1 /*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23 /*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33 #include <linux/crc32.h>
34 #include <linux/slab.h>
35 #include "ubifs.h"
36
37 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 int len, int lnum, int offs);
39 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
41
42 /*
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49 *
50 * These constants were introduce to improve readability.
51 */
52 enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
57 };
58
do_insert_old_idx(struct ubifs_info * c,struct ubifs_old_idx * old_idx)59 static void do_insert_old_idx(struct ubifs_info *c,
60 struct ubifs_old_idx *old_idx)
61 {
62 struct ubifs_old_idx *o;
63 struct rb_node **p, *parent = NULL;
64
65 p = &c->old_idx.rb_node;
66 while (*p) {
67 parent = *p;
68 o = rb_entry(parent, struct ubifs_old_idx, rb);
69 if (old_idx->lnum < o->lnum)
70 p = &(*p)->rb_left;
71 else if (old_idx->lnum > o->lnum)
72 p = &(*p)->rb_right;
73 else if (old_idx->offs < o->offs)
74 p = &(*p)->rb_left;
75 else if (old_idx->offs > o->offs)
76 p = &(*p)->rb_right;
77 else {
78 ubifs_err(c, "old idx added twice!");
79 kfree(old_idx);
80 }
81 }
82 rb_link_node(&old_idx->rb, parent, p);
83 rb_insert_color(&old_idx->rb, &c->old_idx);
84 }
85
86 /**
87 * insert_old_idx - record an index node obsoleted since the last commit start.
88 * @c: UBIFS file-system description object
89 * @lnum: LEB number of obsoleted index node
90 * @offs: offset of obsoleted index node
91 *
92 * Returns %0 on success, and a negative error code on failure.
93 *
94 * For recovery, there must always be a complete intact version of the index on
95 * flash at all times. That is called the "old index". It is the index as at the
96 * time of the last successful commit. Many of the index nodes in the old index
97 * may be dirty, but they must not be erased until the next successful commit
98 * (at which point that index becomes the old index).
99 *
100 * That means that the garbage collection and the in-the-gaps method of
101 * committing must be able to determine if an index node is in the old index.
102 * Most of the old index nodes can be found by looking up the TNC using the
103 * 'lookup_znode()' function. However, some of the old index nodes may have
104 * been deleted from the current index or may have been changed so much that
105 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
106 * That is what this function does. The RB-tree is ordered by LEB number and
107 * offset because they uniquely identify the old index node.
108 */
insert_old_idx(struct ubifs_info * c,int lnum,int offs)109 static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
110 {
111 struct ubifs_old_idx *old_idx;
112
113 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
114 if (unlikely(!old_idx))
115 return -ENOMEM;
116 old_idx->lnum = lnum;
117 old_idx->offs = offs;
118 do_insert_old_idx(c, old_idx);
119
120 return 0;
121 }
122
123 /**
124 * insert_old_idx_znode - record a znode obsoleted since last commit start.
125 * @c: UBIFS file-system description object
126 * @znode: znode of obsoleted index node
127 *
128 * Returns %0 on success, and a negative error code on failure.
129 */
insert_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)130 int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
131 {
132 if (znode->parent) {
133 struct ubifs_zbranch *zbr;
134
135 zbr = &znode->parent->zbranch[znode->iip];
136 if (zbr->len)
137 return insert_old_idx(c, zbr->lnum, zbr->offs);
138 } else
139 if (c->zroot.len)
140 return insert_old_idx(c, c->zroot.lnum,
141 c->zroot.offs);
142 return 0;
143 }
144
145 /**
146 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
147 * @c: UBIFS file-system description object
148 * @znode: znode of obsoleted index node
149 *
150 * Returns %0 on success, and a negative error code on failure.
151 */
ins_clr_old_idx_znode(struct ubifs_info * c,struct ubifs_znode * znode)152 static int ins_clr_old_idx_znode(struct ubifs_info *c,
153 struct ubifs_znode *znode)
154 {
155 int err;
156
157 if (znode->parent) {
158 struct ubifs_zbranch *zbr;
159
160 zbr = &znode->parent->zbranch[znode->iip];
161 if (zbr->len) {
162 err = insert_old_idx(c, zbr->lnum, zbr->offs);
163 if (err)
164 return err;
165 zbr->lnum = 0;
166 zbr->offs = 0;
167 zbr->len = 0;
168 }
169 } else
170 if (c->zroot.len) {
171 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
172 if (err)
173 return err;
174 c->zroot.lnum = 0;
175 c->zroot.offs = 0;
176 c->zroot.len = 0;
177 }
178 return 0;
179 }
180
181 /**
182 * destroy_old_idx - destroy the old_idx RB-tree.
183 * @c: UBIFS file-system description object
184 *
185 * During start commit, the old_idx RB-tree is used to avoid overwriting index
186 * nodes that were in the index last commit but have since been deleted. This
187 * is necessary for recovery i.e. the old index must be kept intact until the
188 * new index is successfully written. The old-idx RB-tree is used for the
189 * in-the-gaps method of writing index nodes and is destroyed every commit.
190 */
destroy_old_idx(struct ubifs_info * c)191 void destroy_old_idx(struct ubifs_info *c)
192 {
193 struct ubifs_old_idx *old_idx, *n;
194
195 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
196 kfree(old_idx);
197
198 c->old_idx = RB_ROOT;
199 }
200
201 /**
202 * copy_znode - copy a dirty znode.
203 * @c: UBIFS file-system description object
204 * @znode: znode to copy
205 *
206 * A dirty znode being committed may not be changed, so it is copied.
207 */
copy_znode(struct ubifs_info * c,struct ubifs_znode * znode)208 static struct ubifs_znode *copy_znode(struct ubifs_info *c,
209 struct ubifs_znode *znode)
210 {
211 struct ubifs_znode *zn;
212
213 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
214 if (unlikely(!zn))
215 return ERR_PTR(-ENOMEM);
216
217 zn->cnext = NULL;
218 __set_bit(DIRTY_ZNODE, &zn->flags);
219 __clear_bit(COW_ZNODE, &zn->flags);
220
221 return zn;
222 }
223
224 /**
225 * add_idx_dirt - add dirt due to a dirty znode.
226 * @c: UBIFS file-system description object
227 * @lnum: LEB number of index node
228 * @dirt: size of index node
229 *
230 * This function updates lprops dirty space and the new size of the index.
231 */
add_idx_dirt(struct ubifs_info * c,int lnum,int dirt)232 static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
233 {
234 c->calc_idx_sz -= ALIGN(dirt, 8);
235 return ubifs_add_dirt(c, lnum, dirt);
236 }
237
238 /**
239 * replace_znode - replace old znode with new znode.
240 * @c: UBIFS file-system description object
241 * @new_zn: new znode
242 * @old_zn: old znode
243 * @zbr: the branch of parent znode
244 *
245 * Replace old znode with new znode in TNC.
246 */
replace_znode(struct ubifs_info * c,struct ubifs_znode * new_zn,struct ubifs_znode * old_zn,struct ubifs_zbranch * zbr)247 static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn,
248 struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr)
249 {
250 ubifs_assert(c, !ubifs_zn_obsolete(old_zn));
251 __set_bit(OBSOLETE_ZNODE, &old_zn->flags);
252
253 if (old_zn->level != 0) {
254 int i;
255 const int n = new_zn->child_cnt;
256
257 /* The children now have new parent */
258 for (i = 0; i < n; i++) {
259 struct ubifs_zbranch *child = &new_zn->zbranch[i];
260
261 if (child->znode)
262 child->znode->parent = new_zn;
263 }
264 }
265
266 zbr->znode = new_zn;
267 zbr->lnum = 0;
268 zbr->offs = 0;
269 zbr->len = 0;
270
271 atomic_long_inc(&c->dirty_zn_cnt);
272 }
273
274 /**
275 * dirty_cow_znode - ensure a znode is not being committed.
276 * @c: UBIFS file-system description object
277 * @zbr: branch of znode to check
278 *
279 * Returns dirtied znode on success or negative error code on failure.
280 */
dirty_cow_znode(struct ubifs_info * c,struct ubifs_zbranch * zbr)281 static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
282 struct ubifs_zbranch *zbr)
283 {
284 struct ubifs_znode *znode = zbr->znode;
285 struct ubifs_znode *zn;
286 int err;
287
288 if (!ubifs_zn_cow(znode)) {
289 /* znode is not being committed */
290 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
291 atomic_long_inc(&c->dirty_zn_cnt);
292 atomic_long_dec(&c->clean_zn_cnt);
293 atomic_long_dec(&ubifs_clean_zn_cnt);
294 err = add_idx_dirt(c, zbr->lnum, zbr->len);
295 if (unlikely(err))
296 return ERR_PTR(err);
297 }
298 return znode;
299 }
300
301 zn = copy_znode(c, znode);
302 if (IS_ERR(zn))
303 return zn;
304
305 if (zbr->len) {
306 struct ubifs_old_idx *old_idx;
307
308 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
309 if (unlikely(!old_idx)) {
310 err = -ENOMEM;
311 goto out;
312 }
313 old_idx->lnum = zbr->lnum;
314 old_idx->offs = zbr->offs;
315
316 err = add_idx_dirt(c, zbr->lnum, zbr->len);
317 if (err) {
318 kfree(old_idx);
319 goto out;
320 }
321
322 do_insert_old_idx(c, old_idx);
323 }
324
325 replace_znode(c, zn, znode, zbr);
326
327 return zn;
328
329 out:
330 kfree(zn);
331 return ERR_PTR(err);
332 }
333
334 /**
335 * lnc_add - add a leaf node to the leaf node cache.
336 * @c: UBIFS file-system description object
337 * @zbr: zbranch of leaf node
338 * @node: leaf node
339 *
340 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
341 * purpose of the leaf node cache is to save re-reading the same leaf node over
342 * and over again. Most things are cached by VFS, however the file system must
343 * cache directory entries for readdir and for resolving hash collisions. The
344 * present implementation of the leaf node cache is extremely simple, and
345 * allows for error returns that are not used but that may be needed if a more
346 * complex implementation is created.
347 *
348 * Note, this function does not add the @node object to LNC directly, but
349 * allocates a copy of the object and adds the copy to LNC. The reason for this
350 * is that @node has been allocated outside of the TNC subsystem and will be
351 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
352 * may be changed at any time, e.g. freed by the shrinker.
353 */
lnc_add(struct ubifs_info * c,struct ubifs_zbranch * zbr,const void * node)354 static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
355 const void *node)
356 {
357 int err;
358 void *lnc_node;
359 const struct ubifs_dent_node *dent = node;
360
361 ubifs_assert(c, !zbr->leaf);
362 ubifs_assert(c, zbr->len != 0);
363 ubifs_assert(c, is_hash_key(c, &zbr->key));
364
365 err = ubifs_validate_entry(c, dent);
366 if (err) {
367 dump_stack();
368 ubifs_dump_node(c, dent);
369 return err;
370 }
371
372 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
373 if (!lnc_node)
374 /* We don't have to have the cache, so no error */
375 return 0;
376
377 zbr->leaf = lnc_node;
378 return 0;
379 }
380
381 /**
382 * lnc_add_directly - add a leaf node to the leaf-node-cache.
383 * @c: UBIFS file-system description object
384 * @zbr: zbranch of leaf node
385 * @node: leaf node
386 *
387 * This function is similar to 'lnc_add()', but it does not create a copy of
388 * @node but inserts @node to TNC directly.
389 */
lnc_add_directly(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)390 static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
391 void *node)
392 {
393 int err;
394
395 ubifs_assert(c, !zbr->leaf);
396 ubifs_assert(c, zbr->len != 0);
397
398 err = ubifs_validate_entry(c, node);
399 if (err) {
400 dump_stack();
401 ubifs_dump_node(c, node);
402 return err;
403 }
404
405 zbr->leaf = node;
406 return 0;
407 }
408
409 /**
410 * lnc_free - remove a leaf node from the leaf node cache.
411 * @zbr: zbranch of leaf node
412 * @node: leaf node
413 */
lnc_free(struct ubifs_zbranch * zbr)414 static void lnc_free(struct ubifs_zbranch *zbr)
415 {
416 if (!zbr->leaf)
417 return;
418 kfree(zbr->leaf);
419 zbr->leaf = NULL;
420 }
421
422 /**
423 * tnc_read_hashed_node - read a "hashed" leaf node.
424 * @c: UBIFS file-system description object
425 * @zbr: key and position of the node
426 * @node: node is returned here
427 *
428 * This function reads a "hashed" node defined by @zbr from the leaf node cache
429 * (in it is there) or from the hash media, in which case the node is also
430 * added to LNC. Returns zero in case of success or a negative negative error
431 * code in case of failure.
432 */
tnc_read_hashed_node(struct ubifs_info * c,struct ubifs_zbranch * zbr,void * node)433 static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
434 void *node)
435 {
436 int err;
437
438 ubifs_assert(c, is_hash_key(c, &zbr->key));
439
440 if (zbr->leaf) {
441 /* Read from the leaf node cache */
442 ubifs_assert(c, zbr->len != 0);
443 memcpy(node, zbr->leaf, zbr->len);
444 return 0;
445 }
446
447 if (c->replaying) {
448 err = fallible_read_node(c, &zbr->key, zbr, node);
449 /*
450 * When the node was not found, return -ENOENT, 0 otherwise.
451 * Negative return codes stay as-is.
452 */
453 if (err == 0)
454 err = -ENOENT;
455 else if (err == 1)
456 err = 0;
457 } else {
458 err = ubifs_tnc_read_node(c, zbr, node);
459 }
460 if (err)
461 return err;
462
463 /* Add the node to the leaf node cache */
464 err = lnc_add(c, zbr, node);
465 return err;
466 }
467
468 /**
469 * try_read_node - read a node if it is a node.
470 * @c: UBIFS file-system description object
471 * @buf: buffer to read to
472 * @type: node type
473 * @len: node length (not aligned)
474 * @lnum: LEB number of node to read
475 * @offs: offset of node to read
476 *
477 * This function tries to read a node of known type and length, checks it and
478 * stores it in @buf. This function returns %1 if a node is present and %0 if
479 * a node is not present. A negative error code is returned for I/O errors.
