1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
37 *
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45 *
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
50 */
51
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
56
read_block(struct inode * inode,void * addr,unsigned int block,struct ubifs_data_node * dn)57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 struct ubifs_data_node *dn)
59 {
60 struct ubifs_info *c = inode->i_sb->s_fs_info;
61 int err, len, out_len;
62 union ubifs_key key;
63 unsigned int dlen;
64
65 data_key_init(c, &key, inode->i_ino, block);
66 err = ubifs_tnc_lookup(c, &key, dn);
67 if (err) {
68 if (err == -ENOENT)
69 /* Not found, so it must be a hole */
70 memset(addr, 0, UBIFS_BLOCK_SIZE);
71 return err;
72 }
73
74 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
75 ubifs_inode(inode)->creat_sqnum);
76 len = le32_to_cpu(dn->size);
77 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 goto dump;
79
80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81
82 if (ubifs_crypt_is_encrypted(inode)) {
83 err = ubifs_decrypt(inode, dn, &dlen, block);
84 if (err)
85 goto dump;
86 }
87
88 out_len = UBIFS_BLOCK_SIZE;
89 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 le16_to_cpu(dn->compr_type));
91 if (err || len != out_len)
92 goto dump;
93
94 /*
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
98 */
99 if (len < UBIFS_BLOCK_SIZE)
100 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
101
102 return 0;
103
104 dump:
105 ubifs_err(c, "bad data node (block %u, inode %lu)",
106 block, inode->i_ino);
107 ubifs_dump_node(c, dn);
108 return -EINVAL;
109 }
110
do_readpage(struct page * page)111 static int do_readpage(struct page *page)
112 {
113 void *addr;
114 int err = 0, i;
115 unsigned int block, beyond;
116 struct ubifs_data_node *dn;
117 struct inode *inode = page->mapping->host;
118 struct ubifs_info *c = inode->i_sb->s_fs_info;
119 loff_t i_size = i_size_read(inode);
120
121 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
122 inode->i_ino, page->index, i_size, page->flags);
123 ubifs_assert(c, !PageChecked(page));
124 ubifs_assert(c, !PagePrivate(page));
125
126 addr = kmap(page);
127
128 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
129 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
130 if (block >= beyond) {
131 /* Reading beyond inode */
132 SetPageChecked(page);
133 memset(addr, 0, PAGE_SIZE);
134 goto out;
135 }
136
137 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
138 if (!dn) {
139 err = -ENOMEM;
140 goto error;
141 }
142
143 i = 0;
144 while (1) {
145 int ret;
146
147 if (block >= beyond) {
148 /* Reading beyond inode */
149 err = -ENOENT;
150 memset(addr, 0, UBIFS_BLOCK_SIZE);
151 } else {
152 ret = read_block(inode, addr, block, dn);
153 if (ret) {
154 err = ret;
155 if (err != -ENOENT)
156 break;
157 } else if (block + 1 == beyond) {
158 int dlen = le32_to_cpu(dn->size);
159 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
160
161 if (ilen && ilen < dlen)
162 memset(addr + ilen, 0, dlen - ilen);
163 }
164 }
165 if (++i >= UBIFS_BLOCKS_PER_PAGE)
166 break;
167 block += 1;
168 addr += UBIFS_BLOCK_SIZE;
169 }
170 if (err) {
171 struct ubifs_info *c = inode->i_sb->s_fs_info;
172 if (err == -ENOENT) {
173 /* Not found, so it must be a hole */
174 SetPageChecked(page);
175 dbg_gen("hole");
176 goto out_free;
177 }
178 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
179 page->index, inode->i_ino, err);
180 goto error;
181 }
182
183 out_free:
184 kfree(dn);
185 out:
186 SetPageUptodate(page);
187 ClearPageError(page);
188 flush_dcache_page(page);
189 kunmap(page);
190 return 0;
191
192 error:
193 kfree(dn);
194 ClearPageUptodate(page);
195 SetPageError(page);
196 flush_dcache_page(page);
197 kunmap(page);
198 return err;
199 }
200
201 /**
202 * release_new_page_budget - release budget of a new page.
203 * @c: UBIFS file-system description object
204 *
205 * This is a helper function which releases budget corresponding to the budget
206 * of one new page of data.
207 */
release_new_page_budget(struct ubifs_info * c)208 static void release_new_page_budget(struct ubifs_info *c)
209 {
210 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
211
212 ubifs_release_budget(c, &req);
213 }
214
215 /**
216 * release_existing_page_budget - release budget of an existing page.
217 * @c: UBIFS file-system description object
218 *
219 * This is a helper function which releases budget corresponding to the budget
220 * of changing one one page of data which already exists on the flash media.
221 */
release_existing_page_budget(struct ubifs_info * c)222 static void release_existing_page_budget(struct ubifs_info *c)
223 {
224 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
225
226 ubifs_release_budget(c, &req);
227 }
228
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct page ** pagep,unsigned flags)229 static int write_begin_slow(struct address_space *mapping,
230 loff_t pos, unsigned len, struct page **pagep,
231 unsigned flags)
232 {
233 struct inode *inode = mapping->host;
234 struct ubifs_info *c = inode->i_sb->s_fs_info;
235 pgoff_t index = pos >> PAGE_SHIFT;
236 struct ubifs_budget_req req = { .new_page = 1 };
237 int err, appending = !!(pos + len > inode->i_size);
238 struct page *page;
239
240 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
241 inode->i_ino, pos, len, inode->i_size);
242
243 /*
244 * At the slow path we have to budget before locking the page, because
245 * budgeting may force write-back, which would wait on locked pages and
246 * deadlock if we had the page locked. At this point we do not know
247 * anything about the page, so assume that this is a new page which is
248 * written to a hole. This corresponds to largest budget. Later the
249 * budget will be amended if this is not true.
250 */
251 if (appending)
252 /* We are appending data, budget for inode change */
253 req.dirtied_ino = 1;
254
255 err = ubifs_budget_space(c, &req);
256 if (unlikely(err))
257 return err;
258
259 page = grab_cache_page_write_begin(mapping, index, flags);
260 if (unlikely(!page)) {
261 ubifs_release_budget(c, &req);
262 return -ENOMEM;
263 }
264
265 if (!PageUptodate(page)) {
266 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
267 SetPageChecked(page);
268 else {
269 err = do_readpage(page);
270 if (err) {
271 unlock_page(page);
272 put_page(page);
273 ubifs_release_budget(c, &req);
274 return err;
275 }
276 }
277
278 SetPageUptodate(page);
279 ClearPageError(page);
280 }
281
282 if (PagePrivate(page))
283 /*
284 * The page is dirty, which means it was budgeted twice:
285 * o first time the budget was allocated by the task which
286 * made the page dirty and set the PG_private flag;
287 * o and then we budgeted for it for the second time at the
288 * very beginning of this function.
