1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "btrfs_inode.h"
24 #include "volumes.h"
25 #include "ordered-data.h"
26 #include "compression.h"
27 #include "extent_io.h"
28 #include "extent_map.h"
29 
30 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
31 
btrfs_compress_type2str(enum btrfs_compression_type type)32 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
33 {
34 	switch (type) {
35 	case BTRFS_COMPRESS_ZLIB:
36 	case BTRFS_COMPRESS_LZO:
37 	case BTRFS_COMPRESS_ZSTD:
38 	case BTRFS_COMPRESS_NONE:
39 		return btrfs_compress_types[type];
40 	}
41 
42 	return NULL;
43 }
44 
btrfs_compress_is_valid_type(const char * str,size_t len)45 bool btrfs_compress_is_valid_type(const char *str, size_t len)
46 {
47 	int i;
48 
49 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
50 		size_t comp_len = strlen(btrfs_compress_types[i]);
51 
52 		if (len < comp_len)
53 			continue;
54 
55 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
56 			return true;
57 	}
58 	return false;
59 }
60 
61 static int btrfs_decompress_bio(struct compressed_bio *cb);
62 
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)63 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
64 				      unsigned long disk_size)
65 {
66 	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
67 
68 	return sizeof(struct compressed_bio) +
69 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
70 }
71 
check_compressed_csum(struct btrfs_inode * inode,struct compressed_bio * cb,u64 disk_start)72 static int check_compressed_csum(struct btrfs_inode *inode,
73 				 struct compressed_bio *cb,
74 				 u64 disk_start)
75 {
76 	int ret;
77 	struct page *page;
78 	unsigned long i;
79 	char *kaddr;
80 	u32 csum;
81 	u32 *cb_sum = &cb->sums;
82 
83 	if (inode->flags & BTRFS_INODE_NODATASUM)
84 		return 0;
85 
86 	for (i = 0; i < cb->nr_pages; i++) {
87 		page = cb->compressed_pages[i];
88 		csum = ~(u32)0;
89 
90 		kaddr = kmap_atomic(page);
91 		csum = btrfs_csum_data(kaddr, csum, PAGE_SIZE);
92 		btrfs_csum_final(csum, (u8 *)&csum);
93 		kunmap_atomic(kaddr);
94 
95 		if (csum != *cb_sum) {
96 			btrfs_print_data_csum_error(inode, disk_start, csum,
97 					*cb_sum, cb->mirror_num);
98 			ret = -EIO;
99 			goto fail;
100 		}
101 		cb_sum++;
102 
103 	}
104 	ret = 0;
105 fail:
106 	return ret;
107 }
108 
109 /* when we finish reading compressed pages from the disk, we
110  * decompress them and then run the bio end_io routines on the
111  * decompressed pages (in the inode address space).
112  *
113  * This allows the checksumming and other IO error handling routines
114  * to work normally
115  *
116  * The compressed pages are freed here, and it must be run
117  * in process context
118  */
end_compressed_bio_read(struct bio * bio)119 static void end_compressed_bio_read(struct bio *bio)
120 {
121 	struct compressed_bio *cb = bio->bi_private;
122 	struct inode *inode;
123 	struct page *page;
124 	unsigned long index;
125 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
126 	int ret = 0;
127 
128 	if (bio->bi_status)
129 		cb->errors = 1;
130 
131 	/* if there are more bios still pending for this compressed
132 	 * extent, just exit
133 	 */
134 	if (!refcount_dec_and_test(&cb->pending_bios))
135 		goto out;
136 
137 	/*
138 	 * Record the correct mirror_num in cb->orig_bio so that
139 	 * read-repair can work properly.
140 	 */
141 	ASSERT(btrfs_io_bio(cb->orig_bio));
142 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
143 	cb->mirror_num = mirror;
144 
145 	/*
146 	 * Some IO in this cb have failed, just skip checksum as there
147 	 * is no way it could be correct.
148 	 */
149 	if (cb->errors == 1)
150 		goto csum_failed;
151 
152 	inode = cb->inode;
153 	ret = check_compressed_csum(BTRFS_I(inode), cb,
154 				    (u64)bio->bi_iter.bi_sector << 9);
155 	if (ret)
156 		goto csum_failed;
157 
158 	/* ok, we're the last bio for this extent, lets start
159 	 * the decompression.
160 	 */
161 	ret = btrfs_decompress_bio(cb);
162 
163 csum_failed:
164 	if (ret)
165 		cb->errors = 1;
166 
167 	/* release the compressed pages */
168 	index = 0;
169 	for (index = 0; index < cb->nr_pages; index++) {
170 		page = cb->compressed_pages[index];
171 		page->mapping = NULL;
172 		put_page(page);
173 	}
174 
175 	/* do io completion on the original bio */
176 	if (cb->errors) {
177 		bio_io_error(cb->orig_bio);
178 	} else {
179 		int i;
180 		struct bio_vec *bvec;
181 
182 		/*
183 		 * we have verified the checksum already, set page
184 		 * checked so the end_io handlers know about it
185 		 */
186 		ASSERT(!bio_flagged(bio, BIO_CLONED));
187 		bio_for_each_segment_all(bvec, cb->orig_bio, i)
188 			SetPageChecked(bvec->bv_page);
189 
190 		bio_endio(cb->orig_bio);
191 	}
192 
193 	/* finally free the cb struct */
194 	kfree(cb->compressed_pages);
195 	kfree(cb);
196 out:
197 	bio_put(bio);
198 }
199 
200 /*
201  * Clear the writeback bits on all of the file
202  * pages for a compressed write
203  */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)204 static noinline void end_compressed_writeback(struct inode *inode,
205 					      const struct compressed_bio *cb)
206 {
207 	unsigned long index = cb->start >> PAGE_SHIFT;
208 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
209 	struct page *pages[16];
210 	unsigned long nr_pages = end_index - index + 1;
211 	int i;
212 	int ret;
213 
214 	if (cb->errors)
215 		mapping_set_error(inode->i_mapping, -EIO);
216 
217 	while (nr_pages > 0) {
218 		ret = find_get_pages_contig(inode->i_mapping, index,
219 				     min_t(unsigned long,
220 				     nr_pages, ARRAY_SIZE(pages)), pages);
221 		if (ret == 0) {
222 			nr_pages -= 1;
223 			index += 1;
224 			continue;
225 		}
226 		for (i = 0; i < ret; i++) {
227 			if (cb->errors)
228 				SetPageError(pages[i]);
229 			end_page_writeback(pages[i]);
230 			put_page(pages[i]);
231 		}
232 		nr_pages -= ret;
233 		index += ret;
234 	}
235 	/* the inode may be gone now */
236 }
237 
238 /*
239  * do the cleanup once all the compressed pages hit the disk.
