error:
674 put_receive_buffer(info, response);
675 }
676
smbd_create_id(struct smbd_connection * info,struct sockaddr * dstaddr,int port)677 static struct rdma_cm_id *smbd_create_id(
678 struct smbd_connection *info,
679 struct sockaddr *dstaddr, int port)
680 {
681 struct rdma_cm_id *id;
682 int rc;
683 __be16 *sport;
684
685 id = rdma_create_id(&init_net, smbd_conn_upcall, info,
686 RDMA_PS_TCP, IB_QPT_RC);
687 if (IS_ERR(id)) {
688 rc = PTR_ERR(id);
689 log_rdma_event(ERR, "rdma_create_id() failed %i\n", rc);
690 return id;
691 }
692
693 if (dstaddr->sa_family == AF_INET6)
694 sport = &((struct sockaddr_in6 *)dstaddr)->sin6_port;
695 else
696 sport = &((struct sockaddr_in *)dstaddr)->sin_port;
697
698 *sport = htons(port);
699
700 init_completion(&info->ri_done);
701 info->ri_rc = -ETIMEDOUT;
702
703 rc = rdma_resolve_addr(id, NULL, (struct sockaddr *)dstaddr,
704 RDMA_RESOLVE_TIMEOUT);
705 if (rc) {
706 log_rdma_event(ERR, "rdma_resolve_addr() failed %i\n", rc);
707 goto out;
708 }
709 wait_for_completion_interruptible_timeout(
710 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
711 rc = info->ri_rc;
712 if (rc) {
713 log_rdma_event(ERR, "rdma_resolve_addr() completed %i\n", rc);
714 goto out;
715 }
716
717 info->ri_rc = -ETIMEDOUT;
718 rc = rdma_resolve_route(id, RDMA_RESOLVE_TIMEOUT);
719 if (rc) {
720 log_rdma_event(ERR, "rdma_resolve_route() failed %i\n", rc);
721 goto out;
722 }
723 wait_for_completion_interruptible_timeout(
724 &info->ri_done, msecs_to_jiffies(RDMA_RESOLVE_TIMEOUT));
725 rc = info->ri_rc;
726 if (rc) {
727 log_rdma_event(ERR, "rdma_resolve_route() completed %i\n", rc);
728 goto out;
729 }
730
731 return id;
732
733 out:
734 rdma_destroy_id(id);
735 return ERR_PTR(rc);
736 }
737
738 /*
739 * Test if FRWR (Fast Registration Work Requests) is supported on the device
740 * This implementation requries FRWR on RDMA read/write
741 * return value: true if it is supported
742 */
frwr_is_supported(struct ib_device_attr * attrs)743 static bool frwr_is_supported(struct ib_device_attr *attrs)
744 {
745 if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
746 return false;
747 if (attrs->max_fast_reg_page_list_len == 0)
748 return false;
749 return true;
750 }
751
smbd_ia_open(struct smbd_connection * info,struct sockaddr * dstaddr,int port)752 static int smbd_ia_open(
753 struct smbd_connection *info,
754 struct sockaddr *dstaddr, int port)
755 {
756 int rc;
757
758 info->id = smbd_create_id(info, dstaddr, port);
759 if (IS_ERR(info->id)) {
760 rc = PTR_ERR(info->id);
761 goto out1;
762 }
763
764 if (!frwr_is_supported(&info->id->device->attrs)) {
765 log_rdma_event(ERR,
766 "Fast Registration Work Requests "
767 "(FRWR) is not supported\n");
768 log_rdma_event(ERR,
769 "Device capability flags = %llx "
770 "max_fast_reg_page_list_len = %u\n",
771 info->id->device->attrs.device_cap_flags,
772 info->id->device->attrs.max_fast_reg_page_list_len);
773 rc = -EPROTONOSUPPORT;
774 goto out2;
775 }
776 info->max_frmr_depth = min_t(int,
777 smbd_max_frmr_depth,
778 info->id->device->attrs.max_fast_reg_page_list_len);
779 info->mr_type = IB_MR_TYPE_MEM_REG;
780 if (info->id->device->attrs.device_cap_flags & IB_DEVICE_SG_GAPS_REG)
781 info->mr_type = IB_MR_TYPE_SG_GAPS;
782
783 info->pd = ib_alloc_pd(info->id->device, 0);
784 if (IS_ERR(info->pd)) {
785 rc = PTR_ERR(info->pd);
786 log_rdma_event(ERR, "ib_alloc_pd() returned %d\n", rc);
787 goto out2;
788 }
789
790 return 0;
791
792 out2:
793 rdma_destroy_id(info->id);
794 info->id = NULL;
795
796 out1:
797 return rc;
798 }
799
800 /*
801 * Send a negotiation request message to the peer
802 * The negotiation procedure is in [MS-SMBD] 3.1.5.2 and 3.1.5.3
803 * After negotiation, the transport is connected and ready for
804 * carrying upper layer SMB payload
805 */
smbd_post_send_negotiate_req(struct smbd_connection * info)806 static int smbd_post_send_negotiate_req(struct smbd_connection *info)
807 {
808 struct ib_send_wr send_wr;
809 int rc = -ENOMEM;
810 struct smbd_request *request;
811 struct smbd_negotiate_req *packet;
812
813 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
814 if (!request)
815 return rc;
816
817 request->info = info;
818
819 packet = smbd_request_payload(request);
820 packet->min_version = cpu_to_le16(SMBD_V1);
821 packet->max_version = cpu_to_le16(SMBD_V1);
822 packet->reserved = 0;
823 packet->credits_requested = cpu_to_le16(info->send_credit_target);
824 packet->preferred_send_size = cpu_to_le32(info->max_send_size);
825 packet->max_receive_size = cpu_to_le32(info->max_receive_size);
826 packet->max_fragmented_size =
827 cpu_to_le32(info->max_fragmented_recv_size);
828
829 request->num_sge = 1;
830 request->sge[0].addr = ib_dma_map_single(
831 info->id->device, (void *)packet,
832 sizeof(*packet), DMA_TO_DEVICE);
833 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
834 rc = -EIO;
835 goto dma_mapping_failed;
836 }
837
838 request->sge[0].length = sizeof(*packet);
839 request->sge[0].lkey = info->pd->local_dma_lkey;
840
841 ib_dma_sync_single_for_device(
842 info->id->device, request->sge[0].addr,
843 request->sge[0].length, DMA_TO_DEVICE);
844
845 request->cqe.done = send_done;
846
847 send_wr.next = NULL;
848 send_wr.wr_cqe = &request->cqe;
849 send_wr.sg_list = request->sge;
850 send_wr.num_sge = request->num_sge;
851 send_wr.opcode = IB_WR_SEND;
852 send_wr.send_flags = IB_SEND_SIGNALED;
853
854 log_rdma_send(INFO, "sge addr=%llx length=%x lkey=%x\n",
855 request->sge[0].addr,
856 request->sge[0].length, request->sge[0].lkey);
857
858 request->has_payload = false;
859 atomic_inc(&info->send_pending);
860 rc = ib_post_send(info->id->qp, &send_wr, NULL);
861 if (!rc)
862 return 0;
863
864 /* if we reach here, post send failed */
865 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
866 atomic_dec(&info->send_pending);
867 ib_dma_unmap_single(info->id->device, request->sge[0].addr,
868 request->sge[0].length, DMA_TO_DEVICE);
869
870 smbd_disconnect_rdma_connection(info);
871
872 dma_mapping_failed:
873 mempool_free(request, info->request_mempool);
874 return rc;
875 }
876
877 /*
878 * Extend the credits to remote peer
879 * This implements [MS-SMBD] 3.1.5.9
880 * The idea is that we should extend credits to remote peer as quickly as
881 * it's allowed, to maintain data flow. We allocate as much receive
882 * buffer as possible, and extend the receive credits to remote peer
883 * return value: the new credtis being granted.
884 */
manage_credits_prior_sending(struct smbd_connection * info)885 static int manage_credits_prior_sending(struct smbd_connection *info)
886 {
887 int new_credits;
888
889 spin_lock(&info->lock_new_credits_offered);
890 new_credits = info->new_credits_offered;
891 info->new_credits_offered = 0;
892 spin_unlock(&info->lock_new_credits_offered);
893
894 return new_credits;
895 }
896
897 /*
898 * Check if we need to send a KEEP_ALIVE message
899 * The idle connection timer triggers a KEEP_ALIVE message when expires
900 * SMB_DIRECT_RESPONSE_REQUESTED is set in the message flag to have peer send
901 * back a response.
