1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
35  * write size (@c->max_write_size). The latter is the maximum amount of bytes
36  * the underlying flash is able to program at a time, and writing in
37  * @c->max_write_size units should presumably be faster. Obviously,
38  * @c->min_io_size <= @c->max_write_size. Write-buffers are of
39  * @c->max_write_size bytes in size for maximum performance. However, when a
40  * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
41  * boundary) which contains data is written, not the whole write-buffer,
42  * because this is more space-efficient.
43  *
44  * This optimization adds few complications to the code. Indeed, on the one
45  * hand, we want to write in optimal @c->max_write_size bytes chunks, which
46  * also means aligning writes at the @c->max_write_size bytes offsets. On the
47  * other hand, we do not want to waste space when synchronizing the write
48  * buffer, so during synchronization we writes in smaller chunks. And this makes
49  * the next write offset to be not aligned to @c->max_write_size bytes. So the
50  * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
51  * to @c->max_write_size bytes again. We do this by temporarily shrinking
52  * write-buffer size (@wbuf->size).
53  *
54  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
55  * mutexes defined inside these objects. Since sometimes upper-level code
56  * has to lock the write-buffer (e.g. journal space reservation code), many
57  * functions related to write-buffers have "nolock" suffix which means that the
58  * caller has to lock the write-buffer before calling this function.
59  *
60  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
61  * aligned, UBIFS starts the next node from the aligned address, and the padded
62  * bytes may contain any rubbish. In other words, UBIFS does not put padding
63  * bytes in those small gaps. Common headers of nodes store real node lengths,
64  * not aligned lengths. Indexing nodes also store real lengths in branches.
65  *
66  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
67  * uses padding nodes or padding bytes, if the padding node does not fit.
68  *
69  * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
70  * they are read from the flash media.
71  */
72 
73 #include <linux/crc32.h>
74 #include <linux/slab.h>
75 #include "ubifs.h"
76 
77 /**
78  * ubifs_ro_mode - switch UBIFS to read read-only mode.
79  * @c: UBIFS file-system description object
80  * @err: error code which is the reason of switching to R/O mode
81  */
ubifs_ro_mode(struct ubifs_info * c,int err)82 void ubifs_ro_mode(struct ubifs_info *c, int err)
83 {
84 	if (!c->ro_error) {
85 		c->ro_error = 1;
86 		c->no_chk_data_crc = 0;
87 		c->vfs_sb->s_flags |= SB_RDONLY;
88 		ubifs_warn(c, "switched to read-only mode, error %d", err);
89 		dump_stack();
90 	}
91 }
92 
93 /*
94  * Below are simple wrappers over UBI I/O functions which include some
95  * additional checks and UBIFS debugging stuff. See corresponding UBI function
96  * for more information.
97  */
98 
ubifs_leb_read(const struct ubifs_info * c,int lnum,void * buf,int offs,int len,int even_ebadmsg)99 int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
100 		   int len, int even_ebadmsg)
101 {
102 	int err;
103 
104 	err = ubi_read(c->ubi, lnum, buf, offs, len);
105 	/*
106 	 * In case of %-EBADMSG print the error message only if the
107 	 * @even_ebadmsg is true.
108 	 */
109 	if (err && (err != -EBADMSG || even_ebadmsg)) {
110 		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
111 			  len, lnum, offs, err);
112 		dump_stack();
113 	}
114 	return err;
115 }
116 
ubifs_leb_write(struct ubifs_info * c,int lnum,const void * buf,int offs,int len)117 int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
118 		    int len)
119 {
120 	int err;
121 
122 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
123 	if (c->ro_error)
124 		return -EROFS;
125 	if (!dbg_is_tst_rcvry(c))
126 		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
127 	else
128 		err = dbg_leb_write(c, lnum, buf, offs, len);
129 	if (err) {
130 		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
131 			  len, lnum, offs, err);
132 		ubifs_ro_mode(c, err);
133 		dump_stack();
134 	}
135 	return err;
136 }
137 
ubifs_leb_change(struct ubifs_info * c,int lnum,const void * buf,int len)138 int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
139 {
140 	int err;
141 
142 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
143 	if (c->ro_error)
144 		return -EROFS;
145 	if (!dbg_is_tst_rcvry(c))
146 		err = ubi_leb_change(c->ubi, lnum, buf, len);
147 	else
148 		err = dbg_leb_change(c, lnum, buf, len);
149 	if (err) {
150 		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
151 			  len, lnum, err);
152 		ubifs_ro_mode(c, err);
153 		dump_stack();
154 	}
155 	return err;
156 }
157 
ubifs_leb_unmap(struct ubifs_info * c,int lnum)158 int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
159 {
160 	int err;
161 
162 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
163 	if (c->ro_error)
164 		return -EROFS;
165 	if (!dbg_is_tst_rcvry(c))
166 		err = ubi_leb_unmap(c->ubi, lnum);
167 	else
168 		err = dbg_leb_unmap(c, lnum);
169 	if (err) {
170 		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
171 		ubifs_ro_mode(c, err);
172 		dump_stack();
173 	}
174 	return err;
175 }
176 
ubifs_leb_map(struct ubifs_info * c,int lnum)177 int ubifs_leb_map(struct ubifs_info *c, int lnum)
178 {
179 	int err;
180 
181 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
182 	if (c->ro_error)
183 		return -EROFS;
184 	if (!dbg_is_tst_rcvry(c))
185 		err = ubi_leb_map(c->ubi, lnum);
186 	else
187 		err = dbg_leb_map(c, lnum);
188 	if (err) {
189 		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
190 		ubifs_ro_mode(c, err);
191 		dump_stack();
192 	}
193 	return err;
194 }
195 
ubifs_is_mapped(const struct ubifs_info * c,int lnum)196 int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
197 {
198 	int err;
199 
200 	err = ubi_is_mapped(c->ubi, lnum);
201 	if (err < 0) {
202 		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
203 			  lnum, err);
204 		dump_stack();
205 	}
206 	return err;
207 }
208 
209 /**
210  * ubifs_check_node - check node.