240  * This will clear writeback on the file pages and free the compressed
241  * pages.
242  *
243  * This also calls the writeback end hooks for the file pages so that
244  * metadata and checksums can be updated in the file.
245  */
end_compressed_bio_write(struct bio * bio)246 static void end_compressed_bio_write(struct bio *bio)
247 {
248 	struct extent_io_tree *tree;
249 	struct compressed_bio *cb = bio->bi_private;
250 	struct inode *inode;
251 	struct page *page;
252 	unsigned long index;
253 
254 	if (bio->bi_status)
255 		cb->errors = 1;
256 
257 	/* if there are more bios still pending for this compressed
258 	 * extent, just exit
259 	 */
260 	if (!refcount_dec_and_test(&cb->pending_bios))
261 		goto out;
262 
263 	/* ok, we're the last bio for this extent, step one is to
264 	 * call back into the FS and do all the end_io operations
265 	 */
266 	inode = cb->inode;
267 	tree = &BTRFS_I(inode)->io_tree;
268 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
269 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
270 					 cb->start,
271 					 cb->start + cb->len - 1,
272 					 NULL,
273 					 !cb->errors);
274 	cb->compressed_pages[0]->mapping = NULL;
275 
276 	end_compressed_writeback(inode, cb);
277 	/* note, our inode could be gone now */
278 
279 	/*
280 	 * release the compressed pages, these came from alloc_page and
281 	 * are not attached to the inode at all
282 	 */
283 	index = 0;
284 	for (index = 0; index < cb->nr_pages; index++) {
285 		page = cb->compressed_pages[index];
286 		page->mapping = NULL;
287 		put_page(page);
288 	}
289 
290 	/* finally free the cb struct */
291 	kfree(cb->compressed_pages);
292 	kfree(cb);
293 out:
294 	bio_put(bio);
295 }
296 
297 /*
298  * worker function to build and submit bios for previously compressed pages.
299  * The corresponding pages in the inode should be marked for writeback
300  * and the compressed pages should have a reference on them for dropping
301  * when the IO is complete.
302  *
303  * This also checksums the file bytes and gets things ready for
304  * the end io hooks.
305  */
btrfs_submit_compressed_write(struct inode * inode,u64 start,unsigned long len,u64 disk_start,unsigned long compressed_len,struct page ** compressed_pages,unsigned long nr_pages,unsigned int write_flags)306 blk_status_t btrfs_submit_compressed_write(struct inode *inode, u64 start,
307 				 unsigned long len, u64 disk_start,
308 				 unsigned long compressed_len,
309 				 struct page **compressed_pages,
310 				 unsigned long nr_pages,
311 				 unsigned int write_flags)
312 {
313 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
314 	struct bio *bio = NULL;
315 	struct compressed_bio *cb;
316 	unsigned long bytes_left;
317 	int pg_index = 0;
318 	struct page *page;
319 	u64 first_byte = disk_start;
320 	struct block_device *bdev;
321 	blk_status_t ret;
322 	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
323 
324 	WARN_ON(start & ((u64)PAGE_SIZE - 1));
325 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
326 	if (!cb)
327 		return BLK_STS_RESOURCE;
328 	refcount_set(&cb->pending_bios, 0);
329 	cb->errors = 0;
330 	cb->inode = inode;
331 	cb->start = start;
332 	cb->len = len;
333 	cb->mirror_num = 0;
334 	cb->compressed_pages = compressed_pages;
335 	cb->compressed_len = compressed_len;
336 	cb->orig_bio = NULL;
337 	cb->nr_pages = nr_pages;
338 
339 	bdev = fs_info->fs_devices->latest_bdev;
340 
341 	bio = btrfs_bio_alloc(bdev, first_byte);
342 	bio->bi_opf = REQ_OP_WRITE | write_flags;
343 	bio->bi_private = cb;
344 	bio->bi_end_io = end_compressed_bio_write;
345 	refcount_set(&cb->pending_bios, 1);
346 
347 	/* create and submit bios for the compressed pages */
348 	bytes_left = compressed_len;
349 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
350 		int submit = 0;
351 
352 		page = compressed_pages[pg_index];
353 		page->mapping = inode->i_mapping;
354 		if (bio->bi_iter.bi_size)
355 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE, bio, 0);
356 
357 		page->mapping = NULL;
358 		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
359 		    PAGE_SIZE) {
360 			/*
361 			 * inc the count before we submit the bio so
362 			 * we know the end IO handler won't happen before
363 			 * we inc the count.  Otherwise, the cb might get
364 			 * freed before we're done setting it up
365 			 */
366 			refcount_inc(&cb->pending_bios);
367 			ret = btrfs_bio_wq_end_io(fs_info, bio,
368 						  BTRFS_WQ_ENDIO_DATA);
369 			BUG_ON(ret); /* -ENOMEM */
370 
371 			if (!skip_sum) {
372 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
373 				BUG_ON(ret); /* -ENOMEM */
374 			}
375 
376 			ret = btrfs_map_bio(fs_info, bio, 0, 1);
377 			if (ret) {
378 				bio->bi_status = ret;
379 				bio_endio(bio);
380 			}
381 
382 			bio = btrfs_bio_alloc(bdev, first_byte);
383 			bio->bi_opf = REQ_OP_WRITE | write_flags;
384 			bio->bi_private = cb;
385 			bio->bi_end_io = end_compressed_bio_write;
386 			bio_add_page(bio, page, PAGE_SIZE, 0);
387 		}
388 		if (bytes_left < PAGE_SIZE) {
389 			btrfs_info(fs_info,
390 					"bytes left %lu compress len %lu nr %lu",
391 			       bytes_left, cb->compressed_len, cb->nr_pages);
392 		}
393 		bytes_left -= PAGE_SIZE;
394 		first_byte += PAGE_SIZE;
395 		cond_resched();
396 	}
397 
398 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
399 	BUG_ON(ret); /* -ENOMEM */
400 
401 	if (!skip_sum) {
402 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
403 		BUG_ON(ret); /* -ENOMEM */
404 	}
405 
406 	ret = btrfs_map_bio(fs_info, bio, 0, 1);
407 	if (ret) {
408 		bio->bi_status = ret;
409 		bio_endio(bio);
410 	}
411 
412 	return 0;
413 }
414 
bio_end_offset(struct bio * bio)415 static u64 bio_end_offset(struct bio *bio)
416 {
417 	struct bio_vec *last = bio_last_bvec_all(bio);
418 
419 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
420 }
421 
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)422 static noinline int add_ra_bio_pages(struct inode *inode,
423 				     u64 compressed_end,
424 				     struct compressed_bio *cb)
425 {
426 	unsigned long end_index;
427 	unsigned long pg_index;
428 	u64 last_offset;
429 	u64 isize = i_size_read(inode);
430 	int ret;
431 	struct page *page;
432 	unsigned long nr_pages = 0;
433 	struct extent_map *em;
434 	struct address_space *mapping = inode->i_mapping;
435 	struct extent_map_tree *em_tree;
436 	struct extent_io_tree *tree;
437 	u64 end;
438 	int misses = 0;
439 
440 	last_offset = bio_end_offset(cb->orig_bio);
441 	em_tree = &BTRFS_I(inode)->extent_tree;
442 	tree = &BTRFS_I(inode)->io_tree;
443 
444 	if (isize == 0)
445 		return 0;
446 
447 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
448 
449 	while (last_offset < compressed_end) {
450 		pg_index = last_offset >> PAGE_SHIFT;
451 
452 		if (pg_index > end_index)
453 			break;
454 
455 		rcu_read_lock();
456 		page = radix_tree_lookup(&mapping->i_pages, pg_index);
457 		rcu_read_unlock();
458 		if (page && !radix_tree_exceptional_entry(page)) {
459 			misses++;
460 			if (misses > 4)
461 				break;
462 			goto next;
463 		}
464 
465 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
466 								 ~__GFP_FS));
467 		if (!page)
468 			break;
469 
470 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
471 			put_page(page);
472 			goto next;
473 		}
474 
475 		end = last_offset + PAGE_SIZE - 1;
476 		/*
477 		 * at this point, we have a locked page in the page cache
478 		 * for these bytes in the file.  But, we have to make
479 		 * sure they map to this compressed extent on disk.