902 * return value:
903 * 1 if SMB_DIRECT_RESPONSE_REQUESTED needs to be set
904 * 0: otherwise
905 */
manage_keep_alive_before_sending(struct smbd_connection * info)906 static int manage_keep_alive_before_sending(struct smbd_connection *info)
907 {
908 if (info->keep_alive_requested == KEEP_ALIVE_PENDING) {
909 info->keep_alive_requested = KEEP_ALIVE_SENT;
910 return 1;
911 }
912 return 0;
913 }
914
915 /*
916 * Build and prepare the SMBD packet header
917 * This function waits for avaialbe send credits and build a SMBD packet
918 * header. The caller then optional append payload to the packet after
919 * the header
920 * intput values
921 * size: the size of the payload
922 * remaining_data_length: remaining data to send if this is part of a
923 * fragmented packet
924 * output values
925 * request_out: the request allocated from this function
926 * return values: 0 on success, otherwise actual error code returned
927 */
smbd_create_header(struct smbd_connection * info,int size,int remaining_data_length,struct smbd_request ** request_out)928 static int smbd_create_header(struct smbd_connection *info,
929 int size, int remaining_data_length,
930 struct smbd_request **request_out)
931 {
932 struct smbd_request *request;
933 struct smbd_data_transfer *packet;
934 int header_length;
935 int rc;
936
937 /* Wait for send credits. A SMBD packet needs one credit */
938 rc = wait_event_interruptible(info->wait_send_queue,
939 atomic_read(&info->send_credits) > 0 ||
940 info->transport_status != SMBD_CONNECTED);
941 if (rc)
942 return rc;
943
944 if (info->transport_status != SMBD_CONNECTED) {
945 log_outgoing(ERR, "disconnected not sending\n");
946 return -ENOENT;
947 }
948 atomic_dec(&info->send_credits);
949
950 request = mempool_alloc(info->request_mempool, GFP_KERNEL);
951 if (!request) {
952 rc = -ENOMEM;
953 goto err;
954 }
955
956 request->info = info;
957
958 /* Fill in the packet header */
959 packet = smbd_request_payload(request);
960 packet->credits_requested = cpu_to_le16(info->send_credit_target);
961 packet->credits_granted =
962 cpu_to_le16(manage_credits_prior_sending(info));
963 info->send_immediate = false;
964
965 packet->flags = 0;
966 if (manage_keep_alive_before_sending(info))
967 packet->flags |= cpu_to_le16(SMB_DIRECT_RESPONSE_REQUESTED);
968
969 packet->reserved = 0;
970 if (!size)
971 packet->data_offset = 0;
972 else
973 packet->data_offset = cpu_to_le32(24);
974 packet->data_length = cpu_to_le32(size);
975 packet->remaining_data_length = cpu_to_le32(remaining_data_length);
976 packet->padding = 0;
977
978 log_outgoing(INFO, "credits_requested=%d credits_granted=%d "
979 "data_offset=%d data_length=%d remaining_data_length=%d\n",
980 le16_to_cpu(packet->credits_requested),
981 le16_to_cpu(packet->credits_granted),
982 le32_to_cpu(packet->data_offset),
983 le32_to_cpu(packet->data_length),
984 le32_to_cpu(packet->remaining_data_length));
985
986 /* Map the packet to DMA */
987 header_length = sizeof(struct smbd_data_transfer);
988 /* If this is a packet without payload, don't send padding */
989 if (!size)
990 header_length = offsetof(struct smbd_data_transfer, padding);
991
992 request->num_sge = 1;
993 request->sge[0].addr = ib_dma_map_single(info->id->device,
994 (void *)packet,
995 header_length,
996 DMA_BIDIRECTIONAL);
997 if (ib_dma_mapping_error(info->id->device, request->sge[0].addr)) {
998 mempool_free(request, info->request_mempool);
999 rc = -EIO;
1000 goto err;
1001 }
1002
1003 request->sge[0].length = header_length;
1004 request->sge[0].lkey = info->pd->local_dma_lkey;
1005
1006 *request_out = request;
1007 return 0;
1008
1009 err:
1010 atomic_inc(&info->send_credits);
1011 return rc;
1012 }
1013
smbd_destroy_header(struct smbd_connection * info,struct smbd_request * request)1014 static void smbd_destroy_header(struct smbd_connection *info,
1015 struct smbd_request *request)
1016 {
1017
1018 ib_dma_unmap_single(info->id->device,
1019 request->sge[0].addr,
1020 request->sge[0].length,
1021 DMA_TO_DEVICE);
1022 mempool_free(request, info->request_mempool);
1023 atomic_inc(&info->send_credits);
1024 }
1025
1026 /* Post the send request */
smbd_post_send(struct smbd_connection * info,struct smbd_request * request,bool has_payload)1027 static int smbd_post_send(struct smbd_connection *info,
1028 struct smbd_request *request, bool has_payload)
1029 {
1030 struct ib_send_wr send_wr;
1031 int rc, i;
1032
1033 for (i = 0; i < request->num_sge; i++) {
1034 log_rdma_send(INFO,
1035 "rdma_request sge[%d] addr=%llu length=%u\n",
1036 i, request->sge[i].addr, request->sge[i].length);
1037 ib_dma_sync_single_for_device(
1038 info->id->device,
1039 request->sge[i].addr,
1040 request->sge[i].length,
1041 DMA_TO_DEVICE);
1042 }
1043
1044 request->cqe.done = send_done;
1045
1046 send_wr.next = NULL;
1047 send_wr.wr_cqe = &request->cqe;
1048 send_wr.sg_list = request->sge;
1049 send_wr.num_sge = request->num_sge;
1050 send_wr.opcode = IB_WR_SEND;
1051 send_wr.send_flags = IB_SEND_SIGNALED;
1052
1053 if (has_payload) {
1054 request->has_payload = true;
1055 atomic_inc(&info->send_payload_pending);
1056 } else {
1057 request->has_payload = false;
1058 atomic_inc(&info->send_pending);
1059 }
1060
1061 rc = ib_post_send(info->id->qp, &send_wr, NULL);
1062 if (rc) {
1063 log_rdma_send(ERR, "ib_post_send failed rc=%d\n", rc);
1064 if (has_payload) {
1065 if (atomic_dec_and_test(&info->send_payload_pending))
1066 wake_up(&info->wait_send_payload_pending);
1067 } else {
1068 if (atomic_dec_and_test(&info->send_pending))
1069 wake_up(&info->wait_send_pending);
1070 }
1071 smbd_disconnect_rdma_connection(info);
1072 } else
1073 /* Reset timer for idle connection after packet is sent */
1074 mod_delayed_work(info->workqueue, &info->idle_timer_work,
1075 info->keep_alive_interval*HZ);
1076
1077 return rc;
1078 }
1079
smbd_post_send_sgl(struct smbd_connection * info,struct scatterlist * sgl,int data_length,int remaining_data_length)1080 static int smbd_post_send_sgl(struct smbd_connection *info,
1081 struct scatterlist *sgl, int data_length, int remaining_data_length)
1082 {
1083 int num_sgs;
1084 int i, rc;
1085 struct smbd_request *request;
1086 struct scatterlist *sg;
1087
1088 rc = smbd_create_header(
1089 info, data_length, remaining_data_length, &request);
1090 if (rc)
1091 return rc;
1092
1093 num_sgs = sgl ? sg_nents(sgl) : 0;
1094 for_each_sg(sgl, sg, num_sgs, i) {
1095 request->sge[i+1].addr =
1096 ib_dma_map_page(info->id->device, sg_page(sg),
1097 sg->offset, sg->length, DMA_BIDIRECTIONAL);
1098 if (ib_dma_mapping_error(
1099 info->id->device, request->sge[i+1].addr)) {
1100 rc = -EIO;
1101 request->sge[i+1].addr = 0;
1102 goto dma_mapping_failure;
1103 }
1104 request->sge[i+1].length = sg->length;
1105 request->sge[i+1].lkey = info->pd->local_dma_lkey;
1106 request->num_sge++;
1107 }
1108
1109 rc = smbd_post_send(info, request, data_length);
1110 if (!rc)
1111 return 0;
1112
1113 dma_mapping_failure:
1114 for (i = 1; i < request->num_sge; i++)
1115 if (request->sge[i].addr)
1116 ib_dma_unmap_single(info->id->device,
1117 request->sge[i].addr,
1118 request->sge[i].length,
1119 DMA_TO_DEVICE);
1120 smbd_destroy_header(info, request);
1121 return rc;
1122 }
1123
1124 /*
1125 * Send a page
1126 * page: the page to send
1127 * offset: offset in the page to send
1128 * size: length in the page to send
1129 * remaining_data_length: remaining data to send in this payload
1130 */
smbd_post_send_page(struct smbd_connection * info,struct page * page,unsigned long offset,size_t size,int remaining_data_length)1131 static int smbd_post_send_page(struct smbd_connection *info, struct page *page,
1132 unsigned long offset, size_t size, int remaining_data_length)
1133 {
1134 struct scatterlist sgl;
1135
1136 sg_init_table(&sgl, 1);
1137 sg_set_page(&sgl, page, size, offset);
1138
1139 return smbd_post_send_sgl(info, &sgl, size, remaining_data_length);
1140 }
1141
1142 /*
1143 * Send an empty message
1144 * Empty message is used to extend credits to peer to for keep live
1145 * while there is no upper layer payload to send at the time
1146 */
smbd_post_send_empty(struct smbd_connection * info)1147 static int smbd_post_send_empty(struct smbd_connection *info)
1148 {
1149 info->count_send_empty++;
1150 return smbd_post_send_sgl(info, NULL, 0, 0);
1151 }
1152
1153 /*
1154 * Send a data buffer
1155 * iov: the iov array describing the data buffers
1156 * n_vec: number of iov array
1157 * remaining_data_length: remaining data to send following this packet
1158 * in segmented SMBD packet
1159 */
smbd_post_send_data(struct smbd_connection * info,struct kvec * iov,int n_vec,int remaining_data_length)1160 static int smbd_post_send_data(
1161 struct smbd_connection *info, struct kvec *iov, int n_vec,
1162 int remaining_data_length)
1163 {
1164 int i;
1165 u32 data_length = 0;
1166 struct scatterlist sgl[SMBDIRECT_MAX_SGE];
1167
1168 if (n_vec > SMBDIRECT_MAX_SGE) {
1169 cifs_dbg(VFS, "Can't fit data to SGL, n_vec=%d\n", n_vec);
1170 return -EINVAL;
1171 }
1172
1173 sg_init_table(sgl, n_vec);
1174 for (i = 0; i < n_vec; i++) {
1175 data_length += iov[i].iov_len;
1176 sg_set_buf(&sgl[i], iov[i].iov_base, iov[i].iov_len);
1177 }
1178
1179 return smbd_post_send_sgl(info, sgl, data_length, remaining_data_length);
1180 }
1181
1182 /*
1183 * Post a receive request to the transport
1184 * The remote peer can only send data when a receive request is posted
1185 * The interaction is controlled by send/receive credit system
1186 */
smbd_post_recv(struct smbd_connection * info,struct smbd_response * response)1187 static int smbd_post_recv(
1188 struct smbd_connection *info, struct smbd_response *response)
1189 {
1190 struct ib_recv_wr recv_wr;
1191 int rc = -EIO;
1192
1193 response->sge.addr = ib_dma_map_single(
1194 info->id->device, response->packet,
1195 info->max_receive_size, DMA_FROM_DEVICE);
1196 if (ib_dma_mapping_error(info->id->device, response->sge.addr))
1197 return rc;
1198
1199 response->sge.length = info->max_receive_size;
1200 response->sge.lkey = info->pd->local_dma_lkey;
1201
1202 response->cqe.done = recv_done;
1203
1204 recv_wr.wr_cqe = &response->cqe;
1205 recv_wr.next = NULL;
1206 recv_wr.sg_list = &response->sge;
1207 recv_wr.num_sge = 1;
1208
1209 rc = ib_post_recv(info->id->qp, &recv_wr, NULL);
1210 if (rc) {
1211 ib_dma_unmap_single(info->id->device, response->sge.addr,
1212 response->sge.length, DMA_FROM_DEVICE);
1213 smbd_disconnect_rdma_connection(info);
1214 log_rdma_recv(ERR, "ib_post_recv failed rc=%d\n", rc);
1215 }
1216
1217 return rc;
1218 }
1219
1220 /* Perform SMBD negotiate according to [MS-SMBD] 3.1.5.2 */
smbd_negotiate(struct smbd_connection * info)1221 static int smbd_negotiate(struct smbd_connection *info)
1222 {
1223 int rc;
1224 struct smbd_response *response = get_receive_buffer(info);
1225
1226 response->type = SMBD_NEGOTIATE_RESP;
1227 rc = smbd_post_recv(info, response);
1228 log_rdma_event(INFO,
1229 "smbd_post_recv rc=%d iov.addr=%llx iov.length=%x "
1230 "iov.lkey=%x\n",
1231 rc, response->sge.addr,
1232 response->sge.length, response->sge.lkey);
1233 if (rc)
1234 return rc;
1235
1236 init_completion(&info->negotiate_completion);
1237 info->negotiate_done = false;
1238 rc = smbd_post_send_negotiate_req(info);
1239 if (rc)
1240 return rc;
1241
1242 rc = wait_for_completion_interruptible_timeout(
1243 &info->negotiate_completion, SMBD_NEGOTIATE_TIMEOUT * HZ);
1244 log_rdma_event(INFO, "wait_for_completion_timeout rc=%d\n", rc);
1245
1246 if (info->negotiate_done)
1247 return 0;
1248
1249 if (rc == 0)
1250 rc = -ETIMEDOUT;
1251 else if (rc == -ERESTARTSYS)
1252 rc = -EINTR;
1253 else
1254 rc = -ENOTCONN;
1255
1256 return rc;
1257 }
1258
put_empty_packet(struct smbd_connection * info,struct smbd_response * response)1259 static void put_empty_packet(
1260 struct smbd_connection *info, struct smbd_response *response)
1261 {
1262 spin_lock(&info->empty_packet_queue_lock);
1263 list_add_tail(&response->list, &info->empty_packet_queue);
1264 info->count_empty_packet_queue++;
1265 spin_unlock(&info->empty_packet_queue_lock);
1266
1267 queue_work(info->workqueue, &info->post_send_credits_work);
1268 }
1269
1270 /*
1271 * Implement Connection.FragmentReassemblyBuffer defined in [MS-SMBD] 3.1.1.1
1272 * This is a queue for reassembling upper layer payload and present to upper
1273 * layer. All the inncoming payload go to the reassembly queue, regardless of
1274 * if reassembly is required. The uuper layer code reads from the queue for all
1275 * incoming payloads.
