1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23 /*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61 #include "ubifs.h"
62
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
zero_ino_node_unused(struct ubifs_ino_node * ino)67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
71 }
72
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
77 */
zero_dent_node_unused(struct ubifs_dent_node * dent)78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 dent->padding1 = 0;
81 }
82
83 /**
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85 * node.
86 * @trun: the truncation node to zero out
87 */
zero_trun_node_unused(struct ubifs_trun_node * trun)88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 memset(trun->padding, 0, 12);
91 }
92
93 /**
94 * reserve_space - reserve space in the journal.
95 * @c: UBIFS file-system description object
96 * @jhead: journal head number
97 * @len: node length
98 *
99 * This function reserves space in journal head @head. If the reservation
100 * succeeded, the journal head stays locked and later has to be unlocked using
101 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
102 * be done, and other negative error codes in case of other failures.
103 */
reserve_space(struct ubifs_info * c,int jhead,int len)104 static int reserve_space(struct ubifs_info *c, int jhead, int len)
105 {
106 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
107 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
108
109 /*
110 * Typically, the base head has smaller nodes written to it, so it is
111 * better to try to allocate space at the ends of eraseblocks. This is
112 * what the squeeze parameter does.
113 */
114 ubifs_assert(c, !c->ro_media && !c->ro_mount);
115 squeeze = (jhead == BASEHD);
116 again:
117 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
118
119 if (c->ro_error) {
120 err = -EROFS;
121 goto out_unlock;
122 }
123
124 avail = c->leb_size - wbuf->offs - wbuf->used;
125 if (wbuf->lnum != -1 && avail >= len)
126 return 0;
127
128 /*
129 * Write buffer wasn't seek'ed or there is no enough space - look for an
130 * LEB with some empty space.
131 */
132 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
133 if (lnum >= 0)
134 goto out;
135
136 err = lnum;
137 if (err != -ENOSPC)
138 goto out_unlock;
139
140 /*
141 * No free space, we have to run garbage collector to make
142 * some. But the write-buffer mutex has to be unlocked because
143 * GC also takes it.
144 */
145 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
146 mutex_unlock(&wbuf->io_mutex);
147
148 lnum = ubifs_garbage_collect(c, 0);
149 if (lnum < 0) {
150 err = lnum;
151 if (err != -ENOSPC)
152 return err;
153
154 /*
155 * GC could not make a free LEB. But someone else may
156 * have allocated new bud for this journal head,
157 * because we dropped @wbuf->io_mutex, so try once
158 * again.
159 */
160 dbg_jnl("GC couldn't make a free LEB for jhead %s",
161 dbg_jhead(jhead));
162 if (retries++ < 2) {
163 dbg_jnl("retry (%d)", retries);
164 goto again;
165 }
166
167 dbg_jnl("return -ENOSPC");
168 return err;
169 }
170
171 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
172 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
173 avail = c->leb_size - wbuf->offs - wbuf->used;
174
175 if (wbuf->lnum != -1 && avail >= len) {
176 /*
177 * Someone else has switched the journal head and we have
178 * enough space now. This happens when more than one process is
179 * trying to write to the same journal head at the same time.
180 */
181 dbg_jnl("return LEB %d back, already have LEB %d:%d",
182 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
183 err = ubifs_return_leb(c, lnum);
184 if (err)
185 goto out_unlock;
186 return 0;
187 }
188
189 offs = 0;
190
191 out:
192 /*
193 * Make sure we synchronize the write-buffer before we add the new bud
194 * to the log. Otherwise we may have a power cut after the log
195 * reference node for the last bud (@lnum) is written but before the
196 * write-buffer data are written to the next-to-last bud
197 * (@wbuf->lnum). And the effect would be that the recovery would see
198 * that there is corruption in the next-to-last bud.
199 */
200 err = ubifs_wbuf_sync_nolock(wbuf);
201 if (err)
202 goto out_return;
203 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
204 if (err)
205 goto out_return;
206 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
207 if (err)
208 goto out_unlock;
209
210 return 0;
211
212 out_unlock:
213 mutex_unlock(&wbuf->io_mutex);
214 return err;
215
216 out_return:
217 /* An error occurred and the LEB has to be returned to lprops */
218 ubifs_assert(c, err < 0);
219 err1 = ubifs_return_leb(c, lnum);
220 if (err1 && err == -EAGAIN)
221 /*
222 * Return original error code only if it is not %-EAGAIN,
223 * which is not really an error. Otherwise, return the error
224 * code of 'ubifs_return_leb()'.
225 */
226 err = err1;
227 mutex_unlock(&wbuf->io_mutex);
228 return err;
229 }
230
231 /**
232 * write_node - write node to a journal head.
233 * @c: UBIFS file-system description object
234 * @jhead: journal head
235 * @node: node to write
236 * @len: node length
237 * @lnum: LEB number written is returned here
238 * @offs: offset written is returned here
239 *
240 * This function writes a node to reserved space of journal head @jhead.
241 * Returns zero in case of success and a negative error code in case of
242 * failure.
243 */
write_node(struct ubifs_info * c,int jhead,void * node,int len,int * lnum,int * offs)244 static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
245 int *lnum, int *offs)
246 {
247 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
248
249 ubifs_assert(c, jhead != GCHD);
250
251 *lnum = c->jheads[jhead].wbuf.lnum;
252 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
253
254 dbg_jnl("jhead %s, LEB %d:%d, len %d",
255 dbg_jhead(jhead), *lnum, *offs, len);
256 ubifs_prepare_node(c, node, len, 0);
257
258 return ubifs_wbuf_write_nolock(wbuf, node, len);
259 }
260
261 /**
262 * write_head - write data to a journal head.
263 * @c: UBIFS file-system description object
264 * @jhead: journal head
265 * @buf: buffer to write
266 * @len: length to write
267 * @lnum: LEB number written is returned here
268 * @offs: offset written is returned here
269 * @sync: non-zero if the write-buffer has to by synchronized
270 *
271 * This function is the same as 'write_node()' but it does not assume the
272 * buffer it is writing is a node, so it does not prepare it (which means
273 * initializing common header and calculating CRC).