480 		 */
481 		set_page_extent_mapped(page);
482 		lock_extent(tree, last_offset, end);
483 		read_lock(&em_tree->lock);
484 		em = lookup_extent_mapping(em_tree, last_offset,
485 					   PAGE_SIZE);
486 		read_unlock(&em_tree->lock);
487 
488 		if (!em || last_offset < em->start ||
489 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
490 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
491 			free_extent_map(em);
492 			unlock_extent(tree, last_offset, end);
493 			unlock_page(page);
494 			put_page(page);
495 			break;
496 		}
497 		free_extent_map(em);
498 
499 		if (page->index == end_index) {
500 			char *userpage;
501 			size_t zero_offset = isize & (PAGE_SIZE - 1);
502 
503 			if (zero_offset) {
504 				int zeros;
505 				zeros = PAGE_SIZE - zero_offset;
506 				userpage = kmap_atomic(page);
507 				memset(userpage + zero_offset, 0, zeros);
508 				flush_dcache_page(page);
509 				kunmap_atomic(userpage);
510 			}
511 		}
512 
513 		ret = bio_add_page(cb->orig_bio, page,
514 				   PAGE_SIZE, 0);
515 
516 		if (ret == PAGE_SIZE) {
517 			nr_pages++;
518 			put_page(page);
519 		} else {
520 			unlock_extent(tree, last_offset, end);
521 			unlock_page(page);
522 			put_page(page);
523 			break;
524 		}
525 next:
526 		last_offset += PAGE_SIZE;
527 	}
528 	return 0;
529 }
530 
531 /*
532  * for a compressed read, the bio we get passed has all the inode pages
533  * in it.  We don't actually do IO on those pages but allocate new ones
534  * to hold the compressed pages on disk.
535  *
536  * bio->bi_iter.bi_sector points to the compressed extent on disk
537  * bio->bi_io_vec points to all of the inode pages
538  *
539  * After the compressed pages are read, we copy the bytes into the
540  * bio we were passed and then call the bio end_io calls
541  */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)542 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
543 				 int mirror_num, unsigned long bio_flags)
544 {
545 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
546 	struct extent_io_tree *tree;
547 	struct extent_map_tree *em_tree;
548 	struct compressed_bio *cb;
549 	unsigned long compressed_len;
550 	unsigned long nr_pages;
551 	unsigned long pg_index;
552 	struct page *page;
553 	struct block_device *bdev;
554 	struct bio *comp_bio;
555 	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
556 	u64 em_len;
557 	u64 em_start;
558 	struct extent_map *em;
559 	blk_status_t ret = BLK_STS_RESOURCE;
560 	int faili = 0;
561 	u32 *sums;
562 
563 	tree = &BTRFS_I(inode)->io_tree;
564 	em_tree = &BTRFS_I(inode)->extent_tree;
565 
566 	/* we need the actual starting offset of this extent in the file */
567 	read_lock(&em_tree->lock);
568 	em = lookup_extent_mapping(em_tree,
569 				   page_offset(bio_first_page_all(bio)),
570 				   PAGE_SIZE);
571 	read_unlock(&em_tree->lock);
572 	if (!em)
573 		return BLK_STS_IOERR;
574 
575 	compressed_len = em->block_len;
576 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
577 	if (!cb)
578 		goto out;
579 
580 	refcount_set(&cb->pending_bios, 0);
581 	cb->errors = 0;
582 	cb->inode = inode;
583 	cb->mirror_num = mirror_num;
584 	sums = &cb->sums;
585 
586 	cb->start = em->orig_start;
587 	em_len = em->len;
588 	em_start = em->start;
589 
590 	free_extent_map(em);
591 	em = NULL;
592 
593 	cb->len = bio->bi_iter.bi_size;
594 	cb->compressed_len = compressed_len;
595 	cb->compress_type = extent_compress_type(bio_flags);
596 	cb->orig_bio = bio;
597 
598 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
599 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
600 				       GFP_NOFS);
601 	if (!cb->compressed_pages)
602 		goto fail1;
603 
604 	bdev = fs_info->fs_devices->latest_bdev;
605 
606 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
607 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
608 							      __GFP_HIGHMEM);
609 		if (!cb->compressed_pages[pg_index]) {
610 			faili = pg_index - 1;
611 			ret = BLK_STS_RESOURCE;
612 			goto fail2;
613 		}
614 	}
615 	faili = nr_pages - 1;
616 	cb->nr_pages = nr_pages;
617 
618 	add_ra_bio_pages(inode, em_start + em_len, cb);
619 
620 	/* include any pages we added in add_ra-bio_pages */
621 	cb->len = bio->bi_iter.bi_size;
622 
623 	comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
624 	comp_bio->bi_opf = REQ_OP_READ;
625 	comp_bio->bi_private = cb;
626 	comp_bio->bi_end_io = end_compressed_bio_read;
627 	refcount_set(&cb->pending_bios, 1);
628 
629 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
630 		int submit = 0;
631 
632 		page = cb->compressed_pages[pg_index];
633 		page->mapping = inode->i_mapping;
634 		page->index = em_start >> PAGE_SHIFT;
635 
636 		if (comp_bio->bi_iter.bi_size)
637 			submit = btrfs_merge_bio_hook(page, 0, PAGE_SIZE,
638 					comp_bio, 0);
639 
640 		page->mapping = NULL;
641 		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
642 		    PAGE_SIZE) {
643 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
644 						  BTRFS_WQ_ENDIO_DATA);
645 			BUG_ON(ret); /* -ENOMEM */
646 
647 			/*
648 			 * inc the count before we submit the bio so
649 			 * we know the end IO handler won't happen before
650 			 * we inc the count.  Otherwise, the cb might get
651 			 * freed before we're done setting it up
652 			 */
653 			refcount_inc(&cb->pending_bios);
654 
655 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
656 				ret = btrfs_lookup_bio_sums(inode, comp_bio,
657 							    sums);
658 				BUG_ON(ret); /* -ENOMEM */
659 			}
660 			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
661 					     fs_info->sectorsize);
662 
663 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
664 			if (ret) {
665 				comp_bio->bi_status = ret;