211  * @c: UBIFS file-system description object
212  * @buf: node to check
213  * @lnum: logical eraseblock number
214  * @offs: offset within the logical eraseblock
215  * @quiet: print no messages
216  * @must_chk_crc: indicates whether to always check the CRC
217  *
218  * This function checks node magic number and CRC checksum. This function also
219  * validates node length to prevent UBIFS from becoming crazy when an attacker
220  * feeds it a file-system image with incorrect nodes. For example, too large
221  * node length in the common header could cause UBIFS to read memory outside of
222  * allocated buffer when checking the CRC checksum.
223  *
224  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
225  * true, which is controlled by corresponding UBIFS mount option. However, if
226  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
227  * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
228  * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
229  * is checked. This is because during mounting or re-mounting from R/O mode to
230  * R/W mode we may read journal nodes (when replying the journal or doing the
231  * recovery) and the journal nodes may potentially be corrupted, so checking is
232  * required.
233  *
234  * This function returns zero in case of success and %-EUCLEAN in case of bad
235  * CRC or magic.
236  */
ubifs_check_node(const struct ubifs_info * c,const void * buf,int lnum,int offs,int quiet,int must_chk_crc)237 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
238 		     int offs, int quiet, int must_chk_crc)
239 {
240 	int err = -EINVAL, type, node_len, dump_node = 1;
241 	uint32_t crc, node_crc, magic;
242 	const struct ubifs_ch *ch = buf;
243 
244 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
245 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
246 
247 	magic = le32_to_cpu(ch->magic);
248 	if (magic != UBIFS_NODE_MAGIC) {
249 		if (!quiet)
250 			ubifs_err(c, "bad magic %#08x, expected %#08x",
251 				  magic, UBIFS_NODE_MAGIC);
252 		err = -EUCLEAN;
253 		goto out;
254 	}
255 
256 	type = ch->node_type;
257 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
258 		if (!quiet)
259 			ubifs_err(c, "bad node type %d", type);
260 		goto out;
261 	}
262 
263 	node_len = le32_to_cpu(ch->len);
264 	if (node_len + offs > c->leb_size)
265 		goto out_len;
266 
267 	if (c->ranges[type].max_len == 0) {
268 		if (node_len != c->ranges[type].len)
269 			goto out_len;
270 	} else if (node_len < c->ranges[type].min_len ||
271 		   node_len > c->ranges[type].max_len)
272 		goto out_len;
273 
274 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
275 	    !c->remounting_rw && c->no_chk_data_crc)
276 		return 0;
277 
278 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
279 	node_crc = le32_to_cpu(ch->crc);
280 	if (crc != node_crc) {
281 		if (!quiet)
282 			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
283 				  crc, node_crc);
284 		err = -EUCLEAN;
285 		goto out;
286 	}
287 
288 	return 0;
289 
290 out_len:
291 	if (!quiet)
292 		ubifs_err(c, "bad node length %d", node_len);
293 	if (type == UBIFS_DATA_NODE && node_len > UBIFS_DATA_NODE_SZ)
294 		dump_node = 0;
295 out:
296 	if (!quiet) {
297 		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
298 		if (dump_node) {
299 			ubifs_dump_node(c, buf);
300 		} else {
301 			int safe_len = min3(node_len, c->leb_size - offs,
302 				(int)UBIFS_MAX_DATA_NODE_SZ);
303 			pr_err("\tprevent out-of-bounds memory access\n");
304 			pr_err("\ttruncated data node length      %d\n", safe_len);
305 			pr_err("\tcorrupted data node:\n");
306 			print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
307 					buf, safe_len, 0);
308 		}
309 		dump_stack();
310 	}
311 	return err;
312 }
313 
314 /**
315  * ubifs_pad - pad flash space.
