1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/mm.h>
3 #include <linux/vmacache.h>
4 #include <linux/hugetlb.h>
5 #include <linux/huge_mm.h>
6 #include <linux/mount.h>
7 #include <linux/seq_file.h>
8 #include <linux/highmem.h>
9 #include <linux/ptrace.h>
10 #include <linux/slab.h>
11 #include <linux/pagemap.h>
12 #include <linux/mempolicy.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/swapops.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/page_idle.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/uaccess.h>
21 #include <linux/pkeys.h>
22
23 #include <asm/elf.h>
24 #include <asm/tlb.h>
25 #include <asm/tlbflush.h>
26 #include "internal.h"
27
28 #define SEQ_PUT_DEC(str, val) \
29 seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)30 void task_mem(struct seq_file *m, struct mm_struct *mm)
31 {
32 unsigned long text, lib, swap, anon, file, shmem;
33 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
34
35 anon = get_mm_counter(mm, MM_ANONPAGES);
36 file = get_mm_counter(mm, MM_FILEPAGES);
37 shmem = get_mm_counter(mm, MM_SHMEMPAGES);
38
39 /*
40 * Note: to minimize their overhead, mm maintains hiwater_vm and
41 * hiwater_rss only when about to *lower* total_vm or rss. Any
42 * collector of these hiwater stats must therefore get total_vm
43 * and rss too, which will usually be the higher. Barriers? not
44 * worth the effort, such snapshots can always be inconsistent.
45 */
46 hiwater_vm = total_vm = mm->total_vm;
47 if (hiwater_vm < mm->hiwater_vm)
48 hiwater_vm = mm->hiwater_vm;
49 hiwater_rss = total_rss = anon + file + shmem;
50 if (hiwater_rss < mm->hiwater_rss)
51 hiwater_rss = mm->hiwater_rss;
52
53 /* split executable areas between text and lib */
54 text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
55 text = min(text, mm->exec_vm << PAGE_SHIFT);
56 lib = (mm->exec_vm << PAGE_SHIFT) - text;
57
58 swap = get_mm_counter(mm, MM_SWAPENTS);
59 SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
60 SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
61 SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
62 SEQ_PUT_DEC(" kB\nVmPin:\t", mm->pinned_vm);
63 SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
64 SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
65 SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
66 SEQ_PUT_DEC(" kB\nRssFile:\t", file);
67 SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
68 SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
69 SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
70 seq_put_decimal_ull_width(m,
71 " kB\nVmExe:\t", text >> 10, 8);
72 seq_put_decimal_ull_width(m,
73 " kB\nVmLib:\t", lib >> 10, 8);
74 seq_put_decimal_ull_width(m,
75 " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
76 SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
77 seq_puts(m, " kB\n");
78 hugetlb_report_usage(m, mm);
79 }
80 #undef SEQ_PUT_DEC
81
task_vsize(struct mm_struct * mm)82 unsigned long task_vsize(struct mm_struct *mm)
83 {
84 return PAGE_SIZE * mm->total_vm;
85 }
86
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)87 unsigned long task_statm(struct mm_struct *mm,
88 unsigned long *shared, unsigned long *text,
89 unsigned long *data, unsigned long *resident)
90 {
91 *shared = get_mm_counter(mm, MM_FILEPAGES) +
92 get_mm_counter(mm, MM_SHMEMPAGES);
93 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
94 >> PAGE_SHIFT;
95 *data = mm->data_vm + mm->stack_vm;
96 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
97 return mm->total_vm;
98 }
99
100 #ifdef CONFIG_NUMA
101 /*
102 * Save get_task_policy() for show_numa_map().
103 */
hold_task_mempolicy(struct proc_maps_private * priv)104 static void hold_task_mempolicy(struct proc_maps_private *priv)
105 {
106 struct task_struct *task = priv->task;
107
108 task_lock(task);
109 priv->task_mempolicy = get_task_policy(task);
110 mpol_get(priv->task_mempolicy);
111 task_unlock(task);
112 }
release_task_mempolicy(struct proc_maps_private * priv)113 static void release_task_mempolicy(struct proc_maps_private *priv)
114 {
115 mpol_put(priv->task_mempolicy);
116 }
117 #else
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 }
release_task_mempolicy(struct proc_maps_private * priv)121 static void release_task_mempolicy(struct proc_maps_private *priv)
122 {
123 }
124 #endif
125
vma_stop(struct proc_maps_private * priv)126 static void vma_stop(struct proc_maps_private *priv)
127 {
128 struct mm_struct *mm = priv->mm;
129
130 release_task_mempolicy(priv);
131 up_read(&mm->mmap_sem);
132 mmput(mm);
133 }
134
135 static struct vm_area_struct *
m_next_vma(struct proc_maps_private * priv,struct vm_area_struct * vma)136 m_next_vma(struct proc_maps_private *priv, struct vm_area_struct *vma)
137 {
138 if (vma == priv->tail_vma)
139 return NULL;
140 return vma->vm_next ?: priv->tail_vma;
141 }
142
m_cache_vma(struct seq_file * m,struct vm_area_struct * vma)143 static void m_cache_vma(struct seq_file *m, struct vm_area_struct *vma)
144 {
145 if (m->count < m->size) /* vma is copied successfully */
146 m->version = m_next_vma(m->private, vma) ? vma->vm_end : -1UL;
147 }
148
m_start(struct seq_file * m,loff_t * ppos)149 static void *m_start(struct seq_file *m, loff_t *ppos)
150 {
151 struct proc_maps_private *priv = m->private;
152 unsigned long last_addr = m->version;
153 struct mm_struct *mm;
154 struct vm_area_struct *vma;
155 unsigned int pos = *ppos;
156
157 /* See m_cache_vma(). Zero at the start or after lseek. */
158 if (last_addr == -1UL)
159 return NULL;
160
161 priv->task = get_proc_task(priv->inode);
162 if (!priv->task)
163 return ERR_PTR(-ESRCH);
164
165 mm = priv->mm;
166 if (!mm || !mmget_not_zero(mm))
167 return NULL;
168
169 if (down_read_killable(&mm->mmap_sem)) {
170 mmput(mm);
171 return ERR_PTR(-EINTR);
172 }
173
174 hold_task_mempolicy(priv);
175 priv->tail_vma = get_gate_vma(mm);
176
177 if (last_addr) {
178 vma = find_vma(mm, last_addr - 1);
179 if (vma && vma->vm_start <= last_addr)
180 vma = m_next_vma(priv, vma);
181 if (vma)
182 return vma;
183 }
184
185 m->version = 0;
186 if (pos < mm->map_count) {
187 for (vma = mm->mmap; pos; pos--) {
188 m->version = vma->vm_start;
189 vma = vma->vm_next;
190 }
191 return vma;
192 }
193
194 /* we do not bother to update m->version in this case */
195 if (pos == mm->map_count && priv->tail_vma)
196 return priv->tail_vma;
197
198 vma_stop(priv);
199 return NULL;
200 }
201
m_next(struct seq_file * m,void * v,loff_t * pos)202 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
203 {
204 struct proc_maps_private *priv = m->private;
205 struct vm_area_struct *next;
206
207 (*pos)++;
208 next = m_next_vma(priv, v);
209 if (!next)
210 vma_stop(priv);
211 return next;
212 }
213
m_stop(struct seq_file * m,void * v)214 static void m_stop(struct seq_file *m, void *v)
215 {
216 struct proc_maps_private *priv = m->private;
217
218 if (!IS_ERR_OR_NULL(v))
219 vma_stop(priv);
220 if (priv->task) {
221 put_task_struct(priv->task);
222 priv->task = NULL;
223 }
224 }
225
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)226 static int proc_maps_open(struct inode *inode, struct file *file,
227 const struct seq_operations *ops, int psize)
228 {
229 struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
230
231 if (!priv)
232 return -ENOMEM;
233
234 priv->inode = inode;
235 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
236 if (IS_ERR(priv->mm)) {
237 int err = PTR_ERR(priv->mm);
238
239 seq_release_private(inode, file);
240 return err;
241 }
242
243 return 0;
244 }
245
proc_map_release(struct inode * inode,struct file * file)246 static int proc_map_release(struct inode *inode, struct file *file)
247 {
248 struct seq_file *seq = file->private_data;
249 struct proc_maps_private *priv = seq->private;
250
251 if (priv->mm)
252 mmdrop(priv->mm);
253
254 return seq_release_private(inode, file);
255 }
256
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)257 static int do_maps_open(struct inode *inode, struct file *file,
258 const struct seq_operations *ops)
259 {
260 return proc_maps_open(inode, file, ops,
261 sizeof(struct proc_maps_private));
262 }
263
264 /*
265 * Indicate if the VMA is a stack for the given task; for
266 * /proc/PID/maps that is the stack of the main task.