666 				bio_endio(comp_bio);
667 			}
668 
669 			comp_bio = btrfs_bio_alloc(bdev, cur_disk_byte);
670 			comp_bio->bi_opf = REQ_OP_READ;
671 			comp_bio->bi_private = cb;
672 			comp_bio->bi_end_io = end_compressed_bio_read;
673 
674 			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
675 		}
676 		cur_disk_byte += PAGE_SIZE;
677 	}
678 
679 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
680 	BUG_ON(ret); /* -ENOMEM */
681 
682 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
683 		ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
684 		BUG_ON(ret); /* -ENOMEM */
685 	}
686 
687 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num, 0);
688 	if (ret) {
689 		comp_bio->bi_status = ret;
690 		bio_endio(comp_bio);
691 	}
692 
693 	return 0;
694 
695 fail2:
696 	while (faili >= 0) {
697 		__free_page(cb->compressed_pages[faili]);
698 		faili--;
699 	}
700 
701 	kfree(cb->compressed_pages);
702 fail1:
703 	kfree(cb);
704 out:
705 	free_extent_map(em);
706 	return ret;
707 }
708 
709 /*
710  * Heuristic uses systematic sampling to collect data from the input data
711  * range, the logic can be tuned by the following constants:
712  *
713  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
714  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
715  */
716 #define SAMPLING_READ_SIZE	(16)
717 #define SAMPLING_INTERVAL	(256)
718 
719 /*
720  * For statistical analysis of the input data we consider bytes that form a
721  * Galois Field of 256 objects. Each object has an attribute count, ie. how
722  * many times the object appeared in the sample.
723  */
724 #define BUCKET_SIZE		(256)
725 
726 /*
727  * The size of the sample is based on a statistical sampling rule of thumb.
728  * The common way is to perform sampling tests as long as the number of
729  * elements in each cell is at least 5.
730  *
731  * Instead of 5, we choose 32 to obtain more accurate results.
732  * If the data contain the maximum number of symbols, which is 256, we obtain a
733  * sample size bound by 8192.
734  *
735  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
736  * from up to 512 locations.
737  */
738 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
739 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
740 
741 struct bucket_item {
742 	u32 count;
743 };
744 
745 struct heuristic_ws {
746 	/* Partial copy of input data */
747 	u8 *sample;
748 	u32 sample_size;
749 	/* Buckets store counters for each byte value */
750 	struct bucket_item *bucket;
751 	/* Sorting buffer */
752 	struct bucket_item *bucket_b;
753 	struct list_head list;
754 };
755 
free_heuristic_ws(struct list_head * ws)756 static void free_heuristic_ws(struct list_head *ws)
757 {
758 	struct heuristic_ws *workspace;
759 
760 	workspace = list_entry(ws, struct heuristic_ws, list);
761 
762 	kvfree(workspace->sample);
763 	kfree(workspace->bucket);
764 	kfree(workspace->bucket_b);
765 	kfree(workspace);
766 }
767 
alloc_heuristic_ws(void)768 static struct list_head *alloc_heuristic_ws(void)
769 {
770 	struct heuristic_ws *ws;
771 
772 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
773 	if (!ws)
774 		return ERR_PTR(-ENOMEM);
775 
776 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
777 	if (!ws->sample)
778 		goto fail;
779 
780 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
781 	if (!ws->bucket)
782 		goto fail;
783 
784 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
785 	if (!ws->bucket_b)
786 		goto fail;
787 
788 	INIT_LIST_HEAD(&ws->list);
789 	return &ws->list;
790 fail:
791 	free_heuristic_ws(&ws->list);
792 	return ERR_PTR(-ENOMEM);
793 }
794 
795 struct workspaces_list {
796 	struct list_head idle_ws;
797 	spinlock_t ws_lock;
798 	/* Number of free workspaces */
799 	int free_ws;
800 	/* Total number of allocated workspaces */
801 	atomic_t total_ws;
802 	/* Waiters for a free workspace */
803 	wait_queue_head_t ws_wait;
804 };
805 
806 static struct workspaces_list btrfs_comp_ws[BTRFS_COMPRESS_TYPES];
807 
808 static struct workspaces_list btrfs_heuristic_ws;
809 
810 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
811 	&btrfs_zlib_compress,
812 	&btrfs_lzo_compress,
813 	&btrfs_zstd_compress,
814 };
815 
btrfs_init_compress(void)816 void __init btrfs_init_compress(void)
817 {
818 	struct list_head *workspace;
819 	int i;
820 
821 	INIT_LIST_HEAD(&btrfs_heuristic_ws.idle_ws);
822 	spin_lock_init(&btrfs_heuristic_ws.ws_lock);
823 	atomic_set(&btrfs_heuristic_ws.total_ws, 0);
824 	init_waitqueue_head(&btrfs_heuristic_ws.ws_wait);
825 
826 	workspace = alloc_heuristic_ws();
827 	if (IS_ERR(workspace)) {
828 		pr_warn(
829 	"BTRFS: cannot preallocate heuristic workspace, will try later\n");
830 	} else {
831 		atomic_set(&btrfs_heuristic_ws.total_ws, 1);
832 		btrfs_heuristic_ws.free_ws = 1;
833 		list_add(workspace, &btrfs_heuristic_ws.idle_ws);
834 	}
835 
836 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
837 		INIT_LIST_HEAD(&btrfs_comp_ws[i].idle_ws);
838 		spin_lock_init(&btrfs_comp_ws[i].ws_lock);
839 		atomic_set(&btrfs_comp_ws[i].total_ws, 0);
840 		init_waitqueue_head(&btrfs_comp_ws[i].ws_wait);
841 
842 		/*
843 		 * Preallocate one workspace for each compression type so
844 		 * we can guarantee forward progress in the worst case
845 		 */
846 		workspace = btrfs_compress_op[i]->alloc_workspace();
847 		if (IS_ERR(workspace)) {
848 			pr_warn("BTRFS: cannot preallocate compression workspace, will try later\n");
849 		} else {
850 			atomic_set(&btrfs_comp_ws[i].total_ws, 1);
851 			btrfs_comp_ws[i].free_ws = 1;
852 			list_add(workspace, &btrfs_comp_ws[i].idle_ws);
853 		}
854 	}
855 }
856 
857 /*
858  * This finds an available workspace or allocates a new one.
