1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	enum writeback_sync_modes sync_mode;
49 	unsigned int tagged_writepages:1;
50 	unsigned int for_kupdate:1;
51 	unsigned int range_cyclic:1;
52 	unsigned int for_background:1;
53 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
54 	unsigned int auto_free:1;	/* free on completion */
55 	enum wb_reason reason;		/* why was writeback initiated? */
56 
57 	struct list_head list;		/* pending work list */
58 	struct wb_completion *done;	/* set if the caller waits */
59 };
60 
61 /*
62  * If one wants to wait for one or more wb_writeback_works, each work's
63  * ->done should be set to a wb_completion defined using the following
64  * macro.  Once all work items are issued with wb_queue_work(), the caller
65  * can wait for the completion of all using wb_wait_for_completion().  Work
66  * items which are waited upon aren't freed automatically on completion.
67  */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
69 	struct wb_completion cmpl = {					\
70 		.cnt		= ATOMIC_INIT(1),			\
71 	}
72 
73 
74 /*
75  * If an inode is constantly having its pages dirtied, but then the
76  * updates stop dirtytime_expire_interval seconds in the past, it's
77  * possible for the worst case time between when an inode has its
78  * timestamps updated and when they finally get written out to be two
79  * dirtytime_expire_intervals.  We set the default to 12 hours (in
80  * seconds), which means most of the time inodes will have their
81  * timestamps written to disk after 12 hours, but in the worst case a
82  * few inodes might not their timestamps updated for 24 hours.
83  */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85 
wb_inode(struct list_head * head)86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88 	return list_entry(head, struct inode, i_io_list);
89 }
90 
91 /*
92  * Include the creation of the trace points after defining the
93  * wb_writeback_work structure and inline functions so that the definition
94  * remains local to this file.
95  */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98 
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100 
wb_io_lists_populated(struct bdi_writeback * wb)101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103 	if (wb_has_dirty_io(wb)) {
104 		return false;
105 	} else {
106 		set_bit(WB_has_dirty_io, &wb->state);
107 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
108 		atomic_long_add(wb->avg_write_bandwidth,
109 				&wb->bdi->tot_write_bandwidth);
110 		return true;
111 	}
112 }
113 
wb_io_lists_depopulated(struct bdi_writeback * wb)114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118 		clear_bit(WB_has_dirty_io, &wb->state);
119 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120 					&wb->bdi->tot_write_bandwidth) < 0);
121 	}
122 }
123 
124 /**
125  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126  * @inode: inode to be moved
127  * @wb: target bdi_writeback
128  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
129  *
130  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131  * Returns %true if @inode is the first occupant of the !dirty_time IO
132  * lists; otherwise, %false.
133  */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)134 static bool inode_io_list_move_locked(struct inode *inode,
135 				      struct bdi_writeback *wb,
136 				      struct list_head *head)
137 {
138 	assert_spin_locked(&wb->list_lock);
139 
140 	list_move(&inode->i_io_list, head);
141 
142 	/* dirty_time doesn't count as dirty_io until expiration */
143 	if (head != &wb->b_dirty_time)
144 		return wb_io_lists_populated(wb);
145 
146 	wb_io_lists_depopulated(wb);
147 	return false;
148 }
149 
150 /**
151  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152  * @inode: inode to be removed
153  * @wb: bdi_writeback @inode is being removed from
154  *
155  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156  * clear %WB_has_dirty_io if all are empty afterwards.
157  */
inode_io_list_del_locked(struct inode * inode,struct bdi_writeback * wb)158 static void inode_io_list_del_locked(struct inode *inode,
159 				     struct bdi_writeback *wb)
160 {
161 	assert_spin_locked(&wb->list_lock);
162 	assert_spin_locked(&inode->i_lock);
163 
164 	inode->i_state &= ~I_SYNC_QUEUED;
165 	list_del_init(&inode->i_io_list);
166 	wb_io_lists_depopulated(wb);
167 }
168 
wb_wakeup(struct bdi_writeback * wb)169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 	spin_lock_bh(&wb->work_lock);
172 	if (test_bit(WB_registered, &wb->state))
173 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)177 static void finish_writeback_work(struct bdi_writeback *wb,
178 				  struct wb_writeback_work *work)
179 {
180 	struct wb_completion *done = work->done;
181 
182 	if (work->auto_free)
183 		kfree(work);
184 	if (done && atomic_dec_and_test(&done->cnt))
185 		wake_up_all(&wb->bdi->wb_waitq);
186 }
187 
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)188 static void wb_queue_work(struct bdi_writeback *wb,
189 			  struct wb_writeback_work *work)
190 {
191 	trace_writeback_queue(wb, work);
192 
193 	if (work->done)
194 		atomic_inc(&work->done->cnt);
195 
196 	spin_lock_bh(&wb->work_lock);
197 
198 	if (test_bit(WB_registered, &wb->state)) {
199 		list_add_tail(&work->list, &wb->work_list);
200 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 	} else
202 		finish_writeback_work(wb, work);
203 
204 	spin_unlock_bh(&wb->work_lock);
205 }
206 
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
wb_wait_for_completion(struct backing_dev_info * bdi,struct wb_completion * done)218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 				   struct wb_completion *done)
220 {
221 	atomic_dec(&done->cnt);		/* put down the initial count */
222 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224 
225 #ifdef CONFIG_CGROUP_WRITEBACK
226 
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
232 
233 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 					/* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
237 					/* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 					/* one round can affect upto 5 slots */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
__inode_attach_wb(struct inode * inode,struct page * page)244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274 
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285 	__releases(&inode->i_lock)
286 	__acquires(&wb->list_lock)
287 {
288 	while (true) {
289 		struct bdi_writeback *wb = inode_to_wb(inode);
290 
291 		/*
292 		 * inode_to_wb() association is protected by both
293 		 * @inode->i_lock and @wb->list_lock but list_lock nests
294 		 * outside i_lock.  Drop i_lock and verify that the
295 		 * association hasn't changed after acquiring list_lock.
296 		 */
297 		wb_get(wb);
298 		spin_unlock(&inode->i_lock);
299 		spin_lock(&wb->list_lock);
300 
301 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
302 		if (likely(wb == inode->i_wb)) {
303 			wb_put(wb);	/* @inode already has ref */
304 			return wb;
305 		}
306 
307 		spin_unlock(&wb->list_lock);
308 		wb_put(wb);
309 		cpu_relax();
310 		spin_lock(&inode->i_lock);
311 	}
312 }
313 
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
inode_to_wb_and_lock_list(struct inode * inode)321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322 	__acquires(&wb->list_lock)
323 {
324 	spin_lock(&inode->i_lock);
325 	return locked_inode_to_wb_and_lock_list(inode);
326 }
327 
328 struct inode_switch_wbs_context {
329 	struct inode		*inode;
330 	struct bdi_writeback	*new_wb;
331 
332 	struct rcu_head		rcu_head;
333 	struct work_struct	work;
334 };
335 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338 	down_write(&bdi->wb_switch_rwsem);
339 }
340 
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	up_write(&bdi->wb_switch_rwsem);
344 }
345 
inode_switch_wbs_work_fn(struct work_struct * work)346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348 	struct inode_switch_wbs_context *isw =
349 		container_of(work, struct inode_switch_wbs_context, work);
350 	struct inode *inode = isw->inode;
351 	struct backing_dev_info *bdi = inode_to_bdi(inode);
352 	struct address_space *mapping = inode->i_mapping;
353 	struct bdi_writeback *old_wb = inode->i_wb;
354 	struct bdi_writeback *new_wb = isw->new_wb;
355 	struct radix_tree_iter iter;
356 	bool switched = false;
357 	void **slot;
358 
359 	/*
360 	 * If @inode switches cgwb membership while sync_inodes_sb() is
361 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
362 	 */
363 	down_read(&bdi->wb_switch_rwsem);
364 
365 	/*
366 	 * By the time control reaches here, RCU grace period has passed
367 	 * since I_WB_SWITCH assertion and all wb stat update transactions
368 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369 	 * synchronizing against the i_pages lock.
370 	 *
371 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
372 	 * gives us exclusion against all wb related operations on @inode
373 	 * including IO list manipulations and stat updates.
374 	 */
375 	if (old_wb < new_wb) {
376 		spin_lock(&old_wb->list_lock);
377 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378 	} else {
379 		spin_lock(&new_wb->list_lock);
380 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381 	}
382 	spin_lock(&inode->i_lock);
383 	xa_lock_irq(&mapping->i_pages);
384 
385 	/*
386 	 * Once I_FREEING is visible under i_lock, the eviction path owns
387 	 * the inode and we shouldn't modify ->i_io_list.
388 	 */
389 	if (unlikely(inode->i_state & I_FREEING))
390 		goto skip_switch;
391 
392 	/*
393 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395 	 * pages actually under writeback.
396 	 */
397 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
398 				   PAGECACHE_TAG_DIRTY) {
399 		struct page *page = radix_tree_deref_slot_protected(slot,
400 						&mapping->i_pages.xa_lock);
401 		if (likely(page) && PageDirty(page)) {
402 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
403 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
404 		}
405 	}
406 
407 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
408 				   PAGECACHE_TAG_WRITEBACK) {
409 		struct page *page = radix_tree_deref_slot_protected(slot,
410 						&mapping->i_pages.xa_lock);
411 		if (likely(page)) {
412 			WARN_ON_ONCE(!PageWriteback(page));
413 			dec_wb_stat(old_wb, WB_WRITEBACK);
414 			inc_wb_stat(new_wb, WB_WRITEBACK);
415 		}
416 	}
417 
418 	wb_get(new_wb);
419 
420 	/*
421 	 * Transfer to @new_wb's IO list if necessary.  The specific list
422 	 * @inode was on is ignored and the inode is put on ->b_dirty which
423 	 * is always correct including from ->b_dirty_time.  The transfer
424 	 * preserves @inode->dirtied_when ordering.