289 *
290 * So what we have to do is to release the page budget we
291 * allocated.
292 */
293 release_new_page_budget(c);
294 else if (!PageChecked(page))
295 /*
296 * We are changing a page which already exists on the media.
297 * This means that changing the page does not make the amount
298 * of indexing information larger, and this part of the budget
299 * which we have already acquired may be released.
300 */
301 ubifs_convert_page_budget(c);
302
303 if (appending) {
304 struct ubifs_inode *ui = ubifs_inode(inode);
305
306 /*
307 * 'ubifs_write_end()' is optimized from the fast-path part of
308 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
309 * if data is appended.
310 */
311 mutex_lock(&ui->ui_mutex);
312 if (ui->dirty)
313 /*
314 * The inode is dirty already, so we may free the
315 * budget we allocated.
316 */
317 ubifs_release_dirty_inode_budget(c, ui);
318 }
319
320 *pagep = page;
321 return 0;
322 }
323
324 /**
325 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
326 * @c: UBIFS file-system description object
327 * @page: page to allocate budget for
328 * @ui: UBIFS inode object the page belongs to
329 * @appending: non-zero if the page is appended
330 *
331 * This is a helper function for 'ubifs_write_begin()' which allocates budget
332 * for the operation. The budget is allocated differently depending on whether
333 * this is appending, whether the page is dirty or not, and so on. This
334 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
335 * in case of success and %-ENOSPC in case of failure.
336 */
allocate_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)337 static int allocate_budget(struct ubifs_info *c, struct page *page,
338 struct ubifs_inode *ui, int appending)
339 {
340 struct ubifs_budget_req req = { .fast = 1 };
341
342 if (PagePrivate(page)) {
343 if (!appending)
344 /*
345 * The page is dirty and we are not appending, which
346 * means no budget is needed at all.
347 */
348 return 0;
349
350 mutex_lock(&ui->ui_mutex);
351 if (ui->dirty)
352 /*
353 * The page is dirty and we are appending, so the inode
354 * has to be marked as dirty. However, it is already
355 * dirty, so we do not need any budget. We may return,
356 * but @ui->ui_mutex hast to be left locked because we
357 * should prevent write-back from flushing the inode
358 * and freeing the budget. The lock will be released in
359 * 'ubifs_write_end()'.
360 */
361 return 0;
362
363 /*
364 * The page is dirty, we are appending, the inode is clean, so
365 * we need to budget the inode change.
366 */
367 req.dirtied_ino = 1;
368 } else {
369 if (PageChecked(page))
370 /*
371 * The page corresponds to a hole and does not
372 * exist on the media. So changing it makes
373 * make the amount of indexing information
374 * larger, and we have to budget for a new
375 * page.
376 */
377 req.new_page = 1;
378 else
379 /*
380 * Not a hole, the change will not add any new
381 * indexing information, budget for page
382 * change.
383 */
384 req.dirtied_page = 1;
385
386 if (appending) {
387 mutex_lock(&ui->ui_mutex);
388 if (!ui->dirty)
389 /*
390 * The inode is clean but we will have to mark
391 * it as dirty because we are appending. This
392 * needs a budget.
393 */
394 req.dirtied_ino = 1;
395 }
396 }
397
398 return ubifs_budget_space(c, &req);
399 }
400
401 /*
402 * This function is called when a page of data is going to be written. Since
403 * the page of data will not necessarily go to the flash straight away, UBIFS
404 * has to reserve space on the media for it, which is done by means of
405 * budgeting.
406 *
407 * This is the hot-path of the file-system and we are trying to optimize it as
408 * much as possible. For this reasons it is split on 2 parts - slow and fast.
409 *
410 * There many budgeting cases:
411 * o a new page is appended - we have to budget for a new page and for
412 * changing the inode; however, if the inode is already dirty, there is
413 * no need to budget for it;
414 * o an existing clean page is changed - we have budget for it; if the page
415 * does not exist on the media (a hole), we have to budget for a new
416 * page; otherwise, we may budget for changing an existing page; the
417 * difference between these cases is that changing an existing page does
418 * not introduce anything new to the FS indexing information, so it does
419 * not grow, and smaller budget is acquired in this case;
420 * o an existing dirty page is changed - no need to budget at all, because
421 * the page budget has been acquired by earlier, when the page has been
422 * marked dirty.
423 *
424 * UBIFS budgeting sub-system may force write-back if it thinks there is no
425 * space to reserve. This imposes some locking restrictions and makes it
426 * impossible to take into account the above cases, and makes it impossible to
427 * optimize budgeting.
428 *
429 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
430 * there is a plenty of flash space and the budget will be acquired quickly,
431 * without forcing write-back. The slow path does not make this assumption.
432 */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)433 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
434 loff_t pos, unsigned len, unsigned flags,
435 struct page **pagep, void **fsdata)
436 {
437 struct inode *inode = mapping->host;
438 struct ubifs_info *c = inode->i_sb->s_fs_info;
439 struct ubifs_inode *ui = ubifs_inode(inode);
440 pgoff_t index = pos >> PAGE_SHIFT;
441 int err, appending = !!(pos + len > inode->i_size);
442 int skipped_read = 0;
443 struct page *page;
444
445 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
446 ubifs_assert(c, !c->ro_media && !c->ro_mount);
447
448 if (unlikely(c->ro_error))
449 return -EROFS;
450
451 /* Try out the fast-path part first */
452 page = grab_cache_page_write_begin(mapping, index, flags);
453 if (unlikely(!page))
454 return -ENOMEM;
455
456 if (!PageUptodate(page)) {
457 /* The page is not loaded from the flash */
458 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
459 /*
460 * We change whole page so no need to load it. But we
461 * do not know whether this page exists on the media or
462 * not, so we assume the latter because it requires
463 * larger budget. The assumption is that it is better
464 * to budget a bit more than to read the page from the
465 * media. Thus, we are setting the @PG_checked flag
466 * here.
467 */
468 SetPageChecked(page);
469 skipped_read = 1;
470 } else {
471 err = do_readpage(page);
472 if (err) {
473 unlock_page(page);
474 put_page(page);
475 return err;
476 }
477 }
478
479 SetPageUptodate(page);
480 ClearPageError(page);
481 }
482
483 err = allocate_budget(c, page, ui, appending);
484 if (unlikely(err)) {
485 ubifs_assert(c, err == -ENOSPC);
486 /*
487 * If we skipped reading the page because we were going to
488 * write all of it, then it is not up to date.
