1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the budgeting sub-system which is responsible for UBIFS
25  * space management.
26  *
27  * Factors such as compression, wasted space at the ends of LEBs, space in other
28  * journal heads, the effect of updates on the index, and so on, make it
29  * impossible to accurately predict the amount of space needed. Consequently
30  * approximations are used.
31  */
32 
33 #include "ubifs.h"
34 #include <linux/writeback.h>
35 #include <linux/math64.h>
36 
37 /*
38  * When pessimistic budget calculations say that there is no enough space,
39  * UBIFS starts writing back dirty inodes and pages, doing garbage collection,
40  * or committing. The below constant defines maximum number of times UBIFS
41  * repeats the operations.
42  */
43 #define MAX_MKSPC_RETRIES 3
44 
45 /*
46  * The below constant defines amount of dirty pages which should be written
47  * back at when trying to shrink the liability.
48  */
49 #define NR_TO_WRITE 16
50 
51 /**
52  * shrink_liability - write-back some dirty pages/inodes.
53  * @c: UBIFS file-system description object
54  * @nr_to_write: how many dirty pages to write-back
55  *
56  * This function shrinks UBIFS liability by means of writing back some amount
57  * of dirty inodes and their pages.
58  *
59  * Note, this function synchronizes even VFS inodes which are locked
60  * (@i_mutex) by the caller of the budgeting function, because write-back does
61  * not touch @i_mutex.
62  */
shrink_liability(struct ubifs_info * c,int nr_to_write)63 static void shrink_liability(struct ubifs_info *c, int nr_to_write)
64 {
65 	down_read(&c->vfs_sb->s_umount);
66 	writeback_inodes_sb(c->vfs_sb, WB_REASON_FS_FREE_SPACE);
67 	up_read(&c->vfs_sb->s_umount);
68 }
69 
70 /**
71  * run_gc - run garbage collector.
72  * @c: UBIFS file-system description object
73  *
74  * This function runs garbage collector to make some more free space. Returns
75  * zero if a free LEB has been produced, %-EAGAIN if commit is required, and a
76  * negative error code in case of failure.
77  */
run_gc(struct ubifs_info * c)78 static int run_gc(struct ubifs_info *c)
79 {
80 	int err, lnum;
81 
82 	/* Make some free space by garbage-collecting dirty space */
83 	down_read(&c->commit_sem);
84 	lnum = ubifs_garbage_collect(c, 1);
85 	up_read(&c->commit_sem);
86 	if (lnum < 0)
87 		return lnum;
88 
89 	/* GC freed one LEB, return it to lprops */
90 	dbg_budg("GC freed LEB %d", lnum);
91 	err = ubifs_return_leb(c, lnum);
92 	if (err)
93 		return err;
94 	return 0;
95 }
96 
97 /**
98  * get_liability - calculate current liability.
99  * @c: UBIFS file-system description object
100  *
101  * This function calculates and returns current UBIFS liability, i.e. the
102  * amount of bytes UBIFS has "promised" to write to the media.
103  */
get_liability(struct ubifs_info * c)104 static long long get_liability(struct ubifs_info *c)
105 {
106 	long long liab;
107 
108 	spin_lock(&c->space_lock);
109 	liab = c->bi.idx_growth + c->bi.data_growth + c->bi.dd_growth;
110 	spin_unlock(&c->space_lock);
111 	return liab;
112 }
113 
114 /**
115  * make_free_space - make more free space on the file-system.
116  * @c: UBIFS file-system description object
117  *
118  * This function is called when an operation cannot be budgeted because there
119  * is supposedly no free space. But in most cases there is some free space:
120  *   o budgeting is pessimistic, so it always budgets more than it is actually
121  *     needed, so shrinking the liability is one way to make free space - the
122  *     cached data will take less space then it was budgeted for;
123  *   o GC may turn some dark space into free space (budgeting treats dark space
124  *     as not available);
125  *   o commit may free some LEB, i.e., turn freeable LEBs into free LEBs.
126  *
127  * So this function tries to do the above. Returns %-EAGAIN if some free space
128  * was presumably made and the caller has to re-try budgeting the operation.
129  * Returns %-ENOSPC if it couldn't do more free space, and other negative error
130  * codes on failures.