425 	 */
426 	if (!list_empty(&inode->i_io_list)) {
427 		struct inode *pos;
428 
429 		inode_io_list_del_locked(inode, old_wb);
430 		inode->i_wb = new_wb;
431 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 			if (time_after_eq(inode->dirtied_when,
433 					  pos->dirtied_when))
434 				break;
435 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 	} else {
437 		inode->i_wb = new_wb;
438 	}
439 
440 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 	inode->i_wb_frn_winner = 0;
442 	inode->i_wb_frn_avg_time = 0;
443 	inode->i_wb_frn_history = 0;
444 	switched = true;
445 skip_switch:
446 	/*
447 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 	 */
450 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451 
452 	xa_unlock_irq(&mapping->i_pages);
453 	spin_unlock(&inode->i_lock);
454 	spin_unlock(&new_wb->list_lock);
455 	spin_unlock(&old_wb->list_lock);
456 
457 	up_read(&bdi->wb_switch_rwsem);
458 
459 	if (switched) {
460 		wb_wakeup(new_wb);
461 		wb_put(old_wb);
462 	}
463 	wb_put(new_wb);
464 
465 	iput(inode);
466 	kfree(isw);
467 
468 	atomic_dec(&isw_nr_in_flight);
469 }
470 
inode_switch_wbs_rcu_fn(struct rcu_head * rcu_head)471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 				struct inode_switch_wbs_context, rcu_head);
475 
476 	/* needs to grab bh-unsafe locks, bounce to work item */
477 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 	queue_work(isw_wq, &isw->work);
479 }
480 
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
inode_switch_wbs(struct inode * inode,int new_wb_id)489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 	struct backing_dev_info *bdi = inode_to_bdi(inode);
492 	struct cgroup_subsys_state *memcg_css;
493 	struct inode_switch_wbs_context *isw;
494 
495 	/* noop if seems to be already in progress */
496 	if (inode->i_state & I_WB_SWITCH)
497 		return;
498 
499 	/*
500 	 * Avoid starting new switches while sync_inodes_sb() is in
501 	 * progress.  Otherwise, if the down_write protected issue path
502 	 * blocks heavily, we might end up starting a large number of
503 	 * switches which will block on the rwsem.
504 	 */
505 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
506 		return;
507 
508 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509 	if (!isw)
510 		goto out_unlock;
511 
512 	/* find and pin the new wb */
513 	rcu_read_lock();
514 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515 	if (memcg_css && !css_tryget(memcg_css))
516 		memcg_css = NULL;
517 	rcu_read_unlock();
518 	if (!memcg_css)
519 		goto out_free;
520 
521 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
522 	css_put(memcg_css);
523 	if (!isw->new_wb)
524 		goto out_free;
525 
526 	/* while holding I_WB_SWITCH, no one else can update the association */
527 	spin_lock(&inode->i_lock);
528 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
529 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
530 	    inode_to_wb(inode) == isw->new_wb) {
531 		spin_unlock(&inode->i_lock);
532 		goto out_free;
533 	}
534 	inode->i_state |= I_WB_SWITCH;
535 	__iget(inode);
536 	spin_unlock(&inode->i_lock);
537 
538 	isw->inode = inode;
539 
540 	/*
541 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
542 	 * the RCU protected stat update paths to grab the i_page
543 	 * lock so that stat transfer can synchronize against them.
544 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
545 	 */
546 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
547 
548 	atomic_inc(&isw_nr_in_flight);
549 
550 	goto out_unlock;
551 
552 out_free:
553 	if (isw->new_wb)
554 		wb_put(isw->new_wb);
555 	kfree(isw);
556 out_unlock:
557 	up_read(&bdi->wb_switch_rwsem);
558 }
559 
560 /**
561  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
562  * @wbc: writeback_control of interest
563  * @inode: target inode
564  *
565  * @inode is locked and about to be written back under the control of @wbc.
566  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
567  * writeback completion, wbc_detach_inode() should be called.  This is used
568  * to track the cgroup writeback context.
569  */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)570 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
571 				 struct inode *inode)
572 {
573 	if (!inode_cgwb_enabled(inode)) {
574 		spin_unlock(&inode->i_lock);
575 		return;
576 	}
577 
578 	wbc->wb = inode_to_wb(inode);
579 	wbc->inode = inode;
580 
581 	wbc->wb_id = wbc->wb->memcg_css->id;
582 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
583 	wbc->wb_tcand_id = 0;
584 	wbc->wb_bytes = 0;
585 	wbc->wb_lcand_bytes = 0;
586 	wbc->wb_tcand_bytes = 0;
587 
588 	wb_get(wbc->wb);
589 	spin_unlock(&inode->i_lock);
590 
591 	/*
592 	 * A dying wb indicates that either the blkcg associated with the
593 	 * memcg changed or the associated memcg is dying.  In the first
594 	 * case, a replacement wb should already be available and we should
595 	 * refresh the wb immediately.  In the second case, trying to
596 	 * refresh will keep failing.
597 	 */
598 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
599 		inode_switch_wbs(inode, wbc->wb_id);
600 }
601 
602 /**
603  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
604  * @wbc: writeback_control of the just finished writeback
605  *
606  * To be called after a writeback attempt of an inode finishes and undoes
607  * wbc_attach_and_unlock_inode().  Can be called under any context.
608  *
609  * As concurrent write sharing of an inode is expected to be very rare and
610  * memcg only tracks page ownership on first-use basis severely confining
611  * the usefulness of such sharing, cgroup writeback tracks ownership
612  * per-inode.  While the support for concurrent write sharing of an inode
613  * is deemed unnecessary, an inode being written to by different cgroups at
614  * different points in time is a lot more common, and, more importantly,
615  * charging only by first-use can too readily lead to grossly incorrect
616  * behaviors (single foreign page can lead to gigabytes of writeback to be
617  * incorrectly attributed).
618  *
619  * To resolve this issue, cgroup writeback detects the majority dirtier of
620  * an inode and transfers the ownership to it.  To avoid unnnecessary
621  * oscillation, the detection mechanism keeps track of history and gives
622  * out the switch verdict only if the foreign usage pattern is stable over
623  * a certain amount of time and/or writeback attempts.
624  *
625  * On each writeback attempt, @wbc tries to detect the majority writer
626  * using Boyer-Moore majority vote algorithm.  In addition to the byte
627  * count from the majority voting, it also counts the bytes written for the
628  * current wb and the last round's winner wb (max of last round's current
629  * wb, the winner from two rounds ago, and the last round's majority
630  * candidate).  Keeping track of the historical winner helps the algorithm
631  * to semi-reliably detect the most active writer even when it's not the
632  * absolute majority.
633  *
634  * Once the winner of the round is determined, whether the winner is
635  * foreign or not and how much IO time the round consumed is recorded in
636  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
637  * over a certain threshold, the switch verdict is given.
638  */
wbc_detach_inode(struct writeback_control * wbc)639 void wbc_detach_inode(struct writeback_control *wbc)
640 {
641 	struct bdi_writeback *wb = wbc->wb;
642 	struct inode *inode = wbc->inode;
643 	unsigned long avg_time, max_bytes, max_time;
644 	u16 history;
645 	int max_id;
646 
647 	if (!wb)
648 		return;
649 
650 	history = inode->i_wb_frn_history;
651 	avg_time = inode->i_wb_frn_avg_time;
652 
653 	/* pick the winner of this round */
654 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
655 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
656 		max_id = wbc->wb_id;
657 		max_bytes = wbc->wb_bytes;
658 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
659 		max_id = wbc->wb_lcand_id;
660 		max_bytes = wbc->wb_lcand_bytes;
661 	} else {
662 		max_id = wbc->wb_tcand_id;
663 		max_bytes = wbc->wb_tcand_bytes;
664 	}
665 
666 	/*
667 	 * Calculate the amount of IO time the winner consumed and fold it
668 	 * into the running average kept per inode.  If the consumed IO
669 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
670 	 * deciding whether to switch or not.  This is to prevent one-off
671 	 * small dirtiers from skewing the verdict.
672 	 */
673 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
674 				wb->avg_write_bandwidth);
675 	if (avg_time)
676 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
677 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
678 	else
679 		avg_time = max_time;	/* immediate catch up on first run */
680 
681 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
682 		int slots;
683 
684 		/*
685 		 * The switch verdict is reached if foreign wb's consume
686 		 * more than a certain proportion of IO time in a
687 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
688 		 * history mask where each bit represents one sixteenth of
689 		 * the period.  Determine the number of slots to shift into
690 		 * history from @max_time.
691 		 */
692 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
693 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
694 		history <<= slots;
695 		if (wbc->wb_id != max_id)
696 			history |= (1U << slots) - 1;
697 
698 		/*
699 		 * Switch if the current wb isn't the consistent winner.
700 		 * If there are multiple closely competing dirtiers, the
701 		 * inode may switch across them repeatedly over time, which
702 		 * is okay.  The main goal is avoiding keeping an inode on
703 		 * the wrong wb for an extended period of time.
704 		 */
705 		if (hweight16(history) > WB_FRN_HIST_THR_SLOTS)
706 			inode_switch_wbs(inode, max_id);
707 	}
708 
709 	/*
710 	 * Multiple instances of this function may race to update the
711 	 * following fields but we don't mind occassional inaccuracies.
712 	 */
713 	inode->i_wb_frn_winner = max_id;
714 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
715 	inode->i_wb_frn_history = history;
716 
717 	wb_put(wbc->wb);
718 	wbc->wb = NULL;
719 }
720 
721 /**
722  * wbc_account_io - account IO issued during writeback
723  * @wbc: writeback_control of the writeback in progress
724  * @page: page being written out
725  * @bytes: number of bytes being written out
726  *
727  * @bytes from @page are about to written out during the writeback
728  * controlled by @wbc.  Keep the book for foreign inode detection.  See
729  * wbc_detach_inode().
730  */
wbc_account_io(struct writeback_control * wbc,struct page * page,size_t bytes)731 void wbc_account_io(struct writeback_control *wbc, struct page *page,
732 		    size_t bytes)
733 {
734 	struct cgroup_subsys_state *css;
735 	int id;
736 
737 	/*
738 	 * pageout() path doesn't attach @wbc to the inode being written
739 	 * out.  This is intentional as we don't want the function to block
740 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
741 	 * regular writeback instead of writing things out itself.