489 */
490 if (skipped_read) {
491 ClearPageChecked(page);
492 ClearPageUptodate(page);
493 }
494 /*
495 * Budgeting failed which means it would have to force
496 * write-back but didn't, because we set the @fast flag in the
497 * request. Write-back cannot be done now, while we have the
498 * page locked, because it would deadlock. Unlock and free
499 * everything and fall-back to slow-path.
500 */
501 if (appending) {
502 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
503 mutex_unlock(&ui->ui_mutex);
504 }
505 unlock_page(page);
506 put_page(page);
507
508 return write_begin_slow(mapping, pos, len, pagep, flags);
509 }
510
511 /*
512 * Whee, we acquired budgeting quickly - without involving
513 * garbage-collection, committing or forcing write-back. We return
514 * with @ui->ui_mutex locked if we are appending pages, and unlocked
515 * otherwise. This is an optimization (slightly hacky though).
516 */
517 *pagep = page;
518 return 0;
519
520 }
521
522 /**
523 * cancel_budget - cancel budget.
524 * @c: UBIFS file-system description object
525 * @page: page to cancel budget for
526 * @ui: UBIFS inode object the page belongs to
527 * @appending: non-zero if the page is appended
528 *
529 * This is a helper function for a page write operation. It unlocks the
530 * @ui->ui_mutex in case of appending.
531 */
cancel_budget(struct ubifs_info * c,struct page * page,struct ubifs_inode * ui,int appending)532 static void cancel_budget(struct ubifs_info *c, struct page *page,
533 struct ubifs_inode *ui, int appending)
534 {
535 if (appending) {
536 if (!ui->dirty)
537 ubifs_release_dirty_inode_budget(c, ui);
538 mutex_unlock(&ui->ui_mutex);
539 }
540 if (!PagePrivate(page)) {
541 if (PageChecked(page))
542 release_new_page_budget(c);
543 else
544 release_existing_page_budget(c);
545 }
546 }
547
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)548 static int ubifs_write_end(struct file *file, struct address_space *mapping,
549 loff_t pos, unsigned len, unsigned copied,
550 struct page *page, void *fsdata)
551 {
552 struct inode *inode = mapping->host;
553 struct ubifs_inode *ui = ubifs_inode(inode);
554 struct ubifs_info *c = inode->i_sb->s_fs_info;
555 loff_t end_pos = pos + len;
556 int appending = !!(end_pos > inode->i_size);
557
558 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
559 inode->i_ino, pos, page->index, len, copied, inode->i_size);
560
561 if (unlikely(copied < len && len == PAGE_SIZE)) {
562 /*
563 * VFS copied less data to the page that it intended and
564 * declared in its '->write_begin()' call via the @len
565 * argument. If the page was not up-to-date, and @len was
566 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
567 * not load it from the media (for optimization reasons). This
568 * means that part of the page contains garbage. So read the
569 * page now.
570 */
571 dbg_gen("copied %d instead of %d, read page and repeat",
572 copied, len);
573 cancel_budget(c, page, ui, appending);
574 ClearPageChecked(page);
575
576 /*
577 * Return 0 to force VFS to repeat the whole operation, or the
578 * error code if 'do_readpage()' fails.
579 */
580 copied = do_readpage(page);
581 goto out;
582 }
583
584 if (!PagePrivate(page)) {
585 SetPagePrivate(page);
586 atomic_long_inc(&c->dirty_pg_cnt);
587 __set_page_dirty_nobuffers(page);
588 }
589
590 if (appending) {
591 i_size_write(inode, end_pos);
592 ui->ui_size = end_pos;
593 /*
594 * Note, we do not set @I_DIRTY_PAGES (which means that the
595 * inode has dirty pages), this has been done in
596 * '__set_page_dirty_nobuffers()'.
597 */
598 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
599 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
600 mutex_unlock(&ui->ui_mutex);
601 }
602
603 out:
604 unlock_page(page);
605 put_page(page);
606 return copied;
607 }
608
609 /**
610 * populate_page - copy data nodes into a page for bulk-read.
611 * @c: UBIFS file-system description object
612 * @page: page
613 * @bu: bulk-read information
614 * @n: next zbranch slot
615 *
616 * This function returns %0 on success and a negative error code on failure.
617 */
populate_page(struct ubifs_info * c,struct page * page,struct bu_info * bu,int * n)618 static int populate_page(struct ubifs_info *c, struct page *page,
619 struct bu_info *bu, int *n)
620 {
621 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
622 struct inode *inode = page->mapping->host;
623 loff_t i_size = i_size_read(inode);
624 unsigned int page_block;
625 void *addr, *zaddr;
626 pgoff_t end_index;
627
628 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
629 inode->i_ino, page->index, i_size, page->flags);
630
631 addr = zaddr = kmap(page);
632
633 end_index = (i_size - 1) >> PAGE_SHIFT;
634 if (!i_size || page->index > end_index) {
635 hole = 1;
636 memset(addr, 0, PAGE_SIZE);
637 goto out_hole;
638 }
639
640 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
641 while (1) {
642 int err, len, out_len, dlen;
643
644 if (nn >= bu->cnt) {
645 hole = 1;
646 memset(addr, 0, UBIFS_BLOCK_SIZE);
647 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
648 struct ubifs_data_node *dn;
649
650 dn = bu->buf + (bu->zbranch[nn].offs - offs);
651
652 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
653 ubifs_inode(inode)->creat_sqnum);
654
655 len = le32_to_cpu(dn->size);
656 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
657 goto out_err;
658
659 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
660 out_len = UBIFS_BLOCK_SIZE;
661
662 if (ubifs_crypt_is_encrypted(inode)) {
663 err = ubifs_decrypt(inode, dn, &dlen, page_block);
664 if (err)
665 goto out_err;
666 }
667
668 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
669 le16_to_cpu(dn->compr_type));
670 if (err || len != out_len)
671 goto out_err;
672
673 if (len < UBIFS_BLOCK_SIZE)
674 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
675
676 nn += 1;
677 read = (i << UBIFS_BLOCK_SHIFT) + len;
678 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
679 nn += 1;
680 continue;
681 } else {
682 hole = 1;
683 memset(addr, 0, UBIFS_BLOCK_SIZE);
684 }
685 if (++i >= UBIFS_BLOCKS_PER_PAGE)
686 break;
687 addr += UBIFS_BLOCK_SIZE;
688 page_block += 1;
689 }
690
691 if (end_index == page->index) {
692 int len = i_size & (PAGE_SIZE - 1);
693
694 if (len && len < read)
695 memset(zaddr + len, 0, read - len);
696 }
697
698 out_hole:
699 if (hole) {
700 SetPageChecked(page);
701 dbg_gen("hole");
702 }
703
704 SetPageUptodate(page);
705 ClearPageError(page);
706 flush_dcache_page(page);
707 kunmap(page);
708 *n = nn;
709 return 0;
710
711 out_err:
712 ClearPageUptodate(page);
713 SetPageError(page);
714 flush_dcache_page(page);
715 kunmap(page);
716 ubifs_err(c, "bad data node (block %u, inode %lu)",
717 page_block, inode->i_ino);
718 return -EINVAL;
719 }
720
721 /**
722 * ubifs_do_bulk_read - do bulk-read.