131  */
make_free_space(struct ubifs_info * c)132 static int make_free_space(struct ubifs_info *c)
133 {
134 	int err, retries = 0;
135 	long long liab1, liab2;
136 
137 	do {
138 		liab1 = get_liability(c);
139 		/*
140 		 * We probably have some dirty pages or inodes (liability), try
141 		 * to write them back.
142 		 */
143 		dbg_budg("liability %lld, run write-back", liab1);
144 		shrink_liability(c, NR_TO_WRITE);
145 
146 		liab2 = get_liability(c);
147 		if (liab2 < liab1)
148 			return -EAGAIN;
149 
150 		dbg_budg("new liability %lld (not shrunk)", liab2);
151 
152 		/* Liability did not shrink again, try GC */
153 		dbg_budg("Run GC");
154 		err = run_gc(c);
155 		if (!err)
156 			return -EAGAIN;
157 
158 		if (err != -EAGAIN && err != -ENOSPC)
159 			/* Some real error happened */
160 			return err;
161 
162 		dbg_budg("Run commit (retries %d)", retries);
163 		err = ubifs_run_commit(c);
164 		if (err)
165 			return err;
166 	} while (retries++ < MAX_MKSPC_RETRIES);
167 
168 	return -ENOSPC;
169 }
170 
171 /**
172  * ubifs_calc_min_idx_lebs - calculate amount of LEBs for the index.
173  * @c: UBIFS file-system description object
174  *
175  * This function calculates and returns the number of LEBs which should be kept
176  * for index usage.
177  */
ubifs_calc_min_idx_lebs(struct ubifs_info * c)178 int ubifs_calc_min_idx_lebs(struct ubifs_info *c)
179 {
180 	int idx_lebs;
181 	long long idx_size;
182 
183 	idx_size = c->bi.old_idx_sz + c->bi.idx_growth + c->bi.uncommitted_idx;
184 	/* And make sure we have thrice the index size of space reserved */
185 	idx_size += idx_size << 1;
186 	/*
187 	 * We do not maintain 'old_idx_size' as 'old_idx_lebs'/'old_idx_bytes'
188 	 * pair, nor similarly the two variables for the new index size, so we
189 	 * have to do this costly 64-bit division on fast-path.
190 	 */
191 	idx_lebs = div_u64(idx_size + c->idx_leb_size - 1, c->idx_leb_size);
192 	/*
193 	 * The index head is not available for the in-the-gaps method, so add an
194 	 * extra LEB to compensate.
195 	 */
196 	idx_lebs += 1;
197 	if (idx_lebs < MIN_INDEX_LEBS)
198 		idx_lebs = MIN_INDEX_LEBS;
199 	return idx_lebs;
200 }
201 
202 /**
203  * ubifs_calc_available - calculate available FS space.
204  * @c: UBIFS file-system description object
205  * @min_idx_lebs: minimum number of LEBs reserved for the index
206  *
207  * This function calculates and returns amount of FS space available for use.
208  */
ubifs_calc_available(const struct ubifs_info * c,int min_idx_lebs)209 long long ubifs_calc_available(const struct ubifs_info *c, int min_idx_lebs)
210 {
211 	int subtract_lebs;
212 	long long available;
213 
214 	available = c->main_bytes - c->lst.total_used;
215 
216 	/*
217 	 * Now 'available' contains theoretically available flash space
218 	 * assuming there is no index, so we have to subtract the space which
219 	 * is reserved for the index.
220 	 */
221 	subtract_lebs = min_idx_lebs;
222 
223 	/* Take into account that GC reserves one LEB for its own needs */
224 	subtract_lebs += 1;
225 
226 	/*
227 	 * Since different write types go to different heads, we should
228 	 * reserve one leb for each head.
229 	 */
230 	subtract_lebs += c->jhead_cnt;
231 
232 	/* We also reserve one LEB for deletions, which bypass budgeting */
233 	subtract_lebs += 1;
234 
235 	available -= (long long)subtract_lebs * c->leb_size;
236 
237 	/* Subtract the dead space which is not available for use */
238 	available -= c->lst.total_dead;
239 
240 	/*
241 	 * Subtract dark space, which might or might not be usable - it depends
242 	 * on the data which we have on the media and which will be written. If
243 	 * this is a lot of uncompressed or not-compressible data, the dark
244 	 * space cannot be used.
245 	 */
246 	available -= c->lst.total_dark;
247 
248 	/*
249 	 * However, there is more dark space. The index may be bigger than
250 	 * @min_idx_lebs. Those extra LEBs are assumed to be available, but
251 	 * their dark space is not included in total_dark, so it is subtracted
252 	 * here.