859  * If it's not possible to allocate a new one, waits until there's one.
860  * Preallocation makes a forward progress guarantees and we do not return
861  * errors.
862  */
__find_workspace(int type,bool heuristic)863 static struct list_head *__find_workspace(int type, bool heuristic)
864 {
865 	struct list_head *workspace;
866 	int cpus = num_online_cpus();
867 	int idx = type - 1;
868 	unsigned nofs_flag;
869 	struct list_head *idle_ws;
870 	spinlock_t *ws_lock;
871 	atomic_t *total_ws;
872 	wait_queue_head_t *ws_wait;
873 	int *free_ws;
874 
875 	if (heuristic) {
876 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
877 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
878 		total_ws = &btrfs_heuristic_ws.total_ws;
879 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
880 		free_ws	 = &btrfs_heuristic_ws.free_ws;
881 	} else {
882 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
883 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
884 		total_ws = &btrfs_comp_ws[idx].total_ws;
885 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
886 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
887 	}
888 
889 again:
890 	spin_lock(ws_lock);
891 	if (!list_empty(idle_ws)) {
892 		workspace = idle_ws->next;
893 		list_del(workspace);
894 		(*free_ws)--;
895 		spin_unlock(ws_lock);
896 		return workspace;
897 
898 	}
899 	if (atomic_read(total_ws) > cpus) {
900 		DEFINE_WAIT(wait);
901 
902 		spin_unlock(ws_lock);
903 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
904 		if (atomic_read(total_ws) > cpus && !*free_ws)
905 			schedule();
906 		finish_wait(ws_wait, &wait);
907 		goto again;
908 	}
909 	atomic_inc(total_ws);
910 	spin_unlock(ws_lock);
911 
912 	/*
913 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
914 	 * to turn it off here because we might get called from the restricted
915 	 * context of btrfs_compress_bio/btrfs_compress_pages
916 	 */
917 	nofs_flag = memalloc_nofs_save();
918 	if (heuristic)
919 		workspace = alloc_heuristic_ws();
920 	else
921 		workspace = btrfs_compress_op[idx]->alloc_workspace();
922 	memalloc_nofs_restore(nofs_flag);
923 
924 	if (IS_ERR(workspace)) {
925 		atomic_dec(total_ws);
926 		wake_up(ws_wait);
927 
928 		/*
929 		 * Do not return the error but go back to waiting. There's a
930 		 * workspace preallocated for each type and the compression
931 		 * time is bounded so we get to a workspace eventually. This
932 		 * makes our caller's life easier.
933 		 *
934 		 * To prevent silent and low-probability deadlocks (when the
935 		 * initial preallocation fails), check if there are any
936 		 * workspaces at all.
937 		 */
938 		if (atomic_read(total_ws) == 0) {
939 			static DEFINE_RATELIMIT_STATE(_rs,
940 					/* once per minute */ 60 * HZ,
941 					/* no burst */ 1);
942 
943 			if (__ratelimit(&_rs)) {
944 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
945 			}
946 		}
947 		goto again;
948 	}
949 	return workspace;
950 }
951 
find_workspace(int type)952 static struct list_head *find_workspace(int type)
953 {
954 	return __find_workspace(type, false);
955 }
956 
957 /*
958  * put a workspace struct back on the list or free it if we have enough
959  * idle ones sitting around
960  */
__free_workspace(int type,struct list_head * workspace,bool heuristic)961 static void __free_workspace(int type, struct list_head *workspace,
962 			     bool heuristic)
963 {
964 	int idx = type - 1;
965 	struct list_head *idle_ws;
966 	spinlock_t *ws_lock;
967 	atomic_t *total_ws;
968 	wait_queue_head_t *ws_wait;
969 	int *free_ws;
970 
971 	if (heuristic) {
972 		idle_ws	 = &btrfs_heuristic_ws.idle_ws;
973 		ws_lock	 = &btrfs_heuristic_ws.ws_lock;
974 		total_ws = &btrfs_heuristic_ws.total_ws;
975 		ws_wait	 = &btrfs_heuristic_ws.ws_wait;
976 		free_ws	 = &btrfs_heuristic_ws.free_ws;
977 	} else {
978 		idle_ws	 = &btrfs_comp_ws[idx].idle_ws;
979 		ws_lock	 = &btrfs_comp_ws[idx].ws_lock;
980 		total_ws = &btrfs_comp_ws[idx].total_ws;
981 		ws_wait	 = &btrfs_comp_ws[idx].ws_wait;
982 		free_ws	 = &btrfs_comp_ws[idx].free_ws;
983 	}
984 
985 	spin_lock(ws_lock);
986 	if (*free_ws <= num_online_cpus()) {
987 		list_add(workspace, idle_ws);
988 		(*free_ws)++;
989 		spin_unlock(ws_lock);
990 		goto wake;
991 	}
992 	spin_unlock(ws_lock);
993 
994 	if (heuristic)
995 		free_heuristic_ws(workspace);
996 	else
997 		btrfs_compress_op[idx]->free_workspace(workspace);
998 	atomic_dec(total_ws);
999 wake:
1000 	cond_wake_up(ws_wait);
1001 }
1002 
free_workspace(int type,struct list_head * ws)1003 static void free_workspace(int type, struct list_head *ws)
1004 {
1005 	return __free_workspace(type, ws, false);
1006 }
1007 
1008 /*
1009  * cleanup function for module exit
1010  */
free_workspaces(void)1011 static void free_workspaces(void)
1012 {
1013 	struct list_head *workspace;
1014 	int i;
1015 
1016 	while (!list_empty(&btrfs_heuristic_ws.idle_ws)) {
1017 		workspace = btrfs_heuristic_ws.idle_ws.next;
1018 		list_del(workspace);
1019 		free_heuristic_ws(workspace);
1020 		atomic_dec(&btrfs_heuristic_ws.total_ws);
1021 	}
1022 
1023 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
1024 		while (!list_empty(&btrfs_comp_ws[i].idle_ws)) {
1025 			workspace = btrfs_comp_ws[i].idle_ws.next;
1026 			list_del(workspace);
1027 			btrfs_compress_op[i]->free_workspace(workspace);
1028 			atomic_dec(&btrfs_comp_ws[i].total_ws);
1029 		}
1030 	}
1031 }
1032 
1033 /*
1034  * Given an address space and start and length, compress the bytes into @pages
1035  * that are allocated on demand.