480 * This function performs that same function as ubifs_read_node except that
481 * it does not require that there is actually a node present and instead
482 * the return code indicates if a node was read.
483 *
484 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
485 * is true (it is controlled by corresponding mount option). However, if
486 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
487 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
488 * because during mounting or re-mounting from R/O mode to R/W mode we may read
489 * journal nodes (when replying the journal or doing the recovery) and the
490 * journal nodes may potentially be corrupted, so checking is required.
491 */
try_read_node(const struct ubifs_info * c,void * buf,int type,int len,int lnum,int offs)492 static int try_read_node(const struct ubifs_info *c, void *buf, int type,
493 int len, int lnum, int offs)
494 {
495 int err, node_len;
496 struct ubifs_ch *ch = buf;
497 uint32_t crc, node_crc;
498
499 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
500
501 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
502 if (err) {
503 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
504 type, lnum, offs, err);
505 return err;
506 }
507
508 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
509 return 0;
510
511 if (ch->node_type != type)
512 return 0;
513
514 node_len = le32_to_cpu(ch->len);
515 if (node_len != len)
516 return 0;
517
518 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
519 !c->remounting_rw)
520 return 1;
521
522 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
523 node_crc = le32_to_cpu(ch->crc);
524 if (crc != node_crc)
525 return 0;
526
527 return 1;
528 }
529
530 /**
531 * fallible_read_node - try to read a leaf node.
532 * @c: UBIFS file-system description object
533 * @key: key of node to read
534 * @zbr: position of node
535 * @node: node returned
536 *
537 * This function tries to read a node and returns %1 if the node is read, %0
538 * if the node is not present, and a negative error code in the case of error.
539 */
fallible_read_node(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_zbranch * zbr,void * node)540 static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
541 struct ubifs_zbranch *zbr, void *node)
542 {
543 int ret;
544
545 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
546
547 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
548 zbr->offs);
549 if (ret == 1) {
550 union ubifs_key node_key;
551 struct ubifs_dent_node *dent = node;
552
553 /* All nodes have key in the same place */
554 key_read(c, &dent->key, &node_key);
555 if (keys_cmp(c, key, &node_key) != 0)
556 ret = 0;
557 }
558 if (ret == 0 && c->replaying)
559 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
560 zbr->lnum, zbr->offs, zbr->len);
561 return ret;
562 }
563
564 /**
565 * matches_name - determine if a direntry or xattr entry matches a given name.
566 * @c: UBIFS file-system description object
567 * @zbr: zbranch of dent
568 * @nm: name to match
569 *
570 * This function checks if xentry/direntry referred by zbranch @zbr matches name
571 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
572 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
573 * of failure, a negative error code is returned.
574 */
matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct fscrypt_name * nm)575 static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
576 const struct fscrypt_name *nm)
577 {
578 struct ubifs_dent_node *dent;
579 int nlen, err;
580
581 /* If possible, match against the dent in the leaf node cache */
582 if (!zbr->leaf) {
583 dent = kmalloc(zbr->len, GFP_NOFS);
584 if (!dent)
585 return -ENOMEM;
586
587 err = ubifs_tnc_read_node(c, zbr, dent);
588 if (err)
589 goto out_free;
590
591 /* Add the node to the leaf node cache */
592 err = lnc_add_directly(c, zbr, dent);
593 if (err)
594 goto out_free;
595 } else
596 dent = zbr->leaf;
597
598 nlen = le16_to_cpu(dent->nlen);
599 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
600 if (err == 0) {
601 if (nlen == fname_len(nm))
602 return NAME_MATCHES;
603 else if (nlen < fname_len(nm))
604 return NAME_LESS;
605 else
606 return NAME_GREATER;
607 } else if (err < 0)
608 return NAME_LESS;
609 else
610 return NAME_GREATER;
611
612 out_free:
613 kfree(dent);
614 return err;
615 }
616
617 /**
618 * get_znode - get a TNC znode that may not be loaded yet.
619 * @c: UBIFS file-system description object
620 * @znode: parent znode
621 * @n: znode branch slot number
622 *
623 * This function returns the znode or a negative error code.
624 */
get_znode(struct ubifs_info * c,struct ubifs_znode * znode,int n)625 static struct ubifs_znode *get_znode(struct ubifs_info *c,
626 struct ubifs_znode *znode, int n)
627 {
628 struct ubifs_zbranch *zbr;
629
630 zbr = &znode->zbranch[n];
631 if (zbr->znode)
632 znode = zbr->znode;
633 else
634 znode = ubifs_load_znode(c, zbr, znode, n);
635 return znode;
636 }
637
638 /**
639 * tnc_next - find next TNC entry.
640 * @c: UBIFS file-system description object
641 * @zn: znode is passed and returned here
642 * @n: znode branch slot number is passed and returned here
643 *
644 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
645 * no next entry, or a negative error code otherwise.
646 */
tnc_next(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)647 static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
648 {
649 struct ubifs_znode *znode = *zn;
650 int nn = *n;
651
652 nn += 1;
653 if (nn < znode->child_cnt) {
654 *n = nn;
655 return 0;
656 }
657 while (1) {
658 struct ubifs_znode *zp;
659
660 zp = znode->parent;
661 if (!zp)
662 return -ENOENT;
663 nn = znode->iip + 1;
664 znode = zp;
665 if (nn < znode->child_cnt) {
666 znode = get_znode(c, znode, nn);
667 if (IS_ERR(znode))
668 return PTR_ERR(znode);
669 while (znode->level != 0) {
670 znode = get_znode(c, znode, 0);
671 if (IS_ERR(znode))
672 return PTR_ERR(znode);
673 }
674 nn = 0;
675 break;
676 }
677 }
678 *zn = znode;
679 *n = nn;
680 return 0;
681 }
682
683 /**
684 * tnc_prev - find previous TNC entry.
685 * @c: UBIFS file-system description object
686 * @zn: znode is returned here
687 * @n: znode branch slot number is passed and returned here
688 *
689 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
690 * there is no next entry, or a negative error code otherwise.
691 */
tnc_prev(struct ubifs_info * c,struct ubifs_znode ** zn,int * n)692 static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
693 {
694 struct ubifs_znode *znode = *zn;
695 int nn = *n;
696
697 if (nn > 0) {
698 *n = nn - 1;
699 return 0;
700 }
701 while (1) {
702 struct ubifs_znode *zp;
703
704 zp = znode->parent;
705 if (!zp)
706 return -ENOENT;
707 nn = znode->iip - 1;
708 znode = zp;
709 if (nn >= 0) {
710 znode = get_znode(c, znode, nn);
711 if (IS_ERR(znode))
712 return PTR_ERR(znode);
713 while (znode->level != 0) {
714 nn = znode->child_cnt - 1;
715 znode = get_znode(c, znode, nn);
716 if (IS_ERR(znode))
717 return PTR_ERR(znode);
718 }
719 nn = znode->child_cnt - 1;
720 break;
721 }
722 }
723 *zn = znode;
724 *n = nn;
725 return 0;
726 }
727
728 /**
729 * resolve_collision - resolve a collision.
730 * @c: UBIFS file-system description object
731 * @key: key of a directory or extended attribute entry
732 * @zn: znode is returned here
733 * @n: zbranch number is passed and returned here
734 * @nm: name of the entry
735 *
736 * This function is called for "hashed" keys to make sure that the found key
737 * really corresponds to the looked up node (directory or extended attribute
738 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
739 * %0 is returned if @nm is not found and @zn and @n are set to the previous
740 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
741 * This means that @n may be set to %-1 if the leftmost key in @zn is the
742 * previous one. A negative error code is returned on failures.
743 */
resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct fscrypt_name * nm)744 static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
745 struct ubifs_znode **zn, int *n,
746 const struct fscrypt_name *nm)
747 {
748 int err;
749
750 err = matches_name(c, &(*zn)->zbranch[*n], nm);
751 if (unlikely(err < 0))
752 return err;
753 if (err == NAME_MATCHES)
754 return 1;
755
756 if (err == NAME_GREATER) {
757 /* Look left */
758 while (1) {
759 err = tnc_prev(c, zn, n);
760 if (err == -ENOENT) {
761 ubifs_assert(c, *n == 0);
762 *n = -1;
763 return 0;
764 }
765 if (err < 0)
766 return err;
767 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
768 /*
769 * We have found the branch after which we would
770 * like to insert, but inserting in this znode
771 * may still be wrong. Consider the following 3
772 * znodes, in the case where we are resolving a
773 * collision with Key2.
774 *
775 * znode zp
776 * ----------------------
777 * level 1 | Key0 | Key1 |
778 * -----------------------
779 * | |
780 * znode za | | znode zb
781 * ------------ ------------
782 * level 0 | Key0 | | Key2 |
783 * ------------ ------------
784 *
785 * The lookup finds Key2 in znode zb. Lets say
786 * there is no match and the name is greater so
787 * we look left. When we find Key0, we end up
788 * here. If we return now, we will insert into
789 * znode za at slot n = 1. But that is invalid
790 * according to the parent's keys. Key2 must
791 * be inserted into znode zb.
792 *
793 * Note, this problem is not relevant for the
794 * case when we go right, because
795 * 'tnc_insert()' would correct the parent key.
796 */
797 if (*n == (*zn)->child_cnt - 1) {
798 err = tnc_next(c, zn, n);
799 if (err) {
800 /* Should be impossible */
801 ubifs_assert(c, 0);
802 if (err == -ENOENT)
803 err = -EINVAL;
804 return err;
805 }
806 ubifs_assert(c, *n == 0);
807 *n = -1;
808 }
809 return 0;
810 }
811 err = matches_name(c, &(*zn)->zbranch[*n], nm);
812 if (err < 0)
813 return err;
814 if (err == NAME_LESS)
815 return 0;
816 if (err == NAME_MATCHES)
817 return 1;
818 ubifs_assert(c, err == NAME_GREATER);
819 }
820 } else {
821 int nn = *n;
822 struct ubifs_znode *znode = *zn;
823
824 /* Look right */
825 while (1) {
826 err = tnc_next(c, &znode, &nn);
827 if (err == -ENOENT)
828 return 0;
829 if (err < 0)
830 return err;
831 if (keys_cmp(c, &znode->zbranch[nn].key, key))
832 return 0;
833 err = matches_name(c, &znode->zbranch[nn], nm);
834 if (err < 0)
835 return err;
836 if (err == NAME_GREATER)
837 return 0;
838 *zn = znode;
839 *n = nn;
840 if (err == NAME_MATCHES)
841 return 1;
842 ubifs_assert(c, err == NAME_LESS);
843 }
844 }
845 }
846
847 /**
848 * fallible_matches_name - determine if a dent matches a given name.
849 * @c: UBIFS file-system description object
850 * @zbr: zbranch of dent
851 * @nm: name to match
852 *
853 * This is a "fallible" version of 'matches_name()' function which does not
854 * panic if the direntry/xentry referred by @zbr does not exist on the media.
855 *
856 * This function checks if xentry/direntry referred by zbranch @zbr matches name
857 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
858 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
859 * if xentry/direntry referred by @zbr does not exist on the media. A negative
860 * error code is returned in case of failure.
861 */
fallible_matches_name(struct ubifs_info * c,struct ubifs_zbranch * zbr,const struct fscrypt_name * nm)862 static int fallible_matches_name(struct ubifs_info *c,
863 struct ubifs_zbranch *zbr,
864 const struct fscrypt_name *nm)
865 {
866 struct ubifs_dent_node *dent;
867 int nlen, err;
868
869 /* If possible, match against the dent in the leaf node cache */
870 if (!zbr->leaf) {
871 dent = kmalloc(zbr->len, GFP_NOFS);
872 if (!dent)
873 return -ENOMEM;
874
875 err = fallible_read_node(c, &zbr->key, zbr, dent);
876 if (err < 0)
877 goto out_free;
878 if (err == 0) {
879 /* The node was not present */
880 err = NOT_ON_MEDIA;
881 goto out_free;
882 }
883 ubifs_assert(c, err == 1);
884
885 err = lnc_add_directly(c, zbr, dent);
886 if (err)
887 goto out_free;
888 } else
889 dent = zbr->leaf;
890
891 nlen = le16_to_cpu(dent->nlen);
892 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
893 if (err == 0) {
894 if (nlen == fname_len(nm))
895 return NAME_MATCHES;
896 else if (nlen < fname_len(nm))
897 return NAME_LESS;
898 else
899 return NAME_GREATER;
900 } else if (err < 0)
901 return NAME_LESS;
902 else
903 return NAME_GREATER;
904
905 out_free:
906 kfree(dent);
907 return err;
908 }
909
910 /**
911 * fallible_resolve_collision - resolve a collision even if nodes are missing.
912 * @c: UBIFS file-system description object
913 * @key: key
914 * @zn: znode is returned here
915 * @n: branch number is passed and returned here
916 * @nm: name of directory entry
917 * @adding: indicates caller is adding a key to the TNC
918 *
919 * This is a "fallible" version of the 'resolve_collision()' function which
920 * does not panic if one of the nodes referred to by TNC does not exist on the
921 * media. This may happen when replaying the journal if a deleted node was
922 * Garbage-collected and the commit was not done. A branch that refers to a node
923 * that is not present is called a dangling branch. The following are the return
924 * codes for this function:
925 * o if @nm was found, %1 is returned and @zn and @n are set to the found
926 * branch;
927 * o if we are @adding and @nm was not found, %0 is returned;
928 * o if we are not @adding and @nm was not found, but a dangling branch was
929 * found, then %1 is returned and @zn and @n are set to the dangling branch;
930 * o a negative error code is returned in case of failure.
931 */
fallible_resolve_collision(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,const struct fscrypt_name * nm,int adding)932 static int fallible_resolve_collision(struct ubifs_info *c,
933 const union ubifs_key *key,
934 struct ubifs_znode **zn, int *n,
935 const struct fscrypt_name *nm,
936 int adding)
937 {
938 struct ubifs_znode *o_znode = NULL, *znode = *zn;
939 int o_n, err, cmp, unsure = 0, nn = *n;
940
941 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
942 if (unlikely(cmp < 0))
943 return cmp;
944 if (cmp == NAME_MATCHES)
945 return 1;
946 if (cmp == NOT_ON_MEDIA) {
947 o_znode = znode;
948 o_n = nn;
949 /*
950 * We are unlucky and hit a dangling branch straight away.