742 	 */
743 	if (!wbc->wb)
744 		return;
745 
746 	css = mem_cgroup_css_from_page(page);
747 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
748 	if (!(css->flags & CSS_ONLINE))
749 		return;
750 
751 	id = css->id;
752 
753 	if (id == wbc->wb_id) {
754 		wbc->wb_bytes += bytes;
755 		return;
756 	}
757 
758 	if (id == wbc->wb_lcand_id)
759 		wbc->wb_lcand_bytes += bytes;
760 
761 	/* Boyer-Moore majority vote algorithm */
762 	if (!wbc->wb_tcand_bytes)
763 		wbc->wb_tcand_id = id;
764 	if (id == wbc->wb_tcand_id)
765 		wbc->wb_tcand_bytes += bytes;
766 	else
767 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
768 }
769 EXPORT_SYMBOL_GPL(wbc_account_io);
770 
771 /**
772  * inode_congested - test whether an inode is congested
773  * @inode: inode to test for congestion (may be NULL)
774  * @cong_bits: mask of WB_[a]sync_congested bits to test
775  *
776  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
777  * bits to test and the return value is the mask of set bits.
778  *
779  * If cgroup writeback is enabled for @inode, the congestion state is
780  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
781  * associated with @inode is congested; otherwise, the root wb's congestion
782  * state is used.
783  *
784  * @inode is allowed to be NULL as this function is often called on
785  * mapping->host which is NULL for the swapper space.
786  */
inode_congested(struct inode * inode,int cong_bits)787 int inode_congested(struct inode *inode, int cong_bits)
788 {
789 	/*
790 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
791 	 * Start transaction iff ->i_wb is visible.
792 	 */
793 	if (inode && inode_to_wb_is_valid(inode)) {
794 		struct bdi_writeback *wb;
795 		struct wb_lock_cookie lock_cookie = {};
796 		bool congested;
797 
798 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
799 		congested = wb_congested(wb, cong_bits);
800 		unlocked_inode_to_wb_end(inode, &lock_cookie);
801 		return congested;
802 	}
803 
804 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
805 }
806 EXPORT_SYMBOL_GPL(inode_congested);
807 
808 /**
809  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
810  * @wb: target bdi_writeback to split @nr_pages to
811  * @nr_pages: number of pages to write for the whole bdi
812  *
813  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
814  * relation to the total write bandwidth of all wb's w/ dirty inodes on
815  * @wb->bdi.
816  */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)817 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
818 {
819 	unsigned long this_bw = wb->avg_write_bandwidth;
820 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
821 
822 	if (nr_pages == LONG_MAX)
823 		return LONG_MAX;
824 
825 	/*
826 	 * This may be called on clean wb's and proportional distribution
827 	 * may not make sense, just use the original @nr_pages in those
828 	 * cases.  In general, we wanna err on the side of writing more.
829 	 */
830 	if (!tot_bw || this_bw >= tot_bw)
831 		return nr_pages;
832 	else
833 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
834 }
835 
836 /**
837  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
838  * @bdi: target backing_dev_info
839  * @base_work: wb_writeback_work to issue
840  * @skip_if_busy: skip wb's which already have writeback in progress
841  *
842  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
843  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
844  * distributed to the busy wbs according to each wb's proportion in the
845  * total active write bandwidth of @bdi.
846  */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)847 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
848 				  struct wb_writeback_work *base_work,
849 				  bool skip_if_busy)
850 {
851 	struct bdi_writeback *last_wb = NULL;
852 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
853 					      struct bdi_writeback, bdi_node);
854 
855 	might_sleep();
856 restart:
857 	rcu_read_lock();
858 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
859 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
860 		struct wb_writeback_work fallback_work;
861 		struct wb_writeback_work *work;
862 		long nr_pages;
863 
864 		if (last_wb) {
865 			wb_put(last_wb);
866 			last_wb = NULL;
867 		}
868 
869 		/* SYNC_ALL writes out I_DIRTY_TIME too */
870 		if (!wb_has_dirty_io(wb) &&
871 		    (base_work->sync_mode == WB_SYNC_NONE ||
872 		     list_empty(&wb->b_dirty_time)))
873 			continue;
874 		if (skip_if_busy && writeback_in_progress(wb))
875 			continue;
876 
877 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
878 
879 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
880 		if (work) {
881 			*work = *base_work;
882 			work->nr_pages = nr_pages;
883 			work->auto_free = 1;
884 			wb_queue_work(wb, work);
885 			continue;
886 		}
887 
888 		/* alloc failed, execute synchronously using on-stack fallback */
889 		work = &fallback_work;
890 		*work = *base_work;
891 		work->nr_pages = nr_pages;
892 		work->auto_free = 0;
893 		work->done = &fallback_work_done;
894 
895 		wb_queue_work(wb, work);
896 
897 		/*
898 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
899 		 * continuing iteration from @wb after dropping and
900 		 * regrabbing rcu read lock.
901 		 */
902 		wb_get(wb);
903 		last_wb = wb;
904 
905 		rcu_read_unlock();
906 		wb_wait_for_completion(bdi, &fallback_work_done);
907 		goto restart;
908 	}
909 	rcu_read_unlock();
910 
911 	if (last_wb)
912 		wb_put(last_wb);
913 }
914 
915 /**
916  * cgroup_writeback_umount - flush inode wb switches for umount
917  *
918  * This function is called when a super_block is about to be destroyed and
919  * flushes in-flight inode wb switches.  An inode wb switch goes through
920  * RCU and then workqueue, so the two need to be flushed in order to ensure
921  * that all previously scheduled switches are finished.  As wb switches are
922  * rare occurrences and synchronize_rcu() can take a while, perform
923  * flushing iff wb switches are in flight.
924  */
cgroup_writeback_umount(void)925 void cgroup_writeback_umount(void)
926 {
927 	if (atomic_read(&isw_nr_in_flight)) {
928 		/*
929 		 * Use rcu_barrier() to wait for all pending callbacks to
930 		 * ensure that all in-flight wb switches are in the workqueue.
931 		 */
932 		rcu_barrier();
933 		flush_workqueue(isw_wq);
934 	}
935 }
936 
cgroup_writeback_init(void)937 static int __init cgroup_writeback_init(void)
938 {
939 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
940 	if (!isw_wq)
941 		return -ENOMEM;
942 	return 0;
943 }
944 fs_initcall(cgroup_writeback_init);
945 
946 #else	/* CONFIG_CGROUP_WRITEBACK */
947 
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)948 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)949 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
950 
951 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)952 locked_inode_to_wb_and_lock_list(struct inode *inode)
953 	__releases(&inode->i_lock)
954 	__acquires(&wb->list_lock)
955 {
956 	struct bdi_writeback *wb = inode_to_wb(inode);
957 
958 	spin_unlock(&inode->i_lock);
959 	spin_lock(&wb->list_lock);
960 	return wb;
961 }
962 
inode_to_wb_and_lock_list(struct inode * inode)963 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
964 	__acquires(&wb->list_lock)
965 {
966 	struct bdi_writeback *wb = inode_to_wb(inode);
967 
968 	spin_lock(&wb->list_lock);
969 	return wb;
970 }
971 
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)972 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
973 {
974 	return nr_pages;
975 }
976 
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)977 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
978 				  struct wb_writeback_work *base_work,
979 				  bool skip_if_busy)
980 {
981 	might_sleep();
982 
983 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
984 		base_work->auto_free = 0;
985 		wb_queue_work(&bdi->wb, base_work);
986 	}
987 }
988 
989 #endif	/* CONFIG_CGROUP_WRITEBACK */
990 
991 /*
992  * Add in the number of potentially dirty inodes, because each inode
993  * write can dirty pagecache in the underlying blockdev.
994  */
get_nr_dirty_pages(void)995 static unsigned long get_nr_dirty_pages(void)
996 {
997 	return global_node_page_state(NR_FILE_DIRTY) +
998 		global_node_page_state(NR_UNSTABLE_NFS) +
999 		get_nr_dirty_inodes();
1000 }
1001 
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1002 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1003 {
1004 	if (!wb_has_dirty_io(wb))
1005 		return;
1006 
1007 	/*
1008 	 * All callers of this function want to start writeback of all
1009 	 * dirty pages. Places like vmscan can call this at a very
1010 	 * high frequency, causing pointless allocations of tons of
1011 	 * work items and keeping the flusher threads busy retrieving
1012 	 * that work. Ensure that we only allow one of them pending and
1013 	 * inflight at the time.
1014 	 */
1015 	if (test_bit(WB_start_all, &wb->state) ||
1016 	    test_and_set_bit(WB_start_all, &wb->state))
1017 		return;
1018 
1019 	wb->start_all_reason = reason;
1020 	wb_wakeup(wb);
1021 }
1022 
1023 /**
1024  * wb_start_background_writeback - start background writeback
1025  * @wb: bdi_writback to write from
1026  *
1027  * Description:
1028  *   This makes sure WB_SYNC_NONE background writeback happens. When
1029  *   this function returns, it is only guaranteed that for given wb
1030  *   some IO is happening if we are over background dirty threshold.
1031  *   Caller need not hold sb s_umount semaphore.
1032  */
wb_start_background_writeback(struct bdi_writeback * wb)1033 void wb_start_background_writeback(struct bdi_writeback *wb)
1034 {
1035 	/*
1036 	 * We just wake up the flusher thread. It will perform background
1037 	 * writeback as soon as there is no other work to do.
1038 	 */
1039 	trace_writeback_wake_background(wb);
1040 	wb_wakeup(wb);
1041 }
1042 
1043 /*
1044  * Remove the inode from the writeback list it is on.