267 */
is_stack(struct vm_area_struct * vma)268 static int is_stack(struct vm_area_struct *vma)
269 {
270 /*
271 * We make no effort to guess what a given thread considers to be
272 * its "stack". It's not even well-defined for programs written
273 * languages like Go.
274 */
275 return vma->vm_start <= vma->vm_mm->start_stack &&
276 vma->vm_end >= vma->vm_mm->start_stack;
277 }
278
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)279 static void show_vma_header_prefix(struct seq_file *m,
280 unsigned long start, unsigned long end,
281 vm_flags_t flags, unsigned long long pgoff,
282 dev_t dev, unsigned long ino)
283 {
284 seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
285 seq_put_hex_ll(m, NULL, start, 8);
286 seq_put_hex_ll(m, "-", end, 8);
287 seq_putc(m, ' ');
288 seq_putc(m, flags & VM_READ ? 'r' : '-');
289 seq_putc(m, flags & VM_WRITE ? 'w' : '-');
290 seq_putc(m, flags & VM_EXEC ? 'x' : '-');
291 seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
292 seq_put_hex_ll(m, " ", pgoff, 8);
293 seq_put_hex_ll(m, " ", MAJOR(dev), 2);
294 seq_put_hex_ll(m, ":", MINOR(dev), 2);
295 seq_put_decimal_ull(m, " ", ino);
296 seq_putc(m, ' ');
297 }
298
299 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)300 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
301 {
302 struct mm_struct *mm = vma->vm_mm;
303 struct file *file = vma->vm_file;
304 vm_flags_t flags = vma->vm_flags;
305 unsigned long ino = 0;
306 unsigned long long pgoff = 0;
307 unsigned long start, end;
308 dev_t dev = 0;
309 const char *name = NULL;
310
311 if (file) {
312 struct inode *inode = file_inode(vma->vm_file);
313 dev = inode->i_sb->s_dev;
314 ino = inode->i_ino;
315 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
316 }
317
318 start = vma->vm_start;
319 end = vma->vm_end;
320 show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
321
322 /*
323 * Print the dentry name for named mappings, and a
324 * special [heap] marker for the heap:
325 */
326 if (file) {
327 seq_pad(m, ' ');
328 seq_file_path(m, file, "\n");
329 goto done;
330 }
331
332 if (vma->vm_ops && vma->vm_ops->name) {
333 name = vma->vm_ops->name(vma);
334 if (name)
335 goto done;
336 }
337
338 name = arch_vma_name(vma);
339 if (!name) {
340 if (!mm) {
341 name = "[vdso]";
342 goto done;
343 }
344
345 if (vma->vm_start <= mm->brk &&
346 vma->vm_end >= mm->start_brk) {
347 name = "[heap]";
348 goto done;
349 }
350
351 if (is_stack(vma))
352 name = "[stack]";
353 }
354
355 done:
356 if (name) {
357 seq_pad(m, ' ');
358 seq_puts(m, name);
359 }
360 seq_putc(m, '\n');
361 }
362
show_map(struct seq_file * m,void * v)363 static int show_map(struct seq_file *m, void *v)
364 {
365 show_map_vma(m, v);
366 m_cache_vma(m, v);
367 return 0;
368 }
369
370 static const struct seq_operations proc_pid_maps_op = {
371 .start = m_start,
372 .next = m_next,
373 .stop = m_stop,
374 .show = show_map
375 };
376
pid_maps_open(struct inode * inode,struct file * file)377 static int pid_maps_open(struct inode *inode, struct file *file)
378 {
379 return do_maps_open(inode, file, &proc_pid_maps_op);
380 }
381
382 const struct file_operations proc_pid_maps_operations = {
383 .open = pid_maps_open,
384 .read = seq_read,
385 .llseek = seq_lseek,
386 .release = proc_map_release,
387 };
388
389 /*
390 * Proportional Set Size(PSS): my share of RSS.
391 *
392 * PSS of a process is the count of pages it has in memory, where each
393 * page is divided by the number of processes sharing it. So if a
394 * process has 1000 pages all to itself, and 1000 shared with one other
395 * process, its PSS will be 1500.
396 *
397 * To keep (accumulated) division errors low, we adopt a 64bit
398 * fixed-point pss counter to minimize division errors. So (pss >>
399 * PSS_SHIFT) would be the real byte count.
400 *
401 * A shift of 12 before division means (assuming 4K page size):
402 * - 1M 3-user-pages add up to 8KB errors;
403 * - supports mapcount up to 2^24, or 16M;
404 * - supports PSS up to 2^52 bytes, or 4PB.
405 */
406 #define PSS_SHIFT 12
407
408 #ifdef CONFIG_PROC_PAGE_MONITOR
409 struct mem_size_stats {
410 unsigned long resident;
411 unsigned long shared_clean;
412 unsigned long shared_dirty;
413 unsigned long private_clean;
414 unsigned long private_dirty;
415 unsigned long referenced;
416 unsigned long anonymous;
417 unsigned long lazyfree;
418 unsigned long anonymous_thp;
419 unsigned long shmem_thp;
420 unsigned long swap;
421 unsigned long shared_hugetlb;
422 unsigned long private_hugetlb;
423 u64 pss;
424 u64 pss_locked;
425 u64 swap_pss;
426 bool check_shmem_swap;
427 };
428
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked)429 static void smaps_account(struct mem_size_stats *mss, struct page *page,
430 bool compound, bool young, bool dirty, bool locked)
431 {
432 int i, nr = compound ? 1 << compound_order(page) : 1;
433 unsigned long size = nr * PAGE_SIZE;
434
435 if (PageAnon(page)) {
436 mss->anonymous += size;
437 if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
438 mss->lazyfree += size;
439 }
440
441 mss->resident += size;
442 /* Accumulate the size in pages that have been accessed. */
443 if (young || page_is_young(page) || PageReferenced(page))
444 mss->referenced += size;
445
446 /*
447 * page_count(page) == 1 guarantees the page is mapped exactly once.
448 * If any subpage of the compound page mapped with PTE it would elevate
449 * page_count().
