1 /*
2  * Copyright (C) 2005 David Brownell
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 
15 #ifndef __LINUX_SPI_H
16 #define __LINUX_SPI_H
17 
18 #include <linux/device.h>
19 #include <linux/mod_devicetable.h>
20 #include <linux/slab.h>
21 #include <linux/kthread.h>
22 #include <linux/completion.h>
23 #include <linux/scatterlist.h>
24 
25 struct dma_chan;
26 struct property_entry;
27 struct spi_controller;
28 struct spi_transfer;
29 struct spi_controller_mem_ops;
30 
31 /*
32  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
33  * and SPI infrastructure.
34  */
35 extern struct bus_type spi_bus_type;
36 
37 /**
38  * struct spi_statistics - statistics for spi transfers
39  * @lock:          lock protecting this structure
40  *
41  * @messages:      number of spi-messages handled
42  * @transfers:     number of spi_transfers handled
43  * @errors:        number of errors during spi_transfer
44  * @timedout:      number of timeouts during spi_transfer
45  *
46  * @spi_sync:      number of times spi_sync is used
47  * @spi_sync_immediate:
48  *                 number of times spi_sync is executed immediately
49  *                 in calling context without queuing and scheduling
50  * @spi_async:     number of times spi_async is used
51  *
52  * @bytes:         number of bytes transferred to/from device
53  * @bytes_tx:      number of bytes sent to device
54  * @bytes_rx:      number of bytes received from device
55  *
56  * @transfer_bytes_histo:
57  *                 transfer bytes histogramm
58  *
59  * @transfers_split_maxsize:
60  *                 number of transfers that have been split because of
61  *                 maxsize limit
62  */
63 struct spi_statistics {
64 	spinlock_t		lock; /* lock for the whole structure */
65 
66 	unsigned long		messages;
67 	unsigned long		transfers;
68 	unsigned long		errors;
69 	unsigned long		timedout;
70 
71 	unsigned long		spi_sync;
72 	unsigned long		spi_sync_immediate;
73 	unsigned long		spi_async;
74 
75 	unsigned long long	bytes;
76 	unsigned long long	bytes_rx;
77 	unsigned long long	bytes_tx;
78 
79 #define SPI_STATISTICS_HISTO_SIZE 17
80 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
81 
82 	unsigned long transfers_split_maxsize;
83 };
84 
85 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
86 				       struct spi_transfer *xfer,
87 				       struct spi_controller *ctlr);
88 
89 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
90 	do {							\
91 		unsigned long flags;				\
92 		spin_lock_irqsave(&(stats)->lock, flags);	\
93 		(stats)->field += count;			\
94 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
95 	} while (0)
96 
97 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
98 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
99 
100 /**
101  * struct spi_device - Controller side proxy for an SPI slave device
102  * @dev: Driver model representation of the device.
103  * @controller: SPI controller used with the device.
104  * @master: Copy of controller, for backwards compatibility.
105  * @max_speed_hz: Maximum clock rate to be used with this chip
106  *	(on this board); may be changed by the device's driver.
107  *	The spi_transfer.speed_hz can override this for each transfer.
108  * @chip_select: Chipselect, distinguishing chips handled by @controller.
109  * @mode: The spi mode defines how data is clocked out and in.
110  *	This may be changed by the device's driver.
111  *	The "active low" default for chipselect mode can be overridden
112  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
113  *	each word in a transfer (by specifying SPI_LSB_FIRST).
114  * @bits_per_word: Data transfers involve one or more words; word sizes
115  *	like eight or 12 bits are common.  In-memory wordsizes are
116  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
117  *	This may be changed by the device's driver, or left at the
118  *	default (0) indicating protocol words are eight bit bytes.
119  *	The spi_transfer.bits_per_word can override this for each transfer.
120  * @irq: Negative, or the number passed to request_irq() to receive
121  *	interrupts from this device.
122  * @controller_state: Controller's runtime state
123  * @controller_data: Board-specific definitions for controller, such as
124  *	FIFO initialization parameters; from board_info.controller_data
125  * @modalias: Name of the driver to use with this device, or an alias
126  *	for that name.  This appears in the sysfs "modalias" attribute
127  *	for driver coldplugging, and in uevents used for hotplugging
128  * @cs_gpio: gpio number of the chipselect line (optional, -ENOENT when
129  *	not using a GPIO line)
130  *
131  * @statistics: statistics for the spi_device
132  *
133  * A @spi_device is used to interchange data between an SPI slave
134  * (usually a discrete chip) and CPU memory.
135  *
136  * In @dev, the platform_data is used to hold information about this
137  * device that's meaningful to the device's protocol driver, but not
138  * to its controller.  One example might be an identifier for a chip
139  * variant with slightly different functionality; another might be
140  * information about how this particular board wires the chip's pins.
141  */
142 struct spi_device {
143 	struct device		dev;
144 	struct spi_controller	*controller;
145 	struct spi_controller	*master;	/* compatibility layer */
146 	u32			max_speed_hz;
147 	u8			chip_select;
148 	u8			bits_per_word;
149 	u16			mode;
150 #define	SPI_CPHA	0x01			/* clock phase */
151 #define	SPI_CPOL	0x02			/* clock polarity */
152 #define	SPI_MODE_0	(0|0)			/* (original MicroWire) */
153 #define	SPI_MODE_1	(0|SPI_CPHA)
154 #define	SPI_MODE_2	(SPI_CPOL|0)
155 #define	SPI_MODE_3	(SPI_CPOL|SPI_CPHA)
156 #define	SPI_CS_HIGH	0x04			/* chipselect active high? */
157 #define	SPI_LSB_FIRST	0x08			/* per-word bits-on-wire */
158 #define	SPI_3WIRE	0x10			/* SI/SO signals shared */
159 #define	SPI_LOOP	0x20			/* loopback mode */
160 #define	SPI_NO_CS	0x40			/* 1 dev/bus, no chipselect */
161 #define	SPI_READY	0x80			/* slave pulls low to pause */
162 #define	SPI_TX_DUAL	0x100			/* transmit with 2 wires */
163 #define	SPI_TX_QUAD	0x200			/* transmit with 4 wires */
164 #define	SPI_RX_DUAL	0x400			/* receive with 2 wires */
165 #define	SPI_RX_QUAD	0x800			/* receive with 4 wires */
166 	int			irq;
167 	void			*controller_state;
168 	void			*controller_data;
169 	char			modalias[SPI_NAME_SIZE];
170 	int			cs_gpio;	/* chip select gpio */
171 
172 	/* the statistics */
173 	struct spi_statistics	statistics;
174 
175 	/*
176 	 * likely need more hooks for more protocol options affecting how
177 	 * the controller talks to each chip, like:
178 	 *  - memory packing (12 bit samples into low bits, others zeroed)
179 	 *  - priority
180 	 *  - drop chipselect after each word
181 	 *  - chipselect delays
182 	 *  - ...