274 */
write_head(struct ubifs_info * c,int jhead,void * buf,int len,int * lnum,int * offs,int sync)275 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
276 int *lnum, int *offs, int sync)
277 {
278 int err;
279 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
280
281 ubifs_assert(c, jhead != GCHD);
282
283 *lnum = c->jheads[jhead].wbuf.lnum;
284 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
285 dbg_jnl("jhead %s, LEB %d:%d, len %d",
286 dbg_jhead(jhead), *lnum, *offs, len);
287
288 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
289 if (err)
290 return err;
291 if (sync)
292 err = ubifs_wbuf_sync_nolock(wbuf);
293 return err;
294 }
295
296 /**
297 * make_reservation - reserve journal space.
298 * @c: UBIFS file-system description object
299 * @jhead: journal head
300 * @len: how many bytes to reserve
301 *
302 * This function makes space reservation in journal head @jhead. The function
303 * takes the commit lock and locks the journal head, and the caller has to
304 * unlock the head and finish the reservation with 'finish_reservation()'.
305 * Returns zero in case of success and a negative error code in case of
306 * failure.
307 *
308 * Note, the journal head may be unlocked as soon as the data is written, while
309 * the commit lock has to be released after the data has been added to the
310 * TNC.
311 */
make_reservation(struct ubifs_info * c,int jhead,int len)312 static int make_reservation(struct ubifs_info *c, int jhead, int len)
313 {
314 int err, cmt_retries = 0, nospc_retries = 0;
315
316 again:
317 down_read(&c->commit_sem);
318 err = reserve_space(c, jhead, len);
319 if (!err)
320 /* c->commit_sem will get released via finish_reservation(). */
321 return 0;
322 up_read(&c->commit_sem);
323
324 if (err == -ENOSPC) {
325 /*
326 * GC could not make any progress. We should try to commit
327 * once because it could make some dirty space and GC would
328 * make progress, so make the error -EAGAIN so that the below
329 * will commit and re-try.
330 */
331 if (nospc_retries++ < 2) {
332 dbg_jnl("no space, retry");
333 err = -EAGAIN;
334 }
335
336 /*
337 * This means that the budgeting is incorrect. We always have
338 * to be able to write to the media, because all operations are
339 * budgeted. Deletions are not budgeted, though, but we reserve
340 * an extra LEB for them.
341 */
342 }
343
344 if (err != -EAGAIN)
345 goto out;
346
347 /*
348 * -EAGAIN means that the journal is full or too large, or the above
349 * code wants to do one commit. Do this and re-try.
350 */
351 if (cmt_retries > 128) {
352 /*
353 * This should not happen unless the journal size limitations
354 * are too tough.
355 */
356 ubifs_err(c, "stuck in space allocation");
357 err = -ENOSPC;
358 goto out;
359 } else if (cmt_retries > 32)
360 ubifs_warn(c, "too many space allocation re-tries (%d)",
361 cmt_retries);
362
363 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
364 cmt_retries);
365 cmt_retries += 1;
366
367 err = ubifs_run_commit(c);
368 if (err)
369 return err;
370 goto again;
371
372 out:
373 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
374 len, jhead, err);
375 if (err == -ENOSPC) {
376 /* This are some budgeting problems, print useful information */
377 down_write(&c->commit_sem);
378 dump_stack();
379 ubifs_dump_budg(c, &c->bi);
380 ubifs_dump_lprops(c);
381 cmt_retries = dbg_check_lprops(c);
382 up_write(&c->commit_sem);
383 }
384 return err;
385 }
386
387 /**
388 * release_head - release a journal head.
389 * @c: UBIFS file-system description object
390 * @jhead: journal head
391 *
392 * This function releases journal head @jhead which was locked by
393 * the 'make_reservation()' function. It has to be called after each successful
394 * 'make_reservation()' invocation.
395 */
release_head(struct ubifs_info * c,int jhead)396 static inline void release_head(struct ubifs_info *c, int jhead)
397 {
398 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
399 }
400
401 /**
402 * finish_reservation - finish a reservation.
403 * @c: UBIFS file-system description object
404 *
405 * This function finishes journal space reservation. It must be called after
406 * 'make_reservation()'.
407 */
finish_reservation(struct ubifs_info * c)408 static void finish_reservation(struct ubifs_info *c)
409 {
410 up_read(&c->commit_sem);
411 }
412
413 /**
414 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
415 * @mode: inode mode
416 */
get_dent_type(int mode)417 static int get_dent_type(int mode)
418 {
419 switch (mode & S_IFMT) {
420 case S_IFREG:
421 return UBIFS_ITYPE_REG;
422 case S_IFDIR:
423 return UBIFS_ITYPE_DIR;
424 case S_IFLNK:
425 return UBIFS_ITYPE_LNK;
426 case S_IFBLK:
427 return UBIFS_ITYPE_BLK;
428 case S_IFCHR:
429 return UBIFS_ITYPE_CHR;
430 case S_IFIFO:
431 return UBIFS_ITYPE_FIFO;
432 case S_IFSOCK:
433 return UBIFS_ITYPE_SOCK;
434 default:
435 BUG();
436 }
437 return 0;
438 }
439
440 /**
441 * pack_inode - pack an inode node.
442 * @c: UBIFS file-system description object
443 * @ino: buffer in which to pack inode node
444 * @inode: inode to pack
445 * @last: indicates the last node of the group
446 */
pack_inode(struct ubifs_info * c,struct ubifs_ino_node * ino,const struct inode * inode,int last)447 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
448 const struct inode *inode, int last)
449 {
450 int data_len = 0, last_reference = !inode->i_nlink;
451 struct ubifs_inode *ui = ubifs_inode(inode);
452
453 ino->ch.node_type = UBIFS_INO_NODE;
454 ino_key_init_flash(c, &ino->key, inode->i_ino);
455 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
456 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
457 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
458 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
459 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
460 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
461 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
462 ino->uid = cpu_to_le32(i_uid_read(inode));
463 ino->gid = cpu_to_le32(i_gid_read(inode));
464 ino->mode = cpu_to_le32(inode->i_mode);
465 ino->flags = cpu_to_le32(ui->flags);
466 ino->size = cpu_to_le64(ui->ui_size);
467 ino->nlink = cpu_to_le32(inode->i_nlink);
468 ino->compr_type = cpu_to_le16(ui->compr_type);
469 ino->data_len = cpu_to_le32(ui->data_len);
470 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
471 ino->xattr_size = cpu_to_le32(ui->xattr_size);
472 ino->xattr_names = cpu_to_le32(ui->xattr_names);
473 zero_ino_node_unused(ino);
474
475 /*
476 * Drop the attached data if this is a deletion inode, the data is not
477 * needed anymore.