316  * @c: UBIFS file-system description object
317  * @buf: buffer to put padding to
318  * @pad: how many bytes to pad
319  *
320  * The flash media obliges us to write only in chunks of %c->min_io_size and
321  * when we have to write less data we add padding node to the write-buffer and
322  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
323  * media is being scanned. If the amount of wasted space is not enough to fit a
324  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
325  * pattern (%UBIFS_PADDING_BYTE).
326  *
327  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
328  * used.
329  */
ubifs_pad(const struct ubifs_info * c,void * buf,int pad)330 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
331 {
332 	uint32_t crc;
333 
334 	ubifs_assert(c, pad >= 0);
335 
336 	if (pad >= UBIFS_PAD_NODE_SZ) {
337 		struct ubifs_ch *ch = buf;
338 		struct ubifs_pad_node *pad_node = buf;
339 
340 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
341 		ch->node_type = UBIFS_PAD_NODE;
342 		ch->group_type = UBIFS_NO_NODE_GROUP;
343 		ch->padding[0] = ch->padding[1] = 0;
344 		ch->sqnum = 0;
345 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
346 		pad -= UBIFS_PAD_NODE_SZ;
347 		pad_node->pad_len = cpu_to_le32(pad);
348 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
349 		ch->crc = cpu_to_le32(crc);
350 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
351 	} else if (pad > 0)
352 		/* Too little space, padding node won't fit */
353 		memset(buf, UBIFS_PADDING_BYTE, pad);
354 }
355 
356 /**
357  * next_sqnum - get next sequence number.
358  * @c: UBIFS file-system description object
359  */
next_sqnum(struct ubifs_info * c)360 static unsigned long long next_sqnum(struct ubifs_info *c)
361 {
362 	unsigned long long sqnum;
363 
364 	spin_lock(&c->cnt_lock);
365 	sqnum = ++c->max_sqnum;
366 	spin_unlock(&c->cnt_lock);
367 
368 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
369 		if (sqnum >= SQNUM_WATERMARK) {
370 			ubifs_err(c, "sequence number overflow %llu, end of life",
371 				  sqnum);
372 			ubifs_ro_mode(c, -EINVAL);
373 		}
374 		ubifs_warn(c, "running out of sequence numbers, end of life soon");
375 	}
376 
377 	return sqnum;
378 }
379 
380 /**
381  * ubifs_prepare_node - prepare node to be written to flash.
382  * @c: UBIFS file-system description object
383  * @node: the node to pad
384  * @len: node length
385  * @pad: if the buffer has to be padded
386  *
387  * This function prepares node at @node to be written to the media - it
388  * calculates node CRC, fills the common header, and adds proper padding up to
389  * the next minimum I/O unit if @pad is not zero.
390  */
ubifs_prepare_node(struct ubifs_info * c,void * node,int len,int pad)391 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
392 {
393 	uint32_t crc;
394 	struct ubifs_ch *ch = node;
395 	unsigned long long sqnum = next_sqnum(c);
396 
397 	ubifs_assert(c, len >= UBIFS_CH_SZ);
398 
399 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
400 	ch->len = cpu_to_le32(len);
401 	ch->group_type = UBIFS_NO_NODE_GROUP;
402 	ch->sqnum = cpu_to_le64(sqnum);
403 	ch->padding[0] = ch->padding[1] = 0;
404 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
405 	ch->crc = cpu_to_le32(crc);
406 
407 	if (pad) {
408 		len = ALIGN(len, 8);
409 		pad = ALIGN(len, c->min_io_size) - len;
410 		ubifs_pad(c, node + len, pad);
411 	}
412 }
413 
414 /**
415  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
416  * @c: UBIFS file-system description object
417  * @node: the node to pad
418  * @len: node length
419  * @last: indicates the last node of the group
420  *
421  * This function prepares node at @node to be written to the media - it
422  * calculates node CRC and fills the common header.
423  */
ubifs_prep_grp_node(struct ubifs_info * c,void * node,int len,int last)424 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
425 {
426 	uint32_t crc;
427 	struct ubifs_ch *ch = node;
428 	unsigned long long sqnum = next_sqnum(c);
429 
430 	ubifs_assert(c, len >= UBIFS_CH_SZ);
431 
432 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
433 	ch->len = cpu_to_le32(len);
434 	if (last)
435 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
436 	else
437 		ch->group_type = UBIFS_IN_NODE_GROUP;
438 	ch->sqnum = cpu_to_le64(sqnum);
439 	ch->padding[0] = ch->padding[1] = 0;
440 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
441 	ch->crc = cpu_to_le32(crc);
442 }
443 
444 /**
445  * wbuf_timer_callback - write-buffer timer callback function.
446  * @timer: timer data (write-buffer descriptor)
447  *
448  * This function is called when the write-buffer timer expires.