1276 * Put a received packet to the reassembly queue
1277 * response: the packet received
1278 * data_length: the size of payload in this packet
1279 */
enqueue_reassembly(struct smbd_connection * info,struct smbd_response * response,int data_length)1280 static void enqueue_reassembly(
1281 struct smbd_connection *info,
1282 struct smbd_response *response,
1283 int data_length)
1284 {
1285 spin_lock(&info->reassembly_queue_lock);
1286 list_add_tail(&response->list, &info->reassembly_queue);
1287 info->reassembly_queue_length++;
1288 /*
1289 * Make sure reassembly_data_length is updated after list and
1290 * reassembly_queue_length are updated. On the dequeue side
1291 * reassembly_data_length is checked without a lock to determine
1292 * if reassembly_queue_length and list is up to date
1293 */
1294 virt_wmb();
1295 info->reassembly_data_length += data_length;
1296 spin_unlock(&info->reassembly_queue_lock);
1297 info->count_reassembly_queue++;
1298 info->count_enqueue_reassembly_queue++;
1299 }
1300
1301 /*
1302 * Get the first entry at the front of reassembly queue
1303 * Caller is responsible for locking
1304 * return value: the first entry if any, NULL if queue is empty
1305 */
_get_first_reassembly(struct smbd_connection * info)1306 static struct smbd_response *_get_first_reassembly(struct smbd_connection *info)
1307 {
1308 struct smbd_response *ret = NULL;
1309
1310 if (!list_empty(&info->reassembly_queue)) {
1311 ret = list_first_entry(
1312 &info->reassembly_queue,
1313 struct smbd_response, list);
1314 }
1315 return ret;
1316 }
1317
get_empty_queue_buffer(struct smbd_connection * info)1318 static struct smbd_response *get_empty_queue_buffer(
1319 struct smbd_connection *info)
1320 {
1321 struct smbd_response *ret = NULL;
1322 unsigned long flags;
1323
1324 spin_lock_irqsave(&info->empty_packet_queue_lock, flags);
1325 if (!list_empty(&info->empty_packet_queue)) {
1326 ret = list_first_entry(
1327 &info->empty_packet_queue,
1328 struct smbd_response, list);
1329 list_del(&ret->list);
1330 info->count_empty_packet_queue--;
1331 }
1332 spin_unlock_irqrestore(&info->empty_packet_queue_lock, flags);
1333
1334 return ret;
1335 }
1336
1337 /*
1338 * Get a receive buffer
1339 * For each remote send, we need to post a receive. The receive buffers are
1340 * pre-allocated in advance.
1341 * return value: the receive buffer, NULL if none is available
1342 */
get_receive_buffer(struct smbd_connection * info)1343 static struct smbd_response *get_receive_buffer(struct smbd_connection *info)
1344 {
1345 struct smbd_response *ret = NULL;
1346 unsigned long flags;
1347
1348 spin_lock_irqsave(&info->receive_queue_lock, flags);
1349 if (!list_empty(&info->receive_queue)) {
1350 ret = list_first_entry(
1351 &info->receive_queue,
1352 struct smbd_response, list);
1353 list_del(&ret->list);
1354 info->count_receive_queue--;
1355 info->count_get_receive_buffer++;
1356 }
1357 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1358
1359 return ret;
1360 }
1361
1362 /*
1363 * Return a receive buffer
1364 * Upon returning of a receive buffer, we can post new receive and extend
1365 * more receive credits to remote peer. This is done immediately after a
1366 * receive buffer is returned.
1367 */
put_receive_buffer(struct smbd_connection * info,struct smbd_response * response)1368 static void put_receive_buffer(
1369 struct smbd_connection *info, struct smbd_response *response)
1370 {
1371 unsigned long flags;
1372
1373 ib_dma_unmap_single(info->id->device, response->sge.addr,
1374 response->sge.length, DMA_FROM_DEVICE);
1375
1376 spin_lock_irqsave(&info->receive_queue_lock, flags);
1377 list_add_tail(&response->list, &info->receive_queue);
1378 info->count_receive_queue++;
1379 info->count_put_receive_buffer++;
1380 spin_unlock_irqrestore(&info->receive_queue_lock, flags);
1381
1382 queue_work(info->workqueue, &info->post_send_credits_work);
1383 }
1384
1385 /* Preallocate all receive buffer on transport establishment */
allocate_receive_buffers(struct smbd_connection * info,int num_buf)1386 static int allocate_receive_buffers(struct smbd_connection *info, int num_buf)
1387 {
1388 int i;
1389 struct smbd_response *response;
1390
1391 INIT_LIST_HEAD(&info->reassembly_queue);
1392 spin_lock_init(&info->reassembly_queue_lock);
1393 info->reassembly_data_length = 0;
1394 info->reassembly_queue_length = 0;
1395
1396 INIT_LIST_HEAD(&info->receive_queue);
1397 spin_lock_init(&info->receive_queue_lock);
1398 info->count_receive_queue = 0;
1399
1400 INIT_LIST_HEAD(&info->empty_packet_queue);
1401 spin_lock_init(&info->empty_packet_queue_lock);
1402 info->count_empty_packet_queue = 0;
1403
1404 init_waitqueue_head(&info->wait_receive_queues);
1405
1406 for (i = 0; i < num_buf; i++) {
1407 response = mempool_alloc(info->response_mempool, GFP_KERNEL);
1408 if (!response)
1409 goto allocate_failed;
1410
1411 response->info = info;
1412 list_add_tail(&response->list, &info->receive_queue);
1413 info->count_receive_queue++;
1414 }
1415
1416 return 0;
1417
1418 allocate_failed:
1419 while (!list_empty(&info->receive_queue)) {
1420 response = list_first_entry(
1421 &info->receive_queue,
1422 struct smbd_response, list);
1423 list_del(&response->list);
1424 info->count_receive_queue--;
1425
1426 mempool_free(response, info->response_mempool);
1427 }
1428 return -ENOMEM;
1429 }
1430
destroy_receive_buffers(struct smbd_connection * info)1431 static void destroy_receive_buffers(struct smbd_connection *info)
1432 {
1433 struct smbd_response *response;
1434
1435 while ((response = get_receive_buffer(info)))
1436 mempool_free(response, info->response_mempool);
1437
1438 while ((response = get_empty_queue_buffer(info)))
1439 mempool_free(response, info->response_mempool);
1440 }
1441
1442 /*
1443 * Check and send an immediate or keep alive packet
1444 * The condition to send those packets are defined in [MS-SMBD] 3.1.1.1
1445 * Connection.KeepaliveRequested and Connection.SendImmediate
1446 * The idea is to extend credits to server as soon as it becomes available
1447 */
send_immediate_work(struct work_struct * work)1448 static void send_immediate_work(struct work_struct *work)
1449 {
1450 struct smbd_connection *info = container_of(
1451 work, struct smbd_connection,
1452 send_immediate_work.work);
1453
1454 if (info->keep_alive_requested == KEEP_ALIVE_PENDING ||
1455 info->send_immediate) {
1456 log_keep_alive(INFO, "send an empty message\n");
1457 smbd_post_send_empty(info);
1458 }
1459 }
1460
1461 /* Implement idle connection timer [MS-SMBD] 3.1.6.2 */
idle_connection_timer(struct work_struct * work)1462 static void idle_connection_timer(struct work_struct *work)
1463 {
1464 struct smbd_connection *info = container_of(
1465 work, struct smbd_connection,
1466 idle_timer_work.work);
1467
1468 if (info->keep_alive_requested != KEEP_ALIVE_NONE) {
1469 log_keep_alive(ERR,
1470 "error status info->keep_alive_requested=%d\n",
1471 info->keep_alive_requested);
1472 smbd_disconnect_rdma_connection(info);
1473 return;
1474 }
1475
1476 log_keep_alive(INFO, "about to send an empty idle message\n");
1477 smbd_post_send_empty(info);
1478
1479 /* Setup the next idle timeout work */
1480 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1481 info->keep_alive_interval*HZ);
1482 }
1483
1484 /*
1485 * Destroy the transport and related RDMA and memory resources
1486 * Need to go through all the pending counters and make sure on one is using
1487 * the transport while it is destroyed
1488 */
smbd_destroy(struct TCP_Server_Info * server)1489 void smbd_destroy(struct TCP_Server_Info *server)
1490 {
1491 struct smbd_connection *info = server->smbd_conn;
1492 struct smbd_response *response;
1493 unsigned long flags;
1494
1495 if (!info) {
1496 log_rdma_event(INFO, "rdma session already destroyed\n");
1497 return;
1498 }
1499
1500 log_rdma_event(INFO, "destroying rdma session\n");
1501 if (info->transport_status != SMBD_DISCONNECTED) {
1502 rdma_disconnect(server->smbd_conn->id);
1503 log_rdma_event(INFO, "wait for transport being disconnected\n");
1504 wait_event(
1505 info->disconn_wait,
1506 info->transport_status == SMBD_DISCONNECTED);
1507 }
1508
1509 log_rdma_event(INFO, "destroying qp\n");
1510 ib_drain_qp(info->id->qp);
1511 rdma_destroy_qp(info->id);
1512
1513 log_rdma_event(INFO, "cancelling idle timer\n");
1514 cancel_delayed_work_sync(&info->idle_timer_work);
1515 log_rdma_event(INFO, "cancelling send immediate work\n");
1516 cancel_delayed_work_sync(&info->send_immediate_work);
1517
1518 log_rdma_event(INFO, "wait for all send posted to IB to finish\n");
1519 wait_event(info->wait_send_pending,
1520 atomic_read(&info->send_pending) == 0);
1521 wait_event(info->wait_send_payload_pending,
1522 atomic_read(&info->send_payload_pending) == 0);
1523
1524 /* It's not posssible for upper layer to get to reassembly */
1525 log_rdma_event(INFO, "drain the reassembly queue\n");
1526 do {
1527 spin_lock_irqsave(&info->reassembly_queue_lock, flags);
1528 response = _get_first_reassembly(info);
1529 if (response) {
1530 list_del(&response->list);
1531 spin_unlock_irqrestore(
1532 &info->reassembly_queue_lock, flags);
1533 put_receive_buffer(info, response);
1534 } else
1535 spin_unlock_irqrestore(
1536 &info->reassembly_queue_lock, flags);
1537 } while (response);
1538 info->reassembly_data_length = 0;
1539
1540 log_rdma_event(INFO, "free receive buffers\n");
1541 wait_event(info->wait_receive_queues,
1542 info->count_receive_queue + info->count_empty_packet_queue
1543 == info->receive_credit_max);
1544 destroy_receive_buffers(info);
1545
1546 /*
1547 * For performance reasons, memory registration and deregistration
1548 * are not locked by srv_mutex. It is possible some processes are
1549 * blocked on transport srv_mutex while holding memory registration.
