1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMU_NOTIFIER_H
3 #define _LINUX_MMU_NOTIFIER_H
4 
5 #include <linux/types.h>
6 #include <linux/list.h>
7 #include <linux/spinlock.h>
8 #include <linux/mm_types.h>
9 #include <linux/srcu.h>
10 
11 struct mmu_notifier;
12 struct mmu_notifier_ops;
13 
14 /* mmu_notifier_ops flags */
15 #define MMU_INVALIDATE_DOES_NOT_BLOCK	(0x01)
16 
17 #ifdef CONFIG_MMU_NOTIFIER
18 
19 /*
20  * The mmu notifier_mm structure is allocated and installed in
21  * mm->mmu_notifier_mm inside the mm_take_all_locks() protected
22  * critical section and it's released only when mm_count reaches zero
23  * in mmdrop().
24  */
25 struct mmu_notifier_mm {
26 	/* all mmu notifiers registerd in this mm are queued in this list */
27 	struct hlist_head list;
28 	/* to serialize the list modifications and hlist_unhashed */
29 	spinlock_t lock;
30 };
31 
32 struct mmu_notifier_ops {
33 	/*
34 	 * Flags to specify behavior of callbacks for this MMU notifier.
35 	 * Used to determine which context an operation may be called.
36 	 *
37 	 * MMU_INVALIDATE_DOES_NOT_BLOCK: invalidate_range_* callbacks do not
38 	 *	block
39 	 */
40 	int flags;
41 
42 	/*
43 	 * Called either by mmu_notifier_unregister or when the mm is
44 	 * being destroyed by exit_mmap, always before all pages are
45 	 * freed. This can run concurrently with other mmu notifier
46 	 * methods (the ones invoked outside the mm context) and it
47 	 * should tear down all secondary mmu mappings and freeze the
48 	 * secondary mmu. If this method isn't implemented you've to
49 	 * be sure that nothing could possibly write to the pages
50 	 * through the secondary mmu by the time the last thread with
51 	 * tsk->mm == mm exits.
52 	 *
53 	 * As side note: the pages freed after ->release returns could
54 	 * be immediately reallocated by the gart at an alias physical
55 	 * address with a different cache model, so if ->release isn't
56 	 * implemented because all _software_ driven memory accesses
57 	 * through the secondary mmu are terminated by the time the
58 	 * last thread of this mm quits, you've also to be sure that
59 	 * speculative _hardware_ operations can't allocate dirty
60 	 * cachelines in the cpu that could not be snooped and made
61 	 * coherent with the other read and write operations happening
62 	 * through the gart alias address, so leading to memory
63 	 * corruption.
64 	 */
65 	void (*release)(struct mmu_notifier *mn,
66 			struct mm_struct *mm);
67 
68 	/*
69 	 * clear_flush_young is called after the VM is
70 	 * test-and-clearing the young/accessed bitflag in the
71 	 * pte. This way the VM will provide proper aging to the
72 	 * accesses to the page through the secondary MMUs and not
73 	 * only to the ones through the Linux pte.
74 	 * Start-end is necessary in case the secondary MMU is mapping the page
75 	 * at a smaller granularity than the primary MMU.
76 	 */
77 	int (*clear_flush_young)(struct mmu_notifier *mn,
78 				 struct mm_struct *mm,
79 				 unsigned long start,
80 				 unsigned long end);
81 
82 	/*
83 	 * clear_young is a lightweight version of clear_flush_young. Like the
84 	 * latter, it is supposed to test-and-clear the young/accessed bitflag
85 	 * in the secondary pte, but it may omit flushing the secondary tlb.
86 	 */
87 	int (*clear_young)(struct mmu_notifier *mn,
88 			   struct mm_struct *mm,
89 			   unsigned long start,
90 			   unsigned long end);
91 
92 	/*
93 	 * test_young is called to check the young/accessed bitflag in
94 	 * the secondary pte. This is used to know if the page is
95 	 * frequently used without actually clearing the flag or tearing
96 	 * down the secondary mapping on the page.
97 	 */
98 	int (*test_young)(struct mmu_notifier *mn,
99 			  struct mm_struct *mm,
100 			  unsigned long address);
101 
102 	/*
103 	 * change_pte is called in cases that pte mapping to page is changed:
104 	 * for example, when ksm remaps pte to point to a new shared page.