478 */
479 if (!last_reference) {
480 memcpy(ino->data, ui->data, ui->data_len);
481 data_len = ui->data_len;
482 }
483
484 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
485 }
486
487 /**
488 * mark_inode_clean - mark UBIFS inode as clean.
489 * @c: UBIFS file-system description object
490 * @ui: UBIFS inode to mark as clean
491 *
492 * This helper function marks UBIFS inode @ui as clean by cleaning the
493 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
494 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
495 * just do nothing.
496 */
mark_inode_clean(struct ubifs_info * c,struct ubifs_inode * ui)497 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
498 {
499 if (ui->dirty)
500 ubifs_release_dirty_inode_budget(c, ui);
501 ui->dirty = 0;
502 }
503
set_dent_cookie(struct ubifs_info * c,struct ubifs_dent_node * dent)504 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
505 {
506 if (c->double_hash)
507 dent->cookie = prandom_u32();
508 else
509 dent->cookie = 0;
510 }
511
512 /**
513 * ubifs_jnl_update - update inode.
514 * @c: UBIFS file-system description object
515 * @dir: parent inode or host inode in case of extended attributes
516 * @nm: directory entry name
517 * @inode: inode to update
518 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
519 * @xent: non-zero if the directory entry is an extended attribute entry
520 *
521 * This function updates an inode by writing a directory entry (or extended
522 * attribute entry), the inode itself, and the parent directory inode (or the
523 * host inode) to the journal.
524 *
525 * The function writes the host inode @dir last, which is important in case of
526 * extended attributes. Indeed, then we guarantee that if the host inode gets
527 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
528 * the extended attribute inode gets flushed too. And this is exactly what the
529 * user expects - synchronizing the host inode synchronizes its extended
530 * attributes. Similarly, this guarantees that if @dir is synchronized, its
531 * directory entry corresponding to @nm gets synchronized too.
532 *
533 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
534 * function synchronizes the write-buffer.
535 *
536 * This function marks the @dir and @inode inodes as clean and returns zero on
537 * success. In case of failure, a negative error code is returned.
538 */
ubifs_jnl_update(struct ubifs_info * c,const struct inode * dir,const struct fscrypt_name * nm,const struct inode * inode,int deletion,int xent)539 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
540 const struct fscrypt_name *nm, const struct inode *inode,
541 int deletion, int xent)
542 {
543 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
544 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
545 int last_reference = !!(deletion && inode->i_nlink == 0);
546 struct ubifs_inode *ui = ubifs_inode(inode);
547 struct ubifs_inode *host_ui = ubifs_inode(dir);
548 struct ubifs_dent_node *dent;
549 struct ubifs_ino_node *ino;
550 union ubifs_key dent_key, ino_key;
551
552 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
553
554 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
555 ilen = UBIFS_INO_NODE_SZ;
556
557 /*
558 * If the last reference to the inode is being deleted, then there is
559 * no need to attach and write inode data, it is being deleted anyway.
560 * And if the inode is being deleted, no need to synchronize
561 * write-buffer even if the inode is synchronous.
562 */
563 if (!last_reference) {
564 ilen += ui->data_len;
565 sync |= IS_SYNC(inode);
566 }
567
568 aligned_dlen = ALIGN(dlen, 8);
569 aligned_ilen = ALIGN(ilen, 8);
570
571 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
572 /* Make sure to also account for extended attributes */
573 len += host_ui->data_len;
574
575 dent = kzalloc(len, GFP_NOFS);
576 if (!dent)
577 return -ENOMEM;
578
579 /* Make reservation before allocating sequence numbers */
580 err = make_reservation(c, BASEHD, len);
581 if (err)
582 goto out_free;
583
584 if (!xent) {
585 dent->ch.node_type = UBIFS_DENT_NODE;
586 if (nm->hash)
587 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
588 else
589 dent_key_init(c, &dent_key, dir->i_ino, nm);
590 } else {
591 dent->ch.node_type = UBIFS_XENT_NODE;
592 xent_key_init(c, &dent_key, dir->i_ino, nm);
593 }
594
595 key_write(c, &dent_key, dent->key);
596 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
597 dent->type = get_dent_type(inode->i_mode);
598 dent->nlen = cpu_to_le16(fname_len(nm));
599 memcpy(dent->name, fname_name(nm), fname_len(nm));
600 dent->name[fname_len(nm)] = '\0';
601 set_dent_cookie(c, dent);
602
603 zero_dent_node_unused(dent);
604 ubifs_prep_grp_node(c, dent, dlen, 0);
605
606 ino = (void *)dent + aligned_dlen;
607 pack_inode(c, ino, inode, 0);
608 ino = (void *)ino + aligned_ilen;
609 pack_inode(c, ino, dir, 1);
610
611 if (last_reference) {
612 err = ubifs_add_orphan(c, inode->i_ino);
613 if (err) {
614 release_head(c, BASEHD);
615 goto out_finish;
616 }
617 ui->del_cmtno = c->cmt_no;
618 }
619
620 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
621 if (err)
622 goto out_release;
623 if (!sync) {
624 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
625
626 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
627 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
628 }
629 release_head(c, BASEHD);
630 kfree(dent);
631
632 if (deletion) {
633 if (nm->hash)
634 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
635 else
636 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
637 if (err)
638 goto out_ro;
639 err = ubifs_add_dirt(c, lnum, dlen);
640 } else
641 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
642 if (err)
643 goto out_ro;
644
645 /*
646 * Note, we do not remove the inode from TNC even if the last reference
647 * to it has just been deleted, because the inode may still be opened.
648 * Instead, the inode has been added to orphan lists and the orphan
649 * subsystem will take further care about it.
650 */
651 ino_key_init(c, &ino_key, inode->i_ino);
652 ino_offs = dent_offs + aligned_dlen;
653 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
654 if (err)
655 goto out_ro;
656
657 ino_key_init(c, &ino_key, dir->i_ino);
658 ino_offs += aligned_ilen;
659 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
660 UBIFS_INO_NODE_SZ + host_ui->data_len);
661 if (err)
662 goto out_ro;
663
664 finish_reservation(c);
665 spin_lock(&ui->ui_lock);
666 ui->synced_i_size = ui->ui_size;
667 spin_unlock(&ui->ui_lock);
668 if (xent) {
669 spin_lock(&host_ui->ui_lock);
670 host_ui->synced_i_size = host_ui->ui_size;
671 spin_unlock(&host_ui->ui_lock);
672 }
673 mark_inode_clean(c, ui);
674 mark_inode_clean(c, host_ui);
675 return 0;
676
677 out_finish:
678 finish_reservation(c);
679 out_free:
680 kfree(dent);
681 return err;
682
683 out_release:
684 release_head(c, BASEHD);
685 kfree(dent);
686 out_ro:
687 ubifs_ro_mode(c, err);
688 if (last_reference)
689 ubifs_delete_orphan(c, inode->i_ino);
690 finish_reservation(c);
691 return err;
692 }
693
694 /**
695 * ubifs_jnl_write_data - write a data node to the journal.