951 * Now we do not really know where to go to find the needed
952 * branch - to the left or to the right. Well, let's try left.
953 */
954 unsure = 1;
955 } else if (!adding)
956 unsure = 1; /* Remove a dangling branch wherever it is */
957
958 if (cmp == NAME_GREATER || unsure) {
959 /* Look left */
960 while (1) {
961 err = tnc_prev(c, zn, n);
962 if (err == -ENOENT) {
963 ubifs_assert(c, *n == 0);
964 *n = -1;
965 break;
966 }
967 if (err < 0)
968 return err;
969 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
970 /* See comments in 'resolve_collision()' */
971 if (*n == (*zn)->child_cnt - 1) {
972 err = tnc_next(c, zn, n);
973 if (err) {
974 /* Should be impossible */
975 ubifs_assert(c, 0);
976 if (err == -ENOENT)
977 err = -EINVAL;
978 return err;
979 }
980 ubifs_assert(c, *n == 0);
981 *n = -1;
982 }
983 break;
984 }
985 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
986 if (err < 0)
987 return err;
988 if (err == NAME_MATCHES)
989 return 1;
990 if (err == NOT_ON_MEDIA) {
991 o_znode = *zn;
992 o_n = *n;
993 continue;
994 }
995 if (!adding)
996 continue;
997 if (err == NAME_LESS)
998 break;
999 else
1000 unsure = 0;
1001 }
1002 }
1003
1004 if (cmp == NAME_LESS || unsure) {
1005 /* Look right */
1006 *zn = znode;
1007 *n = nn;
1008 while (1) {
1009 err = tnc_next(c, &znode, &nn);
1010 if (err == -ENOENT)
1011 break;
1012 if (err < 0)
1013 return err;
1014 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1015 break;
1016 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
1017 if (err < 0)
1018 return err;
1019 if (err == NAME_GREATER)
1020 break;
1021 *zn = znode;
1022 *n = nn;
1023 if (err == NAME_MATCHES)
1024 return 1;
1025 if (err == NOT_ON_MEDIA) {
1026 o_znode = znode;
1027 o_n = nn;
1028 }
1029 }
1030 }
1031
1032 /* Never match a dangling branch when adding */
1033 if (adding || !o_znode)
1034 return 0;
1035
1036 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1037 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1038 o_znode->zbranch[o_n].len);
1039 *zn = o_znode;
1040 *n = o_n;
1041 return 1;
1042 }
1043
1044 /**
1045 * matches_position - determine if a zbranch matches a given position.
1046 * @zbr: zbranch of dent
1047 * @lnum: LEB number of dent to match
1048 * @offs: offset of dent to match
1049 *
1050 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1051 */
matches_position(struct ubifs_zbranch * zbr,int lnum,int offs)1052 static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1053 {
1054 if (zbr->lnum == lnum && zbr->offs == offs)
1055 return 1;
1056 else
1057 return 0;
1058 }
1059
1060 /**
1061 * resolve_collision_directly - resolve a collision directly.
1062 * @c: UBIFS file-system description object
1063 * @key: key of directory entry
1064 * @zn: znode is passed and returned here
1065 * @n: zbranch number is passed and returned here
1066 * @lnum: LEB number of dent node to match
1067 * @offs: offset of dent node to match
1068 *
1069 * This function is used for "hashed" keys to make sure the found directory or
1070 * extended attribute entry node is what was looked for. It is used when the
1071 * flash address of the right node is known (@lnum:@offs) which makes it much
1072 * easier to resolve collisions (no need to read entries and match full
1073 * names). This function returns %1 and sets @zn and @n if the collision is
1074 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1075 * previous directory entry. Otherwise a negative error code is returned.
1076 */
resolve_collision_directly(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n,int lnum,int offs)1077 static int resolve_collision_directly(struct ubifs_info *c,
1078 const union ubifs_key *key,
1079 struct ubifs_znode **zn, int *n,
1080 int lnum, int offs)
1081 {
1082 struct ubifs_znode *znode;
1083 int nn, err;
1084
1085 znode = *zn;
1086 nn = *n;
1087 if (matches_position(&znode->zbranch[nn], lnum, offs))
1088 return 1;
1089
1090 /* Look left */
1091 while (1) {
1092 err = tnc_prev(c, &znode, &nn);
1093 if (err == -ENOENT)
1094 break;
1095 if (err < 0)
1096 return err;
1097 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1098 break;
1099 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1100 *zn = znode;
1101 *n = nn;
1102 return 1;
1103 }
1104 }
1105
1106 /* Look right */
1107 znode = *zn;
1108 nn = *n;
1109 while (1) {
1110 err = tnc_next(c, &znode, &nn);
1111 if (err == -ENOENT)
1112 return 0;
1113 if (err < 0)
1114 return err;
1115 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1116 return 0;
1117 *zn = znode;
1118 *n = nn;
1119 if (matches_position(&znode->zbranch[nn], lnum, offs))
1120 return 1;
1121 }
1122 }
1123
1124 /**
1125 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1126 * @c: UBIFS file-system description object
1127 * @znode: znode to dirty
1128 *
1129 * If we do not have a unique key that resides in a znode, then we cannot
1130 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1131 * This function records the path back to the last dirty ancestor, and then
1132 * dirties the znodes on that path.
1133 */
dirty_cow_bottom_up(struct ubifs_info * c,struct ubifs_znode * znode)1134 static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1135 struct ubifs_znode *znode)
1136 {
1137 struct ubifs_znode *zp;
1138 int *path = c->bottom_up_buf, p = 0;
1139
1140 ubifs_assert(c, c->zroot.znode);
1141 ubifs_assert(c, znode);
1142 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1143 kfree(c->bottom_up_buf);
1144 c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1145 sizeof(int),
1146 GFP_NOFS);
1147 if (!c->bottom_up_buf)
1148 return ERR_PTR(-ENOMEM);
1149 path = c->bottom_up_buf;
1150 }
1151 if (c->zroot.znode->level) {
1152 /* Go up until parent is dirty */
1153 while (1) {
1154 int n;
1155
1156 zp = znode->parent;
1157 if (!zp)
1158 break;
1159 n = znode->iip;
1160 ubifs_assert(c, p < c->zroot.znode->level);
1161 path[p++] = n;
1162 if (!zp->cnext && ubifs_zn_dirty(znode))
1163 break;
1164 znode = zp;
1165 }
1166 }
1167
1168 /* Come back down, dirtying as we go */
1169 while (1) {
1170 struct ubifs_zbranch *zbr;
1171
1172 zp = znode->parent;
1173 if (zp) {
1174 ubifs_assert(c, path[p - 1] >= 0);
1175 ubifs_assert(c, path[p - 1] < zp->child_cnt);
1176 zbr = &zp->zbranch[path[--p]];
1177 znode = dirty_cow_znode(c, zbr);
1178 } else {
1179 ubifs_assert(c, znode == c->zroot.znode);
1180 znode = dirty_cow_znode(c, &c->zroot);
1181 }
1182 if (IS_ERR(znode) || !p)
1183 break;
1184 ubifs_assert(c, path[p - 1] >= 0);
1185 ubifs_assert(c, path[p - 1] < znode->child_cnt);
1186 znode = znode->zbranch[path[p - 1]].znode;
1187 }
1188
1189 return znode;
1190 }
1191
1192 /**
1193 * ubifs_lookup_level0 - search for zero-level znode.
1194 * @c: UBIFS file-system description object
1195 * @key: key to lookup
1196 * @zn: znode is returned here
1197 * @n: znode branch slot number is returned here
1198 *
1199 * This function looks up the TNC tree and search for zero-level znode which
1200 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1201 * cases:
1202 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1203 * is returned and slot number of the matched branch is stored in @n;
1204 * o not exact match, which means that zero-level znode does not contain
1205 * @key, then %0 is returned and slot number of the closest branch or %-1
1206 * is stored in @n; In this case calling tnc_next() is mandatory.
1207 * o @key is so small that it is even less than the lowest key of the
1208 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1209 *
1210 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1211 * function reads corresponding indexing nodes and inserts them to TNC. In
1212 * case of failure, a negative error code is returned.
1213 */
ubifs_lookup_level0(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1214 int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1215 struct ubifs_znode **zn, int *n)
1216 {
1217 int err, exact;
1218 struct ubifs_znode *znode;
1219 time64_t time = ktime_get_seconds();
1220
1221 dbg_tnck(key, "search key ");
1222 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1223
1224 znode = c->zroot.znode;
1225 if (unlikely(!znode)) {
1226 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1227 if (IS_ERR(znode))
1228 return PTR_ERR(znode);
1229 }
1230
1231 znode->time = time;
1232
1233 while (1) {
1234 struct ubifs_zbranch *zbr;
1235
1236 exact = ubifs_search_zbranch(c, znode, key, n);
1237
1238 if (znode->level == 0)
1239 break;
1240
1241 if (*n < 0)
1242 *n = 0;
1243 zbr = &znode->zbranch[*n];
1244
1245 if (zbr->znode) {
1246 znode->time = time;
1247 znode = zbr->znode;
1248 continue;
1249 }
1250
1251 /* znode is not in TNC cache, load it from the media */
1252 znode = ubifs_load_znode(c, zbr, znode, *n);
1253 if (IS_ERR(znode))
1254 return PTR_ERR(znode);
1255 }
1256
1257 *zn = znode;
1258 if (exact || !is_hash_key(c, key) || *n != -1) {
1259 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1260 return exact;
1261 }
1262
1263 /*
1264 * Here is a tricky place. We have not found the key and this is a
1265 * "hashed" key, which may collide. The rest of the code deals with
1266 * situations like this:
1267 *
1268 * | 3 | 5 |
1269 * / \
1270 * | 3 | 5 | | 6 | 7 | (x)
1271 *
1272 * Or more a complex example:
1273 *
1274 * | 1 | 5 |
1275 * / \
1276 * | 1 | 3 | | 5 | 8 |
1277 * \ /
1278 * | 5 | 5 | | 6 | 7 | (x)
1279 *
1280 * In the examples, if we are looking for key "5", we may reach nodes
1281 * marked with "(x)". In this case what we have do is to look at the
1282 * left and see if there is "5" key there. If there is, we have to
1283 * return it.
1284 *
1285 * Note, this whole situation is possible because we allow to have
1286 * elements which are equivalent to the next key in the parent in the
1287 * children of current znode. For example, this happens if we split a
1288 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1289 * like this:
1290 * | 3 | 5 |
1291 * / \
1292 * | 3 | 5 | | 5 | 6 | 7 |
1293 * ^
1294 * And this becomes what is at the first "picture" after key "5" marked
1295 * with "^" is removed. What could be done is we could prohibit
1296 * splitting in the middle of the colliding sequence. Also, when
1297 * removing the leftmost key, we would have to correct the key of the
1298 * parent node, which would introduce additional complications. Namely,
1299 * if we changed the leftmost key of the parent znode, the garbage
1300 * collector would be unable to find it (GC is doing this when GC'ing
1301 * indexing LEBs). Although we already have an additional RB-tree where
1302 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1303 * after the commit. But anyway, this does not look easy to implement
1304 * so we did not try this.
1305 */
1306 err = tnc_prev(c, &znode, n);
1307 if (err == -ENOENT) {
1308 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1309 *n = -1;
1310 return 0;
1311 }
1312 if (unlikely(err < 0))
1313 return err;
1314 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1315 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1316 *n = -1;
1317 return 0;
1318 }
1319
1320 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1321 *zn = znode;
1322 return 1;
1323 }
1324
1325 /**
1326 * lookup_level0_dirty - search for zero-level znode dirtying.
1327 * @c: UBIFS file-system description object
1328 * @key: key to lookup
1329 * @zn: znode is returned here
1330 * @n: znode branch slot number is returned here
1331 *
1332 * This function looks up the TNC tree and search for zero-level znode which
1333 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1334 * cases:
1335 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1336 * is returned and slot number of the matched branch is stored in @n;
1337 * o not exact match, which means that zero-level znode does not contain @key
1338 * then %0 is returned and slot number of the closed branch is stored in
1339 * @n;
1340 * o @key is so small that it is even less than the lowest key of the
1341 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1342 *
1343 * Additionally all znodes in the path from the root to the located zero-level
1344 * znode are marked as dirty.
1345 *
1346 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1347 * function reads corresponding indexing nodes and inserts them to TNC. In
1348 * case of failure, a negative error code is returned.
1349 */
lookup_level0_dirty(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_znode ** zn,int * n)1350 static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1351 struct ubifs_znode **zn, int *n)
1352 {
1353 int err, exact;
1354 struct ubifs_znode *znode;
1355 time64_t time = ktime_get_seconds();
1356
1357 dbg_tnck(key, "search and dirty key ");
1358
1359 znode = c->zroot.znode;
1360 if (unlikely(!znode)) {
1361 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1362 if (IS_ERR(znode))
1363 return PTR_ERR(znode);
1364 }
1365
1366 znode = dirty_cow_znode(c, &c->zroot);
1367 if (IS_ERR(znode))
1368 return PTR_ERR(znode);
1369
1370 znode->time = time;
1371
1372 while (1) {
1373 struct ubifs_zbranch *zbr;
1374
1375 exact = ubifs_search_zbranch(c, znode, key, n);
1376
1377 if (znode->level == 0)
1378 break;
1379
1380 if (*n < 0)
1381 *n = 0;
1382 zbr = &znode->zbranch[*n];
1383
1384 if (zbr->znode) {
1385 znode->time = time;
1386 znode = dirty_cow_znode(c, zbr);
1387 if (IS_ERR(znode))
1388 return PTR_ERR(znode);
1389 continue;
1390 }
1391
1392 /* znode is not in TNC cache, load it from the media */
1393 znode = ubifs_load_znode(c, zbr, znode, *n);
1394 if (IS_ERR(znode))
1395 return PTR_ERR(znode);
1396 znode = dirty_cow_znode(c, zbr);
1397 if (IS_ERR(znode))
1398 return PTR_ERR(znode);
1399 }
1400
1401 *zn = znode;
1402 if (exact || !is_hash_key(c, key) || *n != -1) {
1403 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1404 return exact;
1405 }
1406
1407 /*
1408 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1409 * code.