449  */
wbuf_timer_callback_nolock(struct hrtimer * timer)450 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
451 {
452 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
453 
454 	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
455 	wbuf->need_sync = 1;
456 	wbuf->c->need_wbuf_sync = 1;
457 	ubifs_wake_up_bgt(wbuf->c);
458 	return HRTIMER_NORESTART;
459 }
460 
461 /**
462  * new_wbuf_timer - start new write-buffer timer.
463  * @c: UBIFS file-system description object
464  * @wbuf: write-buffer descriptor
465  */
new_wbuf_timer_nolock(struct ubifs_info * c,struct ubifs_wbuf * wbuf)466 static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
467 {
468 	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
469 	unsigned long long delta = dirty_writeback_interval;
470 
471 	/* centi to milli, milli to nano, then 10% */
472 	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
473 
474 	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
475 	ubifs_assert(c, delta <= ULONG_MAX);
476 
477 	if (wbuf->no_timer)
478 		return;
479 	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
480 	       dbg_jhead(wbuf->jhead),
481 	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
482 	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
483 	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
484 			       HRTIMER_MODE_REL);
485 }
486 
487 /**
488  * cancel_wbuf_timer - cancel write-buffer timer.
489  * @wbuf: write-buffer descriptor
490  */
cancel_wbuf_timer_nolock(struct ubifs_wbuf * wbuf)491 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
492 {
493 	if (wbuf->no_timer)
494 		return;
495 	wbuf->need_sync = 0;
496 	hrtimer_cancel(&wbuf->timer);
497 }
498 
499 /**
500  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
501  * @wbuf: write-buffer to synchronize
502  *
503  * This function synchronizes write-buffer @buf and returns zero in case of
504  * success or a negative error code in case of failure.
505  *
506  * Note, although write-buffers are of @c->max_write_size, this function does
507  * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
508  * if the write-buffer is only partially filled with data, only the used part
509  * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
510  * This way we waste less space.
511  */
ubifs_wbuf_sync_nolock(struct ubifs_wbuf * wbuf)512 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
513 {
514 	struct ubifs_info *c = wbuf->c;
515 	int err, dirt, sync_len;
516 
517 	cancel_wbuf_timer_nolock(wbuf);
518 	if (!wbuf->used || wbuf->lnum == -1)
519 		/* Write-buffer is empty or not seeked */
520 		return 0;
521 
522 	dbg_io("LEB %d:%d, %d bytes, jhead %s",
523 	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
524 	ubifs_assert(c, !(wbuf->avail & 7));
525 	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
526 	ubifs_assert(c, wbuf->size >= c->min_io_size);
527 	ubifs_assert(c, wbuf->size <= c->max_write_size);
528 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
529 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
530 	if (c->leb_size - wbuf->offs >= c->max_write_size)
531 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
532 
533 	if (c->ro_error)
534 		return -EROFS;
535 
536 	/*
537 	 * Do not write whole write buffer but write only the minimum necessary
538 	 * amount of min. I/O units.
539 	 */
540 	sync_len = ALIGN(wbuf->used, c->min_io_size);
541 	dirt = sync_len - wbuf->used;
542 	if (dirt)
543 		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
544 	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
545 	if (err)
546 		return err;
547 
548 	spin_lock(&wbuf->lock);
549 	wbuf->offs += sync_len;
550 	/*
551 	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
552 	 * But our goal is to optimize writes and make sure we write in
553 	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
554 	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
555 	 * sure that @wbuf->offs + @wbuf->size is aligned to
556 	 * @c->max_write_size. This way we make sure that after next
557 	 * write-buffer flush we are again at the optimal offset (aligned to
558 	 * @c->max_write_size).
559 	 */
560 	if (c->leb_size - wbuf->offs < c->max_write_size)
561 		wbuf->size = c->leb_size - wbuf->offs;
562 	else if (wbuf->offs & (c->max_write_size - 1))
563 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
564 	else
565 		wbuf->size = c->max_write_size;
566 	wbuf->avail = wbuf->size;
567 	wbuf->used = 0;
568 	wbuf->next_ino = 0;
569 	spin_unlock(&wbuf->lock);
570 
571 	if (wbuf->sync_callback)
572 		err = wbuf->sync_callback(c, wbuf->lnum,
573 					  c->leb_size - wbuf->offs, dirt);
574 	return err;
575 }
576 
577 /**
578  * ubifs_wbuf_seek_nolock - seek write-buffer.
579  * @wbuf: write-buffer
580  * @lnum: logical eraseblock number to seek to
581  * @offs: logical eraseblock offset to seek to
582  *
583  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
584  * The write-buffer has to be empty. Returns zero in case of success and a
585  * negative error code in case of failure.