1550 * Release the transport srv_mutex to allow them to hit the failure
1551 * path when sending data, and then release memory registartions.
1552 */
1553 log_rdma_event(INFO, "freeing mr list\n");
1554 wake_up_interruptible_all(&info->wait_mr);
1555 while (atomic_read(&info->mr_used_count)) {
1556 mutex_unlock(&server->srv_mutex);
1557 msleep(1000);
1558 mutex_lock(&server->srv_mutex);
1559 }
1560 destroy_mr_list(info);
1561
1562 ib_free_cq(info->send_cq);
1563 ib_free_cq(info->recv_cq);
1564 ib_dealloc_pd(info->pd);
1565 rdma_destroy_id(info->id);
1566
1567 /* free mempools */
1568 mempool_destroy(info->request_mempool);
1569 kmem_cache_destroy(info->request_cache);
1570
1571 mempool_destroy(info->response_mempool);
1572 kmem_cache_destroy(info->response_cache);
1573
1574 info->transport_status = SMBD_DESTROYED;
1575
1576 destroy_workqueue(info->workqueue);
1577 log_rdma_event(INFO, "rdma session destroyed\n");
1578 kfree(info);
1579 server->smbd_conn = NULL;
1580 }
1581
1582 /*
1583 * Reconnect this SMBD connection, called from upper layer
1584 * return value: 0 on success, or actual error code
1585 */
smbd_reconnect(struct TCP_Server_Info * server)1586 int smbd_reconnect(struct TCP_Server_Info *server)
1587 {
1588 log_rdma_event(INFO, "reconnecting rdma session\n");
1589
1590 if (!server->smbd_conn) {
1591 log_rdma_event(INFO, "rdma session already destroyed\n");
1592 goto create_conn;
1593 }
1594
1595 /*
1596 * This is possible if transport is disconnected and we haven't received
1597 * notification from RDMA, but upper layer has detected timeout
1598 */
1599 if (server->smbd_conn->transport_status == SMBD_CONNECTED) {
1600 log_rdma_event(INFO, "disconnecting transport\n");
1601 smbd_destroy(server);
1602 }
1603
1604 create_conn:
1605 log_rdma_event(INFO, "creating rdma session\n");
1606 server->smbd_conn = smbd_get_connection(
1607 server, (struct sockaddr *) &server->dstaddr);
1608
1609 if (server->smbd_conn)
1610 cifs_dbg(VFS, "RDMA transport re-established\n");
1611
1612 return server->smbd_conn ? 0 : -ENOENT;
1613 }
1614
destroy_caches_and_workqueue(struct smbd_connection * info)1615 static void destroy_caches_and_workqueue(struct smbd_connection *info)
1616 {
1617 destroy_receive_buffers(info);
1618 destroy_workqueue(info->workqueue);
1619 mempool_destroy(info->response_mempool);
1620 kmem_cache_destroy(info->response_cache);
1621 mempool_destroy(info->request_mempool);
1622 kmem_cache_destroy(info->request_cache);
1623 }
1624
1625 #define MAX_NAME_LEN 80
allocate_caches_and_workqueue(struct smbd_connection * info)1626 static int allocate_caches_and_workqueue(struct smbd_connection *info)
1627 {
1628 char name[MAX_NAME_LEN];
1629 int rc;
1630
1631 snprintf(name, MAX_NAME_LEN, "smbd_request_%p", info);
1632 info->request_cache =
1633 kmem_cache_create(
1634 name,
1635 sizeof(struct smbd_request) +
1636 sizeof(struct smbd_data_transfer),
1637 0, SLAB_HWCACHE_ALIGN, NULL);
1638 if (!info->request_cache)
1639 return -ENOMEM;
1640
1641 info->request_mempool =
1642 mempool_create(info->send_credit_target, mempool_alloc_slab,
1643 mempool_free_slab, info->request_cache);
1644 if (!info->request_mempool)
1645 goto out1;
1646
1647 snprintf(name, MAX_NAME_LEN, "smbd_response_%p", info);
1648 info->response_cache =
1649 kmem_cache_create(
1650 name,
1651 sizeof(struct smbd_response) +
1652 info->max_receive_size,
1653 0, SLAB_HWCACHE_ALIGN, NULL);
1654 if (!info->response_cache)
1655 goto out2;
1656
1657 info->response_mempool =
1658 mempool_create(info->receive_credit_max, mempool_alloc_slab,
1659 mempool_free_slab, info->response_cache);
1660 if (!info->response_mempool)
1661 goto out3;
1662
1663 snprintf(name, MAX_NAME_LEN, "smbd_%p", info);
1664 info->workqueue = create_workqueue(name);
1665 if (!info->workqueue)
1666 goto out4;
1667
1668 rc = allocate_receive_buffers(info, info->receive_credit_max);
1669 if (rc) {
1670 log_rdma_event(ERR, "failed to allocate receive buffers\n");
1671 goto out5;
1672 }
1673
1674 return 0;
1675
1676 out5:
1677 destroy_workqueue(info->workqueue);
1678 out4:
1679 mempool_destroy(info->response_mempool);
1680 out3:
1681 kmem_cache_destroy(info->response_cache);
1682 out2:
1683 mempool_destroy(info->request_mempool);
1684 out1:
1685 kmem_cache_destroy(info->request_cache);
1686 return -ENOMEM;
1687 }
1688
1689 /* Create a SMBD connection, called by upper layer */
_smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr,int port)1690 static struct smbd_connection *_smbd_get_connection(
1691 struct TCP_Server_Info *server, struct sockaddr *dstaddr, int port)
1692 {
1693 int rc;
1694 struct smbd_connection *info;
1695 struct rdma_conn_param conn_param;
1696 struct ib_qp_init_attr qp_attr;
1697 struct sockaddr_in *addr_in = (struct sockaddr_in *) dstaddr;
1698 struct ib_port_immutable port_immutable;
1699 u32 ird_ord_hdr[2];
1700
1701 info = kzalloc(sizeof(struct smbd_connection), GFP_KERNEL);
1702 if (!info)
1703 return NULL;
1704
1705 info->transport_status = SMBD_CONNECTING;
1706 rc = smbd_ia_open(info, dstaddr, port);
1707 if (rc) {
1708 log_rdma_event(INFO, "smbd_ia_open rc=%d\n", rc);
1709 goto create_id_failed;
1710 }
1711
1712 if (smbd_send_credit_target > info->id->device->attrs.max_cqe ||
1713 smbd_send_credit_target > info->id->device->attrs.max_qp_wr) {
1714 log_rdma_event(ERR,
1715 "consider lowering send_credit_target = %d. "
1716 "Possible CQE overrun, device "
1717 "reporting max_cpe %d max_qp_wr %d\n",
1718 smbd_send_credit_target,
1719 info->id->device->attrs.max_cqe,
1720 info->id->device->attrs.max_qp_wr);
1721 goto config_failed;
1722 }
1723
1724 if (smbd_receive_credit_max > info->id->device->attrs.max_cqe ||
1725 smbd_receive_credit_max > info->id->device->attrs.max_qp_wr) {
1726 log_rdma_event(ERR,
1727 "consider lowering receive_credit_max = %d. "
1728 "Possible CQE overrun, device "
1729 "reporting max_cpe %d max_qp_wr %d\n",
1730 smbd_receive_credit_max,
1731 info->id->device->attrs.max_cqe,
1732 info->id->device->attrs.max_qp_wr);
1733 goto config_failed;
1734 }
1735
1736 info->receive_credit_max = smbd_receive_credit_max;
1737 info->send_credit_target = smbd_send_credit_target;
1738 info->max_send_size = smbd_max_send_size;
1739 info->max_fragmented_recv_size = smbd_max_fragmented_recv_size;
1740 info->max_receive_size = smbd_max_receive_size;
1741 info->keep_alive_interval = smbd_keep_alive_interval;
1742
1743 if (info->id->device->attrs.max_send_sge < SMBDIRECT_MAX_SGE) {
1744 log_rdma_event(ERR,
1745 "warning: device max_send_sge = %d too small\n",
1746 info->id->device->attrs.max_send_sge);
1747 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1748 }
1749 if (info->id->device->attrs.max_recv_sge < SMBDIRECT_MAX_SGE) {
1750 log_rdma_event(ERR,
1751 "warning: device max_recv_sge = %d too small\n",
1752 info->id->device->attrs.max_recv_sge);