1410 */
1411 err = tnc_prev(c, &znode, n);
1412 if (err == -ENOENT) {
1413 *n = -1;
1414 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1415 return 0;
1416 }
1417 if (unlikely(err < 0))
1418 return err;
1419 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1420 *n = -1;
1421 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1422 return 0;
1423 }
1424
1425 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1426 znode = dirty_cow_bottom_up(c, znode);
1427 if (IS_ERR(znode))
1428 return PTR_ERR(znode);
1429 }
1430
1431 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1432 *zn = znode;
1433 return 1;
1434 }
1435
1436 /**
1437 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1438 * @c: UBIFS file-system description object
1439 * @lnum: LEB number
1440 * @gc_seq1: garbage collection sequence number
1441 *
1442 * This function determines if @lnum may have been garbage collected since
1443 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1444 * %0 is returned.
1445 */
maybe_leb_gced(struct ubifs_info * c,int lnum,int gc_seq1)1446 static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1447 {
1448 int gc_seq2, gced_lnum;
1449
1450 gced_lnum = c->gced_lnum;
1451 smp_rmb();
1452 gc_seq2 = c->gc_seq;
1453 /* Same seq means no GC */
1454 if (gc_seq1 == gc_seq2)
1455 return 0;
1456 /* Different by more than 1 means we don't know */
1457 if (gc_seq1 + 1 != gc_seq2)
1458 return 1;
1459 /*
1460 * We have seen the sequence number has increased by 1. Now we need to
1461 * be sure we read the right LEB number, so read it again.
1462 */
1463 smp_rmb();
1464 if (gced_lnum != c->gced_lnum)
1465 return 1;
1466 /* Finally we can check lnum */
1467 if (gced_lnum == lnum)
1468 return 1;
1469 return 0;
1470 }
1471
1472 /**
1473 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1474 * @c: UBIFS file-system description object
1475 * @key: node key to lookup
1476 * @node: the node is returned here
1477 * @lnum: LEB number is returned here
1478 * @offs: offset is returned here
1479 *
1480 * This function looks up and reads node with key @key. The caller has to make
1481 * sure the @node buffer is large enough to fit the node. Returns zero in case
1482 * of success, %-ENOENT if the node was not found, and a negative error code in
1483 * case of failure. The node location can be returned in @lnum and @offs.
1484 */
ubifs_tnc_locate(struct ubifs_info * c,const union ubifs_key * key,void * node,int * lnum,int * offs)1485 int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1486 void *node, int *lnum, int *offs)
1487 {
1488 int found, n, err, safely = 0, gc_seq1;
1489 struct ubifs_znode *znode;
1490 struct ubifs_zbranch zbr, *zt;
1491
1492 again:
1493 mutex_lock(&c->tnc_mutex);
1494 found = ubifs_lookup_level0(c, key, &znode, &n);
1495 if (!found) {
1496 err = -ENOENT;
1497 goto out;
1498 } else if (found < 0) {
1499 err = found;
1500 goto out;
1501 }
1502 zt = &znode->zbranch[n];
1503 if (lnum) {
1504 *lnum = zt->lnum;
1505 *offs = zt->offs;
1506 }
1507 if (is_hash_key(c, key)) {
1508 /*
1509 * In this case the leaf node cache gets used, so we pass the
1510 * address of the zbranch and keep the mutex locked
1511 */
1512 err = tnc_read_hashed_node(c, zt, node);
1513 goto out;
1514 }
1515 if (safely) {
1516 err = ubifs_tnc_read_node(c, zt, node);
1517 goto out;
1518 }
1519 /* Drop the TNC mutex prematurely and race with garbage collection */
1520 zbr = znode->zbranch[n];
1521 gc_seq1 = c->gc_seq;
1522 mutex_unlock(&c->tnc_mutex);
1523
1524 if (ubifs_get_wbuf(c, zbr.lnum)) {
1525 /* We do not GC journal heads */
1526 err = ubifs_tnc_read_node(c, &zbr, node);
1527 return err;
1528 }
1529
1530 err = fallible_read_node(c, key, &zbr, node);
1531 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1532 /*
1533 * The node may have been GC'ed out from under us so try again
1534 * while keeping the TNC mutex locked.
1535 */
1536 safely = 1;
1537 goto again;
1538 }
1539 return 0;
1540
1541 out:
1542 mutex_unlock(&c->tnc_mutex);
1543 return err;
1544 }
1545
1546 /**
1547 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1548 * @c: UBIFS file-system description object
1549 * @bu: bulk-read parameters and results
1550 *
1551 * Lookup consecutive data node keys for the same inode that reside
1552 * consecutively in the same LEB. This function returns zero in case of success
1553 * and a negative error code in case of failure.
1554 *
1555 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1556 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1557 * maximum possible amount of nodes for bulk-read.
1558 */
ubifs_tnc_get_bu_keys(struct ubifs_info * c,struct bu_info * bu)1559 int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1560 {
1561 int n, err = 0, lnum = -1, offs;
1562 int len;
1563 unsigned int block = key_block(c, &bu->key);
1564 struct ubifs_znode *znode;
1565
1566 bu->cnt = 0;
1567 bu->blk_cnt = 0;
1568 bu->eof = 0;
1569
1570 mutex_lock(&c->tnc_mutex);
1571 /* Find first key */
1572 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1573 if (err < 0)
1574 goto out;
1575 if (err) {
1576 /* Key found */
1577 len = znode->zbranch[n].len;
1578 /* The buffer must be big enough for at least 1 node */
1579 if (len > bu->buf_len) {
1580 err = -EINVAL;
1581 goto out;
1582 }
1583 /* Add this key */
1584 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1585 bu->blk_cnt += 1;
1586 lnum = znode->zbranch[n].lnum;
1587 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1588 }
1589 while (1) {
1590 struct ubifs_zbranch *zbr;
1591 union ubifs_key *key;
1592 unsigned int next_block;
1593
1594 /* Find next key */
1595 err = tnc_next(c, &znode, &n);
1596 if (err)
1597 goto out;
1598 zbr = &znode->zbranch[n];
1599 key = &zbr->key;
1600 /* See if there is another data key for this file */
1601 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1602 key_type(c, key) != UBIFS_DATA_KEY) {
1603 err = -ENOENT;
1604 goto out;
1605 }
1606 if (lnum < 0) {
1607 /* First key found */
1608 lnum = zbr->lnum;
1609 offs = ALIGN(zbr->offs + zbr->len, 8);
1610 len = zbr->len;
1611 if (len > bu->buf_len) {
1612 err = -EINVAL;
1613 goto out;
1614 }
1615 } else {
1616 /*
1617 * The data nodes must be in consecutive positions in
1618 * the same LEB.
1619 */
1620 if (zbr->lnum != lnum || zbr->offs != offs)
1621 goto out;
1622 offs += ALIGN(zbr->len, 8);
1623 len = ALIGN(len, 8) + zbr->len;
1624 /* Must not exceed buffer length */
1625 if (len > bu->buf_len)
1626 goto out;
1627 }
1628 /* Allow for holes */
1629 next_block = key_block(c, key);
1630 bu->blk_cnt += (next_block - block - 1);
1631 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1632 goto out;
1633 block = next_block;
1634 /* Add this key */
1635 bu->zbranch[bu->cnt++] = *zbr;
1636 bu->blk_cnt += 1;
1637 /* See if we have room for more */
1638 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1639 goto out;
1640 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1641 goto out;
1642 }
1643 out:
1644 if (err == -ENOENT) {
1645 bu->eof = 1;
1646 err = 0;
1647 }
1648 bu->gc_seq = c->gc_seq;
1649 mutex_unlock(&c->tnc_mutex);
1650 if (err)
1651 return err;
1652 /*
1653 * An enormous hole could cause bulk-read to encompass too many
1654 * page cache pages, so limit the number here.
1655 */
1656 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1657 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1658 /*
1659 * Ensure that bulk-read covers a whole number of page cache
1660 * pages.
1661 */
1662 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1663 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1664 return 0;
1665 if (bu->eof) {
1666 /* At the end of file we can round up */
1667 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1668 return 0;
1669 }
1670 /* Exclude data nodes that do not make up a whole page cache page */
1671 block = key_block(c, &bu->key) + bu->blk_cnt;
1672 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1673 while (bu->cnt) {
1674 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1675 break;
1676 bu->cnt -= 1;
1677 }
1678 return 0;
1679 }
1680
1681 /**
1682 * read_wbuf - bulk-read from a LEB with a wbuf.
1683 * @wbuf: wbuf that may overlap the read
1684 * @buf: buffer into which to read
1685 * @len: read length
1686 * @lnum: LEB number from which to read
1687 * @offs: offset from which to read
1688 *
1689 * This functions returns %0 on success or a negative error code on failure.
1690 */
read_wbuf(struct ubifs_wbuf * wbuf,void * buf,int len,int lnum,int offs)1691 static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1692 int offs)
1693 {
1694 const struct ubifs_info *c = wbuf->c;
1695 int rlen, overlap;
1696
1697 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1698 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1699 ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1700 ubifs_assert(c, offs + len <= c->leb_size);
1701
1702 spin_lock(&wbuf->lock);
1703 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1704 if (!overlap) {
1705 /* We may safely unlock the write-buffer and read the data */
1706 spin_unlock(&wbuf->lock);
1707 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1708 }
1709
1710 /* Don't read under wbuf */
1711 rlen = wbuf->offs - offs;
1712 if (rlen < 0)
1713 rlen = 0;
1714
1715 /* Copy the rest from the write-buffer */
1716 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1717 spin_unlock(&wbuf->lock);
1718
1719 if (rlen > 0)
1720 /* Read everything that goes before write-buffer */
1721 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1722
1723 return 0;
1724 }
1725
1726 /**
1727 * validate_data_node - validate data nodes for bulk-read.
1728 * @c: UBIFS file-system description object
1729 * @buf: buffer containing data node to validate
1730 * @zbr: zbranch of data node to validate
1731 *
1732 * This functions returns %0 on success or a negative error code on failure.
1733 */
validate_data_node(struct ubifs_info * c,void * buf,struct ubifs_zbranch * zbr)1734 static int validate_data_node(struct ubifs_info *c, void *buf,
1735 struct ubifs_zbranch *zbr)
1736 {
1737 union ubifs_key key1;
1738 struct ubifs_ch *ch = buf;
1739 int err, len;
1740
1741 if (ch->node_type != UBIFS_DATA_NODE) {
1742 ubifs_err(c, "bad node type (%d but expected %d)",
1743 ch->node_type, UBIFS_DATA_NODE);
1744 goto out_err;
1745 }
1746
1747 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
1748 if (err) {
1749 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1750 goto out;
1751 }
1752
1753 len = le32_to_cpu(ch->len);
1754 if (len != zbr->len) {
1755 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1756 goto out_err;
1757 }
1758
1759 /* Make sure the key of the read node is correct */
1760 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1761 if (!keys_eq(c, &zbr->key, &key1)) {
1762 ubifs_err(c, "bad key in node at LEB %d:%d",
1763 zbr->lnum, zbr->offs);
1764 dbg_tnck(&zbr->key, "looked for key ");
1765 dbg_tnck(&key1, "found node's key ");
1766 goto out_err;
1767 }
1768
1769 return 0;
1770
1771 out_err:
1772 err = -EINVAL;
1773 out:
1774 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1775 ubifs_dump_node(c, buf);
1776 dump_stack();
1777 return err;
1778 }
1779
1780 /**
1781 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1782 * @c: UBIFS file-system description object
1783 * @bu: bulk-read parameters and results
1784 *
1785 * This functions reads and validates the data nodes that were identified by the
1786 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1787 * -EAGAIN to indicate a race with GC, or another negative error code on
1788 * failure.
1789 */
ubifs_tnc_bulk_read(struct ubifs_info * c,struct bu_info * bu)1790 int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1791 {
1792 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1793 struct ubifs_wbuf *wbuf;
1794 void *buf;
1795
1796 len = bu->zbranch[bu->cnt - 1].offs;
1797 len += bu->zbranch[bu->cnt - 1].len - offs;
1798 if (len > bu->buf_len) {
1799 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1800 return -EINVAL;
1801 }
1802
1803 /* Do the read */
1804 wbuf = ubifs_get_wbuf(c, lnum);
1805 if (wbuf)
1806 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1807 else
1808 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1809
1810 /* Check for a race with GC */
1811 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1812 return -EAGAIN;
1813
1814 if (err && err != -EBADMSG) {
1815 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1816 lnum, offs, err);
1817 dump_stack();
1818 dbg_tnck(&bu->key, "key ");
1819 return err;
1820 }
1821
1822 /* Validate the nodes read */
1823 buf = bu->buf;
1824 for (i = 0; i < bu->cnt; i++) {
1825 err = validate_data_node(c, buf, &bu->zbranch[i]);
1826 if (err)
1827 return err;
1828 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1829 }
1830
1831 return 0;
1832 }
1833
1834 /**
1835 * do_lookup_nm- look up a "hashed" node.
1836 * @c: UBIFS file-system description object
1837 * @key: node key to lookup
1838 * @node: the node is returned here
1839 * @nm: node name
1840 *
1841 * This function looks up and reads a node which contains name hash in the key.
1842 * Since the hash may have collisions, there may be many nodes with the same
1843 * key, so we have to sequentially look to all of them until the needed one is
1844 * found. This function returns zero in case of success, %-ENOENT if the node
1845 * was not found, and a negative error code in case of failure.