183 	 */
184 };
185 
to_spi_device(struct device * dev)186 static inline struct spi_device *to_spi_device(struct device *dev)
187 {
188 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
189 }
190 
191 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)192 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
193 {
194 	return (spi && get_device(&spi->dev)) ? spi : NULL;
195 }
196 
spi_dev_put(struct spi_device * spi)197 static inline void spi_dev_put(struct spi_device *spi)
198 {
199 	if (spi)
200 		put_device(&spi->dev);
201 }
202 
203 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)204 static inline void *spi_get_ctldata(struct spi_device *spi)
205 {
206 	return spi->controller_state;
207 }
208 
spi_set_ctldata(struct spi_device * spi,void * state)209 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
210 {
211 	spi->controller_state = state;
212 }
213 
214 /* device driver data */
215 
spi_set_drvdata(struct spi_device * spi,void * data)216 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
217 {
218 	dev_set_drvdata(&spi->dev, data);
219 }
220 
spi_get_drvdata(struct spi_device * spi)221 static inline void *spi_get_drvdata(struct spi_device *spi)
222 {
223 	return dev_get_drvdata(&spi->dev);
224 }
225 
226 struct spi_message;
227 struct spi_transfer;
228 
229 /**
230  * struct spi_driver - Host side "protocol" driver
231  * @id_table: List of SPI devices supported by this driver
232  * @probe: Binds this driver to the spi device.  Drivers can verify
233  *	that the device is actually present, and may need to configure
234  *	characteristics (such as bits_per_word) which weren't needed for
235  *	the initial configuration done during system setup.
236  * @remove: Unbinds this driver from the spi device
237  * @shutdown: Standard shutdown callback used during system state
238  *	transitions such as powerdown/halt and kexec
239  * @driver: SPI device drivers should initialize the name and owner
240  *	field of this structure.
241  *
242  * This represents the kind of device driver that uses SPI messages to
243  * interact with the hardware at the other end of a SPI link.  It's called
244  * a "protocol" driver because it works through messages rather than talking
245  * directly to SPI hardware (which is what the underlying SPI controller
246  * driver does to pass those messages).  These protocols are defined in the
247  * specification for the device(s) supported by the driver.
248  *
249  * As a rule, those device protocols represent the lowest level interface
250  * supported by a driver, and it will support upper level interfaces too.
251  * Examples of such upper levels include frameworks like MTD, networking,
252  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
253  */
254 struct spi_driver {
255 	const struct spi_device_id *id_table;
256 	int			(*probe)(struct spi_device *spi);
257 	int			(*remove)(struct spi_device *spi);
258 	void			(*shutdown)(struct spi_device *spi);
259 	struct device_driver	driver;
260 };
261 
to_spi_driver(struct device_driver * drv)262 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
263 {
264 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
265 }
266 
267 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
268 
269 /**
270  * spi_unregister_driver - reverse effect of spi_register_driver
271  * @sdrv: the driver to unregister
272  * Context: can sleep
273  */
spi_unregister_driver(struct spi_driver * sdrv)274 static inline void spi_unregister_driver(struct spi_driver *sdrv)
275 {
276 	if (sdrv)
277 		driver_unregister(&sdrv->driver);
278 }
279 
280 /* use a define to avoid include chaining to get THIS_MODULE */
281 #define spi_register_driver(driver) \
282 	__spi_register_driver(THIS_MODULE, driver)
283 
284 /**
285  * module_spi_driver() - Helper macro for registering a SPI driver
286  * @__spi_driver: spi_driver struct
287  *
288  * Helper macro for SPI drivers which do not do anything special in module
289  * init/exit. This eliminates a lot of boilerplate. Each module may only
290  * use this macro once, and calling it replaces module_init() and module_exit()
291  */
292 #define module_spi_driver(__spi_driver) \
293 	module_driver(__spi_driver, spi_register_driver, \
294 			spi_unregister_driver)
295 
296 /**
297  * struct spi_controller - interface to SPI master or slave controller
298  * @dev: device interface to this driver
299  * @list: link with the global spi_controller list
300  * @bus_num: board-specific (and often SOC-specific) identifier for a
301  *	given SPI controller.
302  * @num_chipselect: chipselects are used to distinguish individual
303  *	SPI slaves, and are numbered from zero to num_chipselects.
304  *	each slave has a chipselect signal, but it's common that not
305  *	every chipselect is connected to a slave.
306  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
307  * @mode_bits: flags understood by this controller driver
308  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
309  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
310  *	supported. If set, the SPI core will reject any transfer with an
311  *	unsupported bits_per_word. If not set, this value is simply ignored,
312  *	and it's up to the individual driver to perform any validation.
313  * @min_speed_hz: Lowest supported transfer speed
314  * @max_speed_hz: Highest supported transfer speed
315  * @flags: other constraints relevant to this driver
316  * @slave: indicates that this is an SPI slave controller
317  * @max_transfer_size: function that returns the max transfer size for
318  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
319  * @max_message_size: function that returns the max message size for
320  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
321  * @io_mutex: mutex for physical bus access
322  * @bus_lock_spinlock: spinlock for SPI bus locking
323  * @bus_lock_mutex: mutex for exclusion of multiple callers
324  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
325  * @setup: updates the device mode and clocking records used by a
326  *	device's SPI controller; protocol code may call this.  This
327  *	must fail if an unrecognized or unsupported mode is requested.
328  *	It's always safe to call this unless transfers are pending on
329  *	the device whose settings are being modified.
330  * @transfer: adds a message to the controller's transfer queue.