723 * @c: UBIFS file-system description object
724 * @bu: bulk-read information
725 * @page1: first page to read
726 *
727 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
728 */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct page * page1)729 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
730 struct page *page1)
731 {
732 pgoff_t offset = page1->index, end_index;
733 struct address_space *mapping = page1->mapping;
734 struct inode *inode = mapping->host;
735 struct ubifs_inode *ui = ubifs_inode(inode);
736 int err, page_idx, page_cnt, ret = 0, n = 0;
737 int allocate = bu->buf ? 0 : 1;
738 loff_t isize;
739 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
740
741 err = ubifs_tnc_get_bu_keys(c, bu);
742 if (err)
743 goto out_warn;
744
745 if (bu->eof) {
746 /* Turn off bulk-read at the end of the file */
747 ui->read_in_a_row = 1;
748 ui->bulk_read = 0;
749 }
750
751 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
752 if (!page_cnt) {
753 /*
754 * This happens when there are multiple blocks per page and the
755 * blocks for the first page we are looking for, are not
756 * together. If all the pages were like this, bulk-read would
757 * reduce performance, so we turn it off for a while.
758 */
759 goto out_bu_off;
760 }
761
762 if (bu->cnt) {
763 if (allocate) {
764 /*
765 * Allocate bulk-read buffer depending on how many data
766 * nodes we are going to read.
767 */
768 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
769 bu->zbranch[bu->cnt - 1].len -
770 bu->zbranch[0].offs;
771 ubifs_assert(c, bu->buf_len > 0);
772 ubifs_assert(c, bu->buf_len <= c->leb_size);
773 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
774 if (!bu->buf)
775 goto out_bu_off;
776 }
777
778 err = ubifs_tnc_bulk_read(c, bu);
779 if (err)
780 goto out_warn;
781 }
782
783 err = populate_page(c, page1, bu, &n);
784 if (err)
785 goto out_warn;
786
787 unlock_page(page1);
788 ret = 1;
789
790 isize = i_size_read(inode);
791 if (isize == 0)
792 goto out_free;
793 end_index = ((isize - 1) >> PAGE_SHIFT);
794
795 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
796 pgoff_t page_offset = offset + page_idx;
797 struct page *page;
798
799 if (page_offset > end_index)
800 break;
801 page = pagecache_get_page(mapping, page_offset,
802 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
803 ra_gfp_mask);
804 if (!page)
805 break;
806 if (!PageUptodate(page))
807 err = populate_page(c, page, bu, &n);
808 unlock_page(page);
809 put_page(page);
810 if (err)
811 break;
812 }
813
814 ui->last_page_read = offset + page_idx - 1;
815
816 out_free:
817 if (allocate)
818 kfree(bu->buf);
819 return ret;
820
821 out_warn:
822 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
823 goto out_free;
824
825 out_bu_off:
826 ui->read_in_a_row = ui->bulk_read = 0;
827 goto out_free;
828 }
829
830 /**
831 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
832 * @page: page from which to start bulk-read.
833 *
834 * Some flash media are capable of reading sequentially at faster rates. UBIFS
835 * bulk-read facility is designed to take advantage of that, by reading in one
836 * go consecutive data nodes that are also located consecutively in the same
837 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
838 */
ubifs_bulk_read(struct page * page)839 static int ubifs_bulk_read(struct page *page)
840 {
841 struct inode *inode = page->mapping->host;
842 struct ubifs_info *c = inode->i_sb->s_fs_info;
843 struct ubifs_inode *ui = ubifs_inode(inode);
844 pgoff_t index = page->index, last_page_read = ui->last_page_read;
845 struct bu_info *bu;
846 int err = 0, allocated = 0;
847
848 ui->last_page_read = index;
849 if (!c->bulk_read)
850 return 0;
851
852 /*
853 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
854 * so don't bother if we cannot lock the mutex.
855 */
856 if (!mutex_trylock(&ui->ui_mutex))
857 return 0;
858
859 if (index != last_page_read + 1) {
860 /* Turn off bulk-read if we stop reading sequentially */
861 ui->read_in_a_row = 1;
862 if (ui->bulk_read)
863 ui->bulk_read = 0;
864 goto out_unlock;
865 }
866
867 if (!ui->bulk_read) {
868 ui->read_in_a_row += 1;
869 if (ui->read_in_a_row < 3)
870 goto out_unlock;
871 /* Three reads in a row, so switch on bulk-read */
872 ui->bulk_read = 1;
873 }
874
875 /*
876 * If possible, try to use pre-allocated bulk-read information, which
877 * is protected by @c->bu_mutex.
878 */
879 if (mutex_trylock(&c->bu_mutex))
880 bu = &c->bu;
881 else {
882 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
883 if (!bu)
884 goto out_unlock;
885
886 bu->buf = NULL;
887 allocated = 1;
888 }
889
890 bu->buf_len = c->max_bu_buf_len;
891 data_key_init(c, &bu->key, inode->i_ino,
892 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
893 err = ubifs_do_bulk_read(c, bu, page);
894
895 if (!allocated)
896 mutex_unlock(&c->bu_mutex);
897 else
898 kfree(bu);
899
900 out_unlock:
901 mutex_unlock(&ui->ui_mutex);
902 return err;
903 }
904
ubifs_readpage(struct file * file,struct page * page)905 static int ubifs_readpage(struct file *file, struct page *page)
906 {
907 if (ubifs_bulk_read(page))
908 return 0;
909 do_readpage(page);
910 unlock_page(page);
911 return 0;
912 }
913
do_writepage(struct page * page,int len)914 static int do_writepage(struct page *page, int len)
915 {
916 int err = 0, i, blen;
917 unsigned int block;
918 void *addr;
919 union ubifs_key key;
920 struct inode *inode = page->mapping->host;
921 struct ubifs_info *c = inode->i_sb->s_fs_info;
922
923 #ifdef UBIFS_DEBUG
924 struct ubifs_inode *ui = ubifs_inode(inode);
925 spin_lock(&ui->ui_lock);
926 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
927 spin_unlock(&ui->ui_lock);
928 #endif
929
930 /* Update radix tree tags */
931 set_page_writeback(page);
932
933 addr = kmap(page);
934 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
935 i = 0;
936 while (len) {
937 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
938 data_key_init(c, &key, inode->i_ino, block);
939 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
940 if (err)
941 break;
942 if (++i >= UBIFS_BLOCKS_PER_PAGE)
943 break;
944 block += 1;
945 addr += blen;
946 len -= blen;
947 }
948 if (err) {
949 SetPageError(page);
950 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
951 page->index, inode->i_ino, err);
952 ubifs_ro_mode(c, err);
953 }
954
955 ubifs_assert(c, PagePrivate(page));
956 if (PageChecked(page))
957 release_new_page_budget(c);
958 else
959 release_existing_page_budget(c);
960
961 atomic_long_dec(&c->dirty_pg_cnt);
962 ClearPagePrivate(page);
963 ClearPageChecked(page);
964
965 kunmap(page);
966 unlock_page(page);
967 end_page_writeback(page);
968 return err;
969 }
970
971 /*
972 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
973 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
974 * situation when a we have an inode with size 0, then a megabyte of data is
975 * appended to the inode, then write-back starts and flushes some amount of the
976 * dirty pages, the journal becomes full, commit happens and finishes, and then
977 * an unclean reboot happens. When the file system is mounted next time, the
978 * inode size would still be 0, but there would be many pages which are beyond
979 * the inode size, they would be indexed and consume flash space. Because the
980 * journal has been committed, the replay would not be able to detect this
981 * situation and correct the inode size. This means UBIFS would have to scan
982 * whole index and correct all inode sizes, which is long an unacceptable.