1846 */
do_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct fscrypt_name * nm)1847 static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1848 void *node, const struct fscrypt_name *nm)
1849 {
1850 int found, n, err;
1851 struct ubifs_znode *znode;
1852
1853 dbg_tnck(key, "key ");
1854 mutex_lock(&c->tnc_mutex);
1855 found = ubifs_lookup_level0(c, key, &znode, &n);
1856 if (!found) {
1857 err = -ENOENT;
1858 goto out_unlock;
1859 } else if (found < 0) {
1860 err = found;
1861 goto out_unlock;
1862 }
1863
1864 ubifs_assert(c, n >= 0);
1865
1866 err = resolve_collision(c, key, &znode, &n, nm);
1867 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1868 if (unlikely(err < 0))
1869 goto out_unlock;
1870 if (err == 0) {
1871 err = -ENOENT;
1872 goto out_unlock;
1873 }
1874
1875 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1876
1877 out_unlock:
1878 mutex_unlock(&c->tnc_mutex);
1879 return err;
1880 }
1881
1882 /**
1883 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1884 * @c: UBIFS file-system description object
1885 * @key: node key to lookup
1886 * @node: the node is returned here
1887 * @nm: node name
1888 *
1889 * This function looks up and reads a node which contains name hash in the key.
1890 * Since the hash may have collisions, there may be many nodes with the same
1891 * key, so we have to sequentially look to all of them until the needed one is
1892 * found. This function returns zero in case of success, %-ENOENT if the node
1893 * was not found, and a negative error code in case of failure.
1894 */
ubifs_tnc_lookup_nm(struct ubifs_info * c,const union ubifs_key * key,void * node,const struct fscrypt_name * nm)1895 int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1896 void *node, const struct fscrypt_name *nm)
1897 {
1898 int err, len;
1899 const struct ubifs_dent_node *dent = node;
1900
1901 /*
1902 * We assume that in most of the cases there are no name collisions and
1903 * 'ubifs_tnc_lookup()' returns us the right direntry.
1904 */
1905 err = ubifs_tnc_lookup(c, key, node);
1906 if (err)
1907 return err;
1908
1909 len = le16_to_cpu(dent->nlen);
1910 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1911 return 0;
1912
1913 /*
1914 * Unluckily, there are hash collisions and we have to iterate over
1915 * them look at each direntry with colliding name hash sequentially.
1916 */
1917
1918 return do_lookup_nm(c, key, node, nm);
1919 }
1920
search_dh_cookie(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_dent_node * dent,uint32_t cookie,struct ubifs_znode ** zn,int * n,int exact)1921 static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1922 struct ubifs_dent_node *dent, uint32_t cookie,
1923 struct ubifs_znode **zn, int *n, int exact)
1924 {
1925 int err;
1926 struct ubifs_znode *znode = *zn;
1927 struct ubifs_zbranch *zbr;
1928 union ubifs_key *dkey;
1929
1930 if (!exact) {
1931 err = tnc_next(c, &znode, n);
1932 if (err)
1933 return err;
1934 }
1935
1936 for (;;) {
1937 zbr = &znode->zbranch[*n];
1938 dkey = &zbr->key;
1939
1940 if (key_inum(c, dkey) != key_inum(c, key) ||
1941 key_type(c, dkey) != key_type(c, key)) {
1942 return -ENOENT;
1943 }
1944
1945 err = tnc_read_hashed_node(c, zbr, dent);
1946 if (err)
1947 return err;
1948
1949 if (key_hash(c, key) == key_hash(c, dkey) &&
1950 le32_to_cpu(dent->cookie) == cookie) {
1951 *zn = znode;
1952 return 0;
1953 }
1954
1955 err = tnc_next(c, &znode, n);
1956 if (err)
1957 return err;
1958 }
1959 }
1960
do_lookup_dh(struct ubifs_info * c,const union ubifs_key * key,struct ubifs_dent_node * dent,uint32_t cookie)1961 static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1962 struct ubifs_dent_node *dent, uint32_t cookie)
1963 {
1964 int n, err;
1965 struct ubifs_znode *znode;
1966 union ubifs_key start_key;
1967
1968 ubifs_assert(c, is_hash_key(c, key));
1969
1970 lowest_dent_key(c, &start_key, key_inum(c, key));
1971
1972 mutex_lock(&c->tnc_mutex);
1973 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1974 if (unlikely(err < 0))
1975 goto out_unlock;
1976
1977 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1978
1979 out_unlock:
1980 mutex_unlock(&c->tnc_mutex);
1981 return err;
1982 }
1983
1984 /**
1985 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1986 * @c: UBIFS file-system description object
1987 * @key: node key to lookup
1988 * @node: the node is returned here
1989 * @cookie: node cookie for collision resolution
1990 *
1991 * This function looks up and reads a node which contains name hash in the key.
1992 * Since the hash may have collisions, there may be many nodes with the same
1993 * key, so we have to sequentially look to all of them until the needed one
1994 * with the same cookie value is found.
1995 * This function returns zero in case of success, %-ENOENT if the node
1996 * was not found, and a negative error code in case of failure.
1997 */
ubifs_tnc_lookup_dh(struct ubifs_info * c,const union ubifs_key * key,void * node,uint32_t cookie)1998 int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1999 void *node, uint32_t cookie)
2000 {
2001 int err;
2002 const struct ubifs_dent_node *dent = node;
2003
2004 if (!c->double_hash)
2005 return -EOPNOTSUPP;
2006
2007 /*
2008 * We assume that in most of the cases there are no name collisions and
2009 * 'ubifs_tnc_lookup()' returns us the right direntry.
2010 */
2011 err = ubifs_tnc_lookup(c, key, node);
2012 if (err)
2013 return err;
2014
2015 if (le32_to_cpu(dent->cookie) == cookie)
2016 return 0;
2017
2018 /*
2019 * Unluckily, there are hash collisions and we have to iterate over
2020 * them look at each direntry with colliding name hash sequentially.
2021 */
2022 return do_lookup_dh(c, key, node, cookie);
2023 }
2024
2025 /**
2026 * correct_parent_keys - correct parent znodes' keys.
2027 * @c: UBIFS file-system description object
2028 * @znode: znode to correct parent znodes for
2029 *
2030 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2031 * zbranch changes, keys of parent znodes have to be corrected. This helper
2032 * function is called in such situations and corrects the keys if needed.
2033 */
correct_parent_keys(const struct ubifs_info * c,struct ubifs_znode * znode)2034 static void correct_parent_keys(const struct ubifs_info *c,
2035 struct ubifs_znode *znode)
2036 {
2037 union ubifs_key *key, *key1;
2038
2039 ubifs_assert(c, znode->parent);
2040 ubifs_assert(c, znode->iip == 0);
2041
2042 key = &znode->zbranch[0].key;
2043 key1 = &znode->parent->zbranch[0].key;
2044
2045 while (keys_cmp(c, key, key1) < 0) {
2046 key_copy(c, key, key1);
2047 znode = znode->parent;
2048 znode->alt = 1;
2049 if (!znode->parent || znode->iip)
2050 break;
2051 key1 = &znode->parent->zbranch[0].key;
2052 }
2053 }
2054
2055 /**
2056 * insert_zbranch - insert a zbranch into a znode.
2057 * @c: UBIFS file-system description object
2058 * @znode: znode into which to insert
2059 * @zbr: zbranch to insert
2060 * @n: slot number to insert to
2061 *
2062 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2063 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2064 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2065 * slot, zbranches starting from @n have to be moved right.
2066 */
insert_zbranch(struct ubifs_info * c,struct ubifs_znode * znode,const struct ubifs_zbranch * zbr,int n)2067 static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2068 const struct ubifs_zbranch *zbr, int n)
2069 {
2070 int i;
2071
2072 ubifs_assert(c, ubifs_zn_dirty(znode));
2073
2074 if (znode->level) {
2075 for (i = znode->child_cnt; i > n; i--) {
2076 znode->zbranch[i] = znode->zbranch[i - 1];
2077 if (znode->zbranch[i].znode)
2078 znode->zbranch[i].znode->iip = i;
2079 }
2080 if (zbr->znode)
2081 zbr->znode->iip = n;
2082 } else
2083 for (i = znode->child_cnt; i > n; i--)
2084 znode->zbranch[i] = znode->zbranch[i - 1];
2085
2086 znode->zbranch[n] = *zbr;
2087 znode->child_cnt += 1;
2088
2089 /*
2090 * After inserting at slot zero, the lower bound of the key range of
2091 * this znode may have changed. If this znode is subsequently split
2092 * then the upper bound of the key range may change, and furthermore
2093 * it could change to be lower than the original lower bound. If that
2094 * happens, then it will no longer be possible to find this znode in the
2095 * TNC using the key from the index node on flash. That is bad because
2096 * if it is not found, we will assume it is obsolete and may overwrite
2097 * it. Then if there is an unclean unmount, we will start using the
2098 * old index which will be broken.
2099 *
2100 * So we first mark znodes that have insertions at slot zero, and then
2101 * if they are split we add their lnum/offs to the old_idx tree.
2102 */
2103 if (n == 0)
2104 znode->alt = 1;
2105 }
2106
2107 /**
2108 * tnc_insert - insert a node into TNC.
2109 * @c: UBIFS file-system description object
2110 * @znode: znode to insert into
2111 * @zbr: branch to insert
2112 * @n: slot number to insert new zbranch to
2113 *
2114 * This function inserts a new node described by @zbr into znode @znode. If
2115 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2116 * are splat as well if needed. Returns zero in case of success or a negative
2117 * error code in case of failure.
2118 */
tnc_insert(struct ubifs_info * c,struct ubifs_znode * znode,struct ubifs_zbranch * zbr,int n)2119 static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2120 struct ubifs_zbranch *zbr, int n)
2121 {
2122 struct ubifs_znode *zn, *zi, *zp;
2123 int i, keep, move, appending = 0;
2124 union ubifs_key *key = &zbr->key, *key1;
2125
2126 ubifs_assert(c, n >= 0 && n <= c->fanout);
2127
2128 /* Implement naive insert for now */
2129 again:
2130 zp = znode->parent;
2131 if (znode->child_cnt < c->fanout) {
2132 ubifs_assert(c, n != c->fanout);
2133 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2134
2135 insert_zbranch(c, znode, zbr, n);
2136
2137 /* Ensure parent's key is correct */
2138 if (n == 0 && zp && znode->iip == 0)
2139 correct_parent_keys(c, znode);
2140
2141 return 0;
2142 }
2143
2144 /*
2145 * Unfortunately, @znode does not have more empty slots and we have to
2146 * split it.
2147 */
2148 dbg_tnck(key, "splitting level %d, key ", znode->level);
2149
2150 if (znode->alt)
2151 /*
2152 * We can no longer be sure of finding this znode by key, so we
2153 * record it in the old_idx tree.
2154 */
2155 ins_clr_old_idx_znode(c, znode);
2156
2157 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2158 if (!zn)
2159 return -ENOMEM;
2160 zn->parent = zp;
2161 zn->level = znode->level;
2162
2163 /* Decide where to split */
2164 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2165 /* Try not to split consecutive data keys */
2166 if (n == c->fanout) {
2167 key1 = &znode->zbranch[n - 1].key;
2168 if (key_inum(c, key1) == key_inum(c, key) &&
2169 key_type(c, key1) == UBIFS_DATA_KEY)
2170 appending = 1;
2171 } else
2172 goto check_split;
2173 } else if (appending && n != c->fanout) {
2174 /* Try not to split consecutive data keys */
2175 appending = 0;
2176 check_split:
2177 if (n >= (c->fanout + 1) / 2) {
2178 key1 = &znode->zbranch[0].key;
2179 if (key_inum(c, key1) == key_inum(c, key) &&
2180 key_type(c, key1) == UBIFS_DATA_KEY) {
2181 key1 = &znode->zbranch[n].key;
2182 if (key_inum(c, key1) != key_inum(c, key) ||
2183 key_type(c, key1) != UBIFS_DATA_KEY) {
2184 keep = n;
2185 move = c->fanout - keep;
2186 zi = znode;
2187 goto do_split;
2188 }
2189 }
2190 }
2191 }
2192
2193 if (appending) {
2194 keep = c->fanout;
2195 move = 0;
2196 } else {
2197 keep = (c->fanout + 1) / 2;
2198 move = c->fanout - keep;
2199 }
2200
2201 /*
2202 * Although we don't at present, we could look at the neighbors and see
2203 * if we can move some zbranches there.
2204 */
2205
2206 if (n < keep) {
2207 /* Insert into existing znode */
2208 zi = znode;
2209 move += 1;
2210 keep -= 1;
2211 } else {
2212 /* Insert into new znode */
2213 zi = zn;
2214 n -= keep;
2215 /* Re-parent */
2216 if (zn->level != 0)
2217 zbr->znode->parent = zn;
2218 }
2219
2220 do_split:
2221
2222 __set_bit(DIRTY_ZNODE, &zn->flags);
2223 atomic_long_inc(&c->dirty_zn_cnt);
2224
2225 zn->child_cnt = move;
2226 znode->child_cnt = keep;
2227
2228 dbg_tnc("moving %d, keeping %d", move, keep);
2229
2230 /* Move zbranch */
2231 for (i = 0; i < move; i++) {
2232 zn->zbranch[i] = znode->zbranch[keep + i];
2233 /* Re-parent */
2234 if (zn->level != 0)
2235 if (zn->zbranch[i].znode) {
2236 zn->zbranch[i].znode->parent = zn;
2237 zn->zbranch[i].znode->iip = i;
2238 }
2239 }
2240
2241 /* Insert new key and branch */
2242 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2243
2244 insert_zbranch(c, zi, zbr, n);
2245
2246 /* Insert new znode (produced by spitting) into the parent */
2247 if (zp) {
2248 if (n == 0 && zi == znode && znode->iip == 0)
2249 correct_parent_keys(c, znode);
2250
2251 /* Locate insertion point */
2252 n = znode->iip + 1;
2253
2254 /* Tail recursion */
2255 zbr->key = zn->zbranch[0].key;
2256 zbr->znode = zn;
2257 zbr->lnum = 0;
2258 zbr->offs = 0;
2259 zbr->len = 0;
2260 znode = zp;
2261
2262 goto again;
2263 }
2264
2265 /* We have to split root znode */
2266 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2267
2268 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2269 if (!zi)
2270 return -ENOMEM;
2271
2272 zi->child_cnt = 2;
2273 zi->level = znode->level + 1;
2274
2275 __set_bit(DIRTY_ZNODE, &zi->flags);
2276 atomic_long_inc(&c->dirty_zn_cnt);
2277
2278 zi->zbranch[0].key = znode->zbranch[0].key;
2279 zi->zbranch[0].znode = znode;
2280 zi->zbranch[0].lnum = c->zroot.lnum;
2281 zi->zbranch[0].offs = c->zroot.offs;
2282 zi->zbranch[0].len = c->zroot.len;
2283 zi->zbranch[1].key = zn->zbranch[0].key;
2284 zi->zbranch[1].znode = zn;
2285
2286 c->zroot.lnum = 0;
2287 c->zroot.offs = 0;
2288 c->zroot.len = 0;
2289 c->zroot.znode = zi;
2290
2291 zn->parent = zi;
2292 zn->iip = 1;
2293 znode->parent = zi;
2294 znode->iip = 0;
2295
2296 return 0;
2297 }
2298
2299 /**
2300 * ubifs_tnc_add - add a node to TNC.