253 	 */
254 	if (c->lst.idx_lebs > min_idx_lebs) {
255 		subtract_lebs = c->lst.idx_lebs - min_idx_lebs;
256 		available -= subtract_lebs * c->dark_wm;
257 	}
258 
259 	/* The calculations are rough and may end up with a negative number */
260 	return available > 0 ? available : 0;
261 }
262 
263 /**
264  * can_use_rp - check whether the user is allowed to use reserved pool.
265  * @c: UBIFS file-system description object
266  *
267  * UBIFS has so-called "reserved pool" which is flash space reserved
268  * for the superuser and for uses whose UID/GID is recorded in UBIFS superblock.
269  * This function checks whether current user is allowed to use reserved pool.
270  * Returns %1  current user is allowed to use reserved pool and %0 otherwise.
271  */
can_use_rp(struct ubifs_info * c)272 static int can_use_rp(struct ubifs_info *c)
273 {
274 	if (uid_eq(current_fsuid(), c->rp_uid) || capable(CAP_SYS_RESOURCE) ||
275 	    (!gid_eq(c->rp_gid, GLOBAL_ROOT_GID) && in_group_p(c->rp_gid)))
276 		return 1;
277 	return 0;
278 }
279 
280 /**
281  * do_budget_space - reserve flash space for index and data growth.
282  * @c: UBIFS file-system description object
283  *
284  * This function makes sure UBIFS has enough free LEBs for index growth and
285  * data.
286  *
287  * When budgeting index space, UBIFS reserves thrice as many LEBs as the index
288  * would take if it was consolidated and written to the flash. This guarantees
289  * that the "in-the-gaps" commit method always succeeds and UBIFS will always
290  * be able to commit dirty index. So this function basically adds amount of
291  * budgeted index space to the size of the current index, multiplies this by 3,
292  * and makes sure this does not exceed the amount of free LEBs.
293  *
294  * Notes about @c->bi.min_idx_lebs and @c->lst.idx_lebs variables:
295  * o @c->lst.idx_lebs is the number of LEBs the index currently uses. It might
296  *    be large, because UBIFS does not do any index consolidation as long as
297  *    there is free space. IOW, the index may take a lot of LEBs, but the LEBs
298  *    will contain a lot of dirt.
299  * o @c->bi.min_idx_lebs is the number of LEBS the index presumably takes. IOW,
300  *    the index may be consolidated to take up to @c->bi.min_idx_lebs LEBs.
301  *
302  * This function returns zero in case of success, and %-ENOSPC in case of
303  * failure.
304  */
do_budget_space(struct ubifs_info * c)305 static int do_budget_space(struct ubifs_info *c)
306 {
307 	long long outstanding, available;
308 	int lebs, rsvd_idx_lebs, min_idx_lebs;
309 
310 	/* First budget index space */
311 	min_idx_lebs = ubifs_calc_min_idx_lebs(c);
312 
313 	/* Now 'min_idx_lebs' contains number of LEBs to reserve */
314 	if (min_idx_lebs > c->lst.idx_lebs)
315 		rsvd_idx_lebs = min_idx_lebs - c->lst.idx_lebs;
316 	else
317 		rsvd_idx_lebs = 0;
318 
319 	/*
320 	 * The number of LEBs that are available to be used by the index is:
321 	 *
322 	 *    @c->lst.empty_lebs + @c->freeable_cnt + @c->idx_gc_cnt -
323 	 *    @c->lst.taken_empty_lebs
324 	 *
325 	 * @c->lst.empty_lebs are available because they are empty.
326 	 * @c->freeable_cnt are available because they contain only free and
327 	 * dirty space, @c->idx_gc_cnt are available because they are index
328 	 * LEBs that have been garbage collected and are awaiting the commit
329 	 * before they can be used. And the in-the-gaps method will grab these
330 	 * if it needs them. @c->lst.taken_empty_lebs are empty LEBs that have
331 	 * already been allocated for some purpose.
332 	 *
333 	 * Note, @c->idx_gc_cnt is included to both @c->lst.empty_lebs (because
334 	 * these LEBs are empty) and to @c->lst.taken_empty_lebs (because they
335 	 * are taken until after the commit).