983 *
984 * To prevent situations like this, UBIFS writes pages back only if they are
985 * within the last synchronized inode size, i.e. the size which has been
986 * written to the flash media last time. Otherwise, UBIFS forces inode
987 * write-back, thus making sure the on-flash inode contains current inode size,
988 * and then keeps writing pages back.
989 *
990 * Some locking issues explanation. 'ubifs_writepage()' first is called with
991 * the page locked, and it locks @ui_mutex. However, write-back does take inode
992 * @i_mutex, which means other VFS operations may be run on this inode at the
993 * same time. And the problematic one is truncation to smaller size, from where
994 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
995 * then drops the truncated pages. And while dropping the pages, it takes the
996 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
997 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
998 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
999 *
1000 * XXX(truncate): with the new truncate sequence this is not true anymore,
1001 * and the calls to truncate_setsize can be move around freely. They should
1002 * be moved to the very end of the truncate sequence.
1003 *
1004 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1005 * inode size. How do we do this if @inode->i_size may became smaller while we
1006 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1007 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1008 * internally and updates it under @ui_mutex.
1009 *
1010 * Q: why we do not worry that if we race with truncation, we may end up with a
1011 * situation when the inode is truncated while we are in the middle of
1012 * 'do_writepage()', so we do write beyond inode size?
1013 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1014 * on the page lock and it would not write the truncated inode node to the
1015 * journal before we have finished.
1016 */
ubifs_writepage(struct page * page,struct writeback_control * wbc)1017 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1018 {
1019 struct inode *inode = page->mapping->host;
1020 struct ubifs_info *c = inode->i_sb->s_fs_info;
1021 struct ubifs_inode *ui = ubifs_inode(inode);
1022 loff_t i_size = i_size_read(inode), synced_i_size;
1023 pgoff_t end_index = i_size >> PAGE_SHIFT;
1024 int err, len = i_size & (PAGE_SIZE - 1);
1025 void *kaddr;
1026
1027 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1028 inode->i_ino, page->index, page->flags);
1029 ubifs_assert(c, PagePrivate(page));
1030
1031 /* Is the page fully outside @i_size? (truncate in progress) */
1032 if (page->index > end_index || (page->index == end_index && !len)) {
1033 err = 0;
1034 goto out_unlock;
1035 }
1036
1037 spin_lock(&ui->ui_lock);
1038 synced_i_size = ui->synced_i_size;
1039 spin_unlock(&ui->ui_lock);
1040
1041 /* Is the page fully inside @i_size? */
1042 if (page->index < end_index) {
1043 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1044 err = inode->i_sb->s_op->write_inode(inode, NULL);
1045 if (err)
1046 goto out_redirty;
1047 /*
1048 * The inode has been written, but the write-buffer has
1049 * not been synchronized, so in case of an unclean
1050 * reboot we may end up with some pages beyond inode
1051 * size, but they would be in the journal (because
1052 * commit flushes write buffers) and recovery would deal
1053 * with this.
1054 */
1055 }
1056 return do_writepage(page, PAGE_SIZE);
1057 }
1058
1059 /*
1060 * The page straddles @i_size. It must be zeroed out on each and every
1061 * writepage invocation because it may be mmapped. "A file is mapped
1062 * in multiples of the page size. For a file that is not a multiple of
1063 * the page size, the remaining memory is zeroed when mapped, and
1064 * writes to that region are not written out to the file."
1065 */
1066 kaddr = kmap_atomic(page);
1067 memset(kaddr + len, 0, PAGE_SIZE - len);
1068 flush_dcache_page(page);
1069 kunmap_atomic(kaddr);
1070
1071 if (i_size > synced_i_size) {
1072 err = inode->i_sb->s_op->write_inode(inode, NULL);
1073 if (err)
1074 goto out_redirty;
1075 }
1076
1077 return do_writepage(page, len);
1078 out_redirty:
1079 /*
1080 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because
1081 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1082 * there is no need to do space budget for dirty inode.
1083 */
1084 redirty_page_for_writepage(wbc, page);
1085 out_unlock:
1086 unlock_page(page);
1087 return err;
1088 }
1089
1090 /**
1091 * do_attr_changes - change inode attributes.
1092 * @inode: inode to change attributes for
1093 * @attr: describes attributes to change
1094 */
do_attr_changes(struct inode * inode,const struct iattr * attr)1095 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1096 {
1097 if (attr->ia_valid & ATTR_UID)
1098 inode->i_uid = attr->ia_uid;
1099 if (attr->ia_valid & ATTR_GID)
1100 inode->i_gid = attr->ia_gid;
1101 if (attr->ia_valid & ATTR_ATIME)
1102 inode->i_atime = timespec64_trunc(attr->ia_atime,
1103 inode->i_sb->s_time_gran);
1104 if (attr->ia_valid & ATTR_MTIME)
1105 inode->i_mtime = timespec64_trunc(attr->ia_mtime,
1106 inode->i_sb->s_time_gran);
1107 if (attr->ia_valid & ATTR_CTIME)
1108 inode->i_ctime = timespec64_trunc(attr->ia_ctime,
1109 inode->i_sb->s_time_gran);
1110 if (attr->ia_valid & ATTR_MODE) {
1111 umode_t mode = attr->ia_mode;
1112
1113 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1114 mode &= ~S_ISGID;
1115 inode->i_mode = mode;
1116 }
1117 }
1118
1119 /**
1120 * do_truncation - truncate an inode.