1753 log_rdma_event(ERR, "Queue Pair creation may fail\n");
1754 }
1755
1756 info->send_cq = NULL;
1757 info->recv_cq = NULL;
1758 info->send_cq = ib_alloc_cq(info->id->device, info,
1759 info->send_credit_target, 0, IB_POLL_SOFTIRQ);
1760 if (IS_ERR(info->send_cq)) {
1761 info->send_cq = NULL;
1762 goto alloc_cq_failed;
1763 }
1764
1765 info->recv_cq = ib_alloc_cq(info->id->device, info,
1766 info->receive_credit_max, 0, IB_POLL_SOFTIRQ);
1767 if (IS_ERR(info->recv_cq)) {
1768 info->recv_cq = NULL;
1769 goto alloc_cq_failed;
1770 }
1771
1772 memset(&qp_attr, 0, sizeof(qp_attr));
1773 qp_attr.event_handler = smbd_qp_async_error_upcall;
1774 qp_attr.qp_context = info;
1775 qp_attr.cap.max_send_wr = info->send_credit_target;
1776 qp_attr.cap.max_recv_wr = info->receive_credit_max;
1777 qp_attr.cap.max_send_sge = SMBDIRECT_MAX_SGE;
1778 qp_attr.cap.max_recv_sge = SMBDIRECT_MAX_SGE;
1779 qp_attr.cap.max_inline_data = 0;
1780 qp_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
1781 qp_attr.qp_type = IB_QPT_RC;
1782 qp_attr.send_cq = info->send_cq;
1783 qp_attr.recv_cq = info->recv_cq;
1784 qp_attr.port_num = ~0;
1785
1786 rc = rdma_create_qp(info->id, info->pd, &qp_attr);
1787 if (rc) {
1788 log_rdma_event(ERR, "rdma_create_qp failed %i\n", rc);
1789 goto create_qp_failed;
1790 }
1791
1792 memset(&conn_param, 0, sizeof(conn_param));
1793 conn_param.initiator_depth = 0;
1794
1795 conn_param.responder_resources =
1796 info->id->device->attrs.max_qp_rd_atom
1797 < SMBD_CM_RESPONDER_RESOURCES ?
1798 info->id->device->attrs.max_qp_rd_atom :
1799 SMBD_CM_RESPONDER_RESOURCES;
1800 info->responder_resources = conn_param.responder_resources;
1801 log_rdma_mr(INFO, "responder_resources=%d\n",
1802 info->responder_resources);
1803
1804 /* Need to send IRD/ORD in private data for iWARP */
1805 info->id->device->get_port_immutable(
1806 info->id->device, info->id->port_num, &port_immutable);
1807 if (port_immutable.core_cap_flags & RDMA_CORE_PORT_IWARP) {
1808 ird_ord_hdr[0] = info->responder_resources;
1809 ird_ord_hdr[1] = 1;
1810 conn_param.private_data = ird_ord_hdr;
1811 conn_param.private_data_len = sizeof(ird_ord_hdr);
1812 } else {
1813 conn_param.private_data = NULL;
1814 conn_param.private_data_len = 0;
1815 }
1816
1817 conn_param.retry_count = SMBD_CM_RETRY;
1818 conn_param.rnr_retry_count = SMBD_CM_RNR_RETRY;
1819 conn_param.flow_control = 0;
1820
1821 log_rdma_event(INFO, "connecting to IP %pI4 port %d\n",
1822 &addr_in->sin_addr, port);
1823
1824 init_waitqueue_head(&info->conn_wait);
1825 init_waitqueue_head(&info->disconn_wait);
1826 init_waitqueue_head(&info->wait_reassembly_queue);
1827 rc = rdma_connect(info->id, &conn_param);
1828 if (rc) {
1829 log_rdma_event(ERR, "rdma_connect() failed with %i\n", rc);
1830 goto rdma_connect_failed;
1831 }
1832
1833 wait_event_interruptible(
1834 info->conn_wait, info->transport_status != SMBD_CONNECTING);
1835
1836 if (info->transport_status != SMBD_CONNECTED) {
1837 log_rdma_event(ERR, "rdma_connect failed port=%d\n", port);
1838 goto rdma_connect_failed;
1839 }
1840
1841 log_rdma_event(INFO, "rdma_connect connected\n");
1842
1843 rc = allocate_caches_and_workqueue(info);
1844 if (rc) {
1845 log_rdma_event(ERR, "cache allocation failed\n");
1846 goto allocate_cache_failed;
1847 }
1848
1849 init_waitqueue_head(&info->wait_send_queue);
1850 INIT_DELAYED_WORK(&info->idle_timer_work, idle_connection_timer);
1851 INIT_DELAYED_WORK(&info->send_immediate_work, send_immediate_work);
1852 queue_delayed_work(info->workqueue, &info->idle_timer_work,
1853 info->keep_alive_interval*HZ);
1854
1855 init_waitqueue_head(&info->wait_smbd_send_pending);
1856 info->smbd_send_pending = 0;
1857
1858 init_waitqueue_head(&info->wait_smbd_recv_pending);
1859 info->smbd_recv_pending = 0;
1860
1861 init_waitqueue_head(&info->wait_send_pending);
1862 atomic_set(&info->send_pending, 0);
1863
1864 init_waitqueue_head(&info->wait_send_payload_pending);
1865 atomic_set(&info->send_payload_pending, 0);
1866
1867 INIT_WORK(&info->disconnect_work, smbd_disconnect_rdma_work);
1868 INIT_WORK(&info->destroy_work, smbd_destroy_rdma_work);
1869 INIT_WORK(&info->recv_done_work, smbd_recv_done_work);
1870 INIT_WORK(&info->post_send_credits_work, smbd_post_send_credits);
1871 info->new_credits_offered = 0;
1872 spin_lock_init(&info->lock_new_credits_offered);
1873
1874 rc = smbd_negotiate(info);
1875 if (rc) {
1876 log_rdma_event(ERR, "smbd_negotiate rc=%d\n", rc);
1877 goto negotiation_failed;
1878 }
1879
1880 rc = allocate_mr_list(info);
1881 if (rc) {
1882 log_rdma_mr(ERR, "memory registration allocation failed\n");
1883 goto allocate_mr_failed;
1884 }
1885
1886 return info;
1887
1888 allocate_mr_failed:
1889 /* At this point, need to a full transport shutdown */
1890 server->smbd_conn = info;
1891 smbd_destroy(server);
1892 return NULL;
1893
1894 negotiation_failed:
1895 cancel_delayed_work_sync(&info->idle_timer_work);
1896 destroy_caches_and_workqueue(info);
1897 info->transport_status = SMBD_NEGOTIATE_FAILED;
1898 init_waitqueue_head(&info->conn_wait);
1899 rdma_disconnect(info->id);
1900 wait_event(info->conn_wait,
1901 info->transport_status == SMBD_DISCONNECTED);
1902
1903 allocate_cache_failed:
1904 rdma_connect_failed:
1905 rdma_destroy_qp(info->id);
1906
1907 create_qp_failed:
1908 alloc_cq_failed:
1909 if (info->send_cq)
1910 ib_free_cq(info->send_cq);
1911 if (info->recv_cq)
1912 ib_free_cq(info->recv_cq);
1913
1914 config_failed:
1915 ib_dealloc_pd(info->pd);
1916 rdma_destroy_id(info->id);
1917
1918 create_id_failed:
1919 kfree(info);
1920 return NULL;
1921 }
1922
smbd_get_connection(struct TCP_Server_Info * server,struct sockaddr * dstaddr)1923 struct smbd_connection *smbd_get_connection(
1924 struct TCP_Server_Info *server, struct sockaddr *dstaddr)
1925 {
1926 struct smbd_connection *ret;
1927 int port = SMBD_PORT;
1928
1929 try_again:
1930 ret = _smbd_get_connection(server, dstaddr, port);
1931
1932 /* Try SMB_PORT if SMBD_PORT doesn't work */
1933 if (!ret && port == SMBD_PORT) {
1934 port = SMB_PORT;
1935 goto try_again;
1936 }
1937 return ret;
1938 }
1939
1940 /*
1941 * Receive data from receive reassembly queue
1942 * All the incoming data packets are placed in reassembly queue
1943 * buf: the buffer to read data into
1944 * size: the length of data to read
1945 * return value: actual data read
1946 * Note: this implementation copies the data from reassebmly queue to receive
1947 * buffers used by upper layer. This is not the optimal code path. A better way
1948 * to do it is to not have upper layer allocate its receive buffers but rather
1949 * borrow the buffer from reassembly queue, and return it after data is
1950 * consumed. But this will require more changes to upper layer code, and also
1951 * need to consider packet boundaries while they still being reassembled.