1045  */
inode_io_list_del(struct inode * inode)1046 void inode_io_list_del(struct inode *inode)
1047 {
1048 	struct bdi_writeback *wb;
1049 
1050 	wb = inode_to_wb_and_lock_list(inode);
1051 	spin_lock(&inode->i_lock);
1052 	inode_io_list_del_locked(inode, wb);
1053 	spin_unlock(&inode->i_lock);
1054 	spin_unlock(&wb->list_lock);
1055 }
1056 
1057 /*
1058  * mark an inode as under writeback on the sb
1059  */
sb_mark_inode_writeback(struct inode * inode)1060 void sb_mark_inode_writeback(struct inode *inode)
1061 {
1062 	struct super_block *sb = inode->i_sb;
1063 	unsigned long flags;
1064 
1065 	if (list_empty(&inode->i_wb_list)) {
1066 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1067 		if (list_empty(&inode->i_wb_list)) {
1068 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1069 			trace_sb_mark_inode_writeback(inode);
1070 		}
1071 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1072 	}
1073 }
1074 
1075 /*
1076  * clear an inode as under writeback on the sb
1077  */
sb_clear_inode_writeback(struct inode * inode)1078 void sb_clear_inode_writeback(struct inode *inode)
1079 {
1080 	struct super_block *sb = inode->i_sb;
1081 	unsigned long flags;
1082 
1083 	if (!list_empty(&inode->i_wb_list)) {
1084 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1085 		if (!list_empty(&inode->i_wb_list)) {
1086 			list_del_init(&inode->i_wb_list);
1087 			trace_sb_clear_inode_writeback(inode);
1088 		}
1089 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1090 	}
1091 }
1092 
1093 /*
1094  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1095  * furthest end of its superblock's dirty-inode list.
1096  *
1097  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1098  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1099  * the case then the inode must have been redirtied while it was being written
1100  * out and we don't reset its dirtied_when.
1101  */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1102 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1103 {
1104 	assert_spin_locked(&inode->i_lock);
1105 
1106 	if (!list_empty(&wb->b_dirty)) {
1107 		struct inode *tail;
1108 
1109 		tail = wb_inode(wb->b_dirty.next);
1110 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1111 			inode->dirtied_when = jiffies;
1112 	}
1113 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1114 	inode->i_state &= ~I_SYNC_QUEUED;
1115 }
1116 
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1117 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1118 {
1119 	spin_lock(&inode->i_lock);
1120 	redirty_tail_locked(inode, wb);
1121 	spin_unlock(&inode->i_lock);
1122 }
1123 
1124 /*
1125  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1126  */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1127 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1128 {
1129 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1130 }
1131 
inode_sync_complete(struct inode * inode)1132 static void inode_sync_complete(struct inode *inode)
1133 {
1134 	inode->i_state &= ~I_SYNC;
1135 	/* If inode is clean an unused, put it into LRU now... */
1136 	inode_add_lru(inode);
1137 	/* Waiters must see I_SYNC cleared before being woken up */
1138 	smp_mb();
1139 	wake_up_bit(&inode->i_state, __I_SYNC);
1140 }
1141 
inode_dirtied_after(struct inode * inode,unsigned long t)1142 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1143 {
1144 	bool ret = time_after(inode->dirtied_when, t);
1145 #ifndef CONFIG_64BIT
1146 	/*
1147 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1148 	 * It _appears_ to be in the future, but is actually in distant past.
1149 	 * This test is necessary to prevent such wrapped-around relative times
1150 	 * from permanently stopping the whole bdi writeback.
1151 	 */
1152 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1153 #endif
1154 	return ret;
1155 }
1156 
1157 #define EXPIRE_DIRTY_ATIME 0x0001
1158 
1159 /*
1160  * Move expired (dirtied before dirtied_before) dirty inodes from
1161  * @delaying_queue to @dispatch_queue.
1162  */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1163 static int move_expired_inodes(struct list_head *delaying_queue,
1164 			       struct list_head *dispatch_queue,
1165 			       unsigned long dirtied_before)
1166 {
1167 	LIST_HEAD(tmp);
1168 	struct list_head *pos, *node;
1169 	struct super_block *sb = NULL;
1170 	struct inode *inode;
1171 	int do_sb_sort = 0;
1172 	int moved = 0;
1173 
1174 	while (!list_empty(delaying_queue)) {
1175 		inode = wb_inode(delaying_queue->prev);
1176 		if (inode_dirtied_after(inode, dirtied_before))
1177 			break;
1178 		list_move(&inode->i_io_list, &tmp);
1179 		moved++;
1180 		spin_lock(&inode->i_lock);
1181 		inode->i_state |= I_SYNC_QUEUED;
1182 		spin_unlock(&inode->i_lock);
1183 		if (sb_is_blkdev_sb(inode->i_sb))
1184 			continue;
1185 		if (sb && sb != inode->i_sb)
1186 			do_sb_sort = 1;
1187 		sb = inode->i_sb;
1188 	}
1189 
1190 	/* just one sb in list, splice to dispatch_queue and we're done */
1191 	if (!do_sb_sort) {
1192 		list_splice(&tmp, dispatch_queue);
1193 		goto out;
1194 	}
1195 
1196 	/* Move inodes from one superblock together */
1197 	while (!list_empty(&tmp)) {
1198 		sb = wb_inode(tmp.prev)->i_sb;
1199 		list_for_each_prev_safe(pos, node, &tmp) {
1200 			inode = wb_inode(pos);
1201 			if (inode->i_sb == sb)
1202 				list_move(&inode->i_io_list, dispatch_queue);
1203 		}
1204 	}
1205 out:
1206 	return moved;
1207 }
1208 
1209 /*
1210  * Queue all expired dirty inodes for io, eldest first.
1211  * Before
1212  *         newly dirtied     b_dirty    b_io    b_more_io
1213  *         =============>    gf         edc     BA
1214  * After
1215  *         newly dirtied     b_dirty    b_io    b_more_io
1216  *         =============>    g          fBAedc
1217  *                                           |
1218  *                                           +--> dequeue for IO
1219  */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1220 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1221 		     unsigned long dirtied_before)
1222 {
1223 	int moved;
1224 	unsigned long time_expire_jif = dirtied_before;
1225 
1226 	assert_spin_locked(&wb->list_lock);
1227 	list_splice_init(&wb->b_more_io, &wb->b_io);
1228 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1229 	if (!work->for_sync)
1230 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1231 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1232 				     time_expire_jif);
1233 	if (moved)
1234 		wb_io_lists_populated(wb);
1235 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1236 }
1237 
write_inode(struct inode * inode,struct writeback_control * wbc)1238 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1239 {
1240 	int ret;
1241 
1242 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1243 		trace_writeback_write_inode_start(inode, wbc);
1244 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1245 		trace_writeback_write_inode(inode, wbc);
1246 		return ret;
1247 	}
1248 	return 0;
1249 }
1250 
1251 /*
1252  * Wait for writeback on an inode to complete. Called with i_lock held.
1253  * Caller must make sure inode cannot go away when we drop i_lock.
1254  */
__inode_wait_for_writeback(struct inode * inode)1255 static void __inode_wait_for_writeback(struct inode *inode)
1256 	__releases(inode->i_lock)
1257 	__acquires(inode->i_lock)
1258 {
1259 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1260 	wait_queue_head_t *wqh;
1261 
1262 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1263 	while (inode->i_state & I_SYNC) {
1264 		spin_unlock(&inode->i_lock);
1265 		__wait_on_bit(wqh, &wq, bit_wait,
1266 			      TASK_UNINTERRUPTIBLE);
1267 		spin_lock(&inode->i_lock);
1268 	}
1269 }
1270 
1271 /*
1272  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1273  */
inode_wait_for_writeback(struct inode * inode)1274 void inode_wait_for_writeback(struct inode *inode)
1275 {
1276 	spin_lock(&inode->i_lock);
1277 	__inode_wait_for_writeback(inode);
1278 	spin_unlock(&inode->i_lock);
1279 }
1280 
1281 /*
1282  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1283  * held and drops it. It is aimed for callers not holding any inode reference
1284  * so once i_lock is dropped, inode can go away.
1285  */
inode_sleep_on_writeback(struct inode * inode)1286 static void inode_sleep_on_writeback(struct inode *inode)
1287 	__releases(inode->i_lock)
1288 {
1289 	DEFINE_WAIT(wait);
1290 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1291 	int sleep;
1292 
1293 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1294 	sleep = inode->i_state & I_SYNC;
1295 	spin_unlock(&inode->i_lock);
1296 	if (sleep)
1297 		schedule();
1298 	finish_wait(wqh, &wait);
1299 }
1300 
1301 /*
1302  * Find proper writeback list for the inode depending on its current state and
1303  * possibly also change of its state while we were doing writeback.  Here we
1304  * handle things such as livelock prevention or fairness of writeback among
1305  * inodes. This function can be called only by flusher thread - noone else
1306  * processes all inodes in writeback lists and requeueing inodes behind flusher
1307  * thread's back can have unexpected consequences.
1308  */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1309 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1310 			  struct writeback_control *wbc)
1311 {
1312 	if (inode->i_state & I_FREEING)
1313 		return;
1314 
1315 	/*
1316 	 * Sync livelock prevention. Each inode is tagged and synced in one
1317 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1318 	 * the dirty time to prevent enqueue and sync it again.
1319 	 */
1320 	if ((inode->i_state & I_DIRTY) &&
1321 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1322 		inode->dirtied_when = jiffies;
1323 
1324 	if (wbc->pages_skipped) {
1325 		/*
1326 		 * writeback is not making progress due to locked
1327 		 * buffers. Skip this inode for now.
1328 		 */
1329 		redirty_tail_locked(inode, wb);
1330 		return;
1331 	}
1332 
1333 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1334 		/*
1335 		 * We didn't write back all the pages.  nfs_writepages()
1336 		 * sometimes bales out without doing anything.
1337 		 */
1338 		if (wbc->nr_to_write <= 0) {
1339 			/* Slice used up. Queue for next turn. */
1340 			requeue_io(inode, wb);
1341 		} else {
1342 			/*
1343 			 * Writeback blocked by something other than
1344 			 * congestion. Delay the inode for some time to
1345 			 * avoid spinning on the CPU (100% iowait)
1346 			 * retrying writeback of the dirty page/inode
1347 			 * that cannot be performed immediately.
1348 			 */
1349 			redirty_tail_locked(inode, wb);
1350 		}
1351 	} else if (inode->i_state & I_DIRTY) {
1352 		/*
1353 		 * Filesystems can dirty the inode during writeback operations,
1354 		 * such as delayed allocation during submission or metadata
1355 		 * updates after data IO completion.