450 */
451 if (page_count(page) == 1) {
452 if (dirty || PageDirty(page))
453 mss->private_dirty += size;
454 else
455 mss->private_clean += size;
456 mss->pss += (u64)size << PSS_SHIFT;
457 if (locked)
458 mss->pss_locked += (u64)size << PSS_SHIFT;
459 return;
460 }
461
462 for (i = 0; i < nr; i++, page++) {
463 int mapcount = page_mapcount(page);
464 unsigned long pss = (PAGE_SIZE << PSS_SHIFT);
465
466 if (mapcount >= 2) {
467 if (dirty || PageDirty(page))
468 mss->shared_dirty += PAGE_SIZE;
469 else
470 mss->shared_clean += PAGE_SIZE;
471 mss->pss += pss / mapcount;
472 if (locked)
473 mss->pss_locked += pss / mapcount;
474 } else {
475 if (dirty || PageDirty(page))
476 mss->private_dirty += PAGE_SIZE;
477 else
478 mss->private_clean += PAGE_SIZE;
479 mss->pss += pss;
480 if (locked)
481 mss->pss_locked += pss;
482 }
483 }
484 }
485
486 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,struct mm_walk * walk)487 static int smaps_pte_hole(unsigned long addr, unsigned long end,
488 struct mm_walk *walk)
489 {
490 struct mem_size_stats *mss = walk->private;
491
492 mss->swap += shmem_partial_swap_usage(
493 walk->vma->vm_file->f_mapping, addr, end);
494
495 return 0;
496 }
497 #endif
498
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)499 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
500 struct mm_walk *walk)
501 {
502 struct mem_size_stats *mss = walk->private;
503 struct vm_area_struct *vma = walk->vma;
504 bool locked = !!(vma->vm_flags & VM_LOCKED);
505 struct page *page = NULL;
506
507 if (pte_present(*pte)) {
508 page = vm_normal_page(vma, addr, *pte);
509 } else if (is_swap_pte(*pte)) {
510 swp_entry_t swpent = pte_to_swp_entry(*pte);
511
512 if (!non_swap_entry(swpent)) {
513 int mapcount;
514
515 mss->swap += PAGE_SIZE;
516 mapcount = swp_swapcount(swpent);
517 if (mapcount >= 2) {
518 u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
519
520 do_div(pss_delta, mapcount);
521 mss->swap_pss += pss_delta;
522 } else {
523 mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
524 }
525 } else if (is_migration_entry(swpent))
526 page = migration_entry_to_page(swpent);
527 else if (is_device_private_entry(swpent))
528 page = device_private_entry_to_page(swpent);
529 } else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
530 && pte_none(*pte))) {
531 page = find_get_entry(vma->vm_file->f_mapping,
532 linear_page_index(vma, addr));
533 if (!page)
534 return;
535
536 if (radix_tree_exceptional_entry(page))
537 mss->swap += PAGE_SIZE;
538 else
539 put_page(page);
540
541 return;
542 }
543
544 if (!page)
545 return;
546
547 smaps_account(mss, page, false, pte_young(*pte), pte_dirty(*pte), locked);
548 }
549
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)551 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
552 struct mm_walk *walk)
553 {
554 struct mem_size_stats *mss = walk->private;
555 struct vm_area_struct *vma = walk->vma;
556 bool locked = !!(vma->vm_flags & VM_LOCKED);
557 struct page *page;
558
559 /* FOLL_DUMP will return -EFAULT on huge zero page */
560 page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
561 if (IS_ERR_OR_NULL(page))
562 return;
563 if (PageAnon(page))
564 mss->anonymous_thp += HPAGE_PMD_SIZE;
565 else if (PageSwapBacked(page))
566 mss->shmem_thp += HPAGE_PMD_SIZE;
567 else if (is_zone_device_page(page))
568 /* pass */;
569 else
570 VM_BUG_ON_PAGE(1, page);
571 smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd), locked);
572 }
573 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 struct mm_walk *walk)
576 {
577 }
578 #endif
579
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)580 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
581 struct mm_walk *walk)
582 {
583 struct vm_area_struct *vma = walk->vma;
584 pte_t *pte;
585 spinlock_t *ptl;
586
587 ptl = pmd_trans_huge_lock(pmd, vma);
588 if (ptl) {
589 if (pmd_present(*pmd))
590 smaps_pmd_entry(pmd, addr, walk);
591 spin_unlock(ptl);
592 goto out;
593 }
594
595 if (pmd_trans_unstable(pmd))
596 goto out;
597 /*
598 * The mmap_sem held all the way back in m_start() is what
599 * keeps khugepaged out of here and from collapsing things
600 * in here.
601 */
602 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
603 for (; addr != end; pte++, addr += PAGE_SIZE)
604 smaps_pte_entry(pte, addr, walk);
605 pte_unmap_unlock(pte - 1, ptl);
606 out:
607 cond_resched();
608 return 0;
609 }
610
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)611 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
612 {
613 /*
614 * Don't forget to update Documentation/ on changes.
615 */
616 static const char mnemonics[BITS_PER_LONG][2] = {
617 /*
618 * In case if we meet a flag we don't know about.
619 */
620 [0 ... (BITS_PER_LONG-1)] = "??",
621
622 [ilog2(VM_READ)] = "rd",
623 [ilog2(VM_WRITE)] = "wr",
624 [ilog2(VM_EXEC)] = "ex",
625 [ilog2(VM_SHARED)] = "sh",
626 [ilog2(VM_MAYREAD)] = "mr",
627 [ilog2(VM_MAYWRITE)] = "mw",
628 [ilog2(VM_MAYEXEC)] = "me",
629 [ilog2(VM_MAYSHARE)] = "ms",
630 [ilog2(VM_GROWSDOWN)] = "gd",
631 [ilog2(VM_PFNMAP)] = "pf",
632 [ilog2(VM_DENYWRITE)] = "dw",
633 #ifdef CONFIG_X86_INTEL_MPX
634 [ilog2(VM_MPX)] = "mp",
635 #endif
636 [ilog2(VM_LOCKED)] = "lo",
637 [ilog2(VM_IO)] = "io",
638 [ilog2(VM_SEQ_READ)] = "sr",
639 [ilog2(VM_RAND_READ)] = "rr",
640 [ilog2(VM_DONTCOPY)] = "dc",
641 [ilog2(VM_DONTEXPAND)] = "de",
642 [ilog2(VM_ACCOUNT)] = "ac",
643 [ilog2(VM_NORESERVE)] = "nr",
644 [ilog2(VM_HUGETLB)] = "ht",
645 [ilog2(VM_SYNC)] = "sf",
646 [ilog2(VM_ARCH_1)] = "ar",
647 [ilog2(VM_WIPEONFORK)] = "wf",
648 [ilog2(VM_DONTDUMP)] = "dd",
649 #ifdef CONFIG_MEM_SOFT_DIRTY
650 [ilog2(VM_SOFTDIRTY)] = "sd",
651 #endif
652 [ilog2(VM_MIXEDMAP)] = "mm",
653 [ilog2(VM_HUGEPAGE)] = "hg",
654 [ilog2(VM_NOHUGEPAGE)] = "nh",
655 [ilog2(VM_MERGEABLE)] = "mg",
656 [ilog2(VM_UFFD_MISSING)]= "um",
657 [ilog2(VM_UFFD_WP)] = "uw",
658 #ifdef CONFIG_ARCH_HAS_PKEYS
659 /* These come out via ProtectionKey: */
660 [ilog2(VM_PKEY_BIT0)] = "",
661 [ilog2(VM_PKEY_BIT1)] = "",
662 [ilog2(VM_PKEY_BIT2)] = "",
663 [ilog2(VM_PKEY_BIT3)] = "",
664 #if VM_PKEY_BIT4
665 [ilog2(VM_PKEY_BIT4)] = "",
666 #endif
667 #endif /* CONFIG_ARCH_HAS_PKEYS */
668 };
669 size_t i;
670
671 seq_puts(m, "VmFlags: ");
672 for (i = 0; i < BITS_PER_LONG; i++) {
673 if (!mnemonics[i][0])
674 continue;
675 if (vma->vm_flags & (1UL << i)) {
676 seq_putc(m, mnemonics[i][0]);
677 seq_putc(m, mnemonics[i][1]);
678 seq_putc(m, ' ');
679 }
680 }
681 seq_putc(m, '\n');
682 }
683
684 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)685 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
686 unsigned long addr, unsigned long end,
687 struct mm_walk *walk)
688 {
689 struct mem_size_stats *mss = walk->private;
690 struct vm_area_struct *vma = walk->vma;
691 struct page *page = NULL;
692
693 if (pte_present(*pte)) {
694 page = vm_normal_page(vma, addr, *pte);
695 } else if (is_swap_pte(*pte)) {
696 swp_entry_t swpent = pte_to_swp_entry(*pte);
697
698 if (is_migration_entry(swpent))
699 page = migration_entry_to_page(swpent);
700 else if (is_device_private_entry(swpent))
701 page = device_private_entry_to_page(swpent);
702 }
703 if (page) {
704 if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
705 mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
706 else
707 mss->private_hugetlb += huge_page_size(hstate_vma(vma));
708 }
709 return 0;
710 }
711 #endif /* HUGETLB_PAGE */
712
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss)713 static void smap_gather_stats(struct vm_area_struct *vma,
714 struct mem_size_stats *mss)
715 {
716 struct mm_walk smaps_walk = {
717 .pmd_entry = smaps_pte_range,
718 #ifdef CONFIG_HUGETLB_PAGE
719 .hugetlb_entry = smaps_hugetlb_range,
720 #endif
721 .mm = vma->vm_mm,
722 };
723
724 smaps_walk.private = mss;
725
726 #ifdef CONFIG_SHMEM
727 /* In case of smaps_rollup, reset the value from previous vma */
728 mss->check_shmem_swap = false;
729 if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
730 /*
731 * For shared or readonly shmem mappings we know that all
732 * swapped out pages belong to the shmem object, and we can
733 * obtain the swap value much more efficiently. For private
734 * writable mappings, we might have COW pages that are
735 * not affected by the parent swapped out pages of the shmem
736 * object, so we have to distinguish them during the page walk.