696 * @c: UBIFS file-system description object
697 * @inode: inode the data node belongs to
698 * @key: node key
699 * @buf: buffer to write
700 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
701 *
702 * This function writes a data node to the journal. Returns %0 if the data node
703 * was successfully written, and a negative error code in case of failure.
704 */
ubifs_jnl_write_data(struct ubifs_info * c,const struct inode * inode,const union ubifs_key * key,const void * buf,int len)705 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
706 const union ubifs_key *key, const void *buf, int len)
707 {
708 struct ubifs_data_node *data;
709 int err, lnum, offs, compr_type, out_len, compr_len;
710 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
711 struct ubifs_inode *ui = ubifs_inode(inode);
712 bool encrypted = ubifs_crypt_is_encrypted(inode);
713
714 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
715 (unsigned long)key_inum(c, key), key_block(c, key), len);
716 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
717
718 if (encrypted)
719 dlen += UBIFS_CIPHER_BLOCK_SIZE;
720
721 data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
722 if (!data) {
723 /*
724 * Fall-back to the write reserve buffer. Note, we might be
725 * currently on the memory reclaim path, when the kernel is
726 * trying to free some memory by writing out dirty pages. The
727 * write reserve buffer helps us to guarantee that we are
728 * always able to write the data.
729 */
730 allocated = 0;
731 mutex_lock(&c->write_reserve_mutex);
732 data = c->write_reserve_buf;
733 }
734
735 data->ch.node_type = UBIFS_DATA_NODE;
736 key_write(c, key, &data->key);
737 data->size = cpu_to_le32(len);
738
739 if (!(ui->flags & UBIFS_COMPR_FL))
740 /* Compression is disabled for this inode */
741 compr_type = UBIFS_COMPR_NONE;
742 else
743 compr_type = ui->compr_type;
744
745 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
746 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
747 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
748
749 if (encrypted) {
750 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
751 if (err)
752 goto out_free;
753
754 } else {
755 data->compr_size = 0;
756 out_len = compr_len;
757 }
758
759 dlen = UBIFS_DATA_NODE_SZ + out_len;
760 data->compr_type = cpu_to_le16(compr_type);
761
762 /* Make reservation before allocating sequence numbers */
763 err = make_reservation(c, DATAHD, dlen);
764 if (err)
765 goto out_free;
766
767 err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
768 if (err)
769 goto out_release;
770 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
771 release_head(c, DATAHD);
772
773 err = ubifs_tnc_add(c, key, lnum, offs, dlen);
774 if (err)
775 goto out_ro;
776
777 finish_reservation(c);
778 if (!allocated)
779 mutex_unlock(&c->write_reserve_mutex);
780 else
781 kfree(data);
782 return 0;
783
784 out_release:
785 release_head(c, DATAHD);
786 out_ro:
787 ubifs_ro_mode(c, err);
788 finish_reservation(c);
789 out_free:
790 if (!allocated)
791 mutex_unlock(&c->write_reserve_mutex);
792 else
793 kfree(data);
794 return err;
795 }
796
797 /**
798 * ubifs_jnl_write_inode - flush inode to the journal.
799 * @c: UBIFS file-system description object
800 * @inode: inode to flush
801 *
802 * This function writes inode @inode to the journal. If the inode is
803 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
804 * success and a negative error code in case of failure.
805 */
ubifs_jnl_write_inode(struct ubifs_info * c,const struct inode * inode)806 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
807 {
808 int err, lnum, offs;
809 struct ubifs_ino_node *ino;
810 struct ubifs_inode *ui = ubifs_inode(inode);
811 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
812
813 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
814
815 /*
816 * If the inode is being deleted, do not write the attached data. No
817 * need to synchronize the write-buffer either.
818 */
819 if (!last_reference) {
820 len += ui->data_len;
821 sync = IS_SYNC(inode);
822 }
823 ino = kmalloc(len, GFP_NOFS);
824 if (!ino)
825 return -ENOMEM;
826
827 /* Make reservation before allocating sequence numbers */
828 err = make_reservation(c, BASEHD, len);
829 if (err)
830 goto out_free;
831
832 pack_inode(c, ino, inode, 1);
833 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
834 if (err)
835 goto out_release;
836 if (!sync)
837 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
838 inode->i_ino);
839 release_head(c, BASEHD);
840
841 if (last_reference) {
842 err = ubifs_tnc_remove_ino(c, inode->i_ino);
843 if (err)
844 goto out_ro;
845 ubifs_delete_orphan(c, inode->i_ino);
846 err = ubifs_add_dirt(c, lnum, len);
847 } else {
848 union ubifs_key key;
849
850 ino_key_init(c, &key, inode->i_ino);
851 err = ubifs_tnc_add(c, &key, lnum, offs, len);
852 }
853 if (err)
854 goto out_ro;
855
856 finish_reservation(c);
857 spin_lock(&ui->ui_lock);
858 ui->synced_i_size = ui->ui_size;
859 spin_unlock(&ui->ui_lock);
860 kfree(ino);
861 return 0;
862
863 out_release:
864 release_head(c, BASEHD);
865 out_ro:
866 ubifs_ro_mode(c, err);
867 finish_reservation(c);
868 out_free:
869 kfree(ino);
870 return err;
871 }
872
873 /**
874 * ubifs_jnl_delete_inode - delete an inode.
875 * @c: UBIFS file-system description object
876 * @inode: inode to delete
877 *
878 * This function deletes inode @inode which includes removing it from orphans,
879 * deleting it from TNC and, in some cases, writing a deletion inode to the
880 * journal.