1121 * @c: UBIFS file-system description object
1122 * @inode: inode to truncate
1123 * @attr: inode attribute changes description
1124 *
1125 * This function implements VFS '->setattr()' call when the inode is truncated
1126 * to a smaller size. Returns zero in case of success and a negative error code
1127 * in case of failure.
1128 */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1129 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1130 const struct iattr *attr)
1131 {
1132 int err;
1133 struct ubifs_budget_req req;
1134 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1135 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1136 struct ubifs_inode *ui = ubifs_inode(inode);
1137
1138 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1139 memset(&req, 0, sizeof(struct ubifs_budget_req));
1140
1141 /*
1142 * If this is truncation to a smaller size, and we do not truncate on a
1143 * block boundary, budget for changing one data block, because the last
1144 * block will be re-written.
1145 */
1146 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1147 req.dirtied_page = 1;
1148
1149 req.dirtied_ino = 1;
1150 /* A funny way to budget for truncation node */
1151 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1152 err = ubifs_budget_space(c, &req);
1153 if (err) {
1154 /*
1155 * Treat truncations to zero as deletion and always allow them,
1156 * just like we do for '->unlink()'.
1157 */
1158 if (new_size || err != -ENOSPC)
1159 return err;
1160 budgeted = 0;
1161 }
1162
1163 truncate_setsize(inode, new_size);
1164
1165 if (offset) {
1166 pgoff_t index = new_size >> PAGE_SHIFT;
1167 struct page *page;
1168
1169 page = find_lock_page(inode->i_mapping, index);
1170 if (page) {
1171 if (PageDirty(page)) {
1172 /*
1173 * 'ubifs_jnl_truncate()' will try to truncate
1174 * the last data node, but it contains
1175 * out-of-date data because the page is dirty.
1176 * Write the page now, so that
1177 * 'ubifs_jnl_truncate()' will see an already
1178 * truncated (and up to date) data node.
1179 */
1180 ubifs_assert(c, PagePrivate(page));
1181
1182 clear_page_dirty_for_io(page);
1183 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1184 offset = new_size &
1185 (PAGE_SIZE - 1);
1186 err = do_writepage(page, offset);
1187 put_page(page);
1188 if (err)
1189 goto out_budg;
1190 /*
1191 * We could now tell 'ubifs_jnl_truncate()' not
1192 * to read the last block.
1193 */
1194 } else {
1195 /*
1196 * We could 'kmap()' the page and pass the data
1197 * to 'ubifs_jnl_truncate()' to save it from
1198 * having to read it.
1199 */
1200 unlock_page(page);
1201 put_page(page);
1202 }
1203 }
1204 }
1205
1206 mutex_lock(&ui->ui_mutex);
1207 ui->ui_size = inode->i_size;
1208 /* Truncation changes inode [mc]time */
1209 inode->i_mtime = inode->i_ctime = current_time(inode);
1210 /* Other attributes may be changed at the same time as well */
1211 do_attr_changes(inode, attr);
1212 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1213 mutex_unlock(&ui->ui_mutex);
1214
1215 out_budg:
1216 if (budgeted)
1217 ubifs_release_budget(c, &req);
1218 else {
1219 c->bi.nospace = c->bi.nospace_rp = 0;
1220 smp_wmb();
1221 }
1222 return err;
1223 }
1224
1225 /**
1226 * do_setattr - change inode attributes.
1227 * @c: UBIFS file-system description object
1228 * @inode: inode to change attributes for
1229 * @attr: inode attribute changes description
1230 *
1231 * This function implements VFS '->setattr()' call for all cases except
1232 * truncations to smaller size. Returns zero in case of success and a negative
1233 * error code in case of failure.
1234 */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1235 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1236 const struct iattr *attr)
1237 {
1238 int err, release;
1239 loff_t new_size = attr->ia_size;
1240 struct ubifs_inode *ui = ubifs_inode(inode);
1241 struct ubifs_budget_req req = { .dirtied_ino = 1,
1242 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1243
1244 err = ubifs_budget_space(c, &req);
1245 if (err)
1246 return err;
1247
1248 if (attr->ia_valid & ATTR_SIZE) {
1249 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1250 truncate_setsize(inode, new_size);
1251 }
1252
1253 mutex_lock(&ui->ui_mutex);
1254 if (attr->ia_valid & ATTR_SIZE) {
1255 /* Truncation changes inode [mc]time */
1256 inode->i_mtime = inode->i_ctime = current_time(inode);
1257 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1258 ui->ui_size = inode->i_size;
1259 }
1260
1261 do_attr_changes(inode, attr);
1262
1263 release = ui->dirty;
1264 if (attr->ia_valid & ATTR_SIZE)
1265 /*
1266 * Inode length changed, so we have to make sure
1267 * @I_DIRTY_DATASYNC is set.
1268 */
1269 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1270 else
1271 mark_inode_dirty_sync(inode);
1272 mutex_unlock(&ui->ui_mutex);
1273
1274 if (release)
1275 ubifs_release_budget(c, &req);
1276 if (IS_SYNC(inode))
1277 err = inode->i_sb->s_op->write_inode(inode, NULL);
1278 return err;
1279 }
1280
ubifs_setattr(struct dentry * dentry,struct iattr * attr)1281 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1282 {
1283 int err;
1284 struct inode *inode = d_inode(dentry);
1285 struct ubifs_info *c = inode->i_sb->s_fs_info;
1286
1287 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1288 inode->i_ino, inode->i_mode, attr->ia_valid);
1289 err = setattr_prepare(dentry, attr);
1290 if (err)
1291 return err;
1292
1293 err = dbg_check_synced_i_size(c, inode);
1294 if (err)
1295 return err;
1296
1297 err = fscrypt_prepare_setattr(dentry, attr);
1298 if (err)
1299 return err;
1300
1301 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1302 /* Truncation to a smaller size */
1303 err = do_truncation(c, inode, attr);
1304 else
1305 err = do_setattr(c, inode, attr);
1306
1307 return err;
1308 }
1309
ubifs_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1310 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1311 unsigned int length)
1312 {
1313 struct inode *inode = page->mapping->host;
1314 struct ubifs_info *c = inode->i_sb->s_fs_info;
1315
1316 ubifs_assert(c, PagePrivate(page));
1317 if (offset || length < PAGE_SIZE)
1318 /* Partial page remains dirty */
1319 return;
1320
1321 if (PageChecked(page))
1322 release_new_page_budget(c);
1323 else
1324 release_existing_page_budget(c);
1325
1326 atomic_long_dec(&c->dirty_pg_cnt);
1327 ClearPagePrivate(page);
1328 ClearPageChecked(page);
1329 }
1330
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1331 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1332 {
1333 struct inode *inode = file->f_mapping->host;
1334 struct ubifs_info *c = inode->i_sb->s_fs_info;
1335 int err;
1336
1337 dbg_gen("syncing inode %lu", inode->i_ino);
1338
1339 if (c->ro_mount)
1340 /*
1341 * For some really strange reasons VFS does not filter out
1342 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1343 */
1344 return 0;
1345
1346 err = file_write_and_wait_range(file, start, end);
1347 if (err)
1348 return err;
1349 inode_lock(inode);
1350
1351 /* Synchronize the inode unless this is a 'datasync()' call. */
1352 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1353 err = inode->i_sb->s_op->write_inode(inode, NULL);
1354 if (err)
1355 goto out;
1356 }
1357
1358 /*
1359 * Nodes related to this inode may still sit in a write-buffer. Flush
1360 * them.