1952 */
smbd_recv_buf(struct smbd_connection * info,char * buf,unsigned int size)1953 static int smbd_recv_buf(struct smbd_connection *info, char *buf,
1954 unsigned int size)
1955 {
1956 struct smbd_response *response;
1957 struct smbd_data_transfer *data_transfer;
1958 int to_copy, to_read, data_read, offset;
1959 u32 data_length, remaining_data_length, data_offset;
1960 int rc;
1961
1962 again:
1963 if (info->transport_status != SMBD_CONNECTED) {
1964 log_read(ERR, "disconnected\n");
1965 return -ENODEV;
1966 }
1967
1968 /*
1969 * No need to hold the reassembly queue lock all the time as we are
1970 * the only one reading from the front of the queue. The transport
1971 * may add more entries to the back of the queue at the same time
1972 */
1973 log_read(INFO, "size=%d info->reassembly_data_length=%d\n", size,
1974 info->reassembly_data_length);
1975 if (info->reassembly_data_length >= size) {
1976 int queue_length;
1977 int queue_removed = 0;
1978
1979 /*
1980 * Need to make sure reassembly_data_length is read before
1981 * reading reassembly_queue_length and calling
1982 * _get_first_reassembly. This call is lock free
1983 * as we never read at the end of the queue which are being
1984 * updated in SOFTIRQ as more data is received
1985 */
1986 virt_rmb();
1987 queue_length = info->reassembly_queue_length;
1988 data_read = 0;
1989 to_read = size;
1990 offset = info->first_entry_offset;
1991 while (data_read < size) {
1992 response = _get_first_reassembly(info);
1993 data_transfer = smbd_response_payload(response);
1994 data_length = le32_to_cpu(data_transfer->data_length);
1995 remaining_data_length =
1996 le32_to_cpu(
1997 data_transfer->remaining_data_length);
1998 data_offset = le32_to_cpu(data_transfer->data_offset);
1999
2000 /*
2001 * The upper layer expects RFC1002 length at the
2002 * beginning of the payload. Return it to indicate
2003 * the total length of the packet. This minimize the
2004 * change to upper layer packet processing logic. This
2005 * will be eventually remove when an intermediate
2006 * transport layer is added
2007 */
2008 if (response->first_segment && size == 4) {
2009 unsigned int rfc1002_len =
2010 data_length + remaining_data_length;
2011 *((__be32 *)buf) = cpu_to_be32(rfc1002_len);
2012 data_read = 4;
2013 response->first_segment = false;
2014 log_read(INFO, "returning rfc1002 length %d\n",
2015 rfc1002_len);
2016 goto read_rfc1002_done;
2017 }
2018
2019 to_copy = min_t(int, data_length - offset, to_read);
2020 memcpy(
2021 buf + data_read,
2022 (char *)data_transfer + data_offset + offset,
2023 to_copy);
2024
2025 /* move on to the next buffer? */
2026 if (to_copy == data_length - offset) {
2027 queue_length--;
2028 /*
2029 * No need to lock if we are not at the
2030 * end of the queue
2031 */
2032 if (queue_length)
2033 list_del(&response->list);
2034 else {
2035 spin_lock_irq(
2036 &info->reassembly_queue_lock);
2037 list_del(&response->list);
2038 spin_unlock_irq(
2039 &info->reassembly_queue_lock);
2040 }
2041 queue_removed++;
2042 info->count_reassembly_queue--;
2043 info->count_dequeue_reassembly_queue++;
2044 put_receive_buffer(info, response);
2045 offset = 0;
2046 log_read(INFO, "put_receive_buffer offset=0\n");
2047 } else
2048 offset += to_copy;
2049
2050 to_read -= to_copy;
2051 data_read += to_copy;
2052
2053 log_read(INFO, "_get_first_reassembly memcpy %d bytes "
2054 "data_transfer_length-offset=%d after that "
2055 "to_read=%d data_read=%d offset=%d\n",
2056 to_copy, data_length - offset,
2057 to_read, data_read, offset);
2058 }
2059
2060 spin_lock_irq(&info->reassembly_queue_lock);
2061 info->reassembly_data_length -= data_read;
2062 info->reassembly_queue_length -= queue_removed;
2063 spin_unlock_irq(&info->reassembly_queue_lock);
2064
2065 info->first_entry_offset = offset;
2066 log_read(INFO, "returning to thread data_read=%d "
2067 "reassembly_data_length=%d first_entry_offset=%d\n",
2068 data_read, info->reassembly_data_length,
2069 info->first_entry_offset);
2070 read_rfc1002_done:
2071 return data_read;
2072 }
2073
2074 log_read(INFO, "wait_event on more data\n");
2075 rc = wait_event_interruptible(
2076 info->wait_reassembly_queue,
2077 info->reassembly_data_length >= size ||
2078 info->transport_status != SMBD_CONNECTED);
2079 /* Don't return any data if interrupted */
2080 if (rc)
2081 return -ENODEV;
2082
2083 goto again;
2084 }
2085
2086 /*
2087 * Receive a page from receive reassembly queue
2088 * page: the page to read data into
2089 * to_read: the length of data to read
2090 * return value: actual data read
2091 */
smbd_recv_page(struct smbd_connection * info,struct page * page,unsigned int page_offset,unsigned int to_read)2092 static int smbd_recv_page(struct smbd_connection *info,
2093 struct page *page, unsigned int page_offset,
2094 unsigned int to_read)
2095 {
2096 int ret;
2097 char *to_address;
2098 void *page_address;
2099
2100 /* make sure we have the page ready for read */
2101 ret = wait_event_interruptible(
2102 info->wait_reassembly_queue,
2103 info->reassembly_data_length >= to_read ||
2104 info->transport_status != SMBD_CONNECTED);
2105 if (ret)
2106 return ret;
2107
2108 /* now we can read from reassembly queue and not sleep */
2109 page_address = kmap_atomic(page);
2110 to_address = (char *) page_address + page_offset;
2111
2112 log_read(INFO, "reading from page=%p address=%p to_read=%d\n",
2113 page, to_address, to_read);
2114
2115 ret = smbd_recv_buf(info, to_address, to_read);
2116 kunmap_atomic(page_address);
2117
2118 return ret;
2119 }
2120
2121 /*
2122 * Receive data from transport
2123 * msg: a msghdr point to the buffer, can be ITER_KVEC or ITER_BVEC
2124 * return: total bytes read, or 0. SMB Direct will not do partial read.
2125 */
smbd_recv(struct smbd_connection * info,struct msghdr * msg)2126 int smbd_recv(struct smbd_connection *info, struct msghdr *msg)
2127 {
2128 char *buf;
2129 struct page *page;
2130 unsigned int to_read, page_offset;
2131 int rc;
2132
2133 info->smbd_recv_pending++;
2134
2135 switch (msg->msg_iter.type) {
2136 case READ | ITER_KVEC:
2137 buf = msg->msg_iter.kvec->iov_base;
2138 to_read = msg->msg_iter.kvec->iov_len;
2139 rc = smbd_recv_buf(info, buf, to_read);
2140 break;
2141
2142 case READ | ITER_BVEC:
2143 page = msg->msg_iter.bvec->bv_page;
2144 page_offset = msg->msg_iter.bvec->bv_offset;
2145 to_read = msg->msg_iter.bvec->bv_len;
2146 rc = smbd_recv_page(info, page, page_offset, to_read);
2147 break;
2148
2149 default:
2150 /* It's a bug in upper layer to get there */
2151 cifs_dbg(VFS, "CIFS: invalid msg type %d\n",
2152 msg->msg_iter.type);
2153 rc = -EINVAL;
2154 }
2155
2156 info->smbd_recv_pending--;
2157 wake_up(&info->wait_smbd_recv_pending);
2158
2159 /* SMBDirect will read it all or nothing */
2160 if (rc > 0)
2161 msg->msg_iter.count = 0;
2162 return rc;
2163 }
2164
2165 /*
2166 * Send data to transport
2167 * Each rqst is transported as a SMBDirect payload
2168 * rqst: the data to write
2169 * return value: 0 if successfully write, otherwise error code
2170 */
smbd_send(struct TCP_Server_Info * server,int num_rqst,struct smb_rqst * rqst_array)2171 int smbd_send(struct TCP_Server_Info *server,
2172 int num_rqst, struct smb_rqst *rqst_array)
2173 {
2174 struct smbd_connection *info = server->smbd_conn;
2175 struct kvec vec;
2176 int nvecs;
2177 int size;
2178 unsigned int buflen, remaining_data_length;
2179 int start, i, j;
2180 int max_iov_size =
2181 info->max_send_size - sizeof(struct smbd_data_transfer);
2182 struct kvec *iov;
2183 int rc;
2184 struct smb_rqst *rqst;
2185 int rqst_idx;
2186
2187 info->smbd_send_pending++;
2188 if (info->transport_status != SMBD_CONNECTED) {
2189 rc = -ENODEV;
2190 goto done;
2191 }
2192
2193 /*
2194 * Add in the page array if there is one. The caller needs to set
2195 * rq_tailsz to PAGE_SIZE when the buffer has multiple pages and
2196 * ends at page boundary
2197 */
2198 remaining_data_length = 0;
2199 for (i = 0; i < num_rqst; i++)
2200 remaining_data_length += smb_rqst_len(server, &rqst_array[i]);
2201
2202 if (remaining_data_length + sizeof(struct smbd_data_transfer) >
2203 info->max_fragmented_send_size) {
2204 log_write(ERR, "payload size %d > max size %d\n",
2205 remaining_data_length, info->max_fragmented_send_size);
2206 rc = -EINVAL;
2207 goto done;
2208 }
2209
2210 rqst_idx = 0;
2211
2212 next_rqst:
2213 rqst = &rqst_array[rqst_idx];
2214 iov = rqst->rq_iov;
2215
2216 cifs_dbg(FYI, "Sending smb (RDMA): idx=%d smb_len=%lu\n",
2217 rqst_idx, smb_rqst_len(server, rqst));
2218 for (i = 0; i < rqst->rq_nvec; i++)
2219 dump_smb(iov[i].iov_base, iov[i].iov_len);
2220
2221
2222 log_write(INFO, "rqst_idx=%d nvec=%d rqst->rq_npages=%d rq_pagesz=%d "
2223 "rq_tailsz=%d buflen=%lu\n",
2224 rqst_idx, rqst->rq_nvec, rqst->rq_npages, rqst->rq_pagesz,