1036  *
1037  * @type_level is encoded algorithm and level, where level 0 means whatever
1038  * default the algorithm chooses and is opaque here;
1039  * - compression algo are 0-3
1040  * - the level are bits 4-7
1041  *
1042  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1043  * and returns number of actually allocated pages
1044  *
1045  * @total_in is used to return the number of bytes actually read.  It
1046  * may be smaller than the input length if we had to exit early because we
1047  * ran out of room in the pages array or because we cross the
1048  * max_out threshold.
1049  *
1050  * @total_out is an in/out parameter, must be set to the input length and will
1051  * be also used to return the total number of compressed bytes
1052  *
1053  * @max_out tells us the max number of bytes that we're allowed to
1054  * stuff into pages
1055  */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1056 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1057 			 u64 start, struct page **pages,
1058 			 unsigned long *out_pages,
1059 			 unsigned long *total_in,
1060 			 unsigned long *total_out)
1061 {
1062 	struct list_head *workspace;
1063 	int ret;
1064 	int type = type_level & 0xF;
1065 
1066 	workspace = find_workspace(type);
1067 
1068 	btrfs_compress_op[type - 1]->set_level(workspace, type_level);
1069 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
1070 						      start, pages,
1071 						      out_pages,
1072 						      total_in, total_out);
1073 	free_workspace(type, workspace);
1074 	return ret;
1075 }
1076 
1077 /*
1078  * pages_in is an array of pages with compressed data.
1079  *
1080  * disk_start is the starting logical offset of this array in the file
1081  *
1082  * orig_bio contains the pages from the file that we want to decompress into
1083  *
1084  * srclen is the number of bytes in pages_in
1085  *
1086  * The basic idea is that we have a bio that was created by readpages.
1087  * The pages in the bio are for the uncompressed data, and they may not
1088  * be contiguous.  They all correspond to the range of bytes covered by
1089  * the compressed extent.
1090  */
btrfs_decompress_bio(struct compressed_bio * cb)1091 static int btrfs_decompress_bio(struct compressed_bio *cb)
1092 {
1093 	struct list_head *workspace;
1094 	int ret;
1095 	int type = cb->compress_type;
1096 
1097 	workspace = find_workspace(type);
1098 	ret = btrfs_compress_op[type - 1]->decompress_bio(workspace, cb);
1099 	free_workspace(type, workspace);
1100 
1101 	return ret;
1102 }
1103 
1104 /*
1105  * a less complex decompression routine.  Our compressed data fits in a
1106  * single page, and we want to read a single page out of it.
1107  * start_byte tells us the offset into the compressed data we're interested in
1108  */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1109 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1110 		     unsigned long start_byte, size_t srclen, size_t destlen)
1111 {
1112 	struct list_head *workspace;
1113 	int ret;
1114 
1115 	workspace = find_workspace(type);
1116 
1117 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
1118 						  dest_page, start_byte,
1119 						  srclen, destlen);
1120 
1121 	free_workspace(type, workspace);
1122 	return ret;
1123 }
1124 
btrfs_exit_compress(void)1125 void __cold btrfs_exit_compress(void)
1126 {
1127 	free_workspaces();
1128 }
1129 
1130 /*
1131  * Copy uncompressed data from working buffer to pages.
1132  *
1133  * buf_start is the byte offset we're of the start of our workspace buffer.
1134  *
1135  * total_out is the last byte of the buffer
1136  */
btrfs_decompress_buf2page(const char * buf,unsigned long buf_start,unsigned long total_out,u64 disk_start,struct bio * bio)1137 int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1138 			      unsigned long total_out, u64 disk_start,
1139 			      struct bio *bio)
1140 {
1141 	unsigned long buf_offset;
1142 	unsigned long current_buf_start;
1143 	unsigned long start_byte;
1144 	unsigned long prev_start_byte;
1145 	unsigned long working_bytes = total_out - buf_start;
1146 	unsigned long bytes;
1147 	char *kaddr;
1148 	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1149 
1150 	/*
1151 	 * start byte is the first byte of the page we're currently
1152 	 * copying into relative to the start of the compressed data.
1153 	 */
1154 	start_byte = page_offset(bvec.bv_page) - disk_start;
1155 
1156 	/* we haven't yet hit data corresponding to this page */
1157 	if (total_out <= start_byte)
1158 		return 1;
1159 
1160 	/*
1161 	 * the start of the data we care about is offset into
1162 	 * the middle of our working buffer
1163 	 */
1164 	if (total_out > start_byte && buf_start < start_byte) {
1165 		buf_offset = start_byte - buf_start;
1166 		working_bytes -= buf_offset;
1167 	} else {
1168 		buf_offset = 0;
1169 	}
1170 	current_buf_start = buf_start;
1171 
1172 	/* copy bytes from the working buffer into the pages */
1173 	while (working_bytes > 0) {
1174 		bytes = min_t(unsigned long, bvec.bv_len,
1175 				PAGE_SIZE - buf_offset);
1176 		bytes = min(bytes, working_bytes);
1177 
1178 		kaddr = kmap_atomic(bvec.bv_page);
1179 		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1180 		kunmap_atomic(kaddr);
1181 		flush_dcache_page(bvec.bv_page);
1182 
1183 		buf_offset += bytes;
1184 		working_bytes -= bytes;
1185 		current_buf_start += bytes;
1186 
1187 		/* check if we need to pick another page */
1188 		bio_advance(bio, bytes);
1189 		if (!bio->bi_iter.bi_size)
1190 			return 0;
1191 		bvec = bio_iter_iovec(bio, bio->bi_iter);
1192 		prev_start_byte = start_byte;
1193 		start_byte = page_offset(bvec.bv_page) - disk_start;
1194 
1195 		/*
1196 		 * We need to make sure we're only adjusting
1197 		 * our offset into compression working buffer when
1198 		 * we're switching pages.  Otherwise we can incorrectly
1199 		 * keep copying when we were actually done.