336 	 *
337 	 * Note, @c->lst.taken_empty_lebs may temporarily be higher by one
338 	 * because of the way we serialize LEB allocations and budgeting. See a
339 	 * comment in 'ubifs_find_free_space()'.
340 	 */
341 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
342 	       c->lst.taken_empty_lebs;
343 	if (unlikely(rsvd_idx_lebs > lebs)) {
344 		dbg_budg("out of indexing space: min_idx_lebs %d (old %d), rsvd_idx_lebs %d",
345 			 min_idx_lebs, c->bi.min_idx_lebs, rsvd_idx_lebs);
346 		return -ENOSPC;
347 	}
348 
349 	available = ubifs_calc_available(c, min_idx_lebs);
350 	outstanding = c->bi.data_growth + c->bi.dd_growth;
351 
352 	if (unlikely(available < outstanding)) {
353 		dbg_budg("out of data space: available %lld, outstanding %lld",
354 			 available, outstanding);
355 		return -ENOSPC;
356 	}
357 
358 	if (available - outstanding <= c->rp_size && !can_use_rp(c))
359 		return -ENOSPC;
360 
361 	c->bi.min_idx_lebs = min_idx_lebs;
362 	return 0;
363 }
364 
365 /**
366  * calc_idx_growth - calculate approximate index growth from budgeting request.
367  * @c: UBIFS file-system description object
368  * @req: budgeting request
369  *
370  * For now we assume each new node adds one znode. But this is rather poor
371  * approximation, though.
372  */
calc_idx_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)373 static int calc_idx_growth(const struct ubifs_info *c,
374 			   const struct ubifs_budget_req *req)
375 {
376 	int znodes;
377 
378 	znodes = req->new_ino + (req->new_page << UBIFS_BLOCKS_PER_PAGE_SHIFT) +
379 		 req->new_dent;
380 	return znodes * c->max_idx_node_sz;
381 }
382 
383 /**
384  * calc_data_growth - calculate approximate amount of new data from budgeting
385  * request.
386  * @c: UBIFS file-system description object
387  * @req: budgeting request
388  */
calc_data_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)389 static int calc_data_growth(const struct ubifs_info *c,
390 			    const struct ubifs_budget_req *req)
391 {
392 	int data_growth;
393 
394 	data_growth = req->new_ino  ? c->bi.inode_budget : 0;
395 	if (req->new_page)
396 		data_growth += c->bi.page_budget;
397 	if (req->new_dent)
398 		data_growth += c->bi.dent_budget;
399 	data_growth += req->new_ino_d;
400 	return data_growth;
401 }
402 
403 /**
404  * calc_dd_growth - calculate approximate amount of data which makes other data
405  * dirty from budgeting request.
406  * @c: UBIFS file-system description object
407  * @req: budgeting request
408  */
calc_dd_growth(const struct ubifs_info * c,const struct ubifs_budget_req * req)409 static int calc_dd_growth(const struct ubifs_info *c,
410 			  const struct ubifs_budget_req *req)
411 {
412 	int dd_growth;
413 
414 	dd_growth = req->dirtied_page ? c->bi.page_budget : 0;
415 
416 	if (req->dirtied_ino)
417 		dd_growth += c->bi.inode_budget * req->dirtied_ino;
418 	if (req->mod_dent)
419 		dd_growth += c->bi.dent_budget;
420 	dd_growth += req->dirtied_ino_d;
421 	return dd_growth;
422 }
423 
424 /**
425  * ubifs_budget_space - ensure there is enough space to complete an operation.
426  * @c: UBIFS file-system description object
427  * @req: budget request
428  *
429  * This function allocates budget for an operation. It uses pessimistic
430  * approximation of how much flash space the operation needs. The goal of this
431  * function is to make sure UBIFS always has flash space to flush all dirty
432  * pages, dirty inodes, and dirty znodes (liability). This function may force
433  * commit, garbage-collection or write-back. Returns zero in case of success,
434  * %-ENOSPC if there is no free space and other negative error codes in case of
435  * failures.