1356 		 */
1357 		redirty_tail_locked(inode, wb);
1358 	} else if (inode->i_state & I_DIRTY_TIME) {
1359 		inode->dirtied_when = jiffies;
1360 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1361 		inode->i_state &= ~I_SYNC_QUEUED;
1362 	} else {
1363 		/* The inode is clean. Remove from writeback lists. */
1364 		inode_io_list_del_locked(inode, wb);
1365 	}
1366 }
1367 
1368 /*
1369  * Write out an inode and its dirty pages. Do not update the writeback list
1370  * linkage. That is left to the caller. The caller is also responsible for
1371  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1372  */
1373 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1374 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1375 {
1376 	struct address_space *mapping = inode->i_mapping;
1377 	long nr_to_write = wbc->nr_to_write;
1378 	unsigned dirty;
1379 	int ret;
1380 
1381 	WARN_ON(!(inode->i_state & I_SYNC));
1382 
1383 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1384 
1385 	ret = do_writepages(mapping, wbc);
1386 
1387 	/*
1388 	 * Make sure to wait on the data before writing out the metadata.
1389 	 * This is important for filesystems that modify metadata on data
1390 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1391 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1392 	 * inode metadata is written back correctly.
1393 	 */
1394 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1395 		int err = filemap_fdatawait(mapping);
1396 		if (ret == 0)
1397 			ret = err;
1398 	}
1399 
1400 	/*
1401 	 * If the inode has dirty timestamps and we need to write them, call
1402 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1403 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1404 	 */
1405 	if ((inode->i_state & I_DIRTY_TIME) &&
1406 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync ||
1407 	     time_after(jiffies, inode->dirtied_time_when +
1408 			dirtytime_expire_interval * HZ))) {
1409 		trace_writeback_lazytime(inode);
1410 		mark_inode_dirty_sync(inode);
1411 	}
1412 
1413 	/*
1414 	 * Some filesystems may redirty the inode during the writeback
1415 	 * due to delalloc, clear dirty metadata flags right before
1416 	 * write_inode()
1417 	 */
1418 	spin_lock(&inode->i_lock);
1419 	dirty = inode->i_state & I_DIRTY;
1420 	inode->i_state &= ~dirty;
1421 
1422 	/*
1423 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1424 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1425 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1426 	 * inode.
1427 	 *
1428 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1429 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1430 	 * necessary.  This guarantees that either __mark_inode_dirty()
1431 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1432 	 */
1433 	smp_mb();
1434 
1435 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1436 		inode->i_state |= I_DIRTY_PAGES;
1437 
1438 	spin_unlock(&inode->i_lock);
1439 
1440 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1441 	if (dirty & ~I_DIRTY_PAGES) {
1442 		int err = write_inode(inode, wbc);
1443 		if (ret == 0)
1444 			ret = err;
1445 	}
1446 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1447 	return ret;
1448 }
1449 
1450 /*
1451  * Write out an inode's dirty pages. Either the caller has an active reference
1452  * on the inode or the inode has I_WILL_FREE set.
1453  *
1454  * This function is designed to be called for writing back one inode which
1455  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1456  * and does more profound writeback list handling in writeback_sb_inodes().
1457  */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1458 static int writeback_single_inode(struct inode *inode,
1459 				  struct writeback_control *wbc)
1460 {
1461 	struct bdi_writeback *wb;
1462 	int ret = 0;
1463 
1464 	spin_lock(&inode->i_lock);
1465 	if (!atomic_read(&inode->i_count))
1466 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1467 	else
1468 		WARN_ON(inode->i_state & I_WILL_FREE);
1469 
1470 	if (inode->i_state & I_SYNC) {
1471 		if (wbc->sync_mode != WB_SYNC_ALL)
1472 			goto out;
1473 		/*
1474 		 * It's a data-integrity sync. We must wait. Since callers hold
1475 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1476 		 * away under us.
1477 		 */
1478 		__inode_wait_for_writeback(inode);
1479 	}
1480 	WARN_ON(inode->i_state & I_SYNC);
1481 	/*
1482 	 * Skip inode if it is clean and we have no outstanding writeback in
1483 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1484 	 * function since flusher thread may be doing for example sync in
1485 	 * parallel and if we move the inode, it could get skipped. So here we
1486 	 * make sure inode is on some writeback list and leave it there unless
1487 	 * we have completely cleaned the inode.
1488 	 */
1489 	if (!(inode->i_state & I_DIRTY_ALL) &&
1490 	    (wbc->sync_mode != WB_SYNC_ALL ||
1491 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1492 		goto out;
1493 	inode->i_state |= I_SYNC;
1494 	wbc_attach_and_unlock_inode(wbc, inode);
1495 
1496 	ret = __writeback_single_inode(inode, wbc);
1497 
1498 	wbc_detach_inode(wbc);
1499 
1500 	wb = inode_to_wb_and_lock_list(inode);
1501 	spin_lock(&inode->i_lock);
1502 	/*
1503 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1504 	 * touch it. See comment above for explanation.
1505 	 */
1506 	if (!(inode->i_state & I_DIRTY_ALL))
1507 		inode_io_list_del_locked(inode, wb);
1508 	spin_unlock(&wb->list_lock);
1509 	inode_sync_complete(inode);
1510 out:
1511 	spin_unlock(&inode->i_lock);
1512 	return ret;
1513 }
1514 
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1515 static long writeback_chunk_size(struct bdi_writeback *wb,
1516 				 struct wb_writeback_work *work)
1517 {
1518 	long pages;
1519 
1520 	/*
1521 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1522 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1523 	 * here avoids calling into writeback_inodes_wb() more than once.
1524 	 *
1525 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1526 	 *
1527 	 *      wb_writeback()
1528 	 *          writeback_sb_inodes()       <== called only once
1529 	 *              write_cache_pages()     <== called once for each inode
1530 	 *                   (quickly) tag currently dirty pages
1531 	 *                   (maybe slowly) sync all tagged pages
1532 	 */
1533 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1534 		pages = LONG_MAX;
1535 	else {
1536 		pages = min(wb->avg_write_bandwidth / 2,
1537 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1538 		pages = min(pages, work->nr_pages);
1539 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1540 				   MIN_WRITEBACK_PAGES);
1541 	}
1542 
1543 	return pages;
1544 }
1545 
1546 /*
1547  * Write a portion of b_io inodes which belong to @sb.
1548  *
1549  * Return the number of pages and/or inodes written.
1550  *
1551  * NOTE! This is called with wb->list_lock held, and will
1552  * unlock and relock that for each inode it ends up doing
1553  * IO for.
1554  */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1555 static long writeback_sb_inodes(struct super_block *sb,
1556 				struct bdi_writeback *wb,
1557 				struct wb_writeback_work *work)
1558 {
1559 	struct writeback_control wbc = {
1560 		.sync_mode		= work->sync_mode,
1561 		.tagged_writepages	= work->tagged_writepages,
1562 		.for_kupdate		= work->for_kupdate,
1563 		.for_background		= work->for_background,
1564 		.for_sync		= work->for_sync,
1565 		.range_cyclic		= work->range_cyclic,
1566 		.range_start		= 0,
1567 		.range_end		= LLONG_MAX,
1568 	};
1569 	unsigned long start_time = jiffies;
1570 	long write_chunk;
1571 	long total_wrote = 0;  /* count both pages and inodes */
1572 
1573 	while (!list_empty(&wb->b_io)) {
1574 		struct inode *inode = wb_inode(wb->b_io.prev);
1575 		struct bdi_writeback *tmp_wb;
1576 		long wrote;
1577 
1578 		if (inode->i_sb != sb) {
1579 			if (work->sb) {
1580 				/*
1581 				 * We only want to write back data for this
1582 				 * superblock, move all inodes not belonging
1583 				 * to it back onto the dirty list.
1584 				 */
1585 				redirty_tail(inode, wb);
1586 				continue;
1587 			}
1588 
1589 			/*
1590 			 * The inode belongs to a different superblock.
1591 			 * Bounce back to the caller to unpin this and
1592 			 * pin the next superblock.
1593 			 */
1594 			break;
1595 		}
1596 
1597 		/*
1598 		 * Don't bother with new inodes or inodes being freed, first
1599 		 * kind does not need periodic writeout yet, and for the latter
1600 		 * kind writeout is handled by the freer.
1601 		 */
1602 		spin_lock(&inode->i_lock);
1603 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1604 			redirty_tail_locked(inode, wb);
1605 			spin_unlock(&inode->i_lock);
1606 			continue;
1607 		}
1608 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1609 			/*
1610 			 * If this inode is locked for writeback and we are not
1611 			 * doing writeback-for-data-integrity, move it to
1612 			 * b_more_io so that writeback can proceed with the
1613 			 * other inodes on s_io.
1614 			 *
1615 			 * We'll have another go at writing back this inode
1616 			 * when we completed a full scan of b_io.
1617 			 */
1618 			spin_unlock(&inode->i_lock);
1619 			requeue_io(inode, wb);
1620 			trace_writeback_sb_inodes_requeue(inode);
1621 			continue;
1622 		}
1623 		spin_unlock(&wb->list_lock);
1624 
1625 		/*
1626 		 * We already requeued the inode if it had I_SYNC set and we
1627 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1628 		 * WB_SYNC_ALL case.
1629 		 */
1630 		if (inode->i_state & I_SYNC) {
1631 			/* Wait for I_SYNC. This function drops i_lock... */
1632 			inode_sleep_on_writeback(inode);
1633 			/* Inode may be gone, start again */
1634 			spin_lock(&wb->list_lock);
1635 			continue;
1636 		}
1637 		inode->i_state |= I_SYNC;
1638 		wbc_attach_and_unlock_inode(&wbc, inode);
1639 
1640 		write_chunk = writeback_chunk_size(wb, work);
1641 		wbc.nr_to_write = write_chunk;
1642 		wbc.pages_skipped = 0;
1643 
1644 		/*
1645 		 * We use I_SYNC to pin the inode in memory. While it is set
1646 		 * evict_inode() will wait so the inode cannot be freed.