881 *
882 * When regular file inodes are unlinked or a directory inode is removed, the
883 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
884 * direntry to the media, and adds the inode to orphans. After this, when the
885 * last reference to this inode has been dropped, this function is called. In
886 * general, it has to write one more deletion inode to the media, because if
887 * a commit happened between 'ubifs_jnl_update()' and
888 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
889 * anymore, and in fact it might not be on the flash anymore, because it might
890 * have been garbage-collected already. And for optimization reasons UBIFS does
891 * not read the orphan area if it has been unmounted cleanly, so it would have
892 * no indication in the journal that there is a deleted inode which has to be
893 * removed from TNC.
894 *
895 * However, if there was no commit between 'ubifs_jnl_update()' and
896 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
897 * inode to the media for the second time. And this is quite a typical case.
898 *
899 * This function returns zero in case of success and a negative error code in
900 * case of failure.
901 */
ubifs_jnl_delete_inode(struct ubifs_info * c,const struct inode * inode)902 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
903 {
904 int err;
905 struct ubifs_inode *ui = ubifs_inode(inode);
906
907 ubifs_assert(c, inode->i_nlink == 0);
908
909 if (ui->del_cmtno != c->cmt_no)
910 /* A commit happened for sure */
911 return ubifs_jnl_write_inode(c, inode);
912
913 down_read(&c->commit_sem);
914 /*
915 * Check commit number again, because the first test has been done
916 * without @c->commit_sem, so a commit might have happened.
917 */
918 if (ui->del_cmtno != c->cmt_no) {
919 up_read(&c->commit_sem);
920 return ubifs_jnl_write_inode(c, inode);
921 }
922
923 err = ubifs_tnc_remove_ino(c, inode->i_ino);
924 if (err)
925 ubifs_ro_mode(c, err);
926 else
927 ubifs_delete_orphan(c, inode->i_ino);
928 up_read(&c->commit_sem);
929 return err;
930 }
931
932 /**
933 * ubifs_jnl_xrename - cross rename two directory entries.
934 * @c: UBIFS file-system description object
935 * @fst_dir: parent inode of 1st directory entry to exchange
936 * @fst_inode: 1st inode to exchange
937 * @fst_nm: name of 1st inode to exchange
938 * @snd_dir: parent inode of 2nd directory entry to exchange
939 * @snd_inode: 2nd inode to exchange
940 * @snd_nm: name of 2nd inode to exchange
941 * @sync: non-zero if the write-buffer has to be synchronized
942 *
943 * This function implements the cross rename operation which may involve
944 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
945 * and returns zero on success. In case of failure, a negative error code is
946 * returned.
947 */
ubifs_jnl_xrename(struct ubifs_info * c,const struct inode * fst_dir,const struct inode * fst_inode,const struct fscrypt_name * fst_nm,const struct inode * snd_dir,const struct inode * snd_inode,const struct fscrypt_name * snd_nm,int sync)948 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
949 const struct inode *fst_inode,
950 const struct fscrypt_name *fst_nm,
951 const struct inode *snd_dir,
952 const struct inode *snd_inode,
953 const struct fscrypt_name *snd_nm, int sync)
954 {
955 union ubifs_key key;
956 struct ubifs_dent_node *dent1, *dent2;
957 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
958 int aligned_dlen1, aligned_dlen2;
959 int twoparents = (fst_dir != snd_dir);
960 void *p;
961
962 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
963 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
964 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
965 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
966
967 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
968 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
969 aligned_dlen1 = ALIGN(dlen1, 8);
970 aligned_dlen2 = ALIGN(dlen2, 8);
971
972 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
973 if (twoparents)
974 len += plen;
975
976 dent1 = kzalloc(len, GFP_NOFS);
977 if (!dent1)
978 return -ENOMEM;
979
980 /* Make reservation before allocating sequence numbers */
981 err = make_reservation(c, BASEHD, len);
982 if (err)
983 goto out_free;
984
985 /* Make new dent for 1st entry */
986 dent1->ch.node_type = UBIFS_DENT_NODE;
987 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
988 dent1->inum = cpu_to_le64(fst_inode->i_ino);
989 dent1->type = get_dent_type(fst_inode->i_mode);
990 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
991 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
992 dent1->name[fname_len(snd_nm)] = '\0';
993 set_dent_cookie(c, dent1);
994 zero_dent_node_unused(dent1);
995 ubifs_prep_grp_node(c, dent1, dlen1, 0);
996
997 /* Make new dent for 2nd entry */
998 dent2 = (void *)dent1 + aligned_dlen1;
999 dent2->ch.node_type = UBIFS_DENT_NODE;
1000 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1001 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1002 dent2->type = get_dent_type(snd_inode->i_mode);
1003 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1004 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1005 dent2->name[fname_len(fst_nm)] = '\0';
1006 set_dent_cookie(c, dent2);
1007 zero_dent_node_unused(dent2);
1008 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1009
1010 p = (void *)dent2 + aligned_dlen2;
1011 if (!twoparents)
1012 pack_inode(c, p, fst_dir, 1);
1013 else {
1014 pack_inode(c, p, fst_dir, 0);
1015 p += ALIGN(plen, 8);
1016 pack_inode(c, p, snd_dir, 1);
1017 }
1018
1019 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1020 if (err)
1021 goto out_release;
1022 if (!sync) {
1023 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1024
1025 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1026 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1027 }
1028 release_head(c, BASEHD);
1029
1030 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1031 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, snd_nm);
1032 if (err)
1033 goto out_ro;
1034
1035 offs += aligned_dlen1;
1036 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1037 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, fst_nm);
1038 if (err)
1039 goto out_ro;
1040
1041 offs += aligned_dlen2;
1042
1043 ino_key_init(c, &key, fst_dir->i_ino);
1044 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1045 if (err)
1046 goto out_ro;
1047
1048 if (twoparents) {
1049 offs += ALIGN(plen, 8);
1050 ino_key_init(c, &key, snd_dir->i_ino);
1051 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1052 if (err)
1053 goto out_ro;
1054 }
1055
1056 finish_reservation(c);
1057
1058 mark_inode_clean(c, ubifs_inode(fst_dir));
1059 if (twoparents)
1060 mark_inode_clean(c, ubifs_inode(snd_dir));
1061 kfree(dent1);
1062 return 0;
1063
1064 out_release:
1065 release_head(c, BASEHD);
1066 out_ro:
1067 ubifs_ro_mode(c, err);
1068 finish_reservation(c);
1069 out_free:
1070 kfree(dent1);
1071 return err;
1072 }
1073
1074 /**
1075 * ubifs_jnl_rename - rename a directory entry.