105 	 */
106 	void (*change_pte)(struct mmu_notifier *mn,
107 			   struct mm_struct *mm,
108 			   unsigned long address,
109 			   pte_t pte);
110 
111 	/*
112 	 * invalidate_range_start() and invalidate_range_end() must be
113 	 * paired and are called only when the mmap_sem and/or the
114 	 * locks protecting the reverse maps are held. If the subsystem
115 	 * can't guarantee that no additional references are taken to
116 	 * the pages in the range, it has to implement the
117 	 * invalidate_range() notifier to remove any references taken
118 	 * after invalidate_range_start().
119 	 *
120 	 * Invalidation of multiple concurrent ranges may be
121 	 * optionally permitted by the driver. Either way the
122 	 * establishment of sptes is forbidden in the range passed to
123 	 * invalidate_range_begin/end for the whole duration of the
124 	 * invalidate_range_begin/end critical section.
125 	 *
126 	 * invalidate_range_start() is called when all pages in the
127 	 * range are still mapped and have at least a refcount of one.
128 	 *
129 	 * invalidate_range_end() is called when all pages in the
130 	 * range have been unmapped and the pages have been freed by
131 	 * the VM.
132 	 *
133 	 * The VM will remove the page table entries and potentially
134 	 * the page between invalidate_range_start() and
135 	 * invalidate_range_end(). If the page must not be freed
136 	 * because of pending I/O or other circumstances then the
137 	 * invalidate_range_start() callback (or the initial mapping
138 	 * by the driver) must make sure that the refcount is kept
139 	 * elevated.
140 	 *
141 	 * If the driver increases the refcount when the pages are
142 	 * initially mapped into an address space then either
143 	 * invalidate_range_start() or invalidate_range_end() may
144 	 * decrease the refcount. If the refcount is decreased on
145 	 * invalidate_range_start() then the VM can free pages as page
146 	 * table entries are removed.  If the refcount is only
147 	 * droppped on invalidate_range_end() then the driver itself
148 	 * will drop the last refcount but it must take care to flush
149 	 * any secondary tlb before doing the final free on the
150 	 * page. Pages will no longer be referenced by the linux
151 	 * address space but may still be referenced by sptes until
152 	 * the last refcount is dropped.
153 	 *
154 	 * If blockable argument is set to false then the callback cannot
155 	 * sleep and has to return with -EAGAIN. 0 should be returned
156 	 * otherwise.
157 	 *
158 	 */
159 	int (*invalidate_range_start)(struct mmu_notifier *mn,
160 				       struct mm_struct *mm,
161 				       unsigned long start, unsigned long end,
162 				       bool blockable);
163 	void (*invalidate_range_end)(struct mmu_notifier *mn,
164 				     struct mm_struct *mm,
165 				     unsigned long start, unsigned long end);
166 
167 	/*
168 	 * invalidate_range() is either called between
169 	 * invalidate_range_start() and invalidate_range_end() when the
170 	 * VM has to free pages that where unmapped, but before the
171 	 * pages are actually freed, or outside of _start()/_end() when
172 	 * a (remote) TLB is necessary.
173 	 *
174 	 * If invalidate_range() is used to manage a non-CPU TLB with
175 	 * shared page-tables, it not necessary to implement the
176 	 * invalidate_range_start()/end() notifiers, as
177 	 * invalidate_range() alread catches the points in time when an
178 	 * external TLB range needs to be flushed. For more in depth
179 	 * discussion on this see Documentation/vm/mmu_notifier.rst
180 	 *
181 	 * Note that this function might be called with just a sub-range
182 	 * of what was passed to invalidate_range_start()/end(), if
183 	 * called between those functions.
184 	 *
185 	 * If this callback cannot block, and invalidate_range_{start,end}
186 	 * cannot block, mmu_notifier_ops.flags should have
187 	 * MMU_INVALIDATE_DOES_NOT_BLOCK set.
188 	 */
189 	void (*invalidate_range)(struct mmu_notifier *mn, struct mm_struct *mm,
190 				 unsigned long start, unsigned long end);
191 };
192 
193 /*
194  * The notifier chains are protected by mmap_sem and/or the reverse map
195  * semaphores. Notifier chains are only changed when all reverse maps and
196  * the mmap_sem locks are taken.
197  *
198  * Therefore notifier chains can only be traversed when either
199  *
200  * 1. mmap_sem is held.
201  * 2. One of the reverse map locks is held (i_mmap_rwsem or anon_vma->rwsem).
