1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Arch specific cpu topology information
4 *
5 * Copyright (C) 2016, ARM Ltd.
6 * Written by: Juri Lelli, ARM Ltd.
7 */
8
9 #include <linux/acpi.h>
10 #include <linux/arch_topology.h>
11 #include <linux/cpu.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/string.h>
17 #include <linux/sched/topology.h>
18
19 DEFINE_PER_CPU(unsigned long, freq_scale) = SCHED_CAPACITY_SCALE;
20
arch_set_freq_scale(struct cpumask * cpus,unsigned long cur_freq,unsigned long max_freq)21 void arch_set_freq_scale(struct cpumask *cpus, unsigned long cur_freq,
22 unsigned long max_freq)
23 {
24 unsigned long scale;
25 int i;
26
27 scale = (cur_freq << SCHED_CAPACITY_SHIFT) / max_freq;
28
29 for_each_cpu(i, cpus)
30 per_cpu(freq_scale, i) = scale;
31 }
32
33 static DEFINE_MUTEX(cpu_scale_mutex);
34 DEFINE_PER_CPU(unsigned long, cpu_scale) = SCHED_CAPACITY_SCALE;
35
topology_set_cpu_scale(unsigned int cpu,unsigned long capacity)36 void topology_set_cpu_scale(unsigned int cpu, unsigned long capacity)
37 {
38 per_cpu(cpu_scale, cpu) = capacity;
39 }
40
cpu_capacity_show(struct device * dev,struct device_attribute * attr,char * buf)41 static ssize_t cpu_capacity_show(struct device *dev,
42 struct device_attribute *attr,
43 char *buf)
44 {
45 struct cpu *cpu = container_of(dev, struct cpu, dev);
46
47 return sprintf(buf, "%lu\n", topology_get_cpu_scale(NULL, cpu->dev.id));
48 }
49
cpu_capacity_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)50 static ssize_t cpu_capacity_store(struct device *dev,
51 struct device_attribute *attr,
52 const char *buf,
53 size_t count)
54 {
55 struct cpu *cpu = container_of(dev, struct cpu, dev);
56 int this_cpu = cpu->dev.id;
57 int i;
58 unsigned long new_capacity;
59 ssize_t ret;
60
61 if (!count)
62 return 0;
63
64 ret = kstrtoul(buf, 0, &new_capacity);
65 if (ret)
66 return ret;
67 if (new_capacity > SCHED_CAPACITY_SCALE)
68 return -EINVAL;
69
70 mutex_lock(&cpu_scale_mutex);
71 for_each_cpu(i, &cpu_topology[this_cpu].core_sibling)
72 topology_set_cpu_scale(i, new_capacity);
73 mutex_unlock(&cpu_scale_mutex);
74
75 return count;
76 }
77
78 static DEVICE_ATTR_RW(cpu_capacity);
79
register_cpu_capacity_sysctl(void)80 static int register_cpu_capacity_sysctl(void)
81 {
82 int i;
83 struct device *cpu;
84
85 for_each_possible_cpu(i) {
86 cpu = get_cpu_device(i);
87 if (!cpu) {
88 pr_err("%s: too early to get CPU%d device!\n",
89 __func__, i);
90 continue;
91 }
92 device_create_file(cpu, &dev_attr_cpu_capacity);
93 }
94
95 return 0;
96 }
97 subsys_initcall(register_cpu_capacity_sysctl);
98
99 static u32 capacity_scale;
100 static u32 *raw_capacity;
101
free_raw_capacity(void)102 static int free_raw_capacity(void)
103 {
104 kfree(raw_capacity);
105 raw_capacity = NULL;
106
107 return 0;
108 }
109
topology_normalize_cpu_scale(void)110 void topology_normalize_cpu_scale(void)
111 {
112 u64 capacity;
113 int cpu;
114
115 if (!raw_capacity)
116 return;
117
118 pr_debug("cpu_capacity: capacity_scale=%u\n", capacity_scale);
119 mutex_lock(&cpu_scale_mutex);
120 for_each_possible_cpu(cpu) {
121 pr_debug("cpu_capacity: cpu=%d raw_capacity=%u\n",
122 cpu, raw_capacity[cpu]);
123 capacity = (raw_capacity[cpu] << SCHED_CAPACITY_SHIFT)
124 / capacity_scale;
125 topology_set_cpu_scale(cpu, capacity);
126 pr_debug("cpu_capacity: CPU%d cpu_capacity=%lu\n",
127 cpu, topology_get_cpu_scale(NULL, cpu));
128 }
129 mutex_unlock(&cpu_scale_mutex);
130 }
131
topology_parse_cpu_capacity(struct device_node * cpu_node,int cpu)132 bool __init topology_parse_cpu_capacity(struct device_node *cpu_node, int cpu)