331  * @cleanup: frees controller-specific state
332  * @can_dma: determine whether this controller supports DMA
333  * @queued: whether this controller is providing an internal message queue
334  * @kworker: thread struct for message pump
335  * @kworker_task: pointer to task for message pump kworker thread
336  * @pump_messages: work struct for scheduling work to the message pump
337  * @queue_lock: spinlock to syncronise access to message queue
338  * @queue: message queue
339  * @idling: the device is entering idle state
340  * @cur_msg: the currently in-flight message
341  * @cur_msg_prepared: spi_prepare_message was called for the currently
342  *                    in-flight message
343  * @cur_msg_mapped: message has been mapped for DMA
344  * @xfer_completion: used by core transfer_one_message()
345  * @busy: message pump is busy
346  * @running: message pump is running
347  * @rt: whether this queue is set to run as a realtime task
348  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
349  *                   while the hardware is prepared, using the parent
350  *                   device for the spidev
351  * @max_dma_len: Maximum length of a DMA transfer for the device.
352  * @prepare_transfer_hardware: a message will soon arrive from the queue
353  *	so the subsystem requests the driver to prepare the transfer hardware
354  *	by issuing this call
355  * @transfer_one_message: the subsystem calls the driver to transfer a single
356  *	message while queuing transfers that arrive in the meantime. When the
357  *	driver is finished with this message, it must call
358  *	spi_finalize_current_message() so the subsystem can issue the next
359  *	message
360  * @unprepare_transfer_hardware: there are currently no more messages on the
361  *	queue so the subsystem notifies the driver that it may relax the
362  *	hardware by issuing this call
363  * @set_cs: set the logic level of the chip select line.  May be called
364  *          from interrupt context.
365  * @prepare_message: set up the controller to transfer a single message,
366  *                   for example doing DMA mapping.  Called from threaded
367  *                   context.
368  * @transfer_one: transfer a single spi_transfer.
369  *                  - return 0 if the transfer is finished,
370  *                  - return 1 if the transfer is still in progress. When
371  *                    the driver is finished with this transfer it must
372  *                    call spi_finalize_current_transfer() so the subsystem
373  *                    can issue the next transfer. Note: transfer_one and
374  *                    transfer_one_message are mutually exclusive; when both
375  *                    are set, the generic subsystem does not call your
376  *                    transfer_one callback.
377  * @handle_err: the subsystem calls the driver to handle an error that occurs
378  *		in the generic implementation of transfer_one_message().
379  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
380  *	     This field is optional and should only be implemented if the
381  *	     controller has native support for memory like operations.
382  * @unprepare_message: undo any work done by prepare_message().
383  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
384  * @cs_gpios: Array of GPIOs to use as chip select lines; one per CS
385  *	number. Any individual value may be -ENOENT for CS lines that
386  *	are not GPIOs (driven by the SPI controller itself).
387  * @statistics: statistics for the spi_controller
388  * @dma_tx: DMA transmit channel
389  * @dma_rx: DMA receive channel
390  * @dummy_rx: dummy receive buffer for full-duplex devices
391  * @dummy_tx: dummy transmit buffer for full-duplex devices
392  * @fw_translate_cs: If the boot firmware uses different numbering scheme
393  *	what Linux expects, this optional hook can be used to translate
394  *	between the two.
395  *
396  * Each SPI controller can communicate with one or more @spi_device
397  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
398  * but not chip select signals.  Each device may be configured to use a
399  * different clock rate, since those shared signals are ignored unless
400  * the chip is selected.
401  *
402  * The driver for an SPI controller manages access to those devices through
403  * a queue of spi_message transactions, copying data between CPU memory and
404  * an SPI slave device.  For each such message it queues, it calls the
405  * message's completion function when the transaction completes.
406  */
407 struct spi_controller {
408 	struct device	dev;
409 
410 	struct list_head list;
411 
412 	/* other than negative (== assign one dynamically), bus_num is fully
413 	 * board-specific.  usually that simplifies to being SOC-specific.
414 	 * example:  one SOC has three SPI controllers, numbered 0..2,
415 	 * and one board's schematics might show it using SPI-2.  software
416 	 * would normally use bus_num=2 for that controller.
417 	 */
418 	s16			bus_num;
419 
420 	/* chipselects will be integral to many controllers; some others
421 	 * might use board-specific GPIOs.
422 	 */
423 	u16			num_chipselect;
424 
425 	/* some SPI controllers pose alignment requirements on DMAable
426 	 * buffers; let protocol drivers know about these requirements.
427 	 */
428 	u16			dma_alignment;
429 
430 	/* spi_device.mode flags understood by this controller driver */
431 	u16			mode_bits;
432 
433 	/* bitmask of supported bits_per_word for transfers */
434 	u32			bits_per_word_mask;
435 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
436 #define SPI_BIT_MASK(bits) (((bits) == 32) ? ~0U : (BIT(bits) - 1))
437 #define SPI_BPW_RANGE_MASK(min, max) (SPI_BIT_MASK(max) - SPI_BIT_MASK(min - 1))
438 
439 	/* limits on transfer speed */
440 	u32			min_speed_hz;
441 	u32			max_speed_hz;
442 
443 	/* other constraints relevant to this driver */
444 	u16			flags;
445 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
446 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
447 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
448 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
449 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
450 
451 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
452 
453 	/* flag indicating this is a non-devres managed controller */
454 	bool			devm_allocated;
455 
456 	/* flag indicating this is an SPI slave controller */
457 	bool			slave;
458 
459 	/*
460 	 * on some hardware transfer / message size may be constrained
461 	 * the limit may depend on device transfer settings
462 	 */
463 	size_t (*max_transfer_size)(struct spi_device *spi);
464 	size_t (*max_message_size)(struct spi_device *spi);
465 
466 	/* I/O mutex */
467 	struct mutex		io_mutex;
468 
469 	/* lock and mutex for SPI bus locking */
470 	spinlock_t		bus_lock_spinlock;
471 	struct mutex		bus_lock_mutex;
472 
473 	/* flag indicating that the SPI bus is locked for exclusive use */
474 	bool			bus_lock_flag;
475 
476 	/* Setup mode and clock, etc (spi driver may call many times).