202  * 3. No other concurrent thread can access the list (release)
203  */
204 struct mmu_notifier {
205 	struct hlist_node hlist;
206 	const struct mmu_notifier_ops *ops;
207 };
208 
mm_has_notifiers(struct mm_struct * mm)209 static inline int mm_has_notifiers(struct mm_struct *mm)
210 {
211 	return unlikely(mm->mmu_notifier_mm);
212 }
213 
214 extern int mmu_notifier_register(struct mmu_notifier *mn,
215 				 struct mm_struct *mm);
216 extern int __mmu_notifier_register(struct mmu_notifier *mn,
217 				   struct mm_struct *mm);
218 extern void mmu_notifier_unregister(struct mmu_notifier *mn,
219 				    struct mm_struct *mm);
220 extern void mmu_notifier_unregister_no_release(struct mmu_notifier *mn,
221 					       struct mm_struct *mm);
222 extern void __mmu_notifier_mm_destroy(struct mm_struct *mm);
223 extern void __mmu_notifier_release(struct mm_struct *mm);
224 extern int __mmu_notifier_clear_flush_young(struct mm_struct *mm,
225 					  unsigned long start,
226 					  unsigned long end);
227 extern int __mmu_notifier_clear_young(struct mm_struct *mm,
228 				      unsigned long start,
229 				      unsigned long end);
230 extern int __mmu_notifier_test_young(struct mm_struct *mm,
231 				     unsigned long address);
232 extern void __mmu_notifier_change_pte(struct mm_struct *mm,
233 				      unsigned long address, pte_t pte);
234 extern int __mmu_notifier_invalidate_range_start(struct mm_struct *mm,
235 				  unsigned long start, unsigned long end,
236 				  bool blockable);
237 extern void __mmu_notifier_invalidate_range_end(struct mm_struct *mm,
238 				  unsigned long start, unsigned long end,
239 				  bool only_end);
240 extern void __mmu_notifier_invalidate_range(struct mm_struct *mm,
241 				  unsigned long start, unsigned long end);
242 extern bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm);
243 
mmu_notifier_release(struct mm_struct * mm)244 static inline void mmu_notifier_release(struct mm_struct *mm)
245 {
246 	if (mm_has_notifiers(mm))
247 		__mmu_notifier_release(mm);
248 }
249 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)250 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
251 					  unsigned long start,
252 					  unsigned long end)
253 {
254 	if (mm_has_notifiers(mm))
255 		return __mmu_notifier_clear_flush_young(mm, start, end);
256 	return 0;
257 }
258 
mmu_notifier_clear_young(struct mm_struct * mm,unsigned long start,unsigned long end)259 static inline int mmu_notifier_clear_young(struct mm_struct *mm,
260 					   unsigned long start,
261 					   unsigned long end)
262 {
263 	if (mm_has_notifiers(mm))
264 		return __mmu_notifier_clear_young(mm, start, end);
265 	return 0;
266 }
267 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)268 static inline int mmu_notifier_test_young(struct mm_struct *mm,
269 					  unsigned long address)
270 {
271 	if (mm_has_notifiers(mm))
272 		return __mmu_notifier_test_young(mm, address);
273 	return 0;
274 }
275 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)276 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
277 					   unsigned long address, pte_t pte)
278 {
279 	if (mm_has_notifiers(mm))
280 		__mmu_notifier_change_pte(mm, address, pte);
281 }
282 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)283 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
284 				  unsigned long start, unsigned long end)
285 {
286 	if (mm_has_notifiers(mm))
287 		__mmu_notifier_invalidate_range_start(mm, start, end, true);
288 }
289 
mmu_notifier_invalidate_range_start_nonblock(struct mm_struct * mm,unsigned long start,unsigned long end)290 static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm,
291 				  unsigned long start, unsigned long end)
292 {
293 	if (mm_has_notifiers(mm))
294 		return __mmu_notifier_invalidate_range_start(mm, start, end, false);
295 	return 0;
296 }
297 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)298 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
299 				  unsigned long start, unsigned long end)
300 {
301 	if (mm_has_notifiers(mm))
302 		__mmu_notifier_invalidate_range_end(mm, start, end, false);
303 }
304 
mmu_notifier_invalidate_range_only_end(struct mm_struct * mm,unsigned long start,unsigned long end)305 static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm,
306 				  unsigned long start, unsigned long end)
307 {
308 	if (mm_has_notifiers(mm))