1647 		 */
1648 		__writeback_single_inode(inode, &wbc);
1649 
1650 		wbc_detach_inode(&wbc);
1651 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1652 		wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped;
1653 		wrote = wrote < 0 ? 0 : wrote;
1654 		total_wrote += wrote;
1655 
1656 		if (need_resched()) {
1657 			/*
1658 			 * We're trying to balance between building up a nice
1659 			 * long list of IOs to improve our merge rate, and
1660 			 * getting those IOs out quickly for anyone throttling
1661 			 * in balance_dirty_pages().  cond_resched() doesn't
1662 			 * unplug, so get our IOs out the door before we
1663 			 * give up the CPU.
1664 			 */
1665 			blk_flush_plug(current);
1666 			cond_resched();
1667 		}
1668 
1669 		/*
1670 		 * Requeue @inode if still dirty.  Be careful as @inode may
1671 		 * have been switched to another wb in the meantime.
1672 		 */
1673 		tmp_wb = inode_to_wb_and_lock_list(inode);
1674 		spin_lock(&inode->i_lock);
1675 		if (!(inode->i_state & I_DIRTY_ALL))
1676 			total_wrote++;
1677 		requeue_inode(inode, tmp_wb, &wbc);
1678 		inode_sync_complete(inode);
1679 		spin_unlock(&inode->i_lock);
1680 
1681 		if (unlikely(tmp_wb != wb)) {
1682 			spin_unlock(&tmp_wb->list_lock);
1683 			spin_lock(&wb->list_lock);
1684 		}
1685 
1686 		/*
1687 		 * bail out to wb_writeback() often enough to check
1688 		 * background threshold and other termination conditions.
1689 		 */
1690 		if (total_wrote) {
1691 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1692 				break;
1693 			if (work->nr_pages <= 0)
1694 				break;
1695 		}
1696 	}
1697 	return total_wrote;
1698 }
1699 
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1700 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1701 				  struct wb_writeback_work *work)
1702 {
1703 	unsigned long start_time = jiffies;
1704 	long wrote = 0;
1705 
1706 	while (!list_empty(&wb->b_io)) {
1707 		struct inode *inode = wb_inode(wb->b_io.prev);
1708 		struct super_block *sb = inode->i_sb;
1709 
1710 		if (!trylock_super(sb)) {
1711 			/*
1712 			 * trylock_super() may fail consistently due to
1713 			 * s_umount being grabbed by someone else. Don't use
1714 			 * requeue_io() to avoid busy retrying the inode/sb.
1715 			 */
1716 			redirty_tail(inode, wb);
1717 			continue;
1718 		}
1719 		wrote += writeback_sb_inodes(sb, wb, work);
1720 		up_read(&sb->s_umount);
1721 
1722 		/* refer to the same tests at the end of writeback_sb_inodes */
1723 		if (wrote) {
1724 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1725 				break;
1726 			if (work->nr_pages <= 0)
1727 				break;
1728 		}
1729 	}
1730 	/* Leave any unwritten inodes on b_io */
1731 	return wrote;
1732 }
1733 
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1734 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1735 				enum wb_reason reason)
1736 {
1737 	struct wb_writeback_work work = {
1738 		.nr_pages	= nr_pages,
1739 		.sync_mode	= WB_SYNC_NONE,
1740 		.range_cyclic	= 1,
1741 		.reason		= reason,
1742 	};
1743 	struct blk_plug plug;
1744 
1745 	blk_start_plug(&plug);
1746 	spin_lock(&wb->list_lock);
1747 	if (list_empty(&wb->b_io))
1748 		queue_io(wb, &work, jiffies);
1749 	__writeback_inodes_wb(wb, &work);
1750 	spin_unlock(&wb->list_lock);
1751 	blk_finish_plug(&plug);
1752 
1753 	return nr_pages - work.nr_pages;
1754 }
1755 
1756 /*
1757  * Explicit flushing or periodic writeback of "old" data.
1758  *
1759  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1760  * dirtying-time in the inode's address_space.  So this periodic writeback code
1761  * just walks the superblock inode list, writing back any inodes which are
1762  * older than a specific point in time.
1763  *
1764  * Try to run once per dirty_writeback_interval.  But if a writeback event
1765  * takes longer than a dirty_writeback_interval interval, then leave a
1766  * one-second gap.
1767  *
1768  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1769  * all dirty pages if they are all attached to "old" mappings.
1770  */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)1771 static long wb_writeback(struct bdi_writeback *wb,
1772 			 struct wb_writeback_work *work)
1773 {
1774 	unsigned long wb_start = jiffies;
1775 	long nr_pages = work->nr_pages;
1776 	unsigned long dirtied_before = jiffies;
1777 	struct inode *inode;
1778 	long progress;
1779 	struct blk_plug plug;
1780 
1781 	blk_start_plug(&plug);
1782 	spin_lock(&wb->list_lock);
1783 	for (;;) {
1784 		/*
1785 		 * Stop writeback when nr_pages has been consumed
1786 		 */
1787 		if (work->nr_pages <= 0)
1788 			break;
1789 
1790 		/*
1791 		 * Background writeout and kupdate-style writeback may
1792 		 * run forever. Stop them if there is other work to do
1793 		 * so that e.g. sync can proceed. They'll be restarted
1794 		 * after the other works are all done.
1795 		 */
1796 		if ((work->for_background || work->for_kupdate) &&
1797 		    !list_empty(&wb->work_list))
1798 			break;
1799 
1800 		/*
1801 		 * For background writeout, stop when we are below the
1802 		 * background dirty threshold
1803 		 */
1804 		if (work->for_background && !wb_over_bg_thresh(wb))
1805 			break;
1806 
1807 		/*
1808 		 * Kupdate and background works are special and we want to
1809 		 * include all inodes that need writing. Livelock avoidance is
1810 		 * handled by these works yielding to any other work so we are
1811 		 * safe.
1812 		 */
1813 		if (work->for_kupdate) {
1814 			dirtied_before = jiffies -
1815 				msecs_to_jiffies(dirty_expire_interval * 10);
1816 		} else if (work->for_background)
1817 			dirtied_before = jiffies;
1818 
1819 		trace_writeback_start(wb, work);
1820 		if (list_empty(&wb->b_io))
1821 			queue_io(wb, work, dirtied_before);
1822 		if (work->sb)
1823 			progress = writeback_sb_inodes(work->sb, wb, work);
1824 		else
1825 			progress = __writeback_inodes_wb(wb, work);
1826 		trace_writeback_written(wb, work);
1827 
1828 		wb_update_bandwidth(wb, wb_start);
1829 
1830 		/*
1831 		 * Did we write something? Try for more
1832 		 *
1833 		 * Dirty inodes are moved to b_io for writeback in batches.
1834 		 * The completion of the current batch does not necessarily
1835 		 * mean the overall work is done. So we keep looping as long
1836 		 * as made some progress on cleaning pages or inodes.
1837 		 */
1838 		if (progress)
1839 			continue;
1840 		/*
1841 		 * No more inodes for IO, bail
1842 		 */
1843 		if (list_empty(&wb->b_more_io))
1844 			break;
1845 		/*
1846 		 * Nothing written. Wait for some inode to
1847 		 * become available for writeback. Otherwise
1848 		 * we'll just busyloop.
1849 		 */
1850 		trace_writeback_wait(wb, work);
1851 		inode = wb_inode(wb->b_more_io.prev);
1852 		spin_lock(&inode->i_lock);
1853 		spin_unlock(&wb->list_lock);
1854 		/* This function drops i_lock... */
1855 		inode_sleep_on_writeback(inode);
1856 		spin_lock(&wb->list_lock);
1857 	}
1858 	spin_unlock(&wb->list_lock);
1859 	blk_finish_plug(&plug);
1860 
1861 	return nr_pages - work->nr_pages;
1862 }
1863 
1864 /*
1865  * Return the next wb_writeback_work struct that hasn't been processed yet.
1866  */
get_next_work_item(struct bdi_writeback * wb)1867 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1868 {
1869 	struct wb_writeback_work *work = NULL;
1870 
1871 	spin_lock_bh(&wb->work_lock);
1872 	if (!list_empty(&wb->work_list)) {
1873 		work = list_entry(wb->work_list.next,
1874 				  struct wb_writeback_work, list);
1875 		list_del_init(&work->list);
1876 	}
1877 	spin_unlock_bh(&wb->work_lock);
1878 	return work;
1879 }
1880 
wb_check_background_flush(struct bdi_writeback * wb)1881 static long wb_check_background_flush(struct bdi_writeback *wb)
1882 {
1883 	if (wb_over_bg_thresh(wb)) {
1884 
1885 		struct wb_writeback_work work = {
1886 			.nr_pages	= LONG_MAX,
1887 			.sync_mode	= WB_SYNC_NONE,
1888 			.for_background	= 1,
1889 			.range_cyclic	= 1,
1890 			.reason		= WB_REASON_BACKGROUND,
1891 		};
1892 
1893 		return wb_writeback(wb, &work);
1894 	}
1895 
1896 	return 0;
1897 }
1898 
wb_check_old_data_flush(struct bdi_writeback * wb)1899 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1900 {
1901 	unsigned long expired;
1902 	long nr_pages;
1903 
1904 	/*
1905 	 * When set to zero, disable periodic writeback
1906 	 */
1907 	if (!dirty_writeback_interval)
1908 		return 0;
1909 
1910 	expired = wb->last_old_flush +
1911 			msecs_to_jiffies(dirty_writeback_interval * 10);
1912 	if (time_before(jiffies, expired))
1913 		return 0;
1914 
1915 	wb->last_old_flush = jiffies;
1916 	nr_pages = get_nr_dirty_pages();
1917 
1918 	if (nr_pages) {
1919 		struct wb_writeback_work work = {
1920 			.nr_pages	= nr_pages,
1921 			.sync_mode	= WB_SYNC_NONE,
1922 			.for_kupdate	= 1,
1923 			.range_cyclic	= 1,
1924 			.reason		= WB_REASON_PERIODIC,
1925 		};
1926 
1927 		return wb_writeback(wb, &work);
1928 	}
1929 
1930 	return 0;
1931 }
1932 
wb_check_start_all(struct bdi_writeback * wb)1933 static long wb_check_start_all(struct bdi_writeback *wb)
1934 {
1935 	long nr_pages;
1936 
1937 	if (!test_bit(WB_start_all, &wb->state))
1938 		return 0;
1939 
1940 	nr_pages = get_nr_dirty_pages();
1941 	if (nr_pages) {
1942 		struct wb_writeback_work work = {
1943 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1944 			.sync_mode	= WB_SYNC_NONE,
1945 			.range_cyclic	= 1,
1946 			.reason		= wb->start_all_reason,
1947 		};
1948 
1949 		nr_pages = wb_writeback(wb, &work);
1950 	}
1951 
1952 	clear_bit(WB_start_all, &wb->state);
1953 	return nr_pages;
1954 }
1955 
1956 
1957 /*
1958  * Retrieve work items and do the writeback they describe
1959  */
wb_do_writeback(struct bdi_writeback * wb)1960 static long wb_do_writeback(struct bdi_writeback *wb)
1961 {
1962 	struct wb_writeback_work *work;
1963 	long wrote = 0;
1964 
1965 	set_bit(WB_writeback_running, &wb->state);
1966 	while ((work = get_next_work_item(wb)) != NULL) {
1967 		trace_writeback_exec(wb, work);
1968 		wrote += wb_writeback(wb, work);
1969 		finish_writeback_work(wb, work);
1970 	}
1971 
1972 	/*
1973 	 * Check for a flush-everything request
1974 	 */
1975 	wrote += wb_check_start_all(wb);
1976 
1977 	/*
1978 	 * Check for periodic writeback, kupdated() style
1979 	 */
1980 	wrote += wb_check_old_data_flush(wb);
1981 	wrote += wb_check_background_flush(wb);
1982 	clear_bit(WB_writeback_running, &wb->state);
1983 
1984 	return wrote;
1985 }
1986 
1987 /*
1988  * Handle writeback of dirty data for the device backed by this bdi. Also
1989  * reschedules periodically and does kupdated style flushing.