477 	 *
478 	 * IMPORTANT:  this may be called when transfers to another
479 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
480 	 * which could break those transfers.
481 	 */
482 	int			(*setup)(struct spi_device *spi);
483 
484 	/* bidirectional bulk transfers
485 	 *
486 	 * + The transfer() method may not sleep; its main role is
487 	 *   just to add the message to the queue.
488 	 * + For now there's no remove-from-queue operation, or
489 	 *   any other request management
490 	 * + To a given spi_device, message queueing is pure fifo
491 	 *
492 	 * + The controller's main job is to process its message queue,
493 	 *   selecting a chip (for masters), then transferring data
494 	 * + If there are multiple spi_device children, the i/o queue
495 	 *   arbitration algorithm is unspecified (round robin, fifo,
496 	 *   priority, reservations, preemption, etc)
497 	 *
498 	 * + Chipselect stays active during the entire message
499 	 *   (unless modified by spi_transfer.cs_change != 0).
500 	 * + The message transfers use clock and SPI mode parameters
501 	 *   previously established by setup() for this device
502 	 */
503 	int			(*transfer)(struct spi_device *spi,
504 						struct spi_message *mesg);
505 
506 	/* called on release() to free memory provided by spi_controller */
507 	void			(*cleanup)(struct spi_device *spi);
508 
509 	/*
510 	 * Used to enable core support for DMA handling, if can_dma()
511 	 * exists and returns true then the transfer will be mapped
512 	 * prior to transfer_one() being called.  The driver should
513 	 * not modify or store xfer and dma_tx and dma_rx must be set
514 	 * while the device is prepared.
515 	 */
516 	bool			(*can_dma)(struct spi_controller *ctlr,
517 					   struct spi_device *spi,
518 					   struct spi_transfer *xfer);
519 
520 	/*
521 	 * These hooks are for drivers that want to use the generic
522 	 * controller transfer queueing mechanism. If these are used, the
523 	 * transfer() function above must NOT be specified by the driver.
524 	 * Over time we expect SPI drivers to be phased over to this API.
525 	 */
526 	bool				queued;
527 	struct kthread_worker		kworker;
528 	struct task_struct		*kworker_task;
529 	struct kthread_work		pump_messages;
530 	spinlock_t			queue_lock;
531 	struct list_head		queue;
532 	struct spi_message		*cur_msg;
533 	bool				idling;
534 	bool				busy;
535 	bool				running;
536 	bool				rt;
537 	bool				auto_runtime_pm;
538 	bool                            cur_msg_prepared;
539 	bool				cur_msg_mapped;
540 	struct completion               xfer_completion;
541 	size_t				max_dma_len;
542 
543 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
544 	int (*transfer_one_message)(struct spi_controller *ctlr,
545 				    struct spi_message *mesg);
546 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
547 	int (*prepare_message)(struct spi_controller *ctlr,
548 			       struct spi_message *message);
549 	int (*unprepare_message)(struct spi_controller *ctlr,
550 				 struct spi_message *message);
551 	int (*slave_abort)(struct spi_controller *ctlr);
552 
553 	/*
554 	 * These hooks are for drivers that use a generic implementation
555 	 * of transfer_one_message() provied by the core.
556 	 */
557 	void (*set_cs)(struct spi_device *spi, bool enable);
558 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
559 			    struct spi_transfer *transfer);
560 	void (*handle_err)(struct spi_controller *ctlr,
561 			   struct spi_message *message);
562 
563 	/* Optimized handlers for SPI memory-like operations. */
564 	const struct spi_controller_mem_ops *mem_ops;
565 
566 	/* gpio chip select */
567 	int			*cs_gpios;
568 
569 	/* statistics */
570 	struct spi_statistics	statistics;
571 
572 	/* DMA channels for use with core dmaengine helpers */
573 	struct dma_chan		*dma_tx;
574 	struct dma_chan		*dma_rx;
575 
576 	/* dummy data for full duplex devices */
577 	void			*dummy_rx;
578 	void			*dummy_tx;
579 
580 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
581 };
582 
spi_controller_get_devdata(struct spi_controller * ctlr)583 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
584 {
585 	return dev_get_drvdata(&ctlr->dev);
586 }
587 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)588 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
589 					      void *data)
590 {
591 	dev_set_drvdata(&ctlr->dev, data);
592 }
593 
spi_controller_get(struct spi_controller * ctlr)594 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
595 {
596 	if (!ctlr || !get_device(&ctlr->dev))
597 		return NULL;
598 	return ctlr;
599 }
600 
spi_controller_put(struct spi_controller * ctlr)601 static inline void spi_controller_put(struct spi_controller *ctlr)
602 {
603 	if (ctlr)
604 		put_device(&ctlr->dev);
605 }
606 
spi_controller_is_slave(struct spi_controller * ctlr)607 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
608 {
609 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
610 }
611 
612 /* PM calls that need to be issued by the driver */
613 extern int spi_controller_suspend(struct spi_controller *ctlr);
614 extern int spi_controller_resume(struct spi_controller *ctlr);
615 
616 /* Calls the driver make to interact with the message queue */
617 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
618 extern void spi_finalize_current_message(struct spi_controller *ctlr);
619 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
620 
621 /* the spi driver core manages memory for the spi_controller classdev */
622 extern struct spi_controller *__spi_alloc_controller(struct device *host,
623 						unsigned int size, bool slave);
624 
spi_alloc_master(struct device * host,unsigned int size)625 static inline struct spi_controller *spi_alloc_master(struct device *host,
626 						      unsigned int size)
627 {
628 	return __spi_alloc_controller(host, size, false);
629 }
630 
spi_alloc_slave(struct device * host,unsigned int size)631 static inline struct spi_controller *spi_alloc_slave(struct device *host,
632 						     unsigned int size)
633 {
634 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
635 		return NULL;
636 
637 	return __spi_alloc_controller(host, size, true);
638 }
639 
640 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
641 						   unsigned int size,
642 						   bool slave);
643 
devm_spi_alloc_master(struct device * dev,unsigned int size)644 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
645 							   unsigned int size)
646 {
647 	return __devm_spi_alloc_controller(dev, size, false);
648 }
649 
devm_spi_alloc_slave(struct device * dev,unsigned int size)650 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
651 							  unsigned int size)
652 {
653 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
654 		return NULL;
655 
656 	return __devm_spi_alloc_controller(dev, size, true);
657 }
658 
659 extern int spi_register_controller(struct spi_controller *ctlr);
660 extern int devm_spi_register_controller(struct device *dev,
661 					struct spi_controller *ctlr);
662 extern void spi_unregister_controller(struct spi_controller *ctlr);
663 
664 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
665 
666 /*
667  * SPI resource management while processing a SPI message
668  */
669 
670 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
671 				  struct spi_message *msg,
672 				  void *res);
673 
674 /**
675  * struct spi_res - spi resource management structure
676  * @entry:   list entry
677  * @release: release code called prior to freeing this resource
678  * @data:    extra data allocated for the specific use-case
679  *
680  * this is based on ideas from devres, but focused on life-cycle
681  * management during spi_message processing
682  */
683 struct spi_res {
684 	struct list_head        entry;
685 	spi_res_release_t       release;
686 	unsigned long long      data[]; /* guarantee ull alignment */
687 };
688 
689 extern void *spi_res_alloc(struct spi_device *spi,
690 			   spi_res_release_t release,
691 			   size_t size, gfp_t gfp);
692 extern void spi_res_add(struct spi_message *message, void *res);
693 extern void spi_res_free(void *res);
694 
695 extern void spi_res_release(struct spi_controller *ctlr,
696 			    struct spi_message *message);
697 
698 /*---------------------------------------------------------------------------*/
699 
700 /*
701  * I/O INTERFACE between SPI controller and protocol drivers
702  *
703  * Protocol drivers use a queue of spi_messages, each transferring data
704  * between the controller and memory buffers.