309 		__mmu_notifier_invalidate_range_end(mm, start, end, true);
310 }
311 
mmu_notifier_invalidate_range(struct mm_struct * mm,unsigned long start,unsigned long end)312 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
313 				  unsigned long start, unsigned long end)
314 {
315 	if (mm_has_notifiers(mm))
316 		__mmu_notifier_invalidate_range(mm, start, end);
317 }
318 
mmu_notifier_mm_init(struct mm_struct * mm)319 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
320 {
321 	mm->mmu_notifier_mm = NULL;
322 }
323 
mmu_notifier_mm_destroy(struct mm_struct * mm)324 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
325 {
326 	if (mm_has_notifiers(mm))
327 		__mmu_notifier_mm_destroy(mm);
328 }
329 
330 #define ptep_clear_flush_young_notify(__vma, __address, __ptep)		\
331 ({									\
332 	int __young;							\
333 	struct vm_area_struct *___vma = __vma;				\
334 	unsigned long ___address = __address;				\
335 	__young = ptep_clear_flush_young(___vma, ___address, __ptep);	\
336 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
337 						  ___address,		\
338 						  ___address +		\
339 							PAGE_SIZE);	\
340 	__young;							\
341 })
342 
343 #define pmdp_clear_flush_young_notify(__vma, __address, __pmdp)		\
344 ({									\
345 	int __young;							\
346 	struct vm_area_struct *___vma = __vma;				\
347 	unsigned long ___address = __address;				\
348 	__young = pmdp_clear_flush_young(___vma, ___address, __pmdp);	\
349 	__young |= mmu_notifier_clear_flush_young(___vma->vm_mm,	\
350 						  ___address,		\
351 						  ___address +		\
352 							PMD_SIZE);	\
353 	__young;							\
354 })
355 
356 #define ptep_clear_young_notify(__vma, __address, __ptep)		\
357 ({									\
358 	int __young;							\
359 	struct vm_area_struct *___vma = __vma;				\
360 	unsigned long ___address = __address;				\
361 	__young = ptep_test_and_clear_young(___vma, ___address, __ptep);\
362 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
363 					    ___address + PAGE_SIZE);	\
364 	__young;							\
365 })
366 
367 #define pmdp_clear_young_notify(__vma, __address, __pmdp)		\
368 ({									\
369 	int __young;							\
370 	struct vm_area_struct *___vma = __vma;				\
371 	unsigned long ___address = __address;				\
372 	__young = pmdp_test_and_clear_young(___vma, ___address, __pmdp);\
373 	__young |= mmu_notifier_clear_young(___vma->vm_mm, ___address,	\
374 					    ___address + PMD_SIZE);	\
375 	__young;							\
376 })
377 
378 #define	ptep_clear_flush_notify(__vma, __address, __ptep)		\
379 ({									\
380 	unsigned long ___addr = __address & PAGE_MASK;			\
381 	struct mm_struct *___mm = (__vma)->vm_mm;			\
382 	pte_t ___pte;							\
383 									\
384 	___pte = ptep_clear_flush(__vma, __address, __ptep);		\
385 	mmu_notifier_invalidate_range(___mm, ___addr,			\
386 					___addr + PAGE_SIZE);		\
387 									\
388 	___pte;								\
389 })
390 
391 #define pmdp_huge_clear_flush_notify(__vma, __haddr, __pmd)		\
392 ({									\
393 	unsigned long ___haddr = __haddr & HPAGE_PMD_MASK;		\
394 	struct mm_struct *___mm = (__vma)->vm_mm;			\
395 	pmd_t ___pmd;							\
396 									\
397 	___pmd = pmdp_huge_clear_flush(__vma, __haddr, __pmd);		\
398 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
399 				      ___haddr + HPAGE_PMD_SIZE);	\
400 									\
401 	___pmd;								\
402 })
403 
404 #define pudp_huge_clear_flush_notify(__vma, __haddr, __pud)		\
405 ({									\
406 	unsigned long ___haddr = __haddr & HPAGE_PUD_MASK;		\
407 	struct mm_struct *___mm = (__vma)->vm_mm;			\
408 	pud_t ___pud;							\
409 									\
410 	___pud = pudp_huge_clear_flush(__vma, __haddr, __pud);		\
411 	mmu_notifier_invalidate_range(___mm, ___haddr,			\
412 				      ___haddr + HPAGE_PUD_SIZE);	\
413 									\
414 	___pud;								\
415 })
416 
417 /*
418  * set_pte_at_notify() sets the pte _after_ running the notifier.
419  * This is safe to start by updating the secondary MMUs, because the primary MMU
420  * pte invalidate must have already happened with a ptep_clear_flush() before
421  * set_pte_at_notify() has been invoked.  Updating the secondary MMUs first is
422  * required when we change both the protection of the mapping from read-only to
423  * read-write and the pfn (like during copy on write page faults). Otherwise the
424  * old page would remain mapped readonly in the secondary MMUs after the new
425  * page is already writable by some CPU through the primary MMU.