436  */
ubifs_budget_space(struct ubifs_info * c,struct ubifs_budget_req * req)437 int ubifs_budget_space(struct ubifs_info *c, struct ubifs_budget_req *req)
438 {
439 	int err, idx_growth, data_growth, dd_growth, retried = 0;
440 
441 	ubifs_assert(c, req->new_page <= 1);
442 	ubifs_assert(c, req->dirtied_page <= 1);
443 	ubifs_assert(c, req->new_dent <= 1);
444 	ubifs_assert(c, req->mod_dent <= 1);
445 	ubifs_assert(c, req->new_ino <= 1);
446 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
447 	ubifs_assert(c, req->dirtied_ino <= 4);
448 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
449 	ubifs_assert(c, !(req->new_ino_d & 7));
450 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
451 
452 	data_growth = calc_data_growth(c, req);
453 	dd_growth = calc_dd_growth(c, req);
454 	if (!data_growth && !dd_growth)
455 		return 0;
456 	idx_growth = calc_idx_growth(c, req);
457 
458 again:
459 	spin_lock(&c->space_lock);
460 	ubifs_assert(c, c->bi.idx_growth >= 0);
461 	ubifs_assert(c, c->bi.data_growth >= 0);
462 	ubifs_assert(c, c->bi.dd_growth >= 0);
463 
464 	if (unlikely(c->bi.nospace) && (c->bi.nospace_rp || !can_use_rp(c))) {
465 		dbg_budg("no space");
466 		spin_unlock(&c->space_lock);
467 		return -ENOSPC;
468 	}
469 
470 	c->bi.idx_growth += idx_growth;
471 	c->bi.data_growth += data_growth;
472 	c->bi.dd_growth += dd_growth;
473 
474 	err = do_budget_space(c);
475 	if (likely(!err)) {
476 		req->idx_growth = idx_growth;
477 		req->data_growth = data_growth;
478 		req->dd_growth = dd_growth;
479 		spin_unlock(&c->space_lock);
480 		return 0;
481 	}
482 
483 	/* Restore the old values */
484 	c->bi.idx_growth -= idx_growth;
485 	c->bi.data_growth -= data_growth;
486 	c->bi.dd_growth -= dd_growth;
487 	spin_unlock(&c->space_lock);
488 
489 	if (req->fast) {
490 		dbg_budg("no space for fast budgeting");
491 		return err;
492 	}
493 
494 	err = make_free_space(c);
495 	cond_resched();
496 	if (err == -EAGAIN) {
497 		dbg_budg("try again");
498 		goto again;
499 	} else if (err == -ENOSPC) {
500 		if (!retried) {
501 			retried = 1;
502 			dbg_budg("-ENOSPC, but anyway try once again");
503 			goto again;
504 		}
505 		dbg_budg("FS is full, -ENOSPC");
506 		c->bi.nospace = 1;
507 		if (can_use_rp(c) || c->rp_size == 0)
508 			c->bi.nospace_rp = 1;
509 		smp_wmb();
510 	} else
511 		ubifs_err(c, "cannot budget space, error %d", err);
512 	return err;
513 }
514 
515 /**
516  * ubifs_release_budget - release budgeted free space.
517  * @c: UBIFS file-system description object
518  * @req: budget request
519  *
520  * This function releases the space budgeted by 'ubifs_budget_space()'. Note,
521  * since the index changes (which were budgeted for in @req->idx_growth) will
522  * only be written to the media on commit, this function moves the index budget
523  * from @c->bi.idx_growth to @c->bi.uncommitted_idx. The latter will be zeroed
524  * by the commit operation.