705  *
706  * The spi_messages themselves consist of a series of read+write transfer
707  * segments.  Those segments always read the same number of bits as they
708  * write; but one or the other is easily ignored by passing a null buffer
709  * pointer.  (This is unlike most types of I/O API, because SPI hardware
710  * is full duplex.)
711  *
712  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
713  * up to the protocol driver, which guarantees the integrity of both (as
714  * well as the data buffers) for as long as the message is queued.
715  */
716 
717 /**
718  * struct spi_transfer - a read/write buffer pair
719  * @tx_buf: data to be written (dma-safe memory), or NULL
720  * @rx_buf: data to be read (dma-safe memory), or NULL
721  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
722  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
723  * @tx_nbits: number of bits used for writing. If 0 the default
724  *      (SPI_NBITS_SINGLE) is used.
725  * @rx_nbits: number of bits used for reading. If 0 the default
726  *      (SPI_NBITS_SINGLE) is used.
727  * @len: size of rx and tx buffers (in bytes)
728  * @speed_hz: Select a speed other than the device default for this
729  *      transfer. If 0 the default (from @spi_device) is used.
730  * @bits_per_word: select a bits_per_word other than the device default
731  *      for this transfer. If 0 the default (from @spi_device) is used.
732  * @cs_change: affects chipselect after this transfer completes
733  * @delay_usecs: microseconds to delay after this transfer before
734  *	(optionally) changing the chipselect status, then starting
735  *	the next transfer or completing this @spi_message.
736  * @transfer_list: transfers are sequenced through @spi_message.transfers
737  * @tx_sg: Scatterlist for transmit, currently not for client use
738  * @rx_sg: Scatterlist for receive, currently not for client use
739  *
740  * SPI transfers always write the same number of bytes as they read.
741  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
742  * In some cases, they may also want to provide DMA addresses for
743  * the data being transferred; that may reduce overhead, when the
744  * underlying driver uses dma.
745  *
746  * If the transmit buffer is null, zeroes will be shifted out
747  * while filling @rx_buf.  If the receive buffer is null, the data
748  * shifted in will be discarded.  Only "len" bytes shift out (or in).
749  * It's an error to try to shift out a partial word.  (For example, by
750  * shifting out three bytes with word size of sixteen or twenty bits;
751  * the former uses two bytes per word, the latter uses four bytes.)
752  *
753  * In-memory data values are always in native CPU byte order, translated
754  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
755  * for example when bits_per_word is sixteen, buffers are 2N bytes long
756  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
757  *
758  * When the word size of the SPI transfer is not a power-of-two multiple
759  * of eight bits, those in-memory words include extra bits.  In-memory
760  * words are always seen by protocol drivers as right-justified, so the
761  * undefined (rx) or unused (tx) bits are always the most significant bits.
762  *
763  * All SPI transfers start with the relevant chipselect active.  Normally
764  * it stays selected until after the last transfer in a message.  Drivers
765  * can affect the chipselect signal using cs_change.
766  *
767  * (i) If the transfer isn't the last one in the message, this flag is
768  * used to make the chipselect briefly go inactive in the middle of the
769  * message.  Toggling chipselect in this way may be needed to terminate
770  * a chip command, letting a single spi_message perform all of group of
771  * chip transactions together.
772  *
773  * (ii) When the transfer is the last one in the message, the chip may
774  * stay selected until the next transfer.  On multi-device SPI busses
775  * with nothing blocking messages going to other devices, this is just
776  * a performance hint; starting a message to another device deselects
777  * this one.  But in other cases, this can be used to ensure correctness.
778  * Some devices need protocol transactions to be built from a series of
779  * spi_message submissions, where the content of one message is determined
780  * by the results of previous messages and where the whole transaction
781  * ends when the chipselect goes intactive.
782  *
783  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
784  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
785  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
786  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
787  *
788  * The code that submits an spi_message (and its spi_transfers)
789  * to the lower layers is responsible for managing its memory.
790  * Zero-initialize every field you don't set up explicitly, to
791  * insulate against future API updates.  After you submit a message
792  * and its transfers, ignore them until its completion callback.
793  */
794 struct spi_transfer {
795 	/* it's ok if tx_buf == rx_buf (right?)