737 * Unless we know that the shmem object (or the part mapped by
738 * our VMA) has no swapped out pages at all.
739 */
740 unsigned long shmem_swapped = shmem_swap_usage(vma);
741
742 if (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
743 !(vma->vm_flags & VM_WRITE)) {
744 mss->swap += shmem_swapped;
745 } else {
746 mss->check_shmem_swap = true;
747 smaps_walk.pte_hole = smaps_pte_hole;
748 }
749 }
750 #endif
751 /* mmap_sem is held in m_start */
752 walk_page_vma(vma, &smaps_walk);
753 }
754
755 #define SEQ_PUT_DEC(str, val) \
756 seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
757
758 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss)759 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss)
760 {
761 SEQ_PUT_DEC("Rss: ", mss->resident);
762 SEQ_PUT_DEC(" kB\nPss: ", mss->pss >> PSS_SHIFT);
763 SEQ_PUT_DEC(" kB\nShared_Clean: ", mss->shared_clean);
764 SEQ_PUT_DEC(" kB\nShared_Dirty: ", mss->shared_dirty);
765 SEQ_PUT_DEC(" kB\nPrivate_Clean: ", mss->private_clean);
766 SEQ_PUT_DEC(" kB\nPrivate_Dirty: ", mss->private_dirty);
767 SEQ_PUT_DEC(" kB\nReferenced: ", mss->referenced);
768 SEQ_PUT_DEC(" kB\nAnonymous: ", mss->anonymous);
769 SEQ_PUT_DEC(" kB\nLazyFree: ", mss->lazyfree);
770 SEQ_PUT_DEC(" kB\nAnonHugePages: ", mss->anonymous_thp);
771 SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
772 SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
773 seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
774 mss->private_hugetlb >> 10, 7);
775 SEQ_PUT_DEC(" kB\nSwap: ", mss->swap);
776 SEQ_PUT_DEC(" kB\nSwapPss: ",
777 mss->swap_pss >> PSS_SHIFT);
778 SEQ_PUT_DEC(" kB\nLocked: ",
779 mss->pss_locked >> PSS_SHIFT);
780 seq_puts(m, " kB\n");
781 }
782
show_smap(struct seq_file * m,void * v)783 static int show_smap(struct seq_file *m, void *v)
784 {
785 struct vm_area_struct *vma = v;
786 struct mem_size_stats mss;
787
788 memset(&mss, 0, sizeof(mss));
789
790 smap_gather_stats(vma, &mss);
791
792 show_map_vma(m, vma);
793
794 SEQ_PUT_DEC("Size: ", vma->vm_end - vma->vm_start);
795 SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
796 SEQ_PUT_DEC(" kB\nMMUPageSize: ", vma_mmu_pagesize(vma));
797 seq_puts(m, " kB\n");
798
799 __show_smap(m, &mss);
800
801 seq_printf(m, "THPeligible: %d\n", transparent_hugepage_enabled(vma));
802
803 if (arch_pkeys_enabled())
804 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
805 show_smap_vma_flags(m, vma);
806
807 m_cache_vma(m, vma);
808
809 return 0;
810 }
811
show_smaps_rollup(struct seq_file * m,void * v)812 static int show_smaps_rollup(struct seq_file *m, void *v)
813 {
814 struct proc_maps_private *priv = m->private;
815 struct mem_size_stats mss;
816 struct mm_struct *mm;
817 struct vm_area_struct *vma;
818 unsigned long last_vma_end = 0;
819 int ret = 0;
820
821 priv->task = get_proc_task(priv->inode);
822 if (!priv->task)
823 return -ESRCH;
824
825 mm = priv->mm;
826 if (!mm || !mmget_not_zero(mm)) {
827 ret = -ESRCH;
828 goto out_put_task;
829 }
830
831 memset(&mss, 0, sizeof(mss));
832
833 ret = down_read_killable(&mm->mmap_sem);
834 if (ret)
835 goto out_put_mm;
836
837 hold_task_mempolicy(priv);
838
839 for (vma = priv->mm->mmap; vma; vma = vma->vm_next) {
840 smap_gather_stats(vma, &mss);
841 last_vma_end = vma->vm_end;
842 }
843
844 show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
845 last_vma_end, 0, 0, 0, 0);
846 seq_pad(m, ' ');
847 seq_puts(m, "[rollup]\n");
848
849 __show_smap(m, &mss);
850
851 release_task_mempolicy(priv);
852 up_read(&mm->mmap_sem);
853
854 out_put_mm:
855 mmput(mm);
856 out_put_task:
857 put_task_struct(priv->task);
858 priv->task = NULL;
859
860 return ret;
861 }
862 #undef SEQ_PUT_DEC
863
864 static const struct seq_operations proc_pid_smaps_op = {
865 .start = m_start,
866 .next = m_next,
867 .stop = m_stop,
868 .show = show_smap
869 };
870
pid_smaps_open(struct inode * inode,struct file * file)871 static int pid_smaps_open(struct inode *inode, struct file *file)
872 {
873 return do_maps_open(inode, file, &proc_pid_smaps_op);
874 }
875
smaps_rollup_open(struct inode * inode,struct file * file)876 static int smaps_rollup_open(struct inode *inode, struct file *file)
877 {
878 int ret;
879 struct proc_maps_private *priv;
880
881 priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
882 if (!priv)
883 return -ENOMEM;
884
885 ret = single_open(file, show_smaps_rollup, priv);
886 if (ret)
887 goto out_free;
888
889 priv->inode = inode;
890 priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
891 if (IS_ERR(priv->mm)) {
892 ret = PTR_ERR(priv->mm);
893
894 single_release(inode, file);
895 goto out_free;
896 }
897
898 return 0;
899
900 out_free:
901 kfree(priv);
902 return ret;
903 }
904
smaps_rollup_release(struct inode * inode,struct file * file)905 static int smaps_rollup_release(struct inode *inode, struct file *file)
906 {
907 struct seq_file *seq = file->private_data;
908 struct proc_maps_private *priv = seq->private;
909
910 if (priv->mm)
911 mmdrop(priv->mm);
912
913 kfree(priv);
914 return single_release(inode, file);
915 }
916
917 const struct file_operations proc_pid_smaps_operations = {
918 .open = pid_smaps_open,
919 .read = seq_read,
920 .llseek = seq_lseek,
921 .release = proc_map_release,
922 };
923
924 const struct file_operations proc_pid_smaps_rollup_operations = {
925 .open = smaps_rollup_open,
926 .read = seq_read,
927 .llseek = seq_lseek,
928 .release = smaps_rollup_release,
929 };
930
931 enum clear_refs_types {
932 CLEAR_REFS_ALL = 1,
933 CLEAR_REFS_ANON,
934 CLEAR_REFS_MAPPED,
935 CLEAR_REFS_SOFT_DIRTY,
936 CLEAR_REFS_MM_HIWATER_RSS,
937 CLEAR_REFS_LAST,
938 };
939
940 struct clear_refs_private {
941 enum clear_refs_types type;
942 };
943
944 #ifdef CONFIG_MEM_SOFT_DIRTY
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)945 static inline void clear_soft_dirty(struct vm_area_struct *vma,
946 unsigned long addr, pte_t *pte)
947 {
948 /*
949 * The soft-dirty tracker uses #PF-s to catch writes
950 * to pages, so write-protect the pte as well. See the
951 * Documentation/admin-guide/mm/soft-dirty.rst for full description
952 * of how soft-dirty works.