1200 		 */
1201 		if (start_byte != prev_start_byte) {
1202 			/*
1203 			 * make sure our new page is covered by this
1204 			 * working buffer
1205 			 */
1206 			if (total_out <= start_byte)
1207 				return 1;
1208 
1209 			/*
1210 			 * the next page in the biovec might not be adjacent
1211 			 * to the last page, but it might still be found
1212 			 * inside this working buffer. bump our offset pointer
1213 			 */
1214 			if (total_out > start_byte &&
1215 			    current_buf_start < start_byte) {
1216 				buf_offset = start_byte - buf_start;
1217 				working_bytes = total_out - start_byte;
1218 				current_buf_start = buf_start + buf_offset;
1219 			}
1220 		}
1221 	}
1222 
1223 	return 1;
1224 }
1225 
1226 /*
1227  * Shannon Entropy calculation
1228  *
1229  * Pure byte distribution analysis fails to determine compressiability of data.
1230  * Try calculating entropy to estimate the average minimum number of bits
1231  * needed to encode the sampled data.
1232  *
1233  * For convenience, return the percentage of needed bits, instead of amount of
1234  * bits directly.
1235  *
1236  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1237  *			    and can be compressible with high probability
1238  *
1239  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1240  *
1241  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1242  */
1243 #define ENTROPY_LVL_ACEPTABLE		(65)
1244 #define ENTROPY_LVL_HIGH		(80)
1245 
1246 /*
1247  * For increasead precision in shannon_entropy calculation,
1248  * let's do pow(n, M) to save more digits after comma:
1249  *
1250  * - maximum int bit length is 64
1251  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1252  * - 13 * 4 = 52 < 64		-> M = 4
1253  *
1254  * So use pow(n, 4).
1255  */
ilog2_w(u64 n)1256 static inline u32 ilog2_w(u64 n)
1257 {
1258 	return ilog2(n * n * n * n);
1259 }
1260 
shannon_entropy(struct heuristic_ws * ws)1261 static u32 shannon_entropy(struct heuristic_ws *ws)
1262 {
1263 	const u32 entropy_max = 8 * ilog2_w(2);
1264 	u32 entropy_sum = 0;
1265 	u32 p, p_base, sz_base;
1266 	u32 i;
1267 
1268 	sz_base = ilog2_w(ws->sample_size);
1269 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1270 		p = ws->bucket[i].count;
1271 		p_base = ilog2_w(p);
1272 		entropy_sum += p * (sz_base - p_base);
1273 	}
1274 
1275 	entropy_sum /= ws->sample_size;
1276 	return entropy_sum * 100 / entropy_max;
1277 }
1278 
1279 #define RADIX_BASE		4U
1280 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1281 
get4bits(u64 num,int shift)1282 static u8 get4bits(u64 num, int shift) {
1283 	u8 low4bits;
1284 
1285 	num >>= shift;
1286 	/* Reverse order */
1287 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1288 	return low4bits;
1289 }
1290 
1291 /*
1292  * Use 4 bits as radix base
1293  * Use 16 u32 counters for calculating new possition in buf array
1294  *
1295  * @array     - array that will be sorted
1296  * @array_buf - buffer array to store sorting results
1297  *              must be equal in size to @array
1298  * @num       - array size
1299  */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1300 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1301 		       int num)
1302 {
1303 	u64 max_num;
1304 	u64 buf_num;
1305 	u32 counters[COUNTERS_SIZE];
1306 	u32 new_addr;
1307 	u32 addr;
1308 	int bitlen;
1309 	int shift;
1310 	int i;
1311 
1312 	/*
1313 	 * Try avoid useless loop iterations for small numbers stored in big
1314 	 * counters.  Example: 48 33 4 ... in 64bit array
1315 	 */
1316 	max_num = array[0].count;
1317 	for (i = 1; i < num; i++) {
1318 		buf_num = array[i].count;
1319 		if (buf_num > max_num)
1320 			max_num = buf_num;
1321 	}
1322 
1323 	buf_num = ilog2(max_num);
1324 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1325 
1326 	shift = 0;
1327 	while (shift < bitlen) {
1328 		memset(counters, 0, sizeof(counters));
1329 
1330 		for (i = 0; i < num; i++) {
1331 			buf_num = array[i].count;
1332 			addr = get4bits(buf_num, shift);
1333 			counters[addr]++;
1334 		}
1335 
1336 		for (i = 1; i < COUNTERS_SIZE; i++)
1337 			counters[i] += counters[i - 1];
1338 
1339 		for (i = num - 1; i >= 0; i--) {
1340 			buf_num = array[i].count;
1341 			addr = get4bits(buf_num, shift);
1342 			counters[addr]--;
1343 			new_addr = counters[addr];
1344 			array_buf[new_addr] = array[i];
1345 		}
1346 
1347 		shift += RADIX_BASE;
1348 
1349 		/*
1350 		 * Normal radix expects to move data from a temporary array, to
1351 		 * the main one.  But that requires some CPU time. Avoid that
1352 		 * by doing another sort iteration to original array instead of
1353 		 * memcpy()
1354 		 */
1355 		memset(counters, 0, sizeof(counters));
1356 
1357 		for (i = 0; i < num; i ++) {
1358 			buf_num = array_buf[i].count;
1359 			addr = get4bits(buf_num, shift);
1360 			counters[addr]++;
1361 		}
1362 
1363 		for (i = 1; i < COUNTERS_SIZE; i++)
1364 			counters[i] += counters[i - 1];
1365 
1366 		for (i = num - 1; i >= 0; i--) {
1367 			buf_num = array_buf[i].count;
1368 			addr = get4bits(buf_num, shift);
1369 			counters[addr]--;
1370 			new_addr = counters[addr];
1371 			array[new_addr] = array_buf[i];
1372 		}
1373 
1374 		shift += RADIX_BASE;
1375 	}
1376 }
1377 
1378 /*
1379  * Size of the core byte set - how many bytes cover 90% of the sample
1380  *
1381  * There are several types of structured binary data that use nearly all byte
1382  * values. The distribution can be uniform and counts in all buckets will be
1383  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1384  *
1385  * Other possibility is normal (Gaussian) distribution, where the data could
1386  * be potentially compressible, but we have to take a few more steps to decide
1387  * how much.
1388  *
1389  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1390  *                       compression algo can easy fix that
1391  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1392  *                       probability is not compressible
1393  */
1394 #define BYTE_CORE_SET_LOW		(64)
1395 #define BYTE_CORE_SET_HIGH		(200)
1396 
byte_core_set_size(struct heuristic_ws * ws)1397 static int byte_core_set_size(struct heuristic_ws *ws)
1398 {
1399 	u32 i;
1400 	u32 coreset_sum = 0;
1401 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1402 	struct bucket_item *bucket = ws->bucket;
1403 
1404 	/* Sort in reverse order */
1405 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1406 
1407 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1408 		coreset_sum += bucket[i].count;
1409 
1410 	if (coreset_sum > core_set_threshold)
1411 		return i;
1412 
1413 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1414 		coreset_sum += bucket[i].count;
1415 		if (coreset_sum > core_set_threshold)
1416 			break;
1417 	}
1418 
1419 	return i;
1420 }
1421 
1422 /*
1423  * Count byte values in buckets.