586  */
ubifs_wbuf_seek_nolock(struct ubifs_wbuf * wbuf,int lnum,int offs)587 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
588 {
589 	const struct ubifs_info *c = wbuf->c;
590 
591 	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
592 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
593 	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
594 	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
595 	ubifs_assert(c, lnum != wbuf->lnum);
596 	ubifs_assert(c, wbuf->used == 0);
597 
598 	spin_lock(&wbuf->lock);
599 	wbuf->lnum = lnum;
600 	wbuf->offs = offs;
601 	if (c->leb_size - wbuf->offs < c->max_write_size)
602 		wbuf->size = c->leb_size - wbuf->offs;
603 	else if (wbuf->offs & (c->max_write_size - 1))
604 		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
605 	else
606 		wbuf->size = c->max_write_size;
607 	wbuf->avail = wbuf->size;
608 	wbuf->used = 0;
609 	spin_unlock(&wbuf->lock);
610 
611 	return 0;
612 }
613 
614 /**
615  * ubifs_bg_wbufs_sync - synchronize write-buffers.
616  * @c: UBIFS file-system description object
617  *
618  * This function is called by background thread to synchronize write-buffers.
619  * Returns zero in case of success and a negative error code in case of
620  * failure.
621  */
ubifs_bg_wbufs_sync(struct ubifs_info * c)622 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
623 {
624 	int err, i;
625 
626 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
627 	if (!c->need_wbuf_sync)
628 		return 0;
629 	c->need_wbuf_sync = 0;
630 
631 	if (c->ro_error) {
632 		err = -EROFS;
633 		goto out_timers;
634 	}
635 
636 	dbg_io("synchronize");
637 	for (i = 0; i < c->jhead_cnt; i++) {
638 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
639 
640 		cond_resched();
641 
642 		/*
643 		 * If the mutex is locked then wbuf is being changed, so
644 		 * synchronization is not necessary.
645 		 */
646 		if (mutex_is_locked(&wbuf->io_mutex))
647 			continue;
648 
649 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
650 		if (!wbuf->need_sync) {
651 			mutex_unlock(&wbuf->io_mutex);
652 			continue;
653 		}
654 
655 		err = ubifs_wbuf_sync_nolock(wbuf);
656 		mutex_unlock(&wbuf->io_mutex);
657 		if (err) {
658 			ubifs_err(c, "cannot sync write-buffer, error %d", err);
659 			ubifs_ro_mode(c, err);
660 			goto out_timers;
661 		}
662 	}
663 
664 	return 0;
665 
666 out_timers:
667 	/* Cancel all timers to prevent repeated errors */
668 	for (i = 0; i < c->jhead_cnt; i++) {
669 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
670 
671 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
672 		cancel_wbuf_timer_nolock(wbuf);
673 		mutex_unlock(&wbuf->io_mutex);
674 	}
675 	return err;
676 }
677 
678 /**
679  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
680  * @wbuf: write-buffer
681  * @buf: node to write
682  * @len: node length
683  *
684  * This function writes data to flash via write-buffer @wbuf. This means that
685  * the last piece of the node won't reach the flash media immediately if it
686  * does not take whole max. write unit (@c->max_write_size). Instead, the node
687  * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
688  * because more data are appended to the write-buffer).
689  *
690  * This function returns zero in case of success and a negative error code in
691  * case of failure. If the node cannot be written because there is no more
692  * space in this logical eraseblock, %-ENOSPC is returned.
693  */
ubifs_wbuf_write_nolock(struct ubifs_wbuf * wbuf,void * buf,int len)694 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
695 {
696 	struct ubifs_info *c = wbuf->c;
697 	int err, written, n, aligned_len = ALIGN(len, 8);
698 
699 	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
700 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
701 	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
702 	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
703 	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
704 	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
705 	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
706 	ubifs_assert(c, wbuf->size >= c->min_io_size);
707 	ubifs_assert(c, wbuf->size <= c->max_write_size);
708 	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
709 	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
710 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
711 	ubifs_assert(c, !c->space_fixup);
712 	if (c->leb_size - wbuf->offs >= c->max_write_size)
713 		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
714 
715 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
716 		err = -ENOSPC;
717 		goto out;
718 	}
719 
720 	cancel_wbuf_timer_nolock(wbuf);
721 
722 	if (c->ro_error)
723 		return -EROFS;
724 
725 	if (aligned_len <= wbuf->avail) {
726 		/*
727 		 * The node is not very large and fits entirely within
728 		 * write-buffer.