953 */
954 pte_t ptent = *pte;
955
956 if (pte_present(ptent)) {
957 ptent = ptep_modify_prot_start(vma->vm_mm, addr, pte);
958 ptent = pte_wrprotect(ptent);
959 ptent = pte_clear_soft_dirty(ptent);
960 ptep_modify_prot_commit(vma->vm_mm, addr, pte, ptent);
961 } else if (is_swap_pte(ptent)) {
962 ptent = pte_swp_clear_soft_dirty(ptent);
963 set_pte_at(vma->vm_mm, addr, pte, ptent);
964 }
965 }
966 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)967 static inline void clear_soft_dirty(struct vm_area_struct *vma,
968 unsigned long addr, pte_t *pte)
969 {
970 }
971 #endif
972
973 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)974 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
975 unsigned long addr, pmd_t *pmdp)
976 {
977 pmd_t old, pmd = *pmdp;
978
979 if (pmd_present(pmd)) {
980 /* See comment in change_huge_pmd() */
981 old = pmdp_invalidate(vma, addr, pmdp);
982 if (pmd_dirty(old))
983 pmd = pmd_mkdirty(pmd);
984 if (pmd_young(old))
985 pmd = pmd_mkyoung(pmd);
986
987 pmd = pmd_wrprotect(pmd);
988 pmd = pmd_clear_soft_dirty(pmd);
989
990 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
991 } else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
992 pmd = pmd_swp_clear_soft_dirty(pmd);
993 set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
994 }
995 }
996 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)997 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
998 unsigned long addr, pmd_t *pmdp)
999 {
1000 }
1001 #endif
1002
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1003 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1004 unsigned long end, struct mm_walk *walk)
1005 {
1006 struct clear_refs_private *cp = walk->private;
1007 struct vm_area_struct *vma = walk->vma;
1008 pte_t *pte, ptent;
1009 spinlock_t *ptl;
1010 struct page *page;
1011
1012 ptl = pmd_trans_huge_lock(pmd, vma);
1013 if (ptl) {
1014 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1015 clear_soft_dirty_pmd(vma, addr, pmd);
1016 goto out;
1017 }
1018
1019 if (!pmd_present(*pmd))
1020 goto out;
1021
1022 page = pmd_page(*pmd);
1023
1024 /* Clear accessed and referenced bits. */
1025 pmdp_test_and_clear_young(vma, addr, pmd);
1026 test_and_clear_page_young(page);
1027 ClearPageReferenced(page);
1028 out:
1029 spin_unlock(ptl);
1030 return 0;
1031 }
1032
1033 if (pmd_trans_unstable(pmd))
1034 return 0;
1035
1036 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1037 for (; addr != end; pte++, addr += PAGE_SIZE) {
1038 ptent = *pte;
1039
1040 if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1041 clear_soft_dirty(vma, addr, pte);
1042 continue;
1043 }
1044
1045 if (!pte_present(ptent))
1046 continue;
1047
1048 page = vm_normal_page(vma, addr, ptent);
1049 if (!page)
1050 continue;
1051
1052 /* Clear accessed and referenced bits. */
1053 ptep_test_and_clear_young(vma, addr, pte);
1054 test_and_clear_page_young(page);
1055 ClearPageReferenced(page);
1056 }
1057 pte_unmap_unlock(pte - 1, ptl);
1058 cond_resched();
1059 return 0;
1060 }
1061
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1062 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1063 struct mm_walk *walk)
1064 {
1065 struct clear_refs_private *cp = walk->private;
1066 struct vm_area_struct *vma = walk->vma;
1067
1068 if (vma->vm_flags & VM_PFNMAP)
1069 return 1;
1070
1071 /*
1072 * Writing 1 to /proc/pid/clear_refs affects all pages.
1073 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1074 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1075 * Writing 4 to /proc/pid/clear_refs affects all pages.
1076 */
1077 if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1078 return 1;
1079 if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1080 return 1;
1081 return 0;
1082 }
1083
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1084 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1085 size_t count, loff_t *ppos)
1086 {
1087 struct task_struct *task;
1088 char buffer[PROC_NUMBUF];
1089 struct mm_struct *mm;
1090 struct vm_area_struct *vma;
1091 enum clear_refs_types type;
1092 struct mmu_gather tlb;
1093 int itype;
1094 int rv;
1095
1096 memset(buffer, 0, sizeof(buffer));
1097 if (count > sizeof(buffer) - 1)
1098 count = sizeof(buffer) - 1;
1099 if (copy_from_user(buffer, buf, count))
1100 return -EFAULT;
1101 rv = kstrtoint(strstrip(buffer), 10, &itype);
1102 if (rv < 0)
1103 return rv;
1104 type = (enum clear_refs_types)itype;
1105 if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1106 return -EINVAL;
1107
1108 task = get_proc_task(file_inode(file));
1109 if (!task)
1110 return -ESRCH;
1111 mm = get_task_mm(task);
1112 if (mm) {
1113 struct clear_refs_private cp = {
1114 .type = type,
1115 };
1116 struct mm_walk clear_refs_walk = {
1117 .pmd_entry = clear_refs_pte_range,
1118 .test_walk = clear_refs_test_walk,
1119 .mm = mm,
1120 .private = &cp,
1121 };
1122
1123 if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1124 if (down_write_killable(&mm->mmap_sem)) {
1125 count = -EINTR;
1126 goto out_mm;
1127 }
1128
1129 /*
1130 * Writing 5 to /proc/pid/clear_refs resets the peak
1131 * resident set size to this mm's current rss value.