1361 */
1362 err = ubifs_sync_wbufs_by_inode(c, inode);
1363 out:
1364 inode_unlock(inode);
1365 return err;
1366 }
1367
1368 /**
1369 * mctime_update_needed - check if mtime or ctime update is needed.
1370 * @inode: the inode to do the check for
1371 * @now: current time
1372 *
1373 * This helper function checks if the inode mtime/ctime should be updated or
1374 * not. If current values of the time-stamps are within the UBIFS inode time
1375 * granularity, they are not updated. This is an optimization.
1376 */
mctime_update_needed(const struct inode * inode,const struct timespec64 * now)1377 static inline int mctime_update_needed(const struct inode *inode,
1378 const struct timespec64 *now)
1379 {
1380 if (!timespec64_equal(&inode->i_mtime, now) ||
1381 !timespec64_equal(&inode->i_ctime, now))
1382 return 1;
1383 return 0;
1384 }
1385
1386 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1387 /**
1388 * ubifs_update_time - update time of inode.
1389 * @inode: inode to update
1390 *
1391 * This function updates time of the inode.
1392 */
ubifs_update_time(struct inode * inode,struct timespec64 * time,int flags)1393 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1394 int flags)
1395 {
1396 struct ubifs_inode *ui = ubifs_inode(inode);
1397 struct ubifs_info *c = inode->i_sb->s_fs_info;
1398 struct ubifs_budget_req req = { .dirtied_ino = 1,
1399 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1400 int err, release;
1401
1402 err = ubifs_budget_space(c, &req);
1403 if (err)
1404 return err;
1405
1406 mutex_lock(&ui->ui_mutex);
1407 if (flags & S_ATIME)
1408 inode->i_atime = *time;
1409 if (flags & S_CTIME)
1410 inode->i_ctime = *time;
1411 if (flags & S_MTIME)
1412 inode->i_mtime = *time;
1413
1414 release = ui->dirty;
1415 __mark_inode_dirty(inode, I_DIRTY_SYNC);
1416 mutex_unlock(&ui->ui_mutex);
1417 if (release)
1418 ubifs_release_budget(c, &req);
1419 return 0;
1420 }
1421 #endif
1422
1423 /**
1424 * update_mctime - update mtime and ctime of an inode.
1425 * @inode: inode to update
1426 *
1427 * This function updates mtime and ctime of the inode if it is not equivalent to
1428 * current time. Returns zero in case of success and a negative error code in
1429 * case of failure.
1430 */
update_mctime(struct inode * inode)1431 static int update_mctime(struct inode *inode)
1432 {
1433 struct timespec64 now = current_time(inode);
1434 struct ubifs_inode *ui = ubifs_inode(inode);
1435 struct ubifs_info *c = inode->i_sb->s_fs_info;
1436
1437 if (mctime_update_needed(inode, &now)) {
1438 int err, release;
1439 struct ubifs_budget_req req = { .dirtied_ino = 1,
1440 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1441
1442 err = ubifs_budget_space(c, &req);
1443 if (err)
1444 return err;
1445
1446 mutex_lock(&ui->ui_mutex);
1447 inode->i_mtime = inode->i_ctime = current_time(inode);
1448 release = ui->dirty;
1449 mark_inode_dirty_sync(inode);
1450 mutex_unlock(&ui->ui_mutex);
1451 if (release)
1452 ubifs_release_budget(c, &req);
1453 }
1454
1455 return 0;
1456 }
1457
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1458 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1459 {
1460 int err = update_mctime(file_inode(iocb->ki_filp));
1461 if (err)
1462 return err;
1463
1464 return generic_file_write_iter(iocb, from);
1465 }
1466
ubifs_set_page_dirty(struct page * page)1467 static int ubifs_set_page_dirty(struct page *page)
1468 {
1469 int ret;
1470 struct inode *inode = page->mapping->host;
1471 struct ubifs_info *c = inode->i_sb->s_fs_info;
1472
1473 ret = __set_page_dirty_nobuffers(page);
1474 /*
1475 * An attempt to dirty a page without budgeting for it - should not
1476 * happen.
1477 */
1478 ubifs_assert(c, ret == 0);
1479 return ret;
1480 }
1481
1482 #ifdef CONFIG_MIGRATION
ubifs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1483 static int ubifs_migrate_page(struct address_space *mapping,
1484 struct page *newpage, struct page *page, enum migrate_mode mode)
1485 {
1486 int rc;
1487
1488 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1489 if (rc != MIGRATEPAGE_SUCCESS)
1490 return rc;
1491
1492 if (PagePrivate(page)) {
1493 ClearPagePrivate(page);
1494 SetPagePrivate(newpage);
1495 }
1496
1497 if (mode != MIGRATE_SYNC_NO_COPY)
1498 migrate_page_copy(newpage, page);
1499 else
1500 migrate_page_states(newpage, page);
1501 return MIGRATEPAGE_SUCCESS;
1502 }
1503 #endif
1504
ubifs_releasepage(struct page * page,gfp_t unused_gfp_flags)1505 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1506 {
1507 struct inode *inode = page->mapping->host;
1508 struct ubifs_info *c = inode->i_sb->s_fs_info;
1509
1510 /*
1511 * An attempt to release a dirty page without budgeting for it - should
1512 * not happen.
1513 */
1514 if (PageWriteback(page))
1515 return 0;
1516 ubifs_assert(c, PagePrivate(page));
1517 ubifs_assert(c, 0);
1518 ClearPagePrivate(page);
1519 ClearPageChecked(page);
1520 return 1;
1521 }
1522
1523 /*
1524 * mmap()d file has taken write protection fault and is being made writable.
1525 * UBIFS must ensure page is budgeted for.