729 		 */
730 		memcpy(wbuf->buf + wbuf->used, buf, len);
731 		if (aligned_len > len) {
732 			ubifs_assert(c, aligned_len - len < 8);
733 			ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
734 		}
735 
736 		if (aligned_len == wbuf->avail) {
737 			dbg_io("flush jhead %s wbuf to LEB %d:%d",
738 			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
739 			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
740 					      wbuf->offs, wbuf->size);
741 			if (err)
742 				goto out;
743 
744 			spin_lock(&wbuf->lock);
745 			wbuf->offs += wbuf->size;
746 			if (c->leb_size - wbuf->offs >= c->max_write_size)
747 				wbuf->size = c->max_write_size;
748 			else
749 				wbuf->size = c->leb_size - wbuf->offs;
750 			wbuf->avail = wbuf->size;
751 			wbuf->used = 0;
752 			wbuf->next_ino = 0;
753 			spin_unlock(&wbuf->lock);
754 		} else {
755 			spin_lock(&wbuf->lock);
756 			wbuf->avail -= aligned_len;
757 			wbuf->used += aligned_len;
758 			spin_unlock(&wbuf->lock);
759 		}
760 
761 		goto exit;
762 	}
763 
764 	written = 0;
765 
766 	if (wbuf->used) {
767 		/*
768 		 * The node is large enough and does not fit entirely within
769 		 * current available space. We have to fill and flush
770 		 * write-buffer and switch to the next max. write unit.
771 		 */
772 		dbg_io("flush jhead %s wbuf to LEB %d:%d",
773 		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
774 		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
775 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
776 				      wbuf->size);
777 		if (err)
778 			goto out;
779 
780 		wbuf->offs += wbuf->size;
781 		len -= wbuf->avail;
782 		aligned_len -= wbuf->avail;
783 		written += wbuf->avail;
784 	} else if (wbuf->offs & (c->max_write_size - 1)) {
785 		/*
786 		 * The write-buffer offset is not aligned to
787 		 * @c->max_write_size and @wbuf->size is less than
788 		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
789 		 * following writes are done in optimal @c->max_write_size
790 		 * chunks.
791 		 */
792 		dbg_io("write %d bytes to LEB %d:%d",
793 		       wbuf->size, wbuf->lnum, wbuf->offs);
794 		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
795 				      wbuf->size);
796 		if (err)
797 			goto out;
798 
799 		wbuf->offs += wbuf->size;
800 		len -= wbuf->size;
801 		aligned_len -= wbuf->size;
802 		written += wbuf->size;
803 	}
804 
805 	/*
806 	 * The remaining data may take more whole max. write units, so write the
807 	 * remains multiple to max. write unit size directly to the flash media.
808 	 * We align node length to 8-byte boundary because we anyway flash wbuf
809 	 * if the remaining space is less than 8 bytes.
810 	 */
811 	n = aligned_len >> c->max_write_shift;
812 	if (n) {
813 		int m = n - 1;
814 
815 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
816 		       wbuf->offs);
817 
818 		if (m) {
819 			/* '(n-1)<<c->max_write_shift < len' is always true. */
820 			m <<= c->max_write_shift;
821 			err = ubifs_leb_write(c, wbuf->lnum, buf + written,
822 					      wbuf->offs, m);
823 			if (err)
824 				goto out;
825 			wbuf->offs += m;
826 			aligned_len -= m;
827 			len -= m;
828 			written += m;
829 		}
830 
831 		/*
832 		 * The non-written len of buf may be less than 'n' because
833 		 * parameter 'len' is not 8 bytes aligned, so here we read
834 		 * min(len, n) bytes from buf.
835 		 */
836 		n = 1 << c->max_write_shift;
837 		memcpy(wbuf->buf, buf + written, min(len, n));
838 		if (n > len) {
839 			ubifs_assert(c, n - len < 8);
840 			ubifs_pad(c, wbuf->buf + len, n - len);
841 		}
842 
843 		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
844 		if (err)
845 			goto out;
846 		wbuf->offs += n;
847 		aligned_len -= n;
848 		len -= min(len, n);
849 		written += n;
850 	}
851 
852 	spin_lock(&wbuf->lock);
853 	if (aligned_len) {
854 		/*
855 		 * And now we have what's left and what does not take whole
856 		 * max. write unit, so write it to the write-buffer and we are
857 		 * done.
858 		 */
859 		memcpy(wbuf->buf, buf + written, len);
860 		if (aligned_len > len) {
861 			ubifs_assert(c, aligned_len - len < 8);
862 			ubifs_pad(c, wbuf->buf + len, aligned_len - len);
863 		}
864 	}
865 
866 	if (c->leb_size - wbuf->offs >= c->max_write_size)
867 		wbuf->size = c->max_write_size;
868 	else
869 		wbuf->size = c->leb_size - wbuf->offs;
870 	wbuf->avail = wbuf->size - aligned_len;
871 	wbuf->used = aligned_len;
872 	wbuf->next_ino = 0;
873 	spin_unlock(&wbuf->lock);
874 
875 exit:
876 	if (wbuf->sync_callback) {
877 		int free = c->leb_size - wbuf->offs - wbuf->used;
878 
879 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
880 		if (err)
881 			goto out;
882 	}
883 
884 	if (wbuf->used)
885 		new_wbuf_timer_nolock(c, wbuf);
886 
887 	return 0;
888 
889 out:
890 	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
891 		  len, wbuf->lnum, wbuf->offs, err);
892 	ubifs_dump_node(c, buf);
893 	dump_stack();
894 	ubifs_dump_leb(c, wbuf->lnum);
895 	return err;
896 }
897 
898 /**
899  * ubifs_write_node - write node to the media.