1132 */
1133 reset_mm_hiwater_rss(mm);
1134 up_write(&mm->mmap_sem);
1135 goto out_mm;
1136 }
1137
1138 if (down_read_killable(&mm->mmap_sem)) {
1139 count = -EINTR;
1140 goto out_mm;
1141 }
1142 tlb_gather_mmu(&tlb, mm, 0, -1);
1143 if (type == CLEAR_REFS_SOFT_DIRTY) {
1144 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1145 if (!(vma->vm_flags & VM_SOFTDIRTY))
1146 continue;
1147 up_read(&mm->mmap_sem);
1148 if (down_write_killable(&mm->mmap_sem)) {
1149 count = -EINTR;
1150 goto out_mm;
1151 }
1152 /*
1153 * Avoid to modify vma->vm_flags
1154 * without locked ops while the
1155 * coredump reads the vm_flags.
1156 */
1157 if (!mmget_still_valid(mm)) {
1158 /*
1159 * Silently return "count"
1160 * like if get_task_mm()
1161 * failed. FIXME: should this
1162 * function have returned
1163 * -ESRCH if get_task_mm()
1164 * failed like if
1165 * get_proc_task() fails?
1166 */
1167 up_write(&mm->mmap_sem);
1168 goto out_mm;
1169 }
1170 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1171 vma->vm_flags &= ~VM_SOFTDIRTY;
1172 vma_set_page_prot(vma);
1173 }
1174 downgrade_write(&mm->mmap_sem);
1175 break;
1176 }
1177 mmu_notifier_invalidate_range_start(mm, 0, -1);
1178 }
1179 walk_page_range(0, mm->highest_vm_end, &clear_refs_walk);
1180 if (type == CLEAR_REFS_SOFT_DIRTY)
1181 mmu_notifier_invalidate_range_end(mm, 0, -1);
1182 tlb_finish_mmu(&tlb, 0, -1);
1183 up_read(&mm->mmap_sem);
1184 out_mm:
1185 mmput(mm);
1186 }
1187 put_task_struct(task);
1188
1189 return count;
1190 }
1191
1192 const struct file_operations proc_clear_refs_operations = {
1193 .write = clear_refs_write,
1194 .llseek = noop_llseek,
1195 };
1196
1197 typedef struct {
1198 u64 pme;
1199 } pagemap_entry_t;
1200
1201 struct pagemapread {
1202 int pos, len; /* units: PM_ENTRY_BYTES, not bytes */
1203 pagemap_entry_t *buffer;
1204 bool show_pfn;
1205 };
1206
1207 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
1208 #define PAGEMAP_WALK_MASK (PMD_MASK)
1209
1210 #define PM_ENTRY_BYTES sizeof(pagemap_entry_t)
1211 #define PM_PFRAME_BITS 55
1212 #define PM_PFRAME_MASK GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1213 #define PM_SOFT_DIRTY BIT_ULL(55)
1214 #define PM_MMAP_EXCLUSIVE BIT_ULL(56)
1215 #define PM_FILE BIT_ULL(61)
1216 #define PM_SWAP BIT_ULL(62)
1217 #define PM_PRESENT BIT_ULL(63)
1218
1219 #define PM_END_OF_BUFFER 1
1220
make_pme(u64 frame,u64 flags)1221 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1222 {
1223 return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1224 }
1225
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1226 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1227 struct pagemapread *pm)
1228 {
1229 pm->buffer[pm->pos++] = *pme;
1230 if (pm->pos >= pm->len)
1231 return PM_END_OF_BUFFER;
1232 return 0;
1233 }
1234
pagemap_pte_hole(unsigned long start,unsigned long end,struct mm_walk * walk)1235 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1236 struct mm_walk *walk)
1237 {
1238 struct pagemapread *pm = walk->private;
1239 unsigned long addr = start;
1240 int err = 0;
1241
1242 while (addr < end) {
1243 struct vm_area_struct *vma = find_vma(walk->mm, addr);
1244 pagemap_entry_t pme = make_pme(0, 0);
1245 /* End of address space hole, which we mark as non-present. */
1246 unsigned long hole_end;
1247
1248 if (vma)
1249 hole_end = min(end, vma->vm_start);
1250 else
1251 hole_end = end;
1252
1253 for (; addr < hole_end; addr += PAGE_SIZE) {
1254 err = add_to_pagemap(addr, &pme, pm);
1255 if (err)
1256 goto out;
1257 }
1258
1259 if (!vma)
1260 break;
1261
1262 /* Addresses in the VMA. */
1263 if (vma->vm_flags & VM_SOFTDIRTY)
1264 pme = make_pme(0, PM_SOFT_DIRTY);
1265 for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1266 err = add_to_pagemap(addr, &pme, pm);
1267 if (err)
1268 goto out;
1269 }
1270 }
1271 out:
1272 return err;
1273 }
1274
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1275 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1276 struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1277 {
1278 u64 frame = 0, flags = 0;
1279 struct page *page = NULL;
1280
1281 if (pte_present(pte)) {
1282 if (pm->show_pfn)
1283 frame = pte_pfn(pte);
1284 flags |= PM_PRESENT;
1285 page = _vm_normal_page(vma, addr, pte, true);
1286 if (pte_soft_dirty(pte))
1287 flags |= PM_SOFT_DIRTY;
1288 } else if (is_swap_pte(pte)) {
1289 swp_entry_t entry;
1290 if (pte_swp_soft_dirty(pte))
1291 flags |= PM_SOFT_DIRTY;
1292 entry = pte_to_swp_entry(pte);
1293 if (pm->show_pfn)
1294 frame = swp_type(entry) |
1295 (swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1296 flags |= PM_SWAP;
1297 if (is_migration_entry(entry))
1298 page = migration_entry_to_page(entry);
1299
1300 if (is_device_private_entry(entry))
1301 page = device_private_entry_to_page(entry);
1302 }
1303
1304 if (page && !PageAnon(page))
1305 flags |= PM_FILE;
1306 if (page && page_mapcount(page) == 1)
1307 flags |= PM_MMAP_EXCLUSIVE;
1308 if (vma->vm_flags & VM_SOFTDIRTY)
1309 flags |= PM_SOFT_DIRTY;
1310
1311 return make_pme(frame, flags);
1312 }
1313
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1314 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1315 struct mm_walk *walk)
1316 {
1317 struct vm_area_struct *vma = walk->vma;
1318 struct pagemapread *pm = walk->private;
1319 spinlock_t *ptl;
1320 pte_t *pte, *orig_pte;
1321 int err = 0;
1322
1323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1324 ptl = pmd_trans_huge_lock(pmdp, vma);
1325 if (ptl) {
1326 u64 flags = 0, frame = 0;
1327 pmd_t pmd = *pmdp;
1328 struct page *page = NULL;
1329
1330 if (vma->vm_flags & VM_SOFTDIRTY)
1331 flags |= PM_SOFT_DIRTY;
1332
1333 if (pmd_present(pmd)) {
1334 page = pmd_page(pmd);
1335
1336 flags |= PM_PRESENT;
1337 if (pmd_soft_dirty(pmd))
1338 flags |= PM_SOFT_DIRTY;
1339 if (pm->show_pfn)
1340 frame = pmd_pfn(pmd) +
1341 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1342 }
1343 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1344 else if (is_swap_pmd(pmd)) {
1345 swp_entry_t entry = pmd_to_swp_entry(pmd);
1346 unsigned long offset;
1347
1348 if (pm->show_pfn) {
1349 offset = swp_offset(entry) +
1350 ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1351 frame = swp_type(entry) |
1352 (offset << MAX_SWAPFILES_SHIFT);
1353 }
1354 flags |= PM_SWAP;
1355 if (pmd_swp_soft_dirty(pmd))
1356 flags |= PM_SOFT_DIRTY;
1357 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1358 page = migration_entry_to_page(entry);
1359 }
1360 #endif
1361
1362 if (page && page_mapcount(page) == 1)
1363 flags |= PM_MMAP_EXCLUSIVE;
1364
1365 for (; addr != end; addr += PAGE_SIZE) {
1366 pagemap_entry_t pme = make_pme(frame, flags);
1367
1368 err = add_to_pagemap(addr, &pme, pm);
1369 if (err)
1370 break;
1371 if (pm->show_pfn) {
1372 if (flags & PM_PRESENT)
1373 frame++;
1374 else if (flags & PM_SWAP)
1375 frame += (1 << MAX_SWAPFILES_SHIFT);
1376 }
1377 }
1378 spin_unlock(ptl);
1379 return err;
1380 }
1381
1382 if (pmd_trans_unstable(pmdp))
1383 return 0;
1384 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1385
1386 /*
1387 * We can assume that @vma always points to a valid one and @end never
1388 * goes beyond vma->vm_end.