133 {
134 static bool cap_parsing_failed;
135 int ret;
136 u32 cpu_capacity;
137
138 if (cap_parsing_failed)
139 return false;
140
141 ret = of_property_read_u32(cpu_node, "capacity-dmips-mhz",
142 &cpu_capacity);
143 if (!ret) {
144 if (!raw_capacity) {
145 raw_capacity = kcalloc(num_possible_cpus(),
146 sizeof(*raw_capacity),
147 GFP_KERNEL);
148 if (!raw_capacity) {
149 pr_err("cpu_capacity: failed to allocate memory for raw capacities\n");
150 cap_parsing_failed = true;
151 return false;
152 }
153 }
154 capacity_scale = max(cpu_capacity, capacity_scale);
155 raw_capacity[cpu] = cpu_capacity;
156 pr_debug("cpu_capacity: %pOF cpu_capacity=%u (raw)\n",
157 cpu_node, raw_capacity[cpu]);
158 } else {
159 if (raw_capacity) {
160 pr_err("cpu_capacity: missing %pOF raw capacity\n",
161 cpu_node);
162 pr_err("cpu_capacity: partial information: fallback to 1024 for all CPUs\n");
163 }
164 cap_parsing_failed = true;
165 free_raw_capacity();
166 }
167
168 return !ret;
169 }
170
171 #ifdef CONFIG_CPU_FREQ
172 static cpumask_var_t cpus_to_visit;
173 static void parsing_done_workfn(struct work_struct *work);
174 static DECLARE_WORK(parsing_done_work, parsing_done_workfn);
175
176 static int
init_cpu_capacity_callback(struct notifier_block * nb,unsigned long val,void * data)177 init_cpu_capacity_callback(struct notifier_block *nb,
178 unsigned long val,
179 void *data)
180 {
181 struct cpufreq_policy *policy = data;
182 int cpu;
183
184 if (!raw_capacity)
185 return 0;
186
187 if (val != CPUFREQ_NOTIFY)
188 return 0;
189
190 pr_debug("cpu_capacity: init cpu capacity for CPUs [%*pbl] (to_visit=%*pbl)\n",
191 cpumask_pr_args(policy->related_cpus),
192 cpumask_pr_args(cpus_to_visit));
193
194 cpumask_andnot(cpus_to_visit, cpus_to_visit, policy->related_cpus);
195
196 for_each_cpu(cpu, policy->related_cpus) {
197 raw_capacity[cpu] = topology_get_cpu_scale(NULL, cpu) *
198 policy->cpuinfo.max_freq / 1000UL;
199 capacity_scale = max(raw_capacity[cpu], capacity_scale);
200 }
201
202 if (cpumask_empty(cpus_to_visit)) {
203 topology_normalize_cpu_scale();
204 free_raw_capacity();
205 pr_debug("cpu_capacity: parsing done\n");
206 schedule_work(&parsing_done_work);
207 }
208
209 return 0;
210 }
211
212 static struct notifier_block init_cpu_capacity_notifier = {
213 .notifier_call = init_cpu_capacity_callback,
214 };
215
register_cpufreq_notifier(void)216 static int __init register_cpufreq_notifier(void)
217 {
218 int ret;
219
220 /*
221 * on ACPI-based systems we need to use the default cpu capacity
222 * until we have the necessary code to parse the cpu capacity, so
223 * skip registering cpufreq notifier.
224 */
225 if (!acpi_disabled || !raw_capacity)
226 return -EINVAL;
227
228 if (!alloc_cpumask_var(&cpus_to_visit, GFP_KERNEL)) {
229 pr_err("cpu_capacity: failed to allocate memory for cpus_to_visit\n");
230 return -ENOMEM;
231 }
232
233 cpumask_copy(cpus_to_visit, cpu_possible_mask);
234
235 ret = cpufreq_register_notifier(&init_cpu_capacity_notifier,
236 CPUFREQ_POLICY_NOTIFIER);
237
238 if (ret)
239 free_cpumask_var(cpus_to_visit);
240
241 return ret;
242 }
243 core_initcall(register_cpufreq_notifier);
244
parsing_done_workfn(struct work_struct * work)245 static void parsing_done_workfn(struct work_struct *work)
246 {
247 cpufreq_unregister_notifier(&init_cpu_capacity_notifier,
248 CPUFREQ_POLICY_NOTIFIER);
249 free_cpumask_var(cpus_to_visit);
250 }
251
252 #else
253 core_initcall(free_raw_capacity);
254 #endif
255