900  * @c: UBIFS file-system description object
901  * @buf: the node to write
902  * @len: node length
903  * @lnum: logical eraseblock number
904  * @offs: offset within the logical eraseblock
905  *
906  * This function automatically fills node magic number, assigns sequence
907  * number, and calculates node CRC checksum. The length of the @buf buffer has
908  * to be aligned to the minimal I/O unit size. This function automatically
909  * appends padding node and padding bytes if needed. Returns zero in case of
910  * success and a negative error code in case of failure.
911  */
ubifs_write_node(struct ubifs_info * c,void * buf,int len,int lnum,int offs)912 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
913 		     int offs)
914 {
915 	int err, buf_len = ALIGN(len, c->min_io_size);
916 
917 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
918 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
919 	       buf_len);
920 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
921 	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
922 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
923 	ubifs_assert(c, !c->space_fixup);
924 
925 	if (c->ro_error)
926 		return -EROFS;
927 
928 	ubifs_prepare_node(c, buf, len, 1);
929 	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
930 	if (err)
931 		ubifs_dump_node(c, buf);
932 
933 	return err;
934 }
935 
936 /**
937  * ubifs_read_node_wbuf - read node from the media or write-buffer.
938  * @wbuf: wbuf to check for un-written data
939  * @buf: buffer to read to
940  * @type: node type
941  * @len: node length
942  * @lnum: logical eraseblock number
943  * @offs: offset within the logical eraseblock
944  *
945  * This function reads a node of known type and length, checks it and stores
946  * in @buf. If the node partially or fully sits in the write-buffer, this
947  * function takes data from the buffer, otherwise it reads the flash media.
948  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
949  * error code in case of failure.
950  */
ubifs_read_node_wbuf(struct ubifs_wbuf * wbuf,void * buf,int type,int len,int lnum,int offs)951 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
952 			 int lnum, int offs)
953 {
954 	const struct ubifs_info *c = wbuf->c;
955 	int err, rlen, overlap;
956 	struct ubifs_ch *ch = buf;
957 
958 	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
959 	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
960 	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
961 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
962 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
963 
964 	spin_lock(&wbuf->lock);
965 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
966 	if (!overlap) {
967 		/* We may safely unlock the write-buffer and read the data */
968 		spin_unlock(&wbuf->lock);
969 		return ubifs_read_node(c, buf, type, len, lnum, offs);
970 	}
971 
972 	/* Don't read under wbuf */
973 	rlen = wbuf->offs - offs;
974 	if (rlen < 0)
975 		rlen = 0;
976 
977 	/* Copy the rest from the write-buffer */
978 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
979 	spin_unlock(&wbuf->lock);
980 
981 	if (rlen > 0) {
982 		/* Read everything that goes before write-buffer */
983 		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
984 		if (err && err != -EBADMSG)
985 			return err;
986 	}
987 
988 	if (type != ch->node_type) {
989 		ubifs_err(c, "bad node type (%d but expected %d)",
990 			  ch->node_type, type);
991 		goto out;
992 	}
993 
994 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
995 	if (err) {
996 		ubifs_err(c, "expected node type %d", type);
997 		return err;
998 	}
999 
1000 	rlen = le32_to_cpu(ch->len);
1001 	if (rlen != len) {
1002 		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1003 		goto out;
1004 	}
1005 
1006 	return 0;
1007 
1008 out:
1009 	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1010 	ubifs_dump_node(c, buf);
1011 	dump_stack();
1012 	return -EINVAL;
1013 }
1014 
1015 /**
1016  * ubifs_read_node - read node.
1017  * @c: UBIFS file-system description object
1018  * @buf: buffer to read to
1019  * @type: node type
1020  * @len: node length (not aligned)
1021  * @lnum: logical eraseblock number
1022  * @offs: offset within the logical eraseblock
1023  *
1024  * This function reads a node of known type and and length, checks it and
1025  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1026  * and a negative error code in case of failure.
1027  */
ubifs_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)1028 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1029 		    int lnum, int offs)
1030 {
1031 	int err, l;
1032 	struct ubifs_ch *ch = buf;
1033 
1034 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1035 	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1036 	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1037 	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1038 	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1039 
1040 	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1041 	if (err && err != -EBADMSG)
1042 		return err;
1043 
1044 	if (type != ch->node_type) {
1045 		ubifs_errc(c, "bad node type (%d but expected %d)",
1046 			   ch->node_type, type);
1047 		goto out;
1048 	}
1049 
1050 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
1051 	if (err) {
1052 		ubifs_errc(c, "expected node type %d", type);
1053 		return err;
1054 	}
1055 
1056 	l = le32_to_cpu(ch->len);
1057 	if (l != len) {
1058 		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1059 		goto out;
1060 	}
1061 
1062 	return 0;
1063 
1064 out:
1065 	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1066 		   offs, ubi_is_mapped(c->ubi, lnum));
1067 	if (!c->probing) {
1068 		ubifs_dump_node(c, buf);
1069 		dump_stack();
1070 	}
1071 	return -EINVAL;
1072 }
1073 
1074 /**
1075  * ubifs_wbuf_init - initialize write-buffer.