2301 * @c: UBIFS file-system description object
2302 * @key: key to add
2303 * @lnum: LEB number of node
2304 * @offs: node offset
2305 * @len: node length
2306 *
2307 * This function adds a node with key @key to TNC. The node may be new or it may
2308 * obsolete some existing one. Returns %0 on success or negative error code on
2309 * failure.
2310 */
ubifs_tnc_add(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len)2311 int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2312 int offs, int len)
2313 {
2314 int found, n, err = 0;
2315 struct ubifs_znode *znode;
2316
2317 mutex_lock(&c->tnc_mutex);
2318 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2319 found = lookup_level0_dirty(c, key, &znode, &n);
2320 if (!found) {
2321 struct ubifs_zbranch zbr;
2322
2323 zbr.znode = NULL;
2324 zbr.lnum = lnum;
2325 zbr.offs = offs;
2326 zbr.len = len;
2327 key_copy(c, key, &zbr.key);
2328 err = tnc_insert(c, znode, &zbr, n + 1);
2329 } else if (found == 1) {
2330 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2331
2332 lnc_free(zbr);
2333 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2334 zbr->lnum = lnum;
2335 zbr->offs = offs;
2336 zbr->len = len;
2337 } else
2338 err = found;
2339 if (!err)
2340 err = dbg_check_tnc(c, 0);
2341 mutex_unlock(&c->tnc_mutex);
2342
2343 return err;
2344 }
2345
2346 /**
2347 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2348 * @c: UBIFS file-system description object
2349 * @key: key to add
2350 * @old_lnum: LEB number of old node
2351 * @old_offs: old node offset
2352 * @lnum: LEB number of node
2353 * @offs: node offset
2354 * @len: node length
2355 *
2356 * This function replaces a node with key @key in the TNC only if the old node
2357 * is found. This function is called by garbage collection when node are moved.
2358 * Returns %0 on success or negative error code on failure.
2359 */
ubifs_tnc_replace(struct ubifs_info * c,const union ubifs_key * key,int old_lnum,int old_offs,int lnum,int offs,int len)2360 int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2361 int old_lnum, int old_offs, int lnum, int offs, int len)
2362 {
2363 int found, n, err = 0;
2364 struct ubifs_znode *znode;
2365
2366 mutex_lock(&c->tnc_mutex);
2367 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2368 old_offs, lnum, offs, len);
2369 found = lookup_level0_dirty(c, key, &znode, &n);
2370 if (found < 0) {
2371 err = found;
2372 goto out_unlock;
2373 }
2374
2375 if (found == 1) {
2376 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2377
2378 found = 0;
2379 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2380 lnc_free(zbr);
2381 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2382 if (err)
2383 goto out_unlock;
2384 zbr->lnum = lnum;
2385 zbr->offs = offs;
2386 zbr->len = len;
2387 found = 1;
2388 } else if (is_hash_key(c, key)) {
2389 found = resolve_collision_directly(c, key, &znode, &n,
2390 old_lnum, old_offs);
2391 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2392 found, znode, n, old_lnum, old_offs);
2393 if (found < 0) {
2394 err = found;
2395 goto out_unlock;
2396 }
2397
2398 if (found) {
2399 /* Ensure the znode is dirtied */
2400 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2401 znode = dirty_cow_bottom_up(c, znode);
2402 if (IS_ERR(znode)) {
2403 err = PTR_ERR(znode);
2404 goto out_unlock;
2405 }
2406 }
2407 zbr = &znode->zbranch[n];
2408 lnc_free(zbr);
2409 err = ubifs_add_dirt(c, zbr->lnum,
2410 zbr->len);
2411 if (err)
2412 goto out_unlock;
2413 zbr->lnum = lnum;
2414 zbr->offs = offs;
2415 zbr->len = len;
2416 }
2417 }
2418 }
2419
2420 if (!found)
2421 err = ubifs_add_dirt(c, lnum, len);
2422
2423 if (!err)
2424 err = dbg_check_tnc(c, 0);
2425
2426 out_unlock:
2427 mutex_unlock(&c->tnc_mutex);
2428 return err;
2429 }
2430
2431 /**
2432 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2433 * @c: UBIFS file-system description object
2434 * @key: key to add
2435 * @lnum: LEB number of node
2436 * @offs: node offset
2437 * @len: node length
2438 * @nm: node name
2439 *
2440 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2441 * may have collisions, like directory entry keys.
2442 */
ubifs_tnc_add_nm(struct ubifs_info * c,const union ubifs_key * key,int lnum,int offs,int len,const struct fscrypt_name * nm)2443 int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2444 int lnum, int offs, int len,
2445 const struct fscrypt_name *nm)
2446 {
2447 int found, n, err = 0;
2448 struct ubifs_znode *znode;
2449
2450 mutex_lock(&c->tnc_mutex);
2451 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2452 found = lookup_level0_dirty(c, key, &znode, &n);
2453 if (found < 0) {
2454 err = found;
2455 goto out_unlock;
2456 }
2457
2458 if (found == 1) {
2459 if (c->replaying)
2460 found = fallible_resolve_collision(c, key, &znode, &n,
2461 nm, 1);
2462 else
2463 found = resolve_collision(c, key, &znode, &n, nm);
2464 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2465 if (found < 0) {
2466 err = found;
2467 goto out_unlock;
2468 }
2469
2470 /* Ensure the znode is dirtied */
2471 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2472 znode = dirty_cow_bottom_up(c, znode);
2473 if (IS_ERR(znode)) {
2474 err = PTR_ERR(znode);
2475 goto out_unlock;
2476 }
2477 }
2478
2479 if (found == 1) {
2480 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2481
2482 lnc_free(zbr);
2483 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2484 zbr->lnum = lnum;
2485 zbr->offs = offs;
2486 zbr->len = len;
2487 goto out_unlock;
2488 }
2489 }
2490
2491 if (!found) {
2492 struct ubifs_zbranch zbr;
2493
2494 zbr.znode = NULL;
2495 zbr.lnum = lnum;
2496 zbr.offs = offs;
2497 zbr.len = len;
2498 key_copy(c, key, &zbr.key);
2499 err = tnc_insert(c, znode, &zbr, n + 1);
2500 if (err)
2501 goto out_unlock;
2502 if (c->replaying) {
2503 /*
2504 * We did not find it in the index so there may be a
2505 * dangling branch still in the index. So we remove it
2506 * by passing 'ubifs_tnc_remove_nm()' the same key but
2507 * an unmatchable name.
2508 */
2509 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2510
2511 err = dbg_check_tnc(c, 0);
2512 mutex_unlock(&c->tnc_mutex);
2513 if (err)
2514 return err;
2515 return ubifs_tnc_remove_nm(c, key, &noname);
2516 }
2517 }
2518
2519 out_unlock:
2520 if (!err)
2521 err = dbg_check_tnc(c, 0);
2522 mutex_unlock(&c->tnc_mutex);
2523 return err;
2524 }
2525
2526 /**
2527 * tnc_delete - delete a znode form TNC.
2528 * @c: UBIFS file-system description object
2529 * @znode: znode to delete from
2530 * @n: zbranch slot number to delete
2531 *
2532 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2533 * case of success and a negative error code in case of failure.
2534 */
tnc_delete(struct ubifs_info * c,struct ubifs_znode * znode,int n)2535 static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2536 {
2537 struct ubifs_zbranch *zbr;
2538 struct ubifs_znode *zp;
2539 int i, err;
2540
2541 /* Delete without merge for now */
2542 ubifs_assert(c, znode->level == 0);
2543 ubifs_assert(c, n >= 0 && n < c->fanout);
2544 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2545
2546 zbr = &znode->zbranch[n];
2547 lnc_free(zbr);
2548
2549 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2550 if (err) {
2551 ubifs_dump_znode(c, znode);
2552 return err;
2553 }
2554
2555 /* We do not "gap" zbranch slots */
2556 for (i = n; i < znode->child_cnt - 1; i++)
2557 znode->zbranch[i] = znode->zbranch[i + 1];
2558 znode->child_cnt -= 1;
2559
2560 if (znode->child_cnt > 0)
2561 return 0;
2562
2563 /*
2564 * This was the last zbranch, we have to delete this znode from the
2565 * parent.
2566 */
2567
2568 do {
2569 ubifs_assert(c, !ubifs_zn_obsolete(znode));
2570 ubifs_assert(c, ubifs_zn_dirty(znode));
2571
2572 zp = znode->parent;
2573 n = znode->iip;
2574
2575 atomic_long_dec(&c->dirty_zn_cnt);
2576
2577 err = insert_old_idx_znode(c, znode);
2578 if (err)
2579 return err;
2580
2581 if (znode->cnext) {
2582 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2583 atomic_long_inc(&c->clean_zn_cnt);
2584 atomic_long_inc(&ubifs_clean_zn_cnt);
2585 } else
2586 kfree(znode);
2587 znode = zp;
2588 } while (znode->child_cnt == 1); /* while removing last child */
2589
2590 /* Remove from znode, entry n - 1 */
2591 znode->child_cnt -= 1;
2592 ubifs_assert(c, znode->level != 0);
2593 for (i = n; i < znode->child_cnt; i++) {
2594 znode->zbranch[i] = znode->zbranch[i + 1];
2595 if (znode->zbranch[i].znode)
2596 znode->zbranch[i].znode->iip = i;
2597 }
2598
2599 /*
2600 * If this is the root and it has only 1 child then
2601 * collapse the tree.
2602 */
2603 if (!znode->parent) {
2604 while (znode->child_cnt == 1 && znode->level != 0) {
2605 zp = znode;
2606 zbr = &znode->zbranch[0];
2607 znode = get_znode(c, znode, 0);
2608 if (IS_ERR(znode))
2609 return PTR_ERR(znode);
2610 znode = dirty_cow_znode(c, zbr);
2611 if (IS_ERR(znode))
2612 return PTR_ERR(znode);
2613 znode->parent = NULL;
2614 znode->iip = 0;
2615 if (c->zroot.len) {
2616 err = insert_old_idx(c, c->zroot.lnum,
2617 c->zroot.offs);
2618 if (err)
2619 return err;
2620 }
2621 c->zroot.lnum = zbr->lnum;
2622 c->zroot.offs = zbr->offs;
2623 c->zroot.len = zbr->len;
2624 c->zroot.znode = znode;
2625 ubifs_assert(c, !ubifs_zn_obsolete(zp));
2626 ubifs_assert(c, ubifs_zn_dirty(zp));
2627 atomic_long_dec(&c->dirty_zn_cnt);
2628
2629 if (zp->cnext) {
2630 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2631 atomic_long_inc(&c->clean_zn_cnt);
2632 atomic_long_inc(&ubifs_clean_zn_cnt);
2633 } else
2634 kfree(zp);
2635 }
2636 }
2637
2638 return 0;
2639 }
2640
2641 /**
2642 * ubifs_tnc_remove - remove an index entry of a node.
2643 * @c: UBIFS file-system description object
2644 * @key: key of node
2645 *
2646 * Returns %0 on success or negative error code on failure.
2647 */
ubifs_tnc_remove(struct ubifs_info * c,const union ubifs_key * key)2648 int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2649 {
2650 int found, n, err = 0;
2651 struct ubifs_znode *znode;
2652
2653 mutex_lock(&c->tnc_mutex);
2654 dbg_tnck(key, "key ");
2655 found = lookup_level0_dirty(c, key, &znode, &n);
2656 if (found < 0) {
2657 err = found;
2658 goto out_unlock;
2659 }
2660 if (found == 1)
2661 err = tnc_delete(c, znode, n);
2662 if (!err)
2663 err = dbg_check_tnc(c, 0);
2664
2665 out_unlock:
2666 mutex_unlock(&c->tnc_mutex);
2667 return err;
2668 }
2669
2670 /**
2671 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2672 * @c: UBIFS file-system description object
2673 * @key: key of node
2674 * @nm: directory entry name
2675 *
2676 * Returns %0 on success or negative error code on failure.
2677 */
ubifs_tnc_remove_nm(struct ubifs_info * c,const union ubifs_key * key,const struct fscrypt_name * nm)2678 int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2679 const struct fscrypt_name *nm)
2680 {
2681 int n, err;
2682 struct ubifs_znode *znode;
2683
2684 mutex_lock(&c->tnc_mutex);
2685 dbg_tnck(key, "key ");
2686 err = lookup_level0_dirty(c, key, &znode, &n);
2687 if (err < 0)
2688 goto out_unlock;
2689
2690 if (err) {
2691 if (c->replaying)
2692 err = fallible_resolve_collision(c, key, &znode, &n,
2693 nm, 0);
2694 else
2695 err = resolve_collision(c, key, &znode, &n, nm);
2696 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2697 if (err < 0)
2698 goto out_unlock;
2699 if (err) {
2700 /* Ensure the znode is dirtied */
2701 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2702 znode = dirty_cow_bottom_up(c, znode);
2703 if (IS_ERR(znode)) {
2704 err = PTR_ERR(znode);
2705 goto out_unlock;
2706 }
2707 }
2708 err = tnc_delete(c, znode, n);
2709 }
2710 }
2711
2712 out_unlock:
2713 if (!err)
2714 err = dbg_check_tnc(c, 0);
2715 mutex_unlock(&c->tnc_mutex);
2716 return err;
2717 }
2718
2719 /**
2720 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2721 * @c: UBIFS file-system description object
2722 * @key: key of node
2723 * @cookie: node cookie for collision resolution
2724 *
2725 * Returns %0 on success or negative error code on failure.