525  */
ubifs_release_budget(struct ubifs_info * c,struct ubifs_budget_req * req)526 void ubifs_release_budget(struct ubifs_info *c, struct ubifs_budget_req *req)
527 {
528 	ubifs_assert(c, req->new_page <= 1);
529 	ubifs_assert(c, req->dirtied_page <= 1);
530 	ubifs_assert(c, req->new_dent <= 1);
531 	ubifs_assert(c, req->mod_dent <= 1);
532 	ubifs_assert(c, req->new_ino <= 1);
533 	ubifs_assert(c, req->new_ino_d <= UBIFS_MAX_INO_DATA);
534 	ubifs_assert(c, req->dirtied_ino <= 4);
535 	ubifs_assert(c, req->dirtied_ino_d <= UBIFS_MAX_INO_DATA * 4);
536 	ubifs_assert(c, !(req->new_ino_d & 7));
537 	ubifs_assert(c, !(req->dirtied_ino_d & 7));
538 	if (!req->recalculate) {
539 		ubifs_assert(c, req->idx_growth >= 0);
540 		ubifs_assert(c, req->data_growth >= 0);
541 		ubifs_assert(c, req->dd_growth >= 0);
542 	}
543 
544 	if (req->recalculate) {
545 		req->data_growth = calc_data_growth(c, req);
546 		req->dd_growth = calc_dd_growth(c, req);
547 		req->idx_growth = calc_idx_growth(c, req);
548 	}
549 
550 	if (!req->data_growth && !req->dd_growth)
551 		return;
552 
553 	c->bi.nospace = c->bi.nospace_rp = 0;
554 	smp_wmb();
555 
556 	spin_lock(&c->space_lock);
557 	c->bi.idx_growth -= req->idx_growth;
558 	c->bi.uncommitted_idx += req->idx_growth;
559 	c->bi.data_growth -= req->data_growth;
560 	c->bi.dd_growth -= req->dd_growth;
561 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
562 
563 	ubifs_assert(c, c->bi.idx_growth >= 0);
564 	ubifs_assert(c, c->bi.data_growth >= 0);
565 	ubifs_assert(c, c->bi.dd_growth >= 0);
566 	ubifs_assert(c, c->bi.min_idx_lebs < c->main_lebs);
567 	ubifs_assert(c, !(c->bi.idx_growth & 7));
568 	ubifs_assert(c, !(c->bi.data_growth & 7));
569 	ubifs_assert(c, !(c->bi.dd_growth & 7));
570 	spin_unlock(&c->space_lock);
571 }
572 
573 /**
574  * ubifs_convert_page_budget - convert budget of a new page.
575  * @c: UBIFS file-system description object
576  *
577  * This function converts budget which was allocated for a new page of data to
578  * the budget of changing an existing page of data. The latter is smaller than
579  * the former, so this function only does simple re-calculation and does not
580  * involve any write-back.
581  */
ubifs_convert_page_budget(struct ubifs_info * c)582 void ubifs_convert_page_budget(struct ubifs_info *c)
583 {
584 	spin_lock(&c->space_lock);
585 	/* Release the index growth reservation */
586 	c->bi.idx_growth -= c->max_idx_node_sz << UBIFS_BLOCKS_PER_PAGE_SHIFT;
587 	/* Release the data growth reservation */
588 	c->bi.data_growth -= c->bi.page_budget;
589 	/* Increase the dirty data growth reservation instead */
590 	c->bi.dd_growth += c->bi.page_budget;
591 	/* And re-calculate the indexing space reservation */
592 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
593 	spin_unlock(&c->space_lock);
594 }
595 
596 /**
597  * ubifs_release_dirty_inode_budget - release dirty inode budget.
598  * @c: UBIFS file-system description object
599  * @ui: UBIFS inode to release the budget for
600  *
601  * This function releases budget corresponding to a dirty inode. It is usually
602  * called when after the inode has been written to the media and marked as
603  * clean. It also causes the "no space" flags to be cleared.
604  */
ubifs_release_dirty_inode_budget(struct ubifs_info * c,struct ubifs_inode * ui)605 void ubifs_release_dirty_inode_budget(struct ubifs_info *c,
606 				      struct ubifs_inode *ui)
607 {
608 	struct ubifs_budget_req req;
609 
610 	memset(&req, 0, sizeof(struct ubifs_budget_req));
611 	/* The "no space" flags will be cleared because dd_growth is > 0 */
612 	req.dd_growth = c->bi.inode_budget + ALIGN(ui->data_len, 8);
613 	ubifs_release_budget(c, &req);
614 }
615 
616 /**
617  * ubifs_reported_space - calculate reported free space.
618  * @c: the UBIFS file-system description object
619  * @free: amount of free space
620  *
621  * This function calculates amount of free space which will be reported to
622  * user-space. User-space application tend to expect that if the file-system
623  * (e.g., via the 'statfs()' call) reports that it has N bytes available, they
624  * are able to write a file of size N. UBIFS attaches node headers to each data
625  * node and it has to write indexing nodes as well. This introduces additional
626  * overhead, and UBIFS has to report slightly less free space to meet the above
627  * expectations.
628  *
629  * This function assumes free space is made up of uncompressed data nodes and
630  * full index nodes (one per data node, tripled because we always allow enough
631  * space to write the index thrice).
632  *
633  * Note, the calculation is pessimistic, which means that most of the time
634  * UBIFS reports less space than it actually has.