796 	 * for MicroWire, one buffer must be null
797 	 * buffers must work with dma_*map_single() calls, unless
798 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
799 	 */
800 	const void	*tx_buf;
801 	void		*rx_buf;
802 	unsigned	len;
803 
804 	dma_addr_t	tx_dma;
805 	dma_addr_t	rx_dma;
806 	struct sg_table tx_sg;
807 	struct sg_table rx_sg;
808 
809 	unsigned	cs_change:1;
810 	unsigned	tx_nbits:3;
811 	unsigned	rx_nbits:3;
812 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
813 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
814 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
815 	u8		bits_per_word;
816 	u16		delay_usecs;
817 	u32		speed_hz;
818 
819 	struct list_head transfer_list;
820 };
821 
822 /**
823  * struct spi_message - one multi-segment SPI transaction
824  * @transfers: list of transfer segments in this transaction
825  * @spi: SPI device to which the transaction is queued
826  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
827  *	addresses for each transfer buffer
828  * @complete: called to report transaction completions
829  * @context: the argument to complete() when it's called
830  * @frame_length: the total number of bytes in the message
831  * @actual_length: the total number of bytes that were transferred in all
832  *	successful segments
833  * @status: zero for success, else negative errno
834  * @queue: for use by whichever driver currently owns the message
835  * @state: for use by whichever driver currently owns the message
836  * @resources: for resource management when the spi message is processed
837  *
838  * A @spi_message is used to execute an atomic sequence of data transfers,
839  * each represented by a struct spi_transfer.  The sequence is "atomic"
840  * in the sense that no other spi_message may use that SPI bus until that
841  * sequence completes.  On some systems, many such sequences can execute as
842  * as single programmed DMA transfer.  On all systems, these messages are
843  * queued, and might complete after transactions to other devices.  Messages
844  * sent to a given spi_device are always executed in FIFO order.
845  *
846  * The code that submits an spi_message (and its spi_transfers)
847  * to the lower layers is responsible for managing its memory.
848  * Zero-initialize every field you don't set up explicitly, to
849  * insulate against future API updates.  After you submit a message
850  * and its transfers, ignore them until its completion callback.
851  */
852 struct spi_message {
853 	struct list_head	transfers;
854 
855 	struct spi_device	*spi;
856 
857 	unsigned		is_dma_mapped:1;
858 
859 	/* REVISIT:  we might want a flag affecting the behavior of the
860 	 * last transfer ... allowing things like "read 16 bit length L"
861 	 * immediately followed by "read L bytes".  Basically imposing
862 	 * a specific message scheduling algorithm.
863 	 *
864 	 * Some controller drivers (message-at-a-time queue processing)
865 	 * could provide that as their default scheduling algorithm.  But
866 	 * others (with multi-message pipelines) could need a flag to
867 	 * tell them about such special cases.
868 	 */
869 
870 	/* completion is reported through a callback */
871 	void			(*complete)(void *context);
872 	void			*context;
873 	unsigned		frame_length;
874 	unsigned		actual_length;
875 	int			status;
876 
877 	/* for optional use by whatever driver currently owns the
878 	 * spi_message ...  between calls to spi_async and then later
879 	 * complete(), that's the spi_controller controller driver.
880 	 */
881 	struct list_head	queue;
882 	void			*state;
883 
884 	/* list of spi_res reources when the spi message is processed */
885 	struct list_head        resources;
886 };
887 
spi_message_init_no_memset(struct spi_message * m)888 static inline void spi_message_init_no_memset(struct spi_message *m)
889 {
890 	INIT_LIST_HEAD(&m->transfers);
891 	INIT_LIST_HEAD(&m->resources);
892 }
893 
spi_message_init(struct spi_message * m)894 static inline void spi_message_init(struct spi_message *m)
895 {
896 	memset(m, 0, sizeof *m);
897 	spi_message_init_no_memset(m);
898 }
899 
900 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)901 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
902 {
903 	list_add_tail(&t->transfer_list, &m->transfers);
904 }
905 
906 static inline void
spi_transfer_del(struct spi_transfer * t)907 spi_transfer_del(struct spi_transfer *t)
908 {
909 	list_del(&t->transfer_list);
910 }
911 
912 /**
913  * spi_message_init_with_transfers - Initialize spi_message and append transfers
914  * @m: spi_message to be initialized
915  * @xfers: An array of spi transfers
916  * @num_xfers: Number of items in the xfer array
917  *
918  * This function initializes the given spi_message and adds each spi_transfer in
919  * the given array to the message.
920  */
921 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)922 spi_message_init_with_transfers(struct spi_message *m,
923 struct spi_transfer *xfers, unsigned int num_xfers)
924 {
925 	unsigned int i;
926 
927 	spi_message_init(m);
928 	for (i = 0; i < num_xfers; ++i)
929 		spi_message_add_tail(&xfers[i], m);
930 }
931 
932 /* It's fine to embed message and transaction structures in other data
933  * structures so long as you don't free them while they're in use.