1526 */
ubifs_vm_page_mkwrite(struct vm_fault * vmf)1527 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1528 {
1529 struct page *page = vmf->page;
1530 struct inode *inode = file_inode(vmf->vma->vm_file);
1531 struct ubifs_info *c = inode->i_sb->s_fs_info;
1532 struct timespec64 now = current_time(inode);
1533 struct ubifs_budget_req req = { .new_page = 1 };
1534 int err, update_time;
1535
1536 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1537 i_size_read(inode));
1538 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1539
1540 if (unlikely(c->ro_error))
1541 return VM_FAULT_SIGBUS; /* -EROFS */
1542
1543 /*
1544 * We have not locked @page so far so we may budget for changing the
1545 * page. Note, we cannot do this after we locked the page, because
1546 * budgeting may cause write-back which would cause deadlock.
1547 *
1548 * At the moment we do not know whether the page is dirty or not, so we
1549 * assume that it is not and budget for a new page. We could look at
1550 * the @PG_private flag and figure this out, but we may race with write
1551 * back and the page state may change by the time we lock it, so this
1552 * would need additional care. We do not bother with this at the
1553 * moment, although it might be good idea to do. Instead, we allocate
1554 * budget for a new page and amend it later on if the page was in fact
1555 * dirty.
1556 *
1557 * The budgeting-related logic of this function is similar to what we
1558 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1559 * for more comments.
1560 */
1561 update_time = mctime_update_needed(inode, &now);
1562 if (update_time)
1563 /*
1564 * We have to change inode time stamp which requires extra
1565 * budgeting.
1566 */
1567 req.dirtied_ino = 1;
1568
1569 err = ubifs_budget_space(c, &req);
1570 if (unlikely(err)) {
1571 if (err == -ENOSPC)
1572 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1573 inode->i_ino);
1574 return VM_FAULT_SIGBUS;
1575 }
1576
1577 lock_page(page);
1578 if (unlikely(page->mapping != inode->i_mapping ||
1579 page_offset(page) > i_size_read(inode))) {
1580 /* Page got truncated out from underneath us */
1581 goto sigbus;
1582 }
1583
1584 if (PagePrivate(page))
1585 release_new_page_budget(c);
1586 else {
1587 if (!PageChecked(page))
1588 ubifs_convert_page_budget(c);
1589 SetPagePrivate(page);
1590 atomic_long_inc(&c->dirty_pg_cnt);
1591 __set_page_dirty_nobuffers(page);
1592 }
1593
1594 if (update_time) {
1595 int release;
1596 struct ubifs_inode *ui = ubifs_inode(inode);
1597
1598 mutex_lock(&ui->ui_mutex);
1599 inode->i_mtime = inode->i_ctime = current_time(inode);
1600 release = ui->dirty;
1601 mark_inode_dirty_sync(inode);
1602 mutex_unlock(&ui->ui_mutex);
1603 if (release)
1604 ubifs_release_dirty_inode_budget(c, ui);
1605 }
1606
1607 wait_for_stable_page(page);
1608 return VM_FAULT_LOCKED;
1609
1610 sigbus:
1611 unlock_page(page);
1612 ubifs_release_budget(c, &req);
1613 return VM_FAULT_SIGBUS;
1614 }
1615
1616 static const struct vm_operations_struct ubifs_file_vm_ops = {
1617 .fault = filemap_fault,
1618 .map_pages = filemap_map_pages,
1619 .page_mkwrite = ubifs_vm_page_mkwrite,
1620 };
1621
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1622 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1623 {
1624 int err;
1625
1626 err = generic_file_mmap(file, vma);
1627 if (err)
1628 return err;
1629 vma->vm_ops = &ubifs_file_vm_ops;
1630 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1631 file_accessed(file);
1632 #endif
1633 return 0;
1634 }
1635
ubifs_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1636 static const char *ubifs_get_link(struct dentry *dentry,
1637 struct inode *inode,
1638 struct delayed_call *done)
1639 {
1640 struct ubifs_inode *ui = ubifs_inode(inode);
1641
1642 if (!IS_ENCRYPTED(inode))
1643 return ui->data;
1644
1645 if (!dentry)
1646 return ERR_PTR(-ECHILD);
1647
1648 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1649 }
1650
ubifs_symlink_getattr(const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1651 static int ubifs_symlink_getattr(const struct path *path, struct kstat *stat,
1652 u32 request_mask, unsigned int query_flags)
1653 {
1654 ubifs_getattr(path, stat, request_mask, query_flags);
1655
1656 if (IS_ENCRYPTED(d_inode(path->dentry)))
1657 return fscrypt_symlink_getattr(path, stat);
1658 return 0;
1659 }
1660
1661 const struct address_space_operations ubifs_file_address_operations = {
1662 .readpage = ubifs_readpage,
1663 .writepage = ubifs_writepage,
1664 .write_begin = ubifs_write_begin,
1665 .write_end = ubifs_write_end,
1666 .invalidatepage = ubifs_invalidatepage,
1667 .set_page_dirty = ubifs_set_page_dirty,
1668 #ifdef CONFIG_MIGRATION
1669 .migratepage = ubifs_migrate_page,
1670 #endif
1671 .releasepage = ubifs_releasepage,
1672 };
1673
1674 const struct inode_operations ubifs_file_inode_operations = {
1675 .setattr = ubifs_setattr,
1676 .getattr = ubifs_getattr,
1677 #ifdef CONFIG_UBIFS_FS_XATTR
1678 .listxattr = ubifs_listxattr,
1679 #endif
1680 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1681 .update_time = ubifs_update_time,
1682 #endif
1683 };
1684
1685 const struct inode_operations ubifs_symlink_inode_operations = {
1686 .get_link = ubifs_get_link,
1687 .setattr = ubifs_setattr,
1688 .getattr = ubifs_symlink_getattr,
1689 #ifdef CONFIG_UBIFS_FS_XATTR
1690 .listxattr = ubifs_listxattr,
1691 #endif
1692 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1693 .update_time = ubifs_update_time,
1694 #endif
1695 };
1696
1697 const struct file_operations ubifs_file_operations = {
1698 .llseek = generic_file_llseek,
1699 .read_iter = generic_file_read_iter,
1700 .write_iter = ubifs_write_iter,
1701 .mmap = ubifs_file_mmap,
1702 .fsync = ubifs_fsync,
1703 .unlocked_ioctl = ubifs_ioctl,
1704 .splice_read = generic_file_splice_read,
1705 .splice_write = iter_file_splice_write,
1706 .open = fscrypt_file_open,
1707 #ifdef CONFIG_COMPAT
1708 .compat_ioctl = ubifs_compat_ioctl,
1709 #endif
1710 };
1711