1389 */
1390 orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1391 for (; addr < end; pte++, addr += PAGE_SIZE) {
1392 pagemap_entry_t pme;
1393
1394 pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1395 err = add_to_pagemap(addr, &pme, pm);
1396 if (err)
1397 break;
1398 }
1399 pte_unmap_unlock(orig_pte, ptl);
1400
1401 cond_resched();
1402
1403 return err;
1404 }
1405
1406 #ifdef CONFIG_HUGETLB_PAGE
1407 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1408 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1409 unsigned long addr, unsigned long end,
1410 struct mm_walk *walk)
1411 {
1412 struct pagemapread *pm = walk->private;
1413 struct vm_area_struct *vma = walk->vma;
1414 u64 flags = 0, frame = 0;
1415 int err = 0;
1416 pte_t pte;
1417
1418 if (vma->vm_flags & VM_SOFTDIRTY)
1419 flags |= PM_SOFT_DIRTY;
1420
1421 pte = huge_ptep_get(ptep);
1422 if (pte_present(pte)) {
1423 struct page *page = pte_page(pte);
1424
1425 if (!PageAnon(page))
1426 flags |= PM_FILE;
1427
1428 if (page_mapcount(page) == 1)
1429 flags |= PM_MMAP_EXCLUSIVE;
1430
1431 flags |= PM_PRESENT;
1432 if (pm->show_pfn)
1433 frame = pte_pfn(pte) +
1434 ((addr & ~hmask) >> PAGE_SHIFT);
1435 }
1436
1437 for (; addr != end; addr += PAGE_SIZE) {
1438 pagemap_entry_t pme = make_pme(frame, flags);
1439
1440 err = add_to_pagemap(addr, &pme, pm);
1441 if (err)
1442 return err;
1443 if (pm->show_pfn && (flags & PM_PRESENT))
1444 frame++;
1445 }
1446
1447 cond_resched();
1448
1449 return err;
1450 }
1451 #endif /* HUGETLB_PAGE */
1452
1453 /*
1454 * /proc/pid/pagemap - an array mapping virtual pages to pfns
1455 *
1456 * For each page in the address space, this file contains one 64-bit entry
1457 * consisting of the following:
1458 *
1459 * Bits 0-54 page frame number (PFN) if present
1460 * Bits 0-4 swap type if swapped
1461 * Bits 5-54 swap offset if swapped
1462 * Bit 55 pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1463 * Bit 56 page exclusively mapped
1464 * Bits 57-60 zero
1465 * Bit 61 page is file-page or shared-anon
1466 * Bit 62 page swapped
1467 * Bit 63 page present
1468 *
1469 * If the page is not present but in swap, then the PFN contains an
1470 * encoding of the swap file number and the page's offset into the
1471 * swap. Unmapped pages return a null PFN. This allows determining
1472 * precisely which pages are mapped (or in swap) and comparing mapped
1473 * pages between processes.
1474 *
1475 * Efficient users of this interface will use /proc/pid/maps to
1476 * determine which areas of memory are actually mapped and llseek to
1477 * skip over unmapped regions.
1478 */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1479 static ssize_t pagemap_read(struct file *file, char __user *buf,
1480 size_t count, loff_t *ppos)
1481 {
1482 struct mm_struct *mm = file->private_data;
1483 struct pagemapread pm;
1484 struct mm_walk pagemap_walk = {};
1485 unsigned long src;
1486 unsigned long svpfn;
1487 unsigned long start_vaddr;
1488 unsigned long end_vaddr;
1489 int ret = 0, copied = 0;
1490
1491 if (!mm || !mmget_not_zero(mm))
1492 goto out;
1493
1494 ret = -EINVAL;
1495 /* file position must be aligned */
1496 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1497 goto out_mm;
1498
1499 ret = 0;
1500 if (!count)
1501 goto out_mm;
1502
1503 /* do not disclose physical addresses: attack vector */
1504 pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1505
1506 pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1507 pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1508 ret = -ENOMEM;
1509 if (!pm.buffer)
1510 goto out_mm;
1511
1512 pagemap_walk.pmd_entry = pagemap_pmd_range;
1513 pagemap_walk.pte_hole = pagemap_pte_hole;
1514 #ifdef CONFIG_HUGETLB_PAGE
1515 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
1516 #endif
1517 pagemap_walk.mm = mm;
1518 pagemap_walk.private = ±
1519
1520 src = *ppos;
1521 svpfn = src / PM_ENTRY_BYTES;
1522 start_vaddr = svpfn << PAGE_SHIFT;
1523 end_vaddr = mm->task_size;
1524
1525 /* watch out for wraparound */
1526 if (svpfn > mm->task_size >> PAGE_SHIFT)
1527 start_vaddr = end_vaddr;
1528
1529 /*
1530 * The odds are that this will stop walking way
1531 * before end_vaddr, because the length of the
1532 * user buffer is tracked in "pm", and the walk
1533 * will stop when we hit the end of the buffer.