1076 * @c: UBIFS file-system description object
1077 * @old_dir: parent inode of directory entry to rename
1078 * @old_dentry: directory entry to rename
1079 * @new_dir: parent inode of directory entry to rename
1080 * @new_dentry: new directory entry (or directory entry to replace)
1081 * @sync: non-zero if the write-buffer has to be synchronized
1082 *
1083 * This function implements the re-name operation which may involve writing up
1084 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1085 * and returns zero on success. In case of failure, a negative error code is
1086 * returned.
1087 */
ubifs_jnl_rename(struct ubifs_info * c,const struct inode * old_dir,const struct inode * old_inode,const struct fscrypt_name * old_nm,const struct inode * new_dir,const struct inode * new_inode,const struct fscrypt_name * new_nm,const struct inode * whiteout,int sync)1088 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1089 const struct inode *old_inode,
1090 const struct fscrypt_name *old_nm,
1091 const struct inode *new_dir,
1092 const struct inode *new_inode,
1093 const struct fscrypt_name *new_nm,
1094 const struct inode *whiteout, int sync)
1095 {
1096 void *p;
1097 union ubifs_key key;
1098 struct ubifs_dent_node *dent, *dent2;
1099 int err, dlen1, dlen2, ilen, lnum, offs, len;
1100 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1101 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1102 int move = (old_dir != new_dir);
1103 struct ubifs_inode *uninitialized_var(new_ui);
1104
1105 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1106 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1107 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1108 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1109
1110 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1111 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1112 if (new_inode) {
1113 new_ui = ubifs_inode(new_inode);
1114 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1115 ilen = UBIFS_INO_NODE_SZ;
1116 if (!last_reference)
1117 ilen += new_ui->data_len;
1118 } else
1119 ilen = 0;
1120
1121 aligned_dlen1 = ALIGN(dlen1, 8);
1122 aligned_dlen2 = ALIGN(dlen2, 8);
1123 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1124 if (move)
1125 len += plen;
1126 dent = kzalloc(len, GFP_NOFS);
1127 if (!dent)
1128 return -ENOMEM;
1129
1130 /* Make reservation before allocating sequence numbers */
1131 err = make_reservation(c, BASEHD, len);
1132 if (err)
1133 goto out_free;
1134
1135 /* Make new dent */
1136 dent->ch.node_type = UBIFS_DENT_NODE;
1137 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1138 dent->inum = cpu_to_le64(old_inode->i_ino);
1139 dent->type = get_dent_type(old_inode->i_mode);
1140 dent->nlen = cpu_to_le16(fname_len(new_nm));
1141 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1142 dent->name[fname_len(new_nm)] = '\0';
1143 set_dent_cookie(c, dent);
1144 zero_dent_node_unused(dent);
1145 ubifs_prep_grp_node(c, dent, dlen1, 0);
1146
1147 dent2 = (void *)dent + aligned_dlen1;
1148 dent2->ch.node_type = UBIFS_DENT_NODE;
1149 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1150
1151 if (whiteout) {
1152 dent2->inum = cpu_to_le64(whiteout->i_ino);
1153 dent2->type = get_dent_type(whiteout->i_mode);
1154 } else {
1155 /* Make deletion dent */
1156 dent2->inum = 0;
1157 dent2->type = DT_UNKNOWN;
1158 }
1159 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1160 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1161 dent2->name[fname_len(old_nm)] = '\0';
1162 set_dent_cookie(c, dent2);
1163 zero_dent_node_unused(dent2);
1164 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1165
1166 p = (void *)dent2 + aligned_dlen2;
1167 if (new_inode) {
1168 pack_inode(c, p, new_inode, 0);
1169 p += ALIGN(ilen, 8);
1170 }
1171
1172 if (!move)
1173 pack_inode(c, p, old_dir, 1);
1174 else {
1175 pack_inode(c, p, old_dir, 0);
1176 p += ALIGN(plen, 8);
1177 pack_inode(c, p, new_dir, 1);
1178 }
1179
1180 if (last_reference) {
1181 err = ubifs_add_orphan(c, new_inode->i_ino);
1182 if (err) {
1183 release_head(c, BASEHD);
1184 goto out_finish;
1185 }
1186 new_ui->del_cmtno = c->cmt_no;
1187 }
1188
1189 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1190 if (err)
1191 goto out_release;
1192 if (!sync) {
1193 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1194
1195 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1196 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1197 if (new_inode)
1198 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1199 new_inode->i_ino);
1200 }
1201 release_head(c, BASEHD);
1202
1203 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1204 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, new_nm);
1205 if (err)
1206 goto out_ro;
1207
1208 offs += aligned_dlen1;
1209 if (whiteout) {
1210 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1211 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, old_nm);
1212 if (err)
1213 goto out_ro;
1214
1215 ubifs_delete_orphan(c, whiteout->i_ino);
1216 } else {
1217 err = ubifs_add_dirt(c, lnum, dlen2);
1218 if (err)
1219 goto out_ro;
1220
1221 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1222 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1223 if (err)
1224 goto out_ro;
1225 }
1226
1227 offs += aligned_dlen2;
1228 if (new_inode) {
1229 ino_key_init(c, &key, new_inode->i_ino);
1230 err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1231 if (err)
1232 goto out_ro;
1233 offs += ALIGN(ilen, 8);
1234 }
1235
1236 ino_key_init(c, &key, old_dir->i_ino);
1237 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1238 if (err)
1239 goto out_ro;
1240
1241 if (move) {
1242 offs += ALIGN(plen, 8);
1243 ino_key_init(c, &key, new_dir->i_ino);
1244 err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1245 if (err)
1246 goto out_ro;
1247 }
1248
1249 finish_reservation(c);
1250 if (new_inode) {
1251 mark_inode_clean(c, new_ui);
1252 spin_lock(&new_ui->ui_lock);
1253 new_ui->synced_i_size = new_ui->ui_size;
1254 spin_unlock(&new_ui->ui_lock);
1255 }
1256 mark_inode_clean(c, ubifs_inode(old_dir));
1257 if (move)
1258 mark_inode_clean(c, ubifs_inode(new_dir));
1259 kfree(dent);
1260 return 0;
1261
1262 out_release:
1263 release_head(c, BASEHD);
1264 out_ro:
1265 ubifs_ro_mode(c, err);
1266 if (last_reference)
1267 ubifs_delete_orphan(c, new_inode->i_ino);
1268 out_finish:
1269 finish_reservation(c);
1270 out_free:
1271 kfree(dent);
1272 return err;
1273 }
1274
1275 /**
1276 * truncate_data_node - re-compress/encrypt a truncated data node.