635  */
ubifs_reported_space(const struct ubifs_info * c,long long free)636 long long ubifs_reported_space(const struct ubifs_info *c, long long free)
637 {
638 	int divisor, factor, f;
639 
640 	/*
641 	 * Reported space size is @free * X, where X is UBIFS block size
642 	 * divided by UBIFS block size + all overhead one data block
643 	 * introduces. The overhead is the node header + indexing overhead.
644 	 *
645 	 * Indexing overhead calculations are based on the following formula:
646 	 * I = N/(f - 1) + 1, where I - number of indexing nodes, N - number
647 	 * of data nodes, f - fanout. Because effective UBIFS fanout is twice
648 	 * as less than maximum fanout, we assume that each data node
649 	 * introduces 3 * @c->max_idx_node_sz / (@c->fanout/2 - 1) bytes.
650 	 * Note, the multiplier 3 is because UBIFS reserves thrice as more space
651 	 * for the index.
652 	 */
653 	f = c->fanout > 3 ? c->fanout >> 1 : 2;
654 	factor = UBIFS_BLOCK_SIZE;
655 	divisor = UBIFS_MAX_DATA_NODE_SZ;
656 	divisor += (c->max_idx_node_sz * 3) / (f - 1);
657 	free *= factor;
658 	return div_u64(free, divisor);
659 }
660 
661 /**
662  * ubifs_get_free_space_nolock - return amount of free space.
663  * @c: UBIFS file-system description object
664  *
665  * This function calculates amount of free space to report to user-space.
666  *
667  * Because UBIFS may introduce substantial overhead (the index, node headers,
668  * alignment, wastage at the end of LEBs, etc), it cannot report real amount of
669  * free flash space it has (well, because not all dirty space is reclaimable,
670  * UBIFS does not actually know the real amount). If UBIFS did so, it would
671  * bread user expectations about what free space is. Users seem to accustomed
672  * to assume that if the file-system reports N bytes of free space, they would
673  * be able to fit a file of N bytes to the FS. This almost works for
674  * traditional file-systems, because they have way less overhead than UBIFS.
675  * So, to keep users happy, UBIFS tries to take the overhead into account.
676  */
ubifs_get_free_space_nolock(struct ubifs_info * c)677 long long ubifs_get_free_space_nolock(struct ubifs_info *c)
678 {
679 	int rsvd_idx_lebs, lebs;
680 	long long available, outstanding, free;
681 
682 	ubifs_assert(c, c->bi.min_idx_lebs == ubifs_calc_min_idx_lebs(c));
683 	outstanding = c->bi.data_growth + c->bi.dd_growth;
684 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
685 
686 	/*
687 	 * When reporting free space to user-space, UBIFS guarantees that it is
688 	 * possible to write a file of free space size. This means that for
689 	 * empty LEBs we may use more precise calculations than
690 	 * 'ubifs_calc_available()' is using. Namely, we know that in empty
691 	 * LEBs we would waste only @c->leb_overhead bytes, not @c->dark_wm.
692 	 * Thus, amend the available space.
693 	 *
694 	 * Note, the calculations below are similar to what we have in
695 	 * 'do_budget_space()', so refer there for comments.
696 	 */
697 	if (c->bi.min_idx_lebs > c->lst.idx_lebs)
698 		rsvd_idx_lebs = c->bi.min_idx_lebs - c->lst.idx_lebs;
699 	else
700 		rsvd_idx_lebs = 0;
701 	lebs = c->lst.empty_lebs + c->freeable_cnt + c->idx_gc_cnt -
702 	       c->lst.taken_empty_lebs;
703 	lebs -= rsvd_idx_lebs;
704 	available += lebs * (c->dark_wm - c->leb_overhead);
705 
706 	if (available > outstanding)
707 		free = ubifs_reported_space(c, available - outstanding);
708 	else
709 		free = 0;
710 	return free;
711 }
712 
713 /**
714  * ubifs_get_free_space - return amount of free space.
715  * @c: UBIFS file-system description object
716  *
717  * This function calculates and returns amount of free space to report to
718  * user-space.
719  */
ubifs_get_free_space(struct ubifs_info * c)720 long long ubifs_get_free_space(struct ubifs_info *c)
721 {
722 	long long free;
723 
724 	spin_lock(&c->space_lock);
725 	free = ubifs_get_free_space_nolock(c);
726 	spin_unlock(&c->space_lock);
727 
728 	return free;
729 }
730