1424  * This heuristic can detect textual data (configs, xml, json, html, etc).
1425  * Because in most text-like data byte set is restricted to limited number of
1426  * possible characters, and that restriction in most cases makes data easy to
1427  * compress.
1428  *
1429  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1430  *	less - compressible
1431  *	more - need additional analysis
1432  */
1433 #define BYTE_SET_THRESHOLD		(64)
1434 
byte_set_size(const struct heuristic_ws * ws)1435 static u32 byte_set_size(const struct heuristic_ws *ws)
1436 {
1437 	u32 i;
1438 	u32 byte_set_size = 0;
1439 
1440 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1441 		if (ws->bucket[i].count > 0)
1442 			byte_set_size++;
1443 	}
1444 
1445 	/*
1446 	 * Continue collecting count of byte values in buckets.  If the byte
1447 	 * set size is bigger then the threshold, it's pointless to continue,
1448 	 * the detection technique would fail for this type of data.
1449 	 */
1450 	for (; i < BUCKET_SIZE; i++) {
1451 		if (ws->bucket[i].count > 0) {
1452 			byte_set_size++;
1453 			if (byte_set_size > BYTE_SET_THRESHOLD)
1454 				return byte_set_size;
1455 		}
1456 	}
1457 
1458 	return byte_set_size;
1459 }
1460 
sample_repeated_patterns(struct heuristic_ws * ws)1461 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1462 {
1463 	const u32 half_of_sample = ws->sample_size / 2;
1464 	const u8 *data = ws->sample;
1465 
1466 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1467 }
1468 
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1469 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1470 				     struct heuristic_ws *ws)
1471 {
1472 	struct page *page;
1473 	u64 index, index_end;
1474 	u32 i, curr_sample_pos;
1475 	u8 *in_data;
1476 
1477 	/*
1478 	 * Compression handles the input data by chunks of 128KiB
1479 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1480 	 *
1481 	 * We do the same for the heuristic and loop over the whole range.
1482 	 *
1483 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1484 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1485 	 */
1486 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1487 		end = start + BTRFS_MAX_UNCOMPRESSED;
1488 
1489 	index = start >> PAGE_SHIFT;
1490 	index_end = end >> PAGE_SHIFT;
1491 
1492 	/* Don't miss unaligned end */
1493 	if (!IS_ALIGNED(end, PAGE_SIZE))
1494 		index_end++;
1495 
1496 	curr_sample_pos = 0;
1497 	while (index < index_end) {
1498 		page = find_get_page(inode->i_mapping, index);
1499 		in_data = kmap(page);
1500 		/* Handle case where the start is not aligned to PAGE_SIZE */
1501 		i = start % PAGE_SIZE;
1502 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1503 			/* Don't sample any garbage from the last page */
1504 			if (start > end - SAMPLING_READ_SIZE)
1505 				break;
1506 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1507 					SAMPLING_READ_SIZE);
1508 			i += SAMPLING_INTERVAL;
1509 			start += SAMPLING_INTERVAL;
1510 			curr_sample_pos += SAMPLING_READ_SIZE;
1511 		}
1512 		kunmap(page);
1513 		put_page(page);
1514 
1515 		index++;
1516 	}
1517 
1518 	ws->sample_size = curr_sample_pos;
1519 }
1520 
1521 /*
1522  * Compression heuristic.
1523  *
1524  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1525  * quickly (compared to direct compression) detect data characteristics
1526  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1527  * data.
1528  *
1529  * The following types of analysis can be performed:
1530  * - detect mostly zero data
1531  * - detect data with low "byte set" size (text, etc)
1532  * - detect data with low/high "core byte" set
1533  *
1534  * Return non-zero if the compression should be done, 0 otherwise.
1535  */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1536 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1537 {
1538 	struct list_head *ws_list = __find_workspace(0, true);
1539 	struct heuristic_ws *ws;
1540 	u32 i;
1541 	u8 byte;
1542 	int ret = 0;
1543 
1544 	ws = list_entry(ws_list, struct heuristic_ws, list);
1545 
1546 	heuristic_collect_sample(inode, start, end, ws);
1547 
1548 	if (sample_repeated_patterns(ws)) {
1549 		ret = 1;
1550 		goto out;
1551 	}
1552 
1553 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1554 
1555 	for (i = 0; i < ws->sample_size; i++) {
1556 		byte = ws->sample[i];
1557 		ws->bucket[byte].count++;
1558 	}
1559 
1560 	i = byte_set_size(ws);
1561 	if (i < BYTE_SET_THRESHOLD) {
1562 		ret = 2;
1563 		goto out;
1564 	}
1565 
1566 	i = byte_core_set_size(ws);
1567 	if (i <= BYTE_CORE_SET_LOW) {
1568 		ret = 3;
1569 		goto out;
1570 	}
1571 
1572 	if (i >= BYTE_CORE_SET_HIGH) {
1573 		ret = 0;
1574 		goto out;
1575 	}
1576 
1577 	i = shannon_entropy(ws);
1578 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1579 		ret = 4;
1580 		goto out;
1581 	}
1582 
1583 	/*
1584 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1585 	 * needed to give green light to compression.
1586 	 *
1587 	 * For now just assume that compression at that level is not worth the
1588 	 * resources because:
1589 	 *
1590 	 * 1. it is possible to defrag the data later
1591 	 *
1592 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1593 	 * values, every bucket has counter at level ~54. The heuristic would
1594 	 * be confused. This can happen when data have some internal repeated
1595 	 * patterns like "abbacbbc...". This can be detected by analyzing
1596 	 * pairs of bytes, which is too costly.
1597 	 */
1598 	if (i < ENTROPY_LVL_HIGH) {
1599 		ret = 5;
1600 		goto out;
1601 	} else {
1602 		ret = 0;
1603 		goto out;
1604 	}
1605 
1606 out:
1607 	__free_workspace(0, ws_list, true);
1608 	return ret;
1609 }
1610 
btrfs_compress_str2level(const char * str)1611 unsigned int btrfs_compress_str2level(const char *str)
1612 {
1613 	if (strncmp(str, "zlib", 4) != 0)
1614 		return 0;
1615 
1616 	/* Accepted form: zlib:1 up to zlib:9 and nothing left after the number */
1617 	if (str[4] == ':' && '1' <= str[5] && str[5] <= '9' && str[6] == 0)
1618 		return str[5] - '0';
1619 
1620 	return BTRFS_ZLIB_DEFAULT_LEVEL;
1621 }
1622