1277 * @c: UBIFS file-system description object
1278 * @inode: inode which referes to the data node
1279 * @block: data block number
1280 * @dn: data node to re-compress
1281 * @new_len: new length
1282 *
1283 * This function is used when an inode is truncated and the last data node of
1284 * the inode has to be re-compressed/encrypted and re-written.
1285 */
truncate_data_node(const struct ubifs_info * c,const struct inode * inode,unsigned int block,struct ubifs_data_node * dn,int * new_len)1286 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1287 unsigned int block, struct ubifs_data_node *dn,
1288 int *new_len)
1289 {
1290 void *buf;
1291 int err, dlen, compr_type, out_len, old_dlen;
1292
1293 out_len = le32_to_cpu(dn->size);
1294 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1295 if (!buf)
1296 return -ENOMEM;
1297
1298 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1299 compr_type = le16_to_cpu(dn->compr_type);
1300
1301 if (ubifs_crypt_is_encrypted(inode)) {
1302 err = ubifs_decrypt(inode, dn, &dlen, block);
1303 if (err)
1304 goto out;
1305 }
1306
1307 if (compr_type == UBIFS_COMPR_NONE) {
1308 out_len = *new_len;
1309 } else {
1310 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1311 if (err)
1312 goto out;
1313
1314 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1315 }
1316
1317 if (ubifs_crypt_is_encrypted(inode)) {
1318 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1319 if (err)
1320 goto out;
1321
1322 out_len = old_dlen;
1323 } else {
1324 dn->compr_size = 0;
1325 }
1326
1327 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1328 dn->compr_type = cpu_to_le16(compr_type);
1329 dn->size = cpu_to_le32(*new_len);
1330 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1331 err = 0;
1332 out:
1333 kfree(buf);
1334 return err;
1335 }
1336
1337 /**
1338 * ubifs_jnl_truncate - update the journal for a truncation.
1339 * @c: UBIFS file-system description object
1340 * @inode: inode to truncate
1341 * @old_size: old size
1342 * @new_size: new size
1343 *
1344 * When the size of a file decreases due to truncation, a truncation node is
1345 * written, the journal tree is updated, and the last data block is re-written
1346 * if it has been affected. The inode is also updated in order to synchronize
1347 * the new inode size.
1348 *
1349 * This function marks the inode as clean and returns zero on success. In case
1350 * of failure, a negative error code is returned.
1351 */
ubifs_jnl_truncate(struct ubifs_info * c,const struct inode * inode,loff_t old_size,loff_t new_size)1352 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1353 loff_t old_size, loff_t new_size)
1354 {
1355 union ubifs_key key, to_key;
1356 struct ubifs_ino_node *ino;
1357 struct ubifs_trun_node *trun;
1358 struct ubifs_data_node *dn;
1359 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1360 struct ubifs_inode *ui = ubifs_inode(inode);
1361 ino_t inum = inode->i_ino;
1362 unsigned int blk;
1363
1364 dbg_jnl("ino %lu, size %lld -> %lld",
1365 (unsigned long)inum, old_size, new_size);
1366 ubifs_assert(c, !ui->data_len);
1367 ubifs_assert(c, S_ISREG(inode->i_mode));
1368 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1369
1370 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1371 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1372 ino = kmalloc(sz, GFP_NOFS);
1373 if (!ino)
1374 return -ENOMEM;
1375
1376 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1377 trun->ch.node_type = UBIFS_TRUN_NODE;
1378 trun->inum = cpu_to_le32(inum);
1379 trun->old_size = cpu_to_le64(old_size);
1380 trun->new_size = cpu_to_le64(new_size);
1381 zero_trun_node_unused(trun);
1382
1383 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1384 if (dlen) {
1385 /* Get last data block so it can be truncated */
1386 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1387 blk = new_size >> UBIFS_BLOCK_SHIFT;
1388 data_key_init(c, &key, inum, blk);
1389 dbg_jnlk(&key, "last block key ");
1390 err = ubifs_tnc_lookup(c, &key, dn);
1391 if (err == -ENOENT)
1392 dlen = 0; /* Not found (so it is a hole) */
1393 else if (err)
1394 goto out_free;
1395 else {
1396 int dn_len = le32_to_cpu(dn->size);
1397
1398 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1399 ubifs_err(c, "bad data node (block %u, inode %lu)",
1400 blk, inode->i_ino);
1401 ubifs_dump_node(c, dn);
1402 goto out_free;
1403 }
1404
1405 if (dn_len <= dlen)
1406 dlen = 0; /* Nothing to do */
1407 else {
1408 err = truncate_data_node(c, inode, blk, dn, &dlen);
1409 if (err)
1410 goto out_free;
1411 }
1412 }
1413 }
1414
1415 /* Must make reservation before allocating sequence numbers */
1416 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1417 if (dlen)
1418 len += dlen;
1419 err = make_reservation(c, BASEHD, len);
1420 if (err)
1421 goto out_free;
1422
1423 pack_inode(c, ino, inode, 0);
1424 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1425 if (dlen)
1426 ubifs_prep_grp_node(c, dn, dlen, 1);
1427
1428 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1429 if (err)
1430 goto out_release;
1431 if (!sync)
1432 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1433 release_head(c, BASEHD);
1434
1435 if (dlen) {
1436 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1437 err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1438 if (err)
1439 goto out_ro;
1440 }
1441
1442 ino_key_init(c, &key, inum);
1443 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1444 if (err)
1445 goto out_ro;
1446
1447 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1448 if (err)
1449 goto out_ro;
1450
1451 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1452 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1453 data_key_init(c, &key, inum, blk);
1454
1455 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1456 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1457 data_key_init(c, &to_key, inum, blk);
1458
1459 err = ubifs_tnc_remove_range(c, &key, &to_key);
1460 if (err)
1461 goto out_ro;
1462
1463 finish_reservation(c);
1464 spin_lock(&ui->ui_lock);
1465 ui->synced_i_size = ui->ui_size;
1466 spin_unlock(&ui->ui_lock);
1467 mark_inode_clean(c, ui);
1468 kfree(ino);
1469 return 0;
1470
1471 out_release:
1472 release_head(c, BASEHD);
1473 out_ro:
1474 ubifs_ro_mode(c, err);
1475 finish_reservation(c);
1476 out_free:
1477 kfree(ino);
1478 return err;
1479 }
1480
1481
1482 /**
1483 * ubifs_jnl_delete_xattr - delete an extended attribute.