934  */
935 
spi_message_alloc(unsigned ntrans,gfp_t flags)936 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
937 {
938 	struct spi_message *m;
939 
940 	m = kzalloc(sizeof(struct spi_message)
941 			+ ntrans * sizeof(struct spi_transfer),
942 			flags);
943 	if (m) {
944 		unsigned i;
945 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
946 
947 		spi_message_init_no_memset(m);
948 		for (i = 0; i < ntrans; i++, t++)
949 			spi_message_add_tail(t, m);
950 	}
951 	return m;
952 }
953 
spi_message_free(struct spi_message * m)954 static inline void spi_message_free(struct spi_message *m)
955 {
956 	kfree(m);
957 }
958 
959 extern int spi_setup(struct spi_device *spi);
960 extern int spi_async(struct spi_device *spi, struct spi_message *message);
961 extern int spi_async_locked(struct spi_device *spi,
962 			    struct spi_message *message);
963 extern int spi_slave_abort(struct spi_device *spi);
964 
965 static inline size_t
spi_max_message_size(struct spi_device * spi)966 spi_max_message_size(struct spi_device *spi)
967 {
968 	struct spi_controller *ctlr = spi->controller;
969 
970 	if (!ctlr->max_message_size)
971 		return SIZE_MAX;
972 	return ctlr->max_message_size(spi);
973 }
974 
975 static inline size_t
spi_max_transfer_size(struct spi_device * spi)976 spi_max_transfer_size(struct spi_device *spi)
977 {
978 	struct spi_controller *ctlr = spi->controller;
979 	size_t tr_max = SIZE_MAX;
980 	size_t msg_max = spi_max_message_size(spi);
981 
982 	if (ctlr->max_transfer_size)
983 		tr_max = ctlr->max_transfer_size(spi);
984 
985 	/* transfer size limit must not be greater than messsage size limit */
986 	return min(tr_max, msg_max);
987 }
988 
989 /*---------------------------------------------------------------------------*/
990 
991 /* SPI transfer replacement methods which make use of spi_res */
992 
993 struct spi_replaced_transfers;
994 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
995 				       struct spi_message *msg,
996 				       struct spi_replaced_transfers *res);
997 /**
998  * struct spi_replaced_transfers - structure describing the spi_transfer
999  *                                 replacements that have occurred
1000  *                                 so that they can get reverted
1001  * @release:            some extra release code to get executed prior to
1002  *                      relasing this structure
1003  * @extradata:          pointer to some extra data if requested or NULL
1004  * @replaced_transfers: transfers that have been replaced and which need
1005  *                      to get restored
1006  * @replaced_after:     the transfer after which the @replaced_transfers
1007  *                      are to get re-inserted
1008  * @inserted:           number of transfers inserted
1009  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1010  *                      that have been replacing replaced_transfers
1011  *
1012  * note: that @extradata will point to @inserted_transfers[@inserted]
1013  * if some extra allocation is requested, so alignment will be the same
1014  * as for spi_transfers
1015  */
1016 struct spi_replaced_transfers {
1017 	spi_replaced_release_t release;
1018 	void *extradata;
1019 	struct list_head replaced_transfers;
1020 	struct list_head *replaced_after;
1021 	size_t inserted;
1022 	struct spi_transfer inserted_transfers[];
1023 };
1024 
1025 extern struct spi_replaced_transfers *spi_replace_transfers(
1026 	struct spi_message *msg,
1027 	struct spi_transfer *xfer_first,
1028 	size_t remove,
1029 	size_t insert,
1030 	spi_replaced_release_t release,
1031 	size_t extradatasize,
1032 	gfp_t gfp);
1033 
1034 /*---------------------------------------------------------------------------*/
1035 
1036 /* SPI transfer transformation methods */
1037 
1038 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1039 				       struct spi_message *msg,
1040 				       size_t maxsize,
1041 				       gfp_t gfp);
1042 
1043 /*---------------------------------------------------------------------------*/
1044 
1045 /* All these synchronous SPI transfer routines are utilities layered
1046  * over the core async transfer primitive.  Here, "synchronous" means
1047  * they will sleep uninterruptibly until the async transfer completes.
1048  */
1049 
1050 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1051 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1052 extern int spi_bus_lock(struct spi_controller *ctlr);
1053 extern int spi_bus_unlock(struct spi_controller *ctlr);
1054 
1055 /**
1056  * spi_sync_transfer - synchronous SPI data transfer
1057  * @spi: device with which data will be exchanged
1058  * @xfers: An array of spi_transfers
1059  * @num_xfers: Number of items in the xfer array
1060  * Context: can sleep
1061  *
1062  * Does a synchronous SPI data transfer of the given spi_transfer array.
1063  *
1064  * For more specific semantics see spi_sync().
1065  *
1066  * Return: Return: zero on success, else a negative error code.
1067  */
1068 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1069 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1070 	unsigned int num_xfers)
1071 {
1072 	struct spi_message msg;
1073 
1074 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1075 
1076 	return spi_sync(spi, &msg);
1077 }
1078 
1079 /**
1080  * spi_write - SPI synchronous write
1081  * @spi: device to which data will be written
1082  * @buf: data buffer
1083  * @len: data buffer size
1084  * Context: can sleep
1085  *
1086  * This function writes the buffer @buf.
1087  * Callable only from contexts that can sleep.
1088  *
1089  * Return: zero on success, else a negative error code.
1090  */
1091 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1092 spi_write(struct spi_device *spi, const void *buf, size_t len)
1093 {
1094 	struct spi_transfer	t = {
1095 			.tx_buf		= buf,
1096 			.len		= len,
1097 		};
1098 
1099 	return spi_sync_transfer(spi, &t, 1);
1100 }
1101 
1102 /**
1103  * spi_read - SPI synchronous read
1104  * @spi: device from which data will be read
1105  * @buf: data buffer
1106  * @len: data buffer size
1107  * Context: can sleep
1108  *
1109  * This function reads the buffer @buf.
1110  * Callable only from contexts that can sleep.
1111  *
1112  * Return: zero on success, else a negative error code.
1113  */
1114 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1115 spi_read(struct spi_device *spi, void *buf, size_t len)
1116 {
1117 	struct spi_transfer	t = {
1118 			.rx_buf		= buf,
1119 			.len		= len,
1120 		};
1121 
1122 	return spi_sync_transfer(spi, &t, 1);
1123 }
1124 
1125 /* this copies txbuf and rxbuf data; for small transfers only! */
1126 extern int spi_write_then_read(struct spi_device *spi,
1127 		const void *txbuf, unsigned n_tx,
1128 		void *rxbuf, unsigned n_rx);
1129 
1130 /**
1131  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1132  * @spi: device with which data will be exchanged
1133  * @cmd: command to be written before data is read back
1134  * Context: can sleep
1135  *
1136  * Callable only from contexts that can sleep.
1137  *
1138  * Return: the (unsigned) eight bit number returned by the
1139  * device, or else a negative error code.
1140  */
spi_w8r8(struct spi_device * spi,u8 cmd)1141 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1142 {
1143 	ssize_t			status;
1144 	u8			result;
1145 
1146 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1147 
1148 	/* return negative errno or unsigned value */
1149 	return (status < 0) ? status : result;
1150 }
1151 
1152 /**
1153  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1154  * @spi: device with which data will be exchanged
1155  * @cmd: command to be written before data is read back
1156  * Context: can sleep
1157  *
1158  * The number is returned in wire-order, which is at least sometimes
1159  * big-endian.
1160  *
1161  * Callable only from contexts that can sleep.
1162  *
1163  * Return: the (unsigned) sixteen bit number returned by the
1164  * device, or else a negative error code.