1990  */
wb_workfn(struct work_struct * work)1991 void wb_workfn(struct work_struct *work)
1992 {
1993 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1994 						struct bdi_writeback, dwork);
1995 	long pages_written;
1996 
1997 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
1998 	current->flags |= PF_SWAPWRITE;
1999 
2000 	if (likely(!current_is_workqueue_rescuer() ||
2001 		   !test_bit(WB_registered, &wb->state))) {
2002 		/*
2003 		 * The normal path.  Keep writing back @wb until its
2004 		 * work_list is empty.  Note that this path is also taken
2005 		 * if @wb is shutting down even when we're running off the
2006 		 * rescuer as work_list needs to be drained.
2007 		 */
2008 		do {
2009 			pages_written = wb_do_writeback(wb);
2010 			trace_writeback_pages_written(pages_written);
2011 		} while (!list_empty(&wb->work_list));
2012 	} else {
2013 		/*
2014 		 * bdi_wq can't get enough workers and we're running off
2015 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2016 		 * enough for efficient IO.
2017 		 */
2018 		pages_written = writeback_inodes_wb(wb, 1024,
2019 						    WB_REASON_FORKER_THREAD);
2020 		trace_writeback_pages_written(pages_written);
2021 	}
2022 
2023 	if (!list_empty(&wb->work_list))
2024 		wb_wakeup(wb);
2025 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2026 		wb_wakeup_delayed(wb);
2027 
2028 	current->flags &= ~PF_SWAPWRITE;
2029 }
2030 
2031 /*
2032  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2033  * write back the whole world.
2034  */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2035 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2036 					 enum wb_reason reason)
2037 {
2038 	struct bdi_writeback *wb;
2039 
2040 	if (!bdi_has_dirty_io(bdi))
2041 		return;
2042 
2043 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2044 		wb_start_writeback(wb, reason);
2045 }
2046 
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2047 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2048 				enum wb_reason reason)
2049 {
2050 	rcu_read_lock();
2051 	__wakeup_flusher_threads_bdi(bdi, reason);
2052 	rcu_read_unlock();
2053 }
2054 
2055 /*
2056  * Wakeup the flusher threads to start writeback of all currently dirty pages
2057  */
wakeup_flusher_threads(enum wb_reason reason)2058 void wakeup_flusher_threads(enum wb_reason reason)
2059 {
2060 	struct backing_dev_info *bdi;
2061 
2062 	/*
2063 	 * If we are expecting writeback progress we must submit plugged IO.
2064 	 */
2065 	if (blk_needs_flush_plug(current))
2066 		blk_schedule_flush_plug(current);
2067 
2068 	rcu_read_lock();
2069 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2070 		__wakeup_flusher_threads_bdi(bdi, reason);
2071 	rcu_read_unlock();
2072 }
2073 
2074 /*
2075  * Wake up bdi's periodically to make sure dirtytime inodes gets
2076  * written back periodically.  We deliberately do *not* check the
2077  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2078  * kernel to be constantly waking up once there are any dirtytime
2079  * inodes on the system.  So instead we define a separate delayed work
2080  * function which gets called much more rarely.  (By default, only
2081  * once every 12 hours.)
2082  *
2083  * If there is any other write activity going on in the file system,
2084  * this function won't be necessary.  But if the only thing that has
2085  * happened on the file system is a dirtytime inode caused by an atime
2086  * update, we need this infrastructure below to make sure that inode
2087  * eventually gets pushed out to disk.
2088  */
2089 static void wakeup_dirtytime_writeback(struct work_struct *w);
2090 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2091 
wakeup_dirtytime_writeback(struct work_struct * w)2092 static void wakeup_dirtytime_writeback(struct work_struct *w)
2093 {
2094 	struct backing_dev_info *bdi;
2095 
2096 	rcu_read_lock();
2097 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2098 		struct bdi_writeback *wb;
2099 
2100 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2101 			if (!list_empty(&wb->b_dirty_time))
2102 				wb_wakeup(wb);
2103 	}
2104 	rcu_read_unlock();
2105 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2106 }
2107 
start_dirtytime_writeback(void)2108 static int __init start_dirtytime_writeback(void)
2109 {
2110 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2111 	return 0;
2112 }
2113 __initcall(start_dirtytime_writeback);
2114 
dirtytime_interval_handler(struct ctl_table * table,int write,void __user * buffer,size_t * lenp,loff_t * ppos)2115 int dirtytime_interval_handler(struct ctl_table *table, int write,
2116 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2117 {
2118 	int ret;
2119 
2120 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2121 	if (ret == 0 && write)
2122 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2123 	return ret;
2124 }
2125 
2126 /**
2127  * __mark_inode_dirty -	internal function
2128  *
2129  * @inode: inode to mark
2130  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2131  *
2132  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2133  * mark_inode_dirty_sync.
2134  *
2135  * Put the inode on the super block's dirty list.
2136  *
2137  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2138  * dirty list only if it is hashed or if it refers to a blockdev.
2139  * If it was not hashed, it will never be added to the dirty list
2140  * even if it is later hashed, as it will have been marked dirty already.
2141  *
2142  * In short, make sure you hash any inodes _before_ you start marking
2143  * them dirty.
2144  *
2145  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2146  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2147  * the kernel-internal blockdev inode represents the dirtying time of the
2148  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2149  * page->mapping->host, so the page-dirtying time is recorded in the internal
2150  * blockdev inode.
2151  */
__mark_inode_dirty(struct inode * inode,int flags)2152 void __mark_inode_dirty(struct inode *inode, int flags)
2153 {
2154 	struct super_block *sb = inode->i_sb;
2155 	int dirtytime;
2156 
2157 	trace_writeback_mark_inode_dirty(inode, flags);
2158 
2159 	/*
2160 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2161 	 * dirty the inode itself
2162 	 */
2163 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2164 		trace_writeback_dirty_inode_start(inode, flags);
2165 
2166 		if (sb->s_op->dirty_inode)
2167 			sb->s_op->dirty_inode(inode, flags);
2168 
2169 		trace_writeback_dirty_inode(inode, flags);
2170 	}
2171 	if (flags & I_DIRTY_INODE)
2172 		flags &= ~I_DIRTY_TIME;
2173 	dirtytime = flags & I_DIRTY_TIME;
2174 
2175 	/*
2176 	 * Paired with smp_mb() in __writeback_single_inode() for the
2177 	 * following lockless i_state test.  See there for details.
2178 	 */
2179 	smp_mb();
2180 
2181 	if (((inode->i_state & flags) == flags) ||
2182 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2183 		return;
2184 
2185 	spin_lock(&inode->i_lock);
2186 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2187 		goto out_unlock_inode;
2188 	if ((inode->i_state & flags) != flags) {
2189 		const int was_dirty = inode->i_state & I_DIRTY;
2190 
2191 		inode_attach_wb(inode, NULL);
2192 
2193 		if (flags & I_DIRTY_INODE)
2194 			inode->i_state &= ~I_DIRTY_TIME;
2195 		inode->i_state |= flags;
2196 
2197 		/*
2198 		 * If the inode is queued for writeback by flush worker, just
2199 		 * update its dirty state. Once the flush worker is done with
2200 		 * the inode it will place it on the appropriate superblock
2201 		 * list, based upon its state.
2202 		 */
2203 		if (inode->i_state & I_SYNC_QUEUED)
2204 			goto out_unlock_inode;
2205 
2206 		/*
2207 		 * Only add valid (hashed) inodes to the superblock's
2208 		 * dirty list.  Add blockdev inodes as well.
2209 		 */
2210 		if (!S_ISBLK(inode->i_mode)) {
2211 			if (inode_unhashed(inode))
2212 				goto out_unlock_inode;
2213 		}
2214 		if (inode->i_state & I_FREEING)
2215 			goto out_unlock_inode;
2216 
2217 		/*
2218 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2219 		 * reposition it (that would break b_dirty time-ordering).