2225 rqst->rq_tailsz, smb_rqst_len(server, rqst));
2226
2227 start = i = 0;
2228 buflen = 0;
2229 while (true) {
2230 buflen += iov[i].iov_len;
2231 if (buflen > max_iov_size) {
2232 if (i > start) {
2233 remaining_data_length -=
2234 (buflen-iov[i].iov_len);
2235 log_write(INFO, "sending iov[] from start=%d "
2236 "i=%d nvecs=%d "
2237 "remaining_data_length=%d\n",
2238 start, i, i-start,
2239 remaining_data_length);
2240 rc = smbd_post_send_data(
2241 info, &iov[start], i-start,
2242 remaining_data_length);
2243 if (rc)
2244 goto done;
2245 } else {
2246 /* iov[start] is too big, break it */
2247 nvecs = (buflen+max_iov_size-1)/max_iov_size;
2248 log_write(INFO, "iov[%d] iov_base=%p buflen=%d"
2249 " break to %d vectors\n",
2250 start, iov[start].iov_base,
2251 buflen, nvecs);
2252 for (j = 0; j < nvecs; j++) {
2253 vec.iov_base =
2254 (char *)iov[start].iov_base +
2255 j*max_iov_size;
2256 vec.iov_len = max_iov_size;
2257 if (j == nvecs-1)
2258 vec.iov_len =
2259 buflen -
2260 max_iov_size*(nvecs-1);
2261 remaining_data_length -= vec.iov_len;
2262 log_write(INFO,
2263 "sending vec j=%d iov_base=%p"
2264 " iov_len=%zu "
2265 "remaining_data_length=%d\n",
2266 j, vec.iov_base, vec.iov_len,
2267 remaining_data_length);
2268 rc = smbd_post_send_data(
2269 info, &vec, 1,
2270 remaining_data_length);
2271 if (rc)
2272 goto done;
2273 }
2274 i++;
2275 if (i == rqst->rq_nvec)
2276 break;
2277 }
2278 start = i;
2279 buflen = 0;
2280 } else {
2281 i++;
2282 if (i == rqst->rq_nvec) {
2283 /* send out all remaining vecs */
2284 remaining_data_length -= buflen;
2285 log_write(INFO,
2286 "sending iov[] from start=%d i=%d "
2287 "nvecs=%d remaining_data_length=%d\n",
2288 start, i, i-start,
2289 remaining_data_length);
2290 rc = smbd_post_send_data(info, &iov[start],
2291 i-start, remaining_data_length);
2292 if (rc)
2293 goto done;
2294 break;
2295 }
2296 }
2297 log_write(INFO, "looping i=%d buflen=%d\n", i, buflen);
2298 }
2299
2300 /* now sending pages if there are any */
2301 for (i = 0; i < rqst->rq_npages; i++) {
2302 unsigned int offset;
2303
2304 rqst_page_get_length(rqst, i, &buflen, &offset);
2305 nvecs = (buflen + max_iov_size - 1) / max_iov_size;
2306 log_write(INFO, "sending pages buflen=%d nvecs=%d\n",
2307 buflen, nvecs);
2308 for (j = 0; j < nvecs; j++) {
2309 size = max_iov_size;
2310 if (j == nvecs-1)
2311 size = buflen - j*max_iov_size;
2312 remaining_data_length -= size;
2313 log_write(INFO, "sending pages i=%d offset=%d size=%d"
2314 " remaining_data_length=%d\n",
2315 i, j*max_iov_size+offset, size,
2316 remaining_data_length);
2317 rc = smbd_post_send_page(
2318 info, rqst->rq_pages[i],
2319 j*max_iov_size + offset,
2320 size, remaining_data_length);
2321 if (rc)
2322 goto done;
2323 }
2324 }
2325
2326 rqst_idx++;
2327 if (rqst_idx < num_rqst)
2328 goto next_rqst;
2329
2330 done:
2331 /*
2332 * As an optimization, we don't wait for individual I/O to finish
2333 * before sending the next one.
2334 * Send them all and wait for pending send count to get to 0
2335 * that means all the I/Os have been out and we are good to return
2336 */
2337
2338 wait_event(info->wait_send_payload_pending,
2339 atomic_read(&info->send_payload_pending) == 0);
2340
2341 info->smbd_send_pending--;
2342 wake_up(&info->wait_smbd_send_pending);
2343
2344 return rc;
2345 }
2346
register_mr_done(struct ib_cq * cq,struct ib_wc * wc)2347 static void register_mr_done(struct ib_cq *cq, struct ib_wc *wc)
2348 {
2349 struct smbd_mr *mr;
2350 struct ib_cqe *cqe;
2351
2352 if (wc->status) {
2353 log_rdma_mr(ERR, "status=%d\n", wc->status);
2354 cqe = wc->wr_cqe;
2355 mr = container_of(cqe, struct smbd_mr, cqe);
2356 smbd_disconnect_rdma_connection(mr->conn);
2357 }
2358 }
2359
2360 /*
2361 * The work queue function that recovers MRs
2362 * We need to call ib_dereg_mr() and ib_alloc_mr() before this MR can be used
2363 * again. Both calls are slow, so finish them in a workqueue. This will not
2364 * block I/O path.
2365 * There is one workqueue that recovers MRs, there is no need to lock as the
2366 * I/O requests calling smbd_register_mr will never update the links in the
2367 * mr_list.
2368 */
smbd_mr_recovery_work(struct work_struct * work)2369 static void smbd_mr_recovery_work(struct work_struct *work)
2370 {
2371 struct smbd_connection *info =
2372 container_of(work, struct smbd_connection, mr_recovery_work);
2373 struct smbd_mr *smbdirect_mr;
2374 int rc;
2375
2376 list_for_each_entry(smbdirect_mr, &info->mr_list, list) {
2377 if (smbdirect_mr->state == MR_INVALIDATED ||
2378 smbdirect_mr->state == MR_ERROR) {
2379
2380 /* recover this MR entry */
2381 rc = ib_dereg_mr(smbdirect_mr->mr);
2382 if (rc) {
2383 log_rdma_mr(ERR,
2384 "ib_dereg_mr failed rc=%x\n",
2385 rc);
2386 smbd_disconnect_rdma_connection(info);
2387 continue;
2388 }
2389
2390 smbdirect_mr->mr = ib_alloc_mr(
2391 info->pd, info->mr_type,
2392 info->max_frmr_depth);
2393 if (IS_ERR(smbdirect_mr->mr)) {
2394 log_rdma_mr(ERR,
2395 "ib_alloc_mr failed mr_type=%x "
2396 "max_frmr_depth=%x\n",
2397 info->mr_type,
2398 info->max_frmr_depth);
2399 smbd_disconnect_rdma_connection(info);
2400 continue;
2401 }
2402
2403 if (smbdirect_mr->state == MR_INVALIDATED)
2404 ib_dma_unmap_sg(
2405 info->id->device, smbdirect_mr->sgl,
2406 smbdirect_mr->sgl_count,
2407 smbdirect_mr->dir);
2408
2409 smbdirect_mr->state = MR_READY;
2410
2411 /* smbdirect_mr->state is updated by this function
2412 * and is read and updated by I/O issuing CPUs trying
2413 * to get a MR, the call to atomic_inc_return
2414 * implicates a memory barrier and guarantees this
2415 * value is updated before waking up any calls to
2416 * get_mr() from the I/O issuing CPUs
2417 */
2418 if (atomic_inc_return(&info->mr_ready_count) == 1)
2419 wake_up_interruptible(&info->wait_mr);
2420 }
2421 }
2422 }
2423
destroy_mr_list(struct smbd_connection * info)2424 static void destroy_mr_list(struct smbd_connection *info)
2425 {
2426 struct smbd_mr *mr, *tmp;
2427
2428 cancel_work_sync(&info->mr_recovery_work);
2429 list_for_each_entry_safe(mr, tmp, &info->mr_list, list) {
2430 if (mr->state == MR_INVALIDATED)
2431 ib_dma_unmap_sg(info->id->device, mr->sgl,
2432 mr->sgl_count, mr->dir);
2433 ib_dereg_mr(mr->mr);
2434 kfree(mr->sgl);
2435 kfree(mr);
2436 }
2437 }
2438
2439 /*
2440 * Allocate MRs used for RDMA read/write
2441 * The number of MRs will not exceed hardware capability in responder_resources
2442 * All MRs are kept in mr_list. The MR can be recovered after it's used
2443 * Recovery is done in smbd_mr_recovery_work. The content of list entry changes
2444 * as MRs are used and recovered for I/O, but the list links will not change
2445 */
allocate_mr_list(struct smbd_connection * info)2446 static int allocate_mr_list(struct smbd_connection *info)
2447 {
2448 int i;
2449 struct smbd_mr *smbdirect_mr, *tmp;
2450
2451 INIT_LIST_HEAD(&info->mr_list);
2452 init_waitqueue_head(&info->wait_mr);
2453 spin_lock_init(&info->mr_list_lock);
2454 atomic_set(&info->mr_ready_count, 0);
2455 atomic_set(&info->mr_used_count, 0);
2456 init_waitqueue_head(&info->wait_for_mr_cleanup);
2457 INIT_WORK(&info->mr_recovery_work, smbd_mr_recovery_work);
2458 /* Allocate more MRs (2x) than hardware responder_resources */
2459 for (i = 0; i < info->responder_resources * 2; i++) {
2460 smbdirect_mr = kzalloc(sizeof(*smbdirect_mr), GFP_KERNEL);
2461 if (!smbdirect_mr)
2462 goto out;
2463 smbdirect_mr->mr = ib_alloc_mr(info->pd, info->mr_type,
2464 info->max_frmr_depth);
2465 if (IS_ERR(smbdirect_mr->mr)) {
2466 log_rdma_mr(ERR, "ib_alloc_mr failed mr_type=%x "
2467 "max_frmr_depth=%x\n",
2468 info->mr_type, info->max_frmr_depth);
2469 goto out;
2470 }
2471 smbdirect_mr->sgl = kcalloc(
2472 info->max_frmr_depth,
2473 sizeof(struct scatterlist),
2474 GFP_KERNEL);
2475 if (!smbdirect_mr->sgl) {
2476 log_rdma_mr(ERR, "failed to allocate sgl\n");
2477 ib_dereg_mr(smbdirect_mr->mr);
2478 goto out;
2479 }
2480 smbdirect_mr->state = MR_READY;
2481 smbdirect_mr->conn = info;
2482
2483 list_add_tail(&smbdirect_mr->list, &info->mr_list);
2484 atomic_inc(&info->mr_ready_count);
2485 }
2486 return 0;
2487
2488 out:
2489 kfree(smbdirect_mr);
2490
2491 list_for_each_entry_safe(smbdirect_mr, tmp, &info->mr_list, list) {
2492 list_del(&smbdirect_mr->list);
2493 ib_dereg_mr(smbdirect_mr->mr);
2494 kfree(smbdirect_mr->sgl);
2495 kfree(smbdirect_mr);
2496 }
2497 return -ENOMEM;
2498 }
2499
2500 /*
2501 * Get a MR from mr_list. This function waits until there is at least one
2502 * MR available in the list. It may access the list while the
2503 * smbd_mr_recovery_work is recovering the MR list. This doesn't need a lock
2504 * as they never modify the same places. However, there may be several CPUs
2505 * issueing I/O trying to get MR at the same time, mr_list_lock is used to
2506 * protect this situation.