1076  * @c: UBIFS file-system description object
1077  * @wbuf: write-buffer to initialize
1078  *
1079  * This function initializes write-buffer. Returns zero in case of success
1080  * %-ENOMEM in case of failure.
1081  */
ubifs_wbuf_init(struct ubifs_info * c,struct ubifs_wbuf * wbuf)1082 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1083 {
1084 	size_t size;
1085 
1086 	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1087 	if (!wbuf->buf)
1088 		return -ENOMEM;
1089 
1090 	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1091 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1092 	if (!wbuf->inodes) {
1093 		kfree(wbuf->buf);
1094 		wbuf->buf = NULL;
1095 		return -ENOMEM;
1096 	}
1097 
1098 	wbuf->used = 0;
1099 	wbuf->lnum = wbuf->offs = -1;
1100 	/*
1101 	 * If the LEB starts at the max. write size aligned address, then
1102 	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1103 	 * set it to something smaller so that it ends at the closest max.
1104 	 * write size boundary.
1105 	 */
1106 	size = c->max_write_size - (c->leb_start % c->max_write_size);
1107 	wbuf->avail = wbuf->size = size;
1108 	wbuf->sync_callback = NULL;
1109 	mutex_init(&wbuf->io_mutex);
1110 	spin_lock_init(&wbuf->lock);
1111 	wbuf->c = c;
1112 	wbuf->next_ino = 0;
1113 
1114 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1115 	wbuf->timer.function = wbuf_timer_callback_nolock;
1116 	return 0;
1117 }
1118 
1119 /**
1120  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1121  * @wbuf: the write-buffer where to add
1122  * @inum: the inode number
1123  *
1124  * This function adds an inode number to the inode array of the write-buffer.
1125  */
ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf * wbuf,ino_t inum)1126 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1127 {
1128 	if (!wbuf->buf)
1129 		/* NOR flash or something similar */
1130 		return;
1131 
1132 	spin_lock(&wbuf->lock);
1133 	if (wbuf->used)
1134 		wbuf->inodes[wbuf->next_ino++] = inum;
1135 	spin_unlock(&wbuf->lock);
1136 }
1137 
1138 /**
1139  * wbuf_has_ino - returns if the wbuf contains data from the inode.
1140  * @wbuf: the write-buffer
1141  * @inum: the inode number
1142  *
1143  * This function returns with %1 if the write-buffer contains some data from the
1144  * given inode otherwise it returns with %0.
1145  */
wbuf_has_ino(struct ubifs_wbuf * wbuf,ino_t inum)1146 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1147 {
1148 	int i, ret = 0;
1149 
1150 	spin_lock(&wbuf->lock);
1151 	for (i = 0; i < wbuf->next_ino; i++)
1152 		if (inum == wbuf->inodes[i]) {
1153 			ret = 1;
1154 			break;
1155 		}
1156 	spin_unlock(&wbuf->lock);
1157 
1158 	return ret;
1159 }
1160 
1161 /**
1162  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1163  * @c: UBIFS file-system description object
1164  * @inode: inode to synchronize
1165  *
1166  * This function synchronizes write-buffers which contain nodes belonging to
1167  * @inode. Returns zero in case of success and a negative error code in case of
1168  * failure.
1169  */
ubifs_sync_wbufs_by_inode(struct ubifs_info * c,struct inode * inode)1170 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1171 {
1172 	int i, err = 0;
1173 
1174 	for (i = 0; i < c->jhead_cnt; i++) {
1175 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1176 
1177 		if (i == GCHD)
1178 			/*
1179 			 * GC head is special, do not look at it. Even if the
1180 			 * head contains something related to this inode, it is
1181 			 * a _copy_ of corresponding on-flash node which sits
1182 			 * somewhere else.
1183 			 */
1184 			continue;
1185 
1186 		if (!wbuf_has_ino(wbuf, inode->i_ino))
1187 			continue;
1188 
1189 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1190 		if (wbuf_has_ino(wbuf, inode->i_ino))
1191 			err = ubifs_wbuf_sync_nolock(wbuf);
1192 		mutex_unlock(&wbuf->io_mutex);
1193 
1194 		if (err) {
1195 			ubifs_ro_mode(c, err);
1196 			return err;
1197 		}
1198 	}
1199 	return 0;
1200 }
1201