2726 */
ubifs_tnc_remove_dh(struct ubifs_info * c,const union ubifs_key * key,uint32_t cookie)2727 int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2728 uint32_t cookie)
2729 {
2730 int n, err;
2731 struct ubifs_znode *znode;
2732 struct ubifs_dent_node *dent;
2733 struct ubifs_zbranch *zbr;
2734
2735 if (!c->double_hash)
2736 return -EOPNOTSUPP;
2737
2738 mutex_lock(&c->tnc_mutex);
2739 err = lookup_level0_dirty(c, key, &znode, &n);
2740 if (err <= 0)
2741 goto out_unlock;
2742
2743 zbr = &znode->zbranch[n];
2744 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2745 if (!dent) {
2746 err = -ENOMEM;
2747 goto out_unlock;
2748 }
2749
2750 err = tnc_read_hashed_node(c, zbr, dent);
2751 if (err)
2752 goto out_free;
2753
2754 /* If the cookie does not match, we're facing a hash collision. */
2755 if (le32_to_cpu(dent->cookie) != cookie) {
2756 union ubifs_key start_key;
2757
2758 lowest_dent_key(c, &start_key, key_inum(c, key));
2759
2760 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2761 if (unlikely(err < 0))
2762 goto out_free;
2763
2764 err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2765 if (err)
2766 goto out_free;
2767 }
2768
2769 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2770 znode = dirty_cow_bottom_up(c, znode);
2771 if (IS_ERR(znode)) {
2772 err = PTR_ERR(znode);
2773 goto out_free;
2774 }
2775 }
2776 err = tnc_delete(c, znode, n);
2777
2778 out_free:
2779 kfree(dent);
2780 out_unlock:
2781 if (!err)
2782 err = dbg_check_tnc(c, 0);
2783 mutex_unlock(&c->tnc_mutex);
2784 return err;
2785 }
2786
2787 /**
2788 * key_in_range - determine if a key falls within a range of keys.
2789 * @c: UBIFS file-system description object
2790 * @key: key to check
2791 * @from_key: lowest key in range
2792 * @to_key: highest key in range
2793 *
2794 * This function returns %1 if the key is in range and %0 otherwise.
2795 */
key_in_range(struct ubifs_info * c,union ubifs_key * key,union ubifs_key * from_key,union ubifs_key * to_key)2796 static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2797 union ubifs_key *from_key, union ubifs_key *to_key)
2798 {
2799 if (keys_cmp(c, key, from_key) < 0)
2800 return 0;
2801 if (keys_cmp(c, key, to_key) > 0)
2802 return 0;
2803 return 1;
2804 }
2805
2806 /**
2807 * ubifs_tnc_remove_range - remove index entries in range.
2808 * @c: UBIFS file-system description object
2809 * @from_key: lowest key to remove
2810 * @to_key: highest key to remove
2811 *
2812 * This function removes index entries starting at @from_key and ending at
2813 * @to_key. This function returns zero in case of success and a negative error
2814 * code in case of failure.
2815 */
ubifs_tnc_remove_range(struct ubifs_info * c,union ubifs_key * from_key,union ubifs_key * to_key)2816 int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2817 union ubifs_key *to_key)
2818 {
2819 int i, n, k, err = 0;
2820 struct ubifs_znode *znode;
2821 union ubifs_key *key;
2822
2823 mutex_lock(&c->tnc_mutex);
2824 while (1) {
2825 /* Find first level 0 znode that contains keys to remove */
2826 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2827 if (err < 0)
2828 goto out_unlock;
2829
2830 if (err)
2831 key = from_key;
2832 else {
2833 err = tnc_next(c, &znode, &n);
2834 if (err == -ENOENT) {
2835 err = 0;
2836 goto out_unlock;
2837 }
2838 if (err < 0)
2839 goto out_unlock;
2840 key = &znode->zbranch[n].key;
2841 if (!key_in_range(c, key, from_key, to_key)) {
2842 err = 0;
2843 goto out_unlock;
2844 }
2845 }
2846
2847 /* Ensure the znode is dirtied */
2848 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2849 znode = dirty_cow_bottom_up(c, znode);
2850 if (IS_ERR(znode)) {
2851 err = PTR_ERR(znode);
2852 goto out_unlock;
2853 }
2854 }
2855
2856 /* Remove all keys in range except the first */
2857 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2858 key = &znode->zbranch[i].key;
2859 if (!key_in_range(c, key, from_key, to_key))
2860 break;
2861 lnc_free(&znode->zbranch[i]);
2862 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2863 znode->zbranch[i].len);
2864 if (err) {
2865 ubifs_dump_znode(c, znode);
2866 goto out_unlock;
2867 }
2868 dbg_tnck(key, "removing key ");
2869 }
2870 if (k) {
2871 for (i = n + 1 + k; i < znode->child_cnt; i++)
2872 znode->zbranch[i - k] = znode->zbranch[i];
2873 znode->child_cnt -= k;
2874 }
2875
2876 /* Now delete the first */
2877 err = tnc_delete(c, znode, n);
2878 if (err)
2879 goto out_unlock;
2880 }
2881
2882 out_unlock:
2883 if (!err)
2884 err = dbg_check_tnc(c, 0);
2885 mutex_unlock(&c->tnc_mutex);
2886 return err;
2887 }
2888
2889 /**
2890 * ubifs_tnc_remove_ino - remove an inode from TNC.
2891 * @c: UBIFS file-system description object
2892 * @inum: inode number to remove
2893 *
2894 * This function remove inode @inum and all the extended attributes associated
2895 * with the anode from TNC and returns zero in case of success or a negative
2896 * error code in case of failure.
2897 */
ubifs_tnc_remove_ino(struct ubifs_info * c,ino_t inum)2898 int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2899 {
2900 union ubifs_key key1, key2;
2901 struct ubifs_dent_node *xent, *pxent = NULL;
2902 struct fscrypt_name nm = {0};
2903
2904 dbg_tnc("ino %lu", (unsigned long)inum);
2905
2906 /*
2907 * Walk all extended attribute entries and remove them together with
2908 * corresponding extended attribute inodes.
2909 */
2910 lowest_xent_key(c, &key1, inum);
2911 while (1) {
2912 ino_t xattr_inum;
2913 int err;
2914
2915 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2916 if (IS_ERR(xent)) {
2917 err = PTR_ERR(xent);
2918 if (err == -ENOENT)
2919 break;
2920 return err;
2921 }
2922
2923 xattr_inum = le64_to_cpu(xent->inum);
2924 dbg_tnc("xent '%s', ino %lu", xent->name,
2925 (unsigned long)xattr_inum);
2926
2927 ubifs_evict_xattr_inode(c, xattr_inum);
2928
2929 fname_name(&nm) = xent->name;
2930 fname_len(&nm) = le16_to_cpu(xent->nlen);
2931 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2932 if (err) {
2933 kfree(xent);
2934 return err;
2935 }
2936
2937 lowest_ino_key(c, &key1, xattr_inum);
2938 highest_ino_key(c, &key2, xattr_inum);
2939 err = ubifs_tnc_remove_range(c, &key1, &key2);
2940 if (err) {
2941 kfree(xent);
2942 return err;
2943 }
2944
2945 kfree(pxent);
2946 pxent = xent;
2947 key_read(c, &xent->key, &key1);
2948 }
2949
2950 kfree(pxent);
2951 lowest_ino_key(c, &key1, inum);
2952 highest_ino_key(c, &key2, inum);
2953
2954 return ubifs_tnc_remove_range(c, &key1, &key2);
2955 }
2956
2957 /**
2958 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2959 * @c: UBIFS file-system description object
2960 * @key: key of last entry
2961 * @nm: name of last entry found or %NULL
2962 *
2963 * This function finds and reads the next directory or extended attribute entry
2964 * after the given key (@key) if there is one. @nm is used to resolve
2965 * collisions.
2966 *
2967 * If the name of the current entry is not known and only the key is known,
2968 * @nm->name has to be %NULL. In this case the semantics of this function is a
2969 * little bit different and it returns the entry corresponding to this key, not
2970 * the next one. If the key was not found, the closest "right" entry is
2971 * returned.
2972 *
2973 * If the fist entry has to be found, @key has to contain the lowest possible
2974 * key value for this inode and @name has to be %NULL.
2975 *
2976 * This function returns the found directory or extended attribute entry node
2977 * in case of success, %-ENOENT is returned if no entry was found, and a
2978 * negative error code is returned in case of failure.
2979 */
ubifs_tnc_next_ent(struct ubifs_info * c,union ubifs_key * key,const struct fscrypt_name * nm)2980 struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2981 union ubifs_key *key,
2982 const struct fscrypt_name *nm)
2983 {
2984 int n, err, type = key_type(c, key);
2985 struct ubifs_znode *znode;
2986 struct ubifs_dent_node *dent;
2987 struct ubifs_zbranch *zbr;
2988 union ubifs_key *dkey;
2989
2990 dbg_tnck(key, "key ");
2991 ubifs_assert(c, is_hash_key(c, key));
2992
2993 mutex_lock(&c->tnc_mutex);
2994 err = ubifs_lookup_level0(c, key, &znode, &n);
2995 if (unlikely(err < 0))
2996 goto out_unlock;
2997
2998 if (fname_len(nm) > 0) {
2999 if (err) {
3000 /* Handle collisions */
3001 if (c->replaying)
3002 err = fallible_resolve_collision(c, key, &znode, &n,
3003 nm, 0);
3004 else
3005 err = resolve_collision(c, key, &znode, &n, nm);
3006 dbg_tnc("rc returned %d, znode %p, n %d",
3007 err, znode, n);
3008 if (unlikely(err < 0))
3009 goto out_unlock;
3010 }
3011
3012 /* Now find next entry */
3013 err = tnc_next(c, &znode, &n);
3014 if (unlikely(err))
3015 goto out_unlock;
3016 } else {
3017 /*
3018 * The full name of the entry was not given, in which case the
3019 * behavior of this function is a little different and it
3020 * returns current entry, not the next one.
3021 */
3022 if (!err) {
3023 /*
3024 * However, the given key does not exist in the TNC
3025 * tree and @znode/@n variables contain the closest
3026 * "preceding" element. Switch to the next one.
3027 */
3028 err = tnc_next(c, &znode, &n);
3029 if (err)
3030 goto out_unlock;
3031 }
3032 }
3033
3034 zbr = &znode->zbranch[n];
3035 dent = kmalloc(zbr->len, GFP_NOFS);
3036 if (unlikely(!dent)) {
3037 err = -ENOMEM;
3038 goto out_unlock;
3039 }
3040
3041 /*
3042 * The above 'tnc_next()' call could lead us to the next inode, check
3043 * this.
3044 */
3045 dkey = &zbr->key;
3046 if (key_inum(c, dkey) != key_inum(c, key) ||
3047 key_type(c, dkey) != type) {
3048 err = -ENOENT;
3049 goto out_free;
3050 }
3051
3052 err = tnc_read_hashed_node(c, zbr, dent);
3053 if (unlikely(err))
3054 goto out_free;
3055
3056 mutex_unlock(&c->tnc_mutex);
3057 return dent;
3058
3059 out_free:
3060 kfree(dent);
3061 out_unlock:
3062 mutex_unlock(&c->tnc_mutex);
3063 return ERR_PTR(err);
3064 }
3065
3066 /**
3067 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3068 * @c: UBIFS file-system description object
3069 *
3070 * Destroy left-over obsolete znodes from a failed commit.
3071 */
tnc_destroy_cnext(struct ubifs_info * c)3072 static void tnc_destroy_cnext(struct ubifs_info *c)
3073 {
3074 struct ubifs_znode *cnext;
3075
3076 if (!c->cnext)
3077 return;
3078 ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3079 cnext = c->cnext;
3080 do {
3081 struct ubifs_znode *znode = cnext;
3082
3083 cnext = cnext->cnext;
3084 if (ubifs_zn_obsolete(znode))
3085 kfree(znode);
3086 else if (!ubifs_zn_cow(znode)) {
3087 /*
3088 * Don't forget to update clean znode count after
3089 * committing failed, because ubifs will check this
3090 * count while closing tnc. Non-obsolete znode could
3091 * be re-dirtied during committing process, so dirty
3092 * flag is untrustable. The flag 'COW_ZNODE' is set
3093 * for each dirty znode before committing, and it is
3094 * cleared as long as the znode become clean, so we
3095 * can statistic clean znode count according to this
3096 * flag.
3097 */
3098 atomic_long_inc(&c->clean_zn_cnt);
3099 atomic_long_inc(&ubifs_clean_zn_cnt);
3100 }
3101 } while (cnext && cnext != c->cnext);
3102 }
3103
3104 /**
3105 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3106 * @c: UBIFS file-system description object
3107 */
ubifs_tnc_close(struct ubifs_info * c)3108 void ubifs_tnc_close(struct ubifs_info *c)
3109 {
3110 tnc_destroy_cnext(c);
3111 if (c->zroot.znode) {
3112 long n, freed;
3113
3114 n = atomic_long_read(&c->clean_zn_cnt);
3115 freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3116 ubifs_assert(c, freed == n);
3117 atomic_long_sub(n, &ubifs_clean_zn_cnt);
3118 }
3119 kfree(c->gap_lebs);
3120 kfree(c->ilebs);
3121 destroy_old_idx(c);
3122 }
3123
3124 /**
3125 * left_znode - get the znode to the left.
3126 * @c: UBIFS file-system description object
3127 * @znode: znode
3128 *
3129 * This function returns a pointer to the znode to the left of @znode or NULL if
3130 * there is not one. A negative error code is returned on failure.