426  */
427 #define set_pte_at_notify(__mm, __address, __ptep, __pte)		\
428 ({									\
429 	struct mm_struct *___mm = __mm;					\
430 	unsigned long ___address = __address;				\
431 	pte_t ___pte = __pte;						\
432 									\
433 	mmu_notifier_change_pte(___mm, ___address, ___pte);		\
434 	set_pte_at(___mm, ___address, __ptep, ___pte);			\
435 })
436 
437 extern void mmu_notifier_call_srcu(struct rcu_head *rcu,
438 				   void (*func)(struct rcu_head *rcu));
439 extern void mmu_notifier_synchronize(void);
440 
441 #else /* CONFIG_MMU_NOTIFIER */
442 
mm_has_notifiers(struct mm_struct * mm)443 static inline int mm_has_notifiers(struct mm_struct *mm)
444 {
445 	return 0;
446 }
447 
mmu_notifier_release(struct mm_struct * mm)448 static inline void mmu_notifier_release(struct mm_struct *mm)
449 {
450 }
451 
mmu_notifier_clear_flush_young(struct mm_struct * mm,unsigned long start,unsigned long end)452 static inline int mmu_notifier_clear_flush_young(struct mm_struct *mm,
453 					  unsigned long start,
454 					  unsigned long end)
455 {
456 	return 0;
457 }
458 
mmu_notifier_test_young(struct mm_struct * mm,unsigned long address)459 static inline int mmu_notifier_test_young(struct mm_struct *mm,
460 					  unsigned long address)
461 {
462 	return 0;
463 }
464 
mmu_notifier_change_pte(struct mm_struct * mm,unsigned long address,pte_t pte)465 static inline void mmu_notifier_change_pte(struct mm_struct *mm,
466 					   unsigned long address, pte_t pte)
467 {
468 }
469 
mmu_notifier_invalidate_range_start(struct mm_struct * mm,unsigned long start,unsigned long end)470 static inline void mmu_notifier_invalidate_range_start(struct mm_struct *mm,
471 				  unsigned long start, unsigned long end)
472 {
473 }
474 
mmu_notifier_invalidate_range_start_nonblock(struct mm_struct * mm,unsigned long start,unsigned long end)475 static inline int mmu_notifier_invalidate_range_start_nonblock(struct mm_struct *mm,
476 				  unsigned long start, unsigned long end)
477 {
478 	return 0;
479 }
480 
mmu_notifier_invalidate_range_end(struct mm_struct * mm,unsigned long start,unsigned long end)481 static inline void mmu_notifier_invalidate_range_end(struct mm_struct *mm,
482 				  unsigned long start, unsigned long end)
483 {
484 }
485 
mmu_notifier_invalidate_range_only_end(struct mm_struct * mm,unsigned long start,unsigned long end)486 static inline void mmu_notifier_invalidate_range_only_end(struct mm_struct *mm,
487 				  unsigned long start, unsigned long end)
488 {
489 }
490 
mmu_notifier_invalidate_range(struct mm_struct * mm,unsigned long start,unsigned long end)491 static inline void mmu_notifier_invalidate_range(struct mm_struct *mm,
492 				  unsigned long start, unsigned long end)
493 {
494 }
495 
mm_has_blockable_invalidate_notifiers(struct mm_struct * mm)496 static inline bool mm_has_blockable_invalidate_notifiers(struct mm_struct *mm)
497 {
498 	return false;
499 }
500 
mmu_notifier_mm_init(struct mm_struct * mm)501 static inline void mmu_notifier_mm_init(struct mm_struct *mm)
502 {
503 }
504 
mmu_notifier_mm_destroy(struct mm_struct * mm)505 static inline void mmu_notifier_mm_destroy(struct mm_struct *mm)
506 {
507 }
508 
509 #define ptep_clear_flush_young_notify ptep_clear_flush_young
510 #define pmdp_clear_flush_young_notify pmdp_clear_flush_young
511 #define ptep_clear_young_notify ptep_test_and_clear_young
512 #define pmdp_clear_young_notify pmdp_test_and_clear_young
513 #define	ptep_clear_flush_notify ptep_clear_flush
514 #define pmdp_huge_clear_flush_notify pmdp_huge_clear_flush
515 #define pudp_huge_clear_flush_notify pudp_huge_clear_flush
516 #define set_pte_at_notify set_pte_at
517 
518 #endif /* CONFIG_MMU_NOTIFIER */
519 
520 #endif /* _LINUX_MMU_NOTIFIER_H */
521