2507 */
get_mr(struct smbd_connection * info)2508 static struct smbd_mr *get_mr(struct smbd_connection *info)
2509 {
2510 struct smbd_mr *ret;
2511 int rc;
2512 again:
2513 rc = wait_event_interruptible(info->wait_mr,
2514 atomic_read(&info->mr_ready_count) ||
2515 info->transport_status != SMBD_CONNECTED);
2516 if (rc) {
2517 log_rdma_mr(ERR, "wait_event_interruptible rc=%x\n", rc);
2518 return NULL;
2519 }
2520
2521 if (info->transport_status != SMBD_CONNECTED) {
2522 log_rdma_mr(ERR, "info->transport_status=%x\n",
2523 info->transport_status);
2524 return NULL;
2525 }
2526
2527 spin_lock(&info->mr_list_lock);
2528 list_for_each_entry(ret, &info->mr_list, list) {
2529 if (ret->state == MR_READY) {
2530 ret->state = MR_REGISTERED;
2531 spin_unlock(&info->mr_list_lock);
2532 atomic_dec(&info->mr_ready_count);
2533 atomic_inc(&info->mr_used_count);
2534 return ret;
2535 }
2536 }
2537
2538 spin_unlock(&info->mr_list_lock);
2539 /*
2540 * It is possible that we could fail to get MR because other processes may
2541 * try to acquire a MR at the same time. If this is the case, retry it.
2542 */
2543 goto again;
2544 }
2545
2546 /*
2547 * Register memory for RDMA read/write
2548 * pages[]: the list of pages to register memory with
2549 * num_pages: the number of pages to register
2550 * tailsz: if non-zero, the bytes to register in the last page
2551 * writing: true if this is a RDMA write (SMB read), false for RDMA read
2552 * need_invalidate: true if this MR needs to be locally invalidated after I/O
2553 * return value: the MR registered, NULL if failed.
2554 */
smbd_register_mr(struct smbd_connection * info,struct page * pages[],int num_pages,int offset,int tailsz,bool writing,bool need_invalidate)2555 struct smbd_mr *smbd_register_mr(
2556 struct smbd_connection *info, struct page *pages[], int num_pages,
2557 int offset, int tailsz, bool writing, bool need_invalidate)
2558 {
2559 struct smbd_mr *smbdirect_mr;
2560 int rc, i;
2561 enum dma_data_direction dir;
2562 struct ib_reg_wr *reg_wr;
2563
2564 if (num_pages > info->max_frmr_depth) {
2565 log_rdma_mr(ERR, "num_pages=%d max_frmr_depth=%d\n",
2566 num_pages, info->max_frmr_depth);
2567 return NULL;
2568 }
2569
2570 smbdirect_mr = get_mr(info);
2571 if (!smbdirect_mr) {
2572 log_rdma_mr(ERR, "get_mr returning NULL\n");
2573 return NULL;
2574 }
2575 smbdirect_mr->need_invalidate = need_invalidate;
2576 smbdirect_mr->sgl_count = num_pages;
2577 sg_init_table(smbdirect_mr->sgl, num_pages);
2578
2579 log_rdma_mr(INFO, "num_pages=0x%x offset=0x%x tailsz=0x%x\n",
2580 num_pages, offset, tailsz);
2581
2582 if (num_pages == 1) {
2583 sg_set_page(&smbdirect_mr->sgl[0], pages[0], tailsz, offset);
2584 goto skip_multiple_pages;
2585 }
2586
2587 /* We have at least two pages to register */
2588 sg_set_page(
2589 &smbdirect_mr->sgl[0], pages[0], PAGE_SIZE - offset, offset);
2590 i = 1;
2591 while (i < num_pages - 1) {
2592 sg_set_page(&smbdirect_mr->sgl[i], pages[i], PAGE_SIZE, 0);
2593 i++;
2594 }
2595 sg_set_page(&smbdirect_mr->sgl[i], pages[i],
2596 tailsz ? tailsz : PAGE_SIZE, 0);
2597
2598 skip_multiple_pages:
2599 dir = writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
2600 smbdirect_mr->dir = dir;
2601 rc = ib_dma_map_sg(info->id->device, smbdirect_mr->sgl, num_pages, dir);
2602 if (!rc) {
2603 log_rdma_mr(ERR, "ib_dma_map_sg num_pages=%x dir=%x rc=%x\n",
2604 num_pages, dir, rc);
2605 goto dma_map_error;
2606 }
2607
2608 rc = ib_map_mr_sg(smbdirect_mr->mr, smbdirect_mr->sgl, num_pages,
2609 NULL, PAGE_SIZE);
2610 if (rc != num_pages) {
2611 log_rdma_mr(ERR,
2612 "ib_map_mr_sg failed rc = %d num_pages = %x\n",
2613 rc, num_pages);
2614 goto map_mr_error;
2615 }
2616
2617 ib_update_fast_reg_key(smbdirect_mr->mr,
2618 ib_inc_rkey(smbdirect_mr->mr->rkey));
2619 reg_wr = &smbdirect_mr->wr;
2620 reg_wr->wr.opcode = IB_WR_REG_MR;
2621 smbdirect_mr->cqe.done = register_mr_done;
2622 reg_wr->wr.wr_cqe = &smbdirect_mr->cqe;
2623 reg_wr->wr.num_sge = 0;
2624 reg_wr->wr.send_flags = IB_SEND_SIGNALED;
2625 reg_wr->mr = smbdirect_mr->mr;
2626 reg_wr->key = smbdirect_mr->mr->rkey;
2627 reg_wr->access = writing ?
2628 IB_ACCESS_REMOTE_WRITE | IB_ACCESS_LOCAL_WRITE :
2629 IB_ACCESS_REMOTE_READ;
2630
2631 /*
2632 * There is no need for waiting for complemtion on ib_post_send
2633 * on IB_WR_REG_MR. Hardware enforces a barrier and order of execution
2634 * on the next ib_post_send when we actaully send I/O to remote peer
2635 */
2636 rc = ib_post_send(info->id->qp, ®_wr->wr, NULL);
2637 if (!rc)
2638 return smbdirect_mr;
2639
2640 log_rdma_mr(ERR, "ib_post_send failed rc=%x reg_wr->key=%x\n",
2641 rc, reg_wr->key);
2642
2643 /* If all failed, attempt to recover this MR by setting it MR_ERROR*/
2644 map_mr_error:
2645 ib_dma_unmap_sg(info->id->device, smbdirect_mr->sgl,
2646 smbdirect_mr->sgl_count, smbdirect_mr->dir);
2647
2648 dma_map_error:
2649 smbdirect_mr->state = MR_ERROR;
2650 if (atomic_dec_and_test(&info->mr_used_count))
2651 wake_up(&info->wait_for_mr_cleanup);
2652
2653 smbd_disconnect_rdma_connection(info);
2654
2655 return NULL;
2656 }
2657
local_inv_done(struct ib_cq * cq,struct ib_wc * wc)2658 static void local_inv_done(struct ib_cq *cq, struct ib_wc *wc)
2659 {
2660 struct smbd_mr *smbdirect_mr;
2661 struct ib_cqe *cqe;
2662
2663 cqe = wc->wr_cqe;
2664 smbdirect_mr = container_of(cqe, struct smbd_mr, cqe);
2665 smbdirect_mr->state = MR_INVALIDATED;
2666 if (wc->status != IB_WC_SUCCESS) {
2667 log_rdma_mr(ERR, "invalidate failed status=%x\n", wc->status);
2668 smbdirect_mr->state = MR_ERROR;
2669 }
2670 complete(&smbdirect_mr->invalidate_done);
2671 }
2672
2673 /*
2674 * Deregister a MR after I/O is done
2675 * This function may wait if remote invalidation is not used
2676 * and we have to locally invalidate the buffer to prevent data is being
2677 * modified by remote peer after upper layer consumes it
2678 */
smbd_deregister_mr(struct smbd_mr * smbdirect_mr)2679 int smbd_deregister_mr(struct smbd_mr *smbdirect_mr)
2680 {
2681 struct ib_send_wr *wr;
2682 struct smbd_connection *info = smbdirect_mr->conn;
2683 int rc = 0;
2684
2685 if (smbdirect_mr->need_invalidate) {
2686 /* Need to finish local invalidation before returning */
2687 wr = &smbdirect_mr->inv_wr;
2688 wr->opcode = IB_WR_LOCAL_INV;
2689 smbdirect_mr->cqe.done = local_inv_done;
2690 wr->wr_cqe = &smbdirect_mr->cqe;
2691 wr->num_sge = 0;
2692 wr->ex.invalidate_rkey = smbdirect_mr->mr->rkey;
2693 wr->send_flags = IB_SEND_SIGNALED;
2694
2695 init_completion(&smbdirect_mr->invalidate_done);
2696 rc = ib_post_send(info->id->qp, wr, NULL);
2697 if (rc) {
2698 log_rdma_mr(ERR, "ib_post_send failed rc=%x\n", rc);
2699 smbd_disconnect_rdma_connection(info);
2700 goto done;
2701 }
2702 wait_for_completion(&smbdirect_mr->invalidate_done);
2703 smbdirect_mr->need_invalidate = false;
2704 } else
2705 /*
2706 * For remote invalidation, just set it to MR_INVALIDATED
2707 * and defer to mr_recovery_work to recover the MR for next use
2708 */
2709 smbdirect_mr->state = MR_INVALIDATED;
2710
2711 /*
2712 * Schedule the work to do MR recovery for future I/Os
2713 * MR recovery is slow and we don't want it to block the current I/O
2714 */
2715 queue_work(info->workqueue, &info->mr_recovery_work);
2716
2717 done:
2718 if (atomic_dec_and_test(&info->mr_used_count))
2719 wake_up(&info->wait_for_mr_cleanup);
2720
2721 return rc;
2722 }
2723