2220 		 */
2221 		if (!was_dirty) {
2222 			struct bdi_writeback *wb;
2223 			struct list_head *dirty_list;
2224 			bool wakeup_bdi = false;
2225 
2226 			wb = locked_inode_to_wb_and_lock_list(inode);
2227 
2228 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2229 			     !test_bit(WB_registered, &wb->state),
2230 			     "bdi-%s not registered\n", wb->bdi->name);
2231 
2232 			inode->dirtied_when = jiffies;
2233 			if (dirtytime)
2234 				inode->dirtied_time_when = jiffies;
2235 
2236 			if (inode->i_state & I_DIRTY)
2237 				dirty_list = &wb->b_dirty;
2238 			else
2239 				dirty_list = &wb->b_dirty_time;
2240 
2241 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2242 							       dirty_list);
2243 
2244 			spin_unlock(&wb->list_lock);
2245 			trace_writeback_dirty_inode_enqueue(inode);
2246 
2247 			/*
2248 			 * If this is the first dirty inode for this bdi,
2249 			 * we have to wake-up the corresponding bdi thread
2250 			 * to make sure background write-back happens
2251 			 * later.
2252 			 */
2253 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2254 				wb_wakeup_delayed(wb);
2255 			return;
2256 		}
2257 	}
2258 out_unlock_inode:
2259 	spin_unlock(&inode->i_lock);
2260 }
2261 EXPORT_SYMBOL(__mark_inode_dirty);
2262 
2263 /*
2264  * The @s_sync_lock is used to serialise concurrent sync operations
2265  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2266  * Concurrent callers will block on the s_sync_lock rather than doing contending
2267  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2268  * has been issued up to the time this function is enter is guaranteed to be
2269  * completed by the time we have gained the lock and waited for all IO that is
2270  * in progress regardless of the order callers are granted the lock.
2271  */
wait_sb_inodes(struct super_block * sb)2272 static void wait_sb_inodes(struct super_block *sb)
2273 {
2274 	LIST_HEAD(sync_list);
2275 
2276 	/*
2277 	 * We need to be protected against the filesystem going from
2278 	 * r/o to r/w or vice versa.
2279 	 */
2280 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2281 
2282 	mutex_lock(&sb->s_sync_lock);
2283 
2284 	/*
2285 	 * Splice the writeback list onto a temporary list to avoid waiting on
2286 	 * inodes that have started writeback after this point.
2287 	 *
2288 	 * Use rcu_read_lock() to keep the inodes around until we have a
2289 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2290 	 * the local list because inodes can be dropped from either by writeback
2291 	 * completion.
2292 	 */
2293 	rcu_read_lock();
2294 	spin_lock_irq(&sb->s_inode_wblist_lock);
2295 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2296 
2297 	/*
2298 	 * Data integrity sync. Must wait for all pages under writeback, because
2299 	 * there may have been pages dirtied before our sync call, but which had
2300 	 * writeout started before we write it out.  In which case, the inode
2301 	 * may not be on the dirty list, but we still have to wait for that
2302 	 * writeout.
2303 	 */
2304 	while (!list_empty(&sync_list)) {
2305 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2306 						       i_wb_list);
2307 		struct address_space *mapping = inode->i_mapping;
2308 
2309 		/*
2310 		 * Move each inode back to the wb list before we drop the lock
2311 		 * to preserve consistency between i_wb_list and the mapping
2312 		 * writeback tag. Writeback completion is responsible to remove
2313 		 * the inode from either list once the writeback tag is cleared.
2314 		 */
2315 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2316 
2317 		/*
2318 		 * The mapping can appear untagged while still on-list since we
2319 		 * do not have the mapping lock. Skip it here, wb completion
2320 		 * will remove it.
2321 		 */
2322 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2323 			continue;
2324 
2325 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2326 
2327 		spin_lock(&inode->i_lock);
2328 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2329 			spin_unlock(&inode->i_lock);
2330 
2331 			spin_lock_irq(&sb->s_inode_wblist_lock);
2332 			continue;
2333 		}
2334 		__iget(inode);
2335 		spin_unlock(&inode->i_lock);
2336 		rcu_read_unlock();
2337 
2338 		/*
2339 		 * We keep the error status of individual mapping so that
2340 		 * applications can catch the writeback error using fsync(2).
2341 		 * See filemap_fdatawait_keep_errors() for details.
2342 		 */
2343 		filemap_fdatawait_keep_errors(mapping);
2344 
2345 		cond_resched();
2346 
2347 		iput(inode);
2348 
2349 		rcu_read_lock();
2350 		spin_lock_irq(&sb->s_inode_wblist_lock);
2351 	}
2352 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2353 	rcu_read_unlock();
2354 	mutex_unlock(&sb->s_sync_lock);
2355 }
2356 
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2357 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2358 				     enum wb_reason reason, bool skip_if_busy)
2359 {
2360 	DEFINE_WB_COMPLETION_ONSTACK(done);
2361 	struct wb_writeback_work work = {
2362 		.sb			= sb,
2363 		.sync_mode		= WB_SYNC_NONE,
2364 		.tagged_writepages	= 1,
2365 		.done			= &done,
2366 		.nr_pages		= nr,
2367 		.reason			= reason,
2368 	};
2369 	struct backing_dev_info *bdi = sb->s_bdi;
2370 
2371 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2372 		return;
2373 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374 
2375 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2376 	wb_wait_for_completion(bdi, &done);
2377 }
2378 
2379 /**
2380  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2381  * @sb: the superblock
2382  * @nr: the number of pages to write
2383  * @reason: reason why some writeback work initiated
2384  *
2385  * Start writeback on some inodes on this super_block. No guarantees are made
2386  * on how many (if any) will be written, and this function does not wait
2387  * for IO completion of submitted IO.
2388  */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2389 void writeback_inodes_sb_nr(struct super_block *sb,
2390 			    unsigned long nr,
2391 			    enum wb_reason reason)
2392 {
2393 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2394 }
2395 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2396 
2397 /**
2398  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2399  * @sb: the superblock
2400  * @reason: reason why some writeback work was initiated
2401  *
2402  * Start writeback on some inodes on this super_block. No guarantees are made
2403  * on how many (if any) will be written, and this function does not wait
2404  * for IO completion of submitted IO.
2405  */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2406 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2407 {
2408 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2409 }
2410 EXPORT_SYMBOL(writeback_inodes_sb);
2411 
2412 /**
2413  * try_to_writeback_inodes_sb - try to start writeback if none underway
2414  * @sb: the superblock
2415  * @reason: reason why some writeback work was initiated
2416  *
2417  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2418  */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2419 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2420 {
2421 	if (!down_read_trylock(&sb->s_umount))
2422 		return;
2423 
2424 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2425 	up_read(&sb->s_umount);
2426 }
2427 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2428 
2429 /**
2430  * sync_inodes_sb	-	sync sb inode pages
2431  * @sb: the superblock
2432  *
2433  * This function writes and waits on any dirty inode belonging to this
2434  * super_block.
2435  */
sync_inodes_sb(struct super_block * sb)2436 void sync_inodes_sb(struct super_block *sb)
2437 {
2438 	DEFINE_WB_COMPLETION_ONSTACK(done);
2439 	struct wb_writeback_work work = {
2440 		.sb		= sb,
2441 		.sync_mode	= WB_SYNC_ALL,
2442 		.nr_pages	= LONG_MAX,
2443 		.range_cyclic	= 0,
2444 		.done		= &done,
2445 		.reason		= WB_REASON_SYNC,
2446 		.for_sync	= 1,
2447 	};
2448 	struct backing_dev_info *bdi = sb->s_bdi;
2449 
2450 	/*
2451 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2452 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2453 	 * bdi_has_dirty() need to be written out too.
2454 	 */
2455 	if (bdi == &noop_backing_dev_info)
2456 		return;
2457 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2458 
2459 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2460 	bdi_down_write_wb_switch_rwsem(bdi);
2461 	bdi_split_work_to_wbs(bdi, &work, false);
2462 	wb_wait_for_completion(bdi, &done);
2463 	bdi_up_write_wb_switch_rwsem(bdi);
2464 
2465 	wait_sb_inodes(sb);
2466 }
2467 EXPORT_SYMBOL(sync_inodes_sb);
2468 
2469 /**
2470  * write_inode_now	-	write an inode to disk
2471  * @inode: inode to write to disk
2472  * @sync: whether the write should be synchronous or not
2473  *
2474  * This function commits an inode to disk immediately if it is dirty. This is
2475  * primarily needed by knfsd.
2476  *
2477  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2478  */
write_inode_now(struct inode * inode,int sync)2479 int write_inode_now(struct inode *inode, int sync)
2480 {
2481 	struct writeback_control wbc = {
2482 		.nr_to_write = LONG_MAX,
2483 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2484 		.range_start = 0,
2485 		.range_end = LLONG_MAX,
2486 	};
2487 
2488 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2489 		wbc.nr_to_write = 0;
2490 
2491 	might_sleep();
2492 	return writeback_single_inode(inode, &wbc);
2493 }
2494 EXPORT_SYMBOL(write_inode_now);
2495 
2496 /**
2497  * sync_inode - write an inode and its pages to disk.
2498  * @inode: the inode to sync
2499  * @wbc: controls the writeback mode
2500  *
2501  * sync_inode() will write an inode and its pages to disk.  It will also
2502  * correctly update the inode on its superblock's dirty inode lists and will
2503  * update inode->i_state.
2504  *
2505  * The caller must have a ref on the inode.
2506  */
sync_inode(struct inode * inode,struct writeback_control * wbc)2507 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2508 {
2509 	return writeback_single_inode(inode, wbc);
2510 }
2511 EXPORT_SYMBOL(sync_inode);
2512 
2513 /**
2514  * sync_inode_metadata - write an inode to disk
2515  * @inode: the inode to sync
2516  * @wait: wait for I/O to complete.
2517  *
2518  * Write an inode to disk and adjust its dirty state after completion.
2519  *
2520  * Note: only writes the actual inode, no associated data or other metadata.
2521  */
sync_inode_metadata(struct inode * inode,int wait)2522 int sync_inode_metadata(struct inode *inode, int wait)
2523 {
2524 	struct writeback_control wbc = {
2525 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2526 		.nr_to_write = 0, /* metadata-only */
2527 	};
2528 
2529 	return sync_inode(inode, &wbc);
2530 }
2531 EXPORT_SYMBOL(sync_inode_metadata);
2532