3131 */
left_znode(struct ubifs_info * c,struct ubifs_znode * znode)3132 static struct ubifs_znode *left_znode(struct ubifs_info *c,
3133 struct ubifs_znode *znode)
3134 {
3135 int level = znode->level;
3136
3137 while (1) {
3138 int n = znode->iip - 1;
3139
3140 /* Go up until we can go left */
3141 znode = znode->parent;
3142 if (!znode)
3143 return NULL;
3144 if (n >= 0) {
3145 /* Now go down the rightmost branch to 'level' */
3146 znode = get_znode(c, znode, n);
3147 if (IS_ERR(znode))
3148 return znode;
3149 while (znode->level != level) {
3150 n = znode->child_cnt - 1;
3151 znode = get_znode(c, znode, n);
3152 if (IS_ERR(znode))
3153 return znode;
3154 }
3155 break;
3156 }
3157 }
3158 return znode;
3159 }
3160
3161 /**
3162 * right_znode - get the znode to the right.
3163 * @c: UBIFS file-system description object
3164 * @znode: znode
3165 *
3166 * This function returns a pointer to the znode to the right of @znode or NULL
3167 * if there is not one. A negative error code is returned on failure.
3168 */
right_znode(struct ubifs_info * c,struct ubifs_znode * znode)3169 static struct ubifs_znode *right_znode(struct ubifs_info *c,
3170 struct ubifs_znode *znode)
3171 {
3172 int level = znode->level;
3173
3174 while (1) {
3175 int n = znode->iip + 1;
3176
3177 /* Go up until we can go right */
3178 znode = znode->parent;
3179 if (!znode)
3180 return NULL;
3181 if (n < znode->child_cnt) {
3182 /* Now go down the leftmost branch to 'level' */
3183 znode = get_znode(c, znode, n);
3184 if (IS_ERR(znode))
3185 return znode;
3186 while (znode->level != level) {
3187 znode = get_znode(c, znode, 0);
3188 if (IS_ERR(znode))
3189 return znode;
3190 }
3191 break;
3192 }
3193 }
3194 return znode;
3195 }
3196
3197 /**
3198 * lookup_znode - find a particular indexing node from TNC.
3199 * @c: UBIFS file-system description object
3200 * @key: index node key to lookup
3201 * @level: index node level
3202 * @lnum: index node LEB number
3203 * @offs: index node offset
3204 *
3205 * This function searches an indexing node by its first key @key and its
3206 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3207 * nodes it traverses to TNC. This function is called for indexing nodes which
3208 * were found on the media by scanning, for example when garbage-collecting or
3209 * when doing in-the-gaps commit. This means that the indexing node which is
3210 * looked for does not have to have exactly the same leftmost key @key, because
3211 * the leftmost key may have been changed, in which case TNC will contain a
3212 * dirty znode which still refers the same @lnum:@offs. This function is clever
3213 * enough to recognize such indexing nodes.
3214 *
3215 * Note, if a znode was deleted or changed too much, then this function will
3216 * not find it. For situations like this UBIFS has the old index RB-tree
3217 * (indexed by @lnum:@offs).
3218 *
3219 * This function returns a pointer to the znode found or %NULL if it is not
3220 * found. A negative error code is returned on failure.
3221 */
lookup_znode(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3222 static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3223 union ubifs_key *key, int level,
3224 int lnum, int offs)
3225 {
3226 struct ubifs_znode *znode, *zn;
3227 int n, nn;
3228
3229 ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3230
3231 /*
3232 * The arguments have probably been read off flash, so don't assume
3233 * they are valid.
3234 */
3235 if (level < 0)
3236 return ERR_PTR(-EINVAL);
3237
3238 /* Get the root znode */
3239 znode = c->zroot.znode;
3240 if (!znode) {
3241 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3242 if (IS_ERR(znode))
3243 return znode;
3244 }
3245 /* Check if it is the one we are looking for */
3246 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3247 return znode;
3248 /* Descend to the parent level i.e. (level + 1) */
3249 if (level >= znode->level)
3250 return NULL;
3251 while (1) {
3252 ubifs_search_zbranch(c, znode, key, &n);
3253 if (n < 0) {
3254 /*
3255 * We reached a znode where the leftmost key is greater
3256 * than the key we are searching for. This is the same
3257 * situation as the one described in a huge comment at
3258 * the end of the 'ubifs_lookup_level0()' function. And
3259 * for exactly the same reasons we have to try to look
3260 * left before giving up.
3261 */
3262 znode = left_znode(c, znode);
3263 if (!znode)
3264 return NULL;
3265 if (IS_ERR(znode))
3266 return znode;
3267 ubifs_search_zbranch(c, znode, key, &n);
3268 ubifs_assert(c, n >= 0);
3269 }
3270 if (znode->level == level + 1)
3271 break;
3272 znode = get_znode(c, znode, n);
3273 if (IS_ERR(znode))
3274 return znode;
3275 }
3276 /* Check if the child is the one we are looking for */
3277 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3278 return get_znode(c, znode, n);
3279 /* If the key is unique, there is nowhere else to look */
3280 if (!is_hash_key(c, key))
3281 return NULL;
3282 /*
3283 * The key is not unique and so may be also in the znodes to either
3284 * side.
3285 */
3286 zn = znode;
3287 nn = n;
3288 /* Look left */
3289 while (1) {
3290 /* Move one branch to the left */
3291 if (n)
3292 n -= 1;
3293 else {
3294 znode = left_znode(c, znode);
3295 if (!znode)
3296 break;
3297 if (IS_ERR(znode))
3298 return znode;
3299 n = znode->child_cnt - 1;
3300 }
3301 /* Check it */
3302 if (znode->zbranch[n].lnum == lnum &&
3303 znode->zbranch[n].offs == offs)
3304 return get_znode(c, znode, n);
3305 /* Stop if the key is less than the one we are looking for */
3306 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3307 break;
3308 }
3309 /* Back to the middle */
3310 znode = zn;
3311 n = nn;
3312 /* Look right */
3313 while (1) {
3314 /* Move one branch to the right */
3315 if (++n >= znode->child_cnt) {
3316 znode = right_znode(c, znode);
3317 if (!znode)
3318 break;
3319 if (IS_ERR(znode))
3320 return znode;
3321 n = 0;
3322 }
3323 /* Check it */
3324 if (znode->zbranch[n].lnum == lnum &&
3325 znode->zbranch[n].offs == offs)
3326 return get_znode(c, znode, n);
3327 /* Stop if the key is greater than the one we are looking for */
3328 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3329 break;
3330 }
3331 return NULL;
3332 }
3333
3334 /**
3335 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3336 * @c: UBIFS file-system description object
3337 * @key: key of index node
3338 * @level: index node level
3339 * @lnum: LEB number of index node
3340 * @offs: offset of index node
3341 *
3342 * This function returns %0 if the index node is not referred to in the TNC, %1
3343 * if the index node is referred to in the TNC and the corresponding znode is
3344 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3345 * znode is clean, and a negative error code in case of failure.
3346 *
3347 * Note, the @key argument has to be the key of the first child. Also note,
3348 * this function relies on the fact that 0:0 is never a valid LEB number and
3349 * offset for a main-area node.
3350 */
is_idx_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3351 int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3352 int lnum, int offs)
3353 {
3354 struct ubifs_znode *znode;
3355
3356 znode = lookup_znode(c, key, level, lnum, offs);
3357 if (!znode)
3358 return 0;
3359 if (IS_ERR(znode))
3360 return PTR_ERR(znode);
3361
3362 return ubifs_zn_dirty(znode) ? 1 : 2;
3363 }
3364
3365 /**
3366 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3367 * @c: UBIFS file-system description object
3368 * @key: node key
3369 * @lnum: node LEB number
3370 * @offs: node offset
3371 *
3372 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3373 * not, and a negative error code in case of failure.
3374 *
3375 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3376 * and offset for a main-area node.
3377 */
is_leaf_node_in_tnc(struct ubifs_info * c,union ubifs_key * key,int lnum,int offs)3378 static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3379 int lnum, int offs)
3380 {
3381 struct ubifs_zbranch *zbr;
3382 struct ubifs_znode *znode, *zn;
3383 int n, found, err, nn;
3384 const int unique = !is_hash_key(c, key);
3385
3386 found = ubifs_lookup_level0(c, key, &znode, &n);
3387 if (found < 0)
3388 return found; /* Error code */
3389 if (!found)
3390 return 0;
3391 zbr = &znode->zbranch[n];
3392 if (lnum == zbr->lnum && offs == zbr->offs)
3393 return 1; /* Found it */
3394 if (unique)
3395 return 0;
3396 /*
3397 * Because the key is not unique, we have to look left
3398 * and right as well
3399 */
3400 zn = znode;
3401 nn = n;
3402 /* Look left */
3403 while (1) {
3404 err = tnc_prev(c, &znode, &n);
3405 if (err == -ENOENT)
3406 break;
3407 if (err)
3408 return err;
3409 if (keys_cmp(c, key, &znode->zbranch[n].key))
3410 break;
3411 zbr = &znode->zbranch[n];
3412 if (lnum == zbr->lnum && offs == zbr->offs)
3413 return 1; /* Found it */
3414 }
3415 /* Look right */
3416 znode = zn;
3417 n = nn;
3418 while (1) {
3419 err = tnc_next(c, &znode, &n);
3420 if (err) {
3421 if (err == -ENOENT)
3422 return 0;
3423 return err;
3424 }
3425 if (keys_cmp(c, key, &znode->zbranch[n].key))
3426 break;
3427 zbr = &znode->zbranch[n];
3428 if (lnum == zbr->lnum && offs == zbr->offs)
3429 return 1; /* Found it */
3430 }
3431 return 0;
3432 }
3433
3434 /**
3435 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3436 * @c: UBIFS file-system description object
3437 * @key: node key
3438 * @level: index node level (if it is an index node)
3439 * @lnum: node LEB number
3440 * @offs: node offset
3441 * @is_idx: non-zero if the node is an index node
3442 *
3443 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3444 * negative error code in case of failure. For index nodes, @key has to be the
3445 * key of the first child. An index node is considered to be in the TNC only if
3446 * the corresponding znode is clean or has not been loaded.
3447 */
ubifs_tnc_has_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs,int is_idx)3448 int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3449 int lnum, int offs, int is_idx)
3450 {
3451 int err;
3452
3453 mutex_lock(&c->tnc_mutex);
3454 if (is_idx) {
3455 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3456 if (err < 0)
3457 goto out_unlock;
3458 if (err == 1)
3459 /* The index node was found but it was dirty */
3460 err = 0;
3461 else if (err == 2)
3462 /* The index node was found and it was clean */
3463 err = 1;
3464 else
3465 BUG_ON(err != 0);
3466 } else
3467 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3468
3469 out_unlock:
3470 mutex_unlock(&c->tnc_mutex);
3471 return err;
3472 }
3473
3474 /**
3475 * ubifs_dirty_idx_node - dirty an index node.
3476 * @c: UBIFS file-system description object
3477 * @key: index node key
3478 * @level: index node level
3479 * @lnum: index node LEB number
3480 * @offs: index node offset
3481 *
3482 * This function loads and dirties an index node so that it can be garbage
3483 * collected. The @key argument has to be the key of the first child. This
3484 * function relies on the fact that 0:0 is never a valid LEB number and offset
3485 * for a main-area node. Returns %0 on success and a negative error code on
3486 * failure.
3487 */
ubifs_dirty_idx_node(struct ubifs_info * c,union ubifs_key * key,int level,int lnum,int offs)3488 int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3489 int lnum, int offs)
3490 {
3491 struct ubifs_znode *znode;
3492 int err = 0;
3493
3494 mutex_lock(&c->tnc_mutex);
3495 znode = lookup_znode(c, key, level, lnum, offs);
3496 if (!znode)
3497 goto out_unlock;
3498 if (IS_ERR(znode)) {
3499 err = PTR_ERR(znode);
3500 goto out_unlock;
3501 }
3502 znode = dirty_cow_bottom_up(c, znode);
3503 if (IS_ERR(znode)) {
3504 err = PTR_ERR(znode);
3505 goto out_unlock;
3506 }
3507
3508 out_unlock:
3509 mutex_unlock(&c->tnc_mutex);
3510 return err;
3511 }
3512
3513 /**
3514 * dbg_check_inode_size - check if inode size is correct.
3515 * @c: UBIFS file-system description object
3516 * @inum: inode number
3517 * @size: inode size
3518 *
3519 * This function makes sure that the inode size (@size) is correct and it does
3520 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3521 * if it has a data page beyond @size, and other negative error code in case of
3522 * other errors.
3523 */
dbg_check_inode_size(struct ubifs_info * c,const struct inode * inode,loff_t size)3524 int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3525 loff_t size)
3526 {
3527 int err, n;
3528 union ubifs_key from_key, to_key, *key;
3529 struct ubifs_znode *znode;
3530 unsigned int block;
3531
3532 if (!S_ISREG(inode->i_mode))
3533 return 0;
3534 if (!dbg_is_chk_gen(c))
3535 return 0;
3536
3537 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3538 data_key_init(c, &from_key, inode->i_ino, block);
3539 highest_data_key(c, &to_key, inode->i_ino);
3540
3541 mutex_lock(&c->tnc_mutex);
3542 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3543 if (err < 0)
3544 goto out_unlock;
3545
3546 if (err) {
3547 key = &from_key;
3548 goto out_dump;
3549 }
3550
3551 err = tnc_next(c, &znode, &n);
3552 if (err == -ENOENT) {
3553 err = 0;
3554 goto out_unlock;
3555 }
3556 if (err < 0)
3557 goto out_unlock;
3558
3559 ubifs_assert(c, err == 0);
3560 key = &znode->zbranch[n].key;
3561 if (!key_in_range(c, key, &from_key, &to_key))
3562 goto out_unlock;
3563
3564 out_dump:
3565 block = key_block(c, key);
3566 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3567 (unsigned long)inode->i_ino, size,
3568 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3569 mutex_unlock(&c->tnc_mutex);
3570 ubifs_dump_inode(c, inode);
3571 dump_stack();
3572 return -EINVAL;
3573
3574 out_unlock:
3575 mutex_unlock(&c->tnc_mutex);
3576 return err;
3577 }
3578