1534 */
1535 ret = 0;
1536 while (count && (start_vaddr < end_vaddr)) {
1537 int len;
1538 unsigned long end;
1539
1540 pm.pos = 0;
1541 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1542 /* overflow ? */
1543 if (end < start_vaddr || end > end_vaddr)
1544 end = end_vaddr;
1545 ret = down_read_killable(&mm->mmap_sem);
1546 if (ret)
1547 goto out_free;
1548 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
1549 up_read(&mm->mmap_sem);
1550 start_vaddr = end;
1551
1552 len = min(count, PM_ENTRY_BYTES * pm.pos);
1553 if (copy_to_user(buf, pm.buffer, len)) {
1554 ret = -EFAULT;
1555 goto out_free;
1556 }
1557 copied += len;
1558 buf += len;
1559 count -= len;
1560 }
1561 *ppos += copied;
1562 if (!ret || ret == PM_END_OF_BUFFER)
1563 ret = copied;
1564
1565 out_free:
1566 kfree(pm.buffer);
1567 out_mm:
1568 mmput(mm);
1569 out:
1570 return ret;
1571 }
1572
pagemap_open(struct inode * inode,struct file * file)1573 static int pagemap_open(struct inode *inode, struct file *file)
1574 {
1575 struct mm_struct *mm;
1576
1577 mm = proc_mem_open(inode, PTRACE_MODE_READ);
1578 if (IS_ERR(mm))
1579 return PTR_ERR(mm);
1580 file->private_data = mm;
1581 return 0;
1582 }
1583
pagemap_release(struct inode * inode,struct file * file)1584 static int pagemap_release(struct inode *inode, struct file *file)
1585 {
1586 struct mm_struct *mm = file->private_data;
1587
1588 if (mm)
1589 mmdrop(mm);
1590 return 0;
1591 }
1592
1593 const struct file_operations proc_pagemap_operations = {
1594 .llseek = mem_lseek, /* borrow this */
1595 .read = pagemap_read,
1596 .open = pagemap_open,
1597 .release = pagemap_release,
1598 };
1599 #endif /* CONFIG_PROC_PAGE_MONITOR */
1600
1601 #ifdef CONFIG_NUMA
1602
1603 struct numa_maps {
1604 unsigned long pages;
1605 unsigned long anon;
1606 unsigned long active;
1607 unsigned long writeback;
1608 unsigned long mapcount_max;
1609 unsigned long dirty;
1610 unsigned long swapcache;
1611 unsigned long node[MAX_NUMNODES];
1612 };
1613
1614 struct numa_maps_private {
1615 struct proc_maps_private proc_maps;
1616 struct numa_maps md;
1617 };
1618
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1619 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1620 unsigned long nr_pages)
1621 {
1622 int count = page_mapcount(page);
1623
1624 md->pages += nr_pages;
1625 if (pte_dirty || PageDirty(page))
1626 md->dirty += nr_pages;
1627
1628 if (PageSwapCache(page))
1629 md->swapcache += nr_pages;
1630
1631 if (PageActive(page) || PageUnevictable(page))
1632 md->active += nr_pages;
1633
1634 if (PageWriteback(page))
1635 md->writeback += nr_pages;
1636
1637 if (PageAnon(page))
1638 md->anon += nr_pages;
1639
1640 if (count > md->mapcount_max)
1641 md->mapcount_max = count;
1642
1643 md->node[page_to_nid(page)] += nr_pages;
1644 }
1645
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1646 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1647 unsigned long addr)
1648 {
1649 struct page *page;
1650 int nid;
1651
1652 if (!pte_present(pte))
1653 return NULL;
1654
1655 page = vm_normal_page(vma, addr, pte);
1656 if (!page)
1657 return NULL;
1658
1659 if (PageReserved(page))
1660 return NULL;
1661
1662 nid = page_to_nid(page);
1663 if (!node_isset(nid, node_states[N_MEMORY]))
1664 return NULL;
1665
1666 return page;
1667 }
1668
1669 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1670 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1671 struct vm_area_struct *vma,
1672 unsigned long addr)
1673 {
1674 struct page *page;
1675 int nid;
1676
1677 if (!pmd_present(pmd))
1678 return NULL;
1679
1680 page = vm_normal_page_pmd(vma, addr, pmd);
1681 if (!page)
1682 return NULL;
1683
1684 if (PageReserved(page))
1685 return NULL;
1686
1687 nid = page_to_nid(page);
1688 if (!node_isset(nid, node_states[N_MEMORY]))
1689 return NULL;
1690
1691 return page;
1692 }
1693 #endif
1694
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1695 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1696 unsigned long end, struct mm_walk *walk)
1697 {
1698 struct numa_maps *md = walk->private;
1699 struct vm_area_struct *vma = walk->vma;
1700 spinlock_t *ptl;
1701 pte_t *orig_pte;
1702 pte_t *pte;
1703
1704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1705 ptl = pmd_trans_huge_lock(pmd, vma);
1706 if (ptl) {
1707 struct page *page;
1708
1709 page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1710 if (page)
1711 gather_stats(page, md, pmd_dirty(*pmd),
1712 HPAGE_PMD_SIZE/PAGE_SIZE);
1713 spin_unlock(ptl);
1714 return 0;
1715 }
1716
1717 if (pmd_trans_unstable(pmd))
1718 return 0;
1719 #endif
1720 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1721 do {
1722 struct page *page = can_gather_numa_stats(*pte, vma, addr);
1723 if (!page)
1724 continue;
1725 gather_stats(page, md, pte_dirty(*pte), 1);
1726
1727 } while (pte++, addr += PAGE_SIZE, addr != end);
1728 pte_unmap_unlock(orig_pte, ptl);
1729 cond_resched();
1730 return 0;
1731 }
1732 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1733 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1734 unsigned long addr, unsigned long end, struct mm_walk *walk)
1735 {
1736 pte_t huge_pte = huge_ptep_get(pte);
1737 struct numa_maps *md;
1738 struct page *page;
1739
1740 if (!pte_present(huge_pte))
1741 return 0;
1742
1743 page = pte_page(huge_pte);
1744 if (!page)
1745 return 0;
1746
1747 md = walk->private;
1748 gather_stats(page, md, pte_dirty(huge_pte), 1);
1749 return 0;
1750 }
1751
1752 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1753 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1754 unsigned long addr, unsigned long end, struct mm_walk *walk)
1755 {
1756 return 0;
1757 }
1758 #endif
1759
1760 /*
1761 * Display pages allocated per node and memory policy via /proc.
1762 */
show_numa_map(struct seq_file * m,void * v)1763 static int show_numa_map(struct seq_file *m, void *v)
1764 {
1765 struct numa_maps_private *numa_priv = m->private;
1766 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1767 struct vm_area_struct *vma = v;
1768 struct numa_maps *md = &numa_priv->md;
1769 struct file *file = vma->vm_file;
1770 struct mm_struct *mm = vma->vm_mm;
1771 struct mm_walk walk = {
1772 .hugetlb_entry = gather_hugetlb_stats,
1773 .pmd_entry = gather_pte_stats,
1774 .private = md,
1775 .mm = mm,
1776 };
1777 struct mempolicy *pol;
1778 char buffer[64];
1779 int nid;
1780
1781 if (!mm)
1782 return 0;
1783
1784 /* Ensure we start with an empty set of numa_maps statistics. */
1785 memset(md, 0, sizeof(*md));
1786
1787 pol = __get_vma_policy(vma, vma->vm_start);
1788 if (pol) {
1789 mpol_to_str(buffer, sizeof(buffer), pol);
1790 mpol_cond_put(pol);
1791 } else {
1792 mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1793 }
1794
1795 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1796
1797 if (file) {
1798 seq_puts(m, " file=");
1799 seq_file_path(m, file, "\n\t= ");
1800 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1801 seq_puts(m, " heap");
1802 } else if (is_stack(vma)) {
1803 seq_puts(m, " stack");
1804 }
1805
1806 if (is_vm_hugetlb_page(vma))
1807 seq_puts(m, " huge");
1808
1809 /* mmap_sem is held by m_start */
1810 walk_page_vma(vma, &walk);
1811
1812 if (!md->pages)
1813 goto out;
1814
1815 if (md->anon)
1816 seq_printf(m, " anon=%lu", md->anon);
1817
1818 if (md->dirty)
1819 seq_printf(m, " dirty=%lu", md->dirty);
1820
1821 if (md->pages != md->anon && md->pages != md->dirty)
1822 seq_printf(m, " mapped=%lu", md->pages);
1823
1824 if (md->mapcount_max > 1)
1825 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1826
1827 if (md->swapcache)
1828 seq_printf(m, " swapcache=%lu", md->swapcache);
1829
1830 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1831 seq_printf(m, " active=%lu", md->active);
1832
1833 if (md->writeback)
1834 seq_printf(m, " writeback=%lu", md->writeback);
1835
1836 for_each_node_state(nid, N_MEMORY)
1837 if (md->node[nid])
1838 seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1839
1840 seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1841 out:
1842 seq_putc(m, '\n');
1843 m_cache_vma(m, vma);
1844 return 0;
1845 }
1846
1847 static const struct seq_operations proc_pid_numa_maps_op = {
1848 .start = m_start,
1849 .next = m_next,
1850 .stop = m_stop,
1851 .show = show_numa_map,
1852 };
1853
pid_numa_maps_open(struct inode * inode,struct file * file)1854 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1855 {
1856 return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1857 sizeof(struct numa_maps_private));
1858 }
1859
1860 const struct file_operations proc_pid_numa_maps_operations = {
1861 .open = pid_numa_maps_open,
1862 .read = seq_read,
1863 .llseek = seq_lseek,
1864 .release = proc_map_release,
1865 };
1866
1867 #endif /* CONFIG_NUMA */
1868