1165  */
spi_w8r16(struct spi_device * spi,u8 cmd)1166 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1167 {
1168 	ssize_t			status;
1169 	u16			result;
1170 
1171 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1172 
1173 	/* return negative errno or unsigned value */
1174 	return (status < 0) ? status : result;
1175 }
1176 
1177 /**
1178  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1179  * @spi: device with which data will be exchanged
1180  * @cmd: command to be written before data is read back
1181  * Context: can sleep
1182  *
1183  * This function is similar to spi_w8r16, with the exception that it will
1184  * convert the read 16 bit data word from big-endian to native endianness.
1185  *
1186  * Callable only from contexts that can sleep.
1187  *
1188  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1189  * endianness, or else a negative error code.
1190  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1191 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1192 
1193 {
1194 	ssize_t status;
1195 	__be16 result;
1196 
1197 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1198 	if (status < 0)
1199 		return status;
1200 
1201 	return be16_to_cpu(result);
1202 }
1203 
1204 /*---------------------------------------------------------------------------*/
1205 
1206 /*
1207  * INTERFACE between board init code and SPI infrastructure.
1208  *
1209  * No SPI driver ever sees these SPI device table segments, but
1210  * it's how the SPI core (or adapters that get hotplugged) grows
1211  * the driver model tree.
1212  *
1213  * As a rule, SPI devices can't be probed.  Instead, board init code
1214  * provides a table listing the devices which are present, with enough
1215  * information to bind and set up the device's driver.  There's basic
1216  * support for nonstatic configurations too; enough to handle adding
1217  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1218  */
1219 
1220 /**
1221  * struct spi_board_info - board-specific template for a SPI device
1222  * @modalias: Initializes spi_device.modalias; identifies the driver.
1223  * @platform_data: Initializes spi_device.platform_data; the particular
1224  *	data stored there is driver-specific.
1225  * @properties: Additional device properties for the device.
1226  * @controller_data: Initializes spi_device.controller_data; some
1227  *	controllers need hints about hardware setup, e.g. for DMA.
1228  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1229  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1230  *	from the chip datasheet and board-specific signal quality issues.
1231  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1232  *	by spi_new_device(), and otherwise depends on board wiring.
1233  * @chip_select: Initializes spi_device.chip_select; depends on how
1234  *	the board is wired.
1235  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1236  *	wiring (some devices support both 3WIRE and standard modes), and
1237  *	possibly presence of an inverter in the chipselect path.
1238  *
1239  * When adding new SPI devices to the device tree, these structures serve
1240  * as a partial device template.  They hold information which can't always
1241  * be determined by drivers.  Information that probe() can establish (such
1242  * as the default transfer wordsize) is not included here.
1243  *
1244  * These structures are used in two places.  Their primary role is to
1245  * be stored in tables of board-specific device descriptors, which are
1246  * declared early in board initialization and then used (much later) to
1247  * populate a controller's device tree after the that controller's driver
1248  * initializes.  A secondary (and atypical) role is as a parameter to
1249  * spi_new_device() call, which happens after those controller drivers
1250  * are active in some dynamic board configuration models.
1251  */
1252 struct spi_board_info {
1253 	/* the device name and module name are coupled, like platform_bus;
1254 	 * "modalias" is normally the driver name.
1255 	 *
1256 	 * platform_data goes to spi_device.dev.platform_data,
1257 	 * controller_data goes to spi_device.controller_data,
1258 	 * device properties are copied and attached to spi_device,
1259 	 * irq is copied too
1260 	 */
1261 	char		modalias[SPI_NAME_SIZE];
1262 	const void	*platform_data;
1263 	const struct property_entry *properties;
1264 	void		*controller_data;
1265 	int		irq;
1266 
1267 	/* slower signaling on noisy or low voltage boards */
1268 	u32		max_speed_hz;
1269 
1270 
1271 	/* bus_num is board specific and matches the bus_num of some
1272 	 * spi_controller that will probably be registered later.
1273 	 *
1274 	 * chip_select reflects how this chip is wired to that master;
1275 	 * it's less than num_chipselect.
1276 	 */
1277 	u16		bus_num;
1278 	u16		chip_select;
1279 
1280 	/* mode becomes spi_device.mode, and is essential for chips
1281 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1282 	 */
1283 	u16		mode;
1284 
1285 	/* ... may need additional spi_device chip config data here.
1286 	 * avoid stuff protocol drivers can set; but include stuff
1287 	 * needed to behave without being bound to a driver:
1288 	 *  - quirks like clock rate mattering when not selected
1289 	 */
1290 };
1291 
1292 #ifdef	CONFIG_SPI
1293 extern int
1294 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1295 #else
1296 /* board init code may ignore whether SPI is configured or not */
1297 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1298 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1299 	{ return 0; }
1300 #endif
1301 
1302 
1303 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1304  * use spi_new_device() to describe each device.  You can also call
1305  * spi_unregister_device() to start making that device vanish, but
1306  * normally that would be handled by spi_unregister_controller().
1307  *
1308  * You can also use spi_alloc_device() and spi_add_device() to use a two
1309  * stage registration sequence for each spi_device.  This gives the caller
1310  * some more control over the spi_device structure before it is registered,
1311  * but requires that caller to initialize fields that would otherwise
1312  * be defined using the board info.
1313  */
1314 extern struct spi_device *
1315 spi_alloc_device(struct spi_controller *ctlr);
1316 
1317 extern int
1318 spi_add_device(struct spi_device *spi);
1319 
1320 extern struct spi_device *
1321 spi_new_device(struct spi_controller *, struct spi_board_info *);
1322 
1323 extern void spi_unregister_device(struct spi_device *spi);
1324 
1325 extern const struct spi_device_id *
1326 spi_get_device_id(const struct spi_device *sdev);
1327 
1328 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1329 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1330 {
1331 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1332 }
1333 
1334 
1335 /* Compatibility layer */
1336 #define spi_master			spi_controller
1337 
1338 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1339 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1340 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1341 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1342 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1343 
1344 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1345 #define spi_master_set_devdata(_ctlr, _data)	\
1346 	spi_controller_set_devdata(_ctlr, _data)
1347 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1348 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1349 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1350 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1351 
1352 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1353 #define devm_spi_register_master(_dev, _ctlr) \
1354 	devm_spi_register_controller(_dev, _ctlr)
1355 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1356 
1357 #endif /* __LINUX_SPI_H */
1358