1484 * @c: UBIFS file-system description object
1485 * @host: host inode
1486 * @inode: extended attribute inode
1487 * @nm: extended attribute entry name
1488 *
1489 * This function delete an extended attribute which is very similar to
1490 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1491 * updates the target inode. Returns zero in case of success and a negative
1492 * error code in case of failure.
1493 */
ubifs_jnl_delete_xattr(struct ubifs_info * c,const struct inode * host,const struct inode * inode,const struct fscrypt_name * nm)1494 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1495 const struct inode *inode,
1496 const struct fscrypt_name *nm)
1497 {
1498 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1499 struct ubifs_dent_node *xent;
1500 struct ubifs_ino_node *ino;
1501 union ubifs_key xent_key, key1, key2;
1502 int sync = IS_DIRSYNC(host);
1503 struct ubifs_inode *host_ui = ubifs_inode(host);
1504
1505 ubifs_assert(c, inode->i_nlink == 0);
1506 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1507
1508 /*
1509 * Since we are deleting the inode, we do not bother to attach any data
1510 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1511 */
1512 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1513 aligned_xlen = ALIGN(xlen, 8);
1514 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1515 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1516
1517 xent = kzalloc(len, GFP_NOFS);
1518 if (!xent)
1519 return -ENOMEM;
1520
1521 /* Make reservation before allocating sequence numbers */
1522 err = make_reservation(c, BASEHD, len);
1523 if (err) {
1524 kfree(xent);
1525 return err;
1526 }
1527
1528 xent->ch.node_type = UBIFS_XENT_NODE;
1529 xent_key_init(c, &xent_key, host->i_ino, nm);
1530 key_write(c, &xent_key, xent->key);
1531 xent->inum = 0;
1532 xent->type = get_dent_type(inode->i_mode);
1533 xent->nlen = cpu_to_le16(fname_len(nm));
1534 memcpy(xent->name, fname_name(nm), fname_len(nm));
1535 xent->name[fname_len(nm)] = '\0';
1536 zero_dent_node_unused(xent);
1537 ubifs_prep_grp_node(c, xent, xlen, 0);
1538
1539 ino = (void *)xent + aligned_xlen;
1540 pack_inode(c, ino, inode, 0);
1541 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1542 pack_inode(c, ino, host, 1);
1543
1544 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1545 if (!sync && !err)
1546 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1547 release_head(c, BASEHD);
1548 kfree(xent);
1549 if (err)
1550 goto out_ro;
1551
1552 /* Remove the extended attribute entry from TNC */
1553 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1554 if (err)
1555 goto out_ro;
1556 err = ubifs_add_dirt(c, lnum, xlen);
1557 if (err)
1558 goto out_ro;
1559
1560 /*
1561 * Remove all nodes belonging to the extended attribute inode from TNC.
1562 * Well, there actually must be only one node - the inode itself.
1563 */
1564 lowest_ino_key(c, &key1, inode->i_ino);
1565 highest_ino_key(c, &key2, inode->i_ino);
1566 err = ubifs_tnc_remove_range(c, &key1, &key2);
1567 if (err)
1568 goto out_ro;
1569 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1570 if (err)
1571 goto out_ro;
1572
1573 /* And update TNC with the new host inode position */
1574 ino_key_init(c, &key1, host->i_ino);
1575 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1576 if (err)
1577 goto out_ro;
1578
1579 finish_reservation(c);
1580 spin_lock(&host_ui->ui_lock);
1581 host_ui->synced_i_size = host_ui->ui_size;
1582 spin_unlock(&host_ui->ui_lock);
1583 mark_inode_clean(c, host_ui);
1584 return 0;
1585
1586 out_ro:
1587 ubifs_ro_mode(c, err);
1588 finish_reservation(c);
1589 return err;
1590 }
1591
1592 /**
1593 * ubifs_jnl_change_xattr - change an extended attribute.
1594 * @c: UBIFS file-system description object
1595 * @inode: extended attribute inode
1596 * @host: host inode
1597 *
1598 * This function writes the updated version of an extended attribute inode and
1599 * the host inode to the journal (to the base head). The host inode is written
1600 * after the extended attribute inode in order to guarantee that the extended
1601 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1602 * consequently, the write-buffer is synchronized. This function returns zero
1603 * in case of success and a negative error code in case of failure.
1604 */
ubifs_jnl_change_xattr(struct ubifs_info * c,const struct inode * inode,const struct inode * host)1605 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1606 const struct inode *host)
1607 {
1608 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1609 struct ubifs_inode *host_ui = ubifs_inode(host);
1610 struct ubifs_ino_node *ino;
1611 union ubifs_key key;
1612 int sync = IS_DIRSYNC(host);
1613
1614 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1615 ubifs_assert(c, host->i_nlink > 0);
1616 ubifs_assert(c, inode->i_nlink > 0);
1617 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1618
1619 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1620 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1621 aligned_len1 = ALIGN(len1, 8);
1622 aligned_len = aligned_len1 + ALIGN(len2, 8);
1623
1624 ino = kzalloc(aligned_len, GFP_NOFS);
1625 if (!ino)
1626 return -ENOMEM;
1627
1628 /* Make reservation before allocating sequence numbers */
1629 err = make_reservation(c, BASEHD, aligned_len);
1630 if (err)
1631 goto out_free;
1632
1633 pack_inode(c, ino, host, 0);
1634 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1635
1636 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1637 if (!sync && !err) {
1638 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1639
1640 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1641 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1642 }
1643 release_head(c, BASEHD);
1644 if (err)
1645 goto out_ro;
1646
1647 ino_key_init(c, &key, host->i_ino);
1648 err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1649 if (err)
1650 goto out_ro;
1651
1652 ino_key_init(c, &key, inode->i_ino);
1653 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1654 if (err)
1655 goto out_ro;
1656
1657 finish_reservation(c);
1658 spin_lock(&host_ui->ui_lock);
1659 host_ui->synced_i_size = host_ui->ui_size;
1660 spin_unlock(&host_ui->ui_lock);
1661 mark_inode_clean(c, host_ui);
1662 kfree(ino);
1663 return 0;
1664
1665 out_ro:
1666 ubifs_ro_mode(c, err);
1667 finish_reservation(c);
1668 out_free:
1669 kfree(ino);
1670 return err;
1671 }
1672
1673