1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS superblock. The superblock is stored at the first
25  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26  * change it. The superblock node mostly contains geometry information.
27  */
28 
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/math64.h>
32 #include <linux/uuid.h>
33 
34 /*
35  * Default journal size in logical eraseblocks as a percent of total
36  * flash size.
37  */
38 #define DEFAULT_JNL_PERCENT 5
39 
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
42 
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
45 
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
48 
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB  0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB   2
53 
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
56 
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
59 
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62 
63 /* Default time granularity in nanoseconds */
64 #define DEFAULT_TIME_GRAN 1000000000
65 
get_default_compressor(struct ubifs_info * c)66 static int get_default_compressor(struct ubifs_info *c)
67 {
68 	if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
69 		return UBIFS_COMPR_LZO;
70 
71 	if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
72 		return UBIFS_COMPR_ZLIB;
73 
74 	return UBIFS_COMPR_NONE;
75 }
76 
77 /**
78  * create_default_filesystem - format empty UBI volume.
79  * @c: UBIFS file-system description object
80  *
81  * This function creates default empty file-system. Returns zero in case of
82  * success and a negative error code in case of failure.
83  */
create_default_filesystem(struct ubifs_info * c)84 static int create_default_filesystem(struct ubifs_info *c)
85 {
86 	struct ubifs_sb_node *sup;
87 	struct ubifs_mst_node *mst;
88 	struct ubifs_idx_node *idx;
89 	struct ubifs_branch *br;
90 	struct ubifs_ino_node *ino;
91 	struct ubifs_cs_node *cs;
92 	union ubifs_key key;
93 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
94 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
95 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
96 	long long tmp64, main_bytes;
97 	__le64 tmp_le64;
98 	__le32 tmp_le32;
99 	struct timespec64 ts;
100 
101 	/* Some functions called from here depend on the @c->key_len filed */
102 	c->key_len = UBIFS_SK_LEN;
103 
104 	/*
105 	 * First of all, we have to calculate default file-system geometry -
106 	 * log size, journal size, etc.
107 	 */
108 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
109 		/* We can first multiply then divide and have no overflow */
110 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
111 	else
112 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
113 
114 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
115 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
116 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
117 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
118 
119 	/*
120 	 * The log should be large enough to fit reference nodes for all bud
121 	 * LEBs. Because buds do not have to start from the beginning of LEBs
122 	 * (half of the LEB may contain committed data), the log should
123 	 * generally be larger, make it twice as large.
124 	 */
125 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
126 	log_lebs = tmp / c->leb_size;
127 	/* Plus one LEB reserved for commit */
128 	log_lebs += 1;
129 	if (c->leb_cnt - min_leb_cnt > 8) {
130 		/* And some extra space to allow writes while committing */
131 		log_lebs += 1;
132 		min_leb_cnt += 1;
133 	}
134 
135 	max_buds = jnl_lebs - log_lebs;
136 	if (max_buds < UBIFS_MIN_BUD_LEBS)
137 		max_buds = UBIFS_MIN_BUD_LEBS;
138 
139 	/*
140 	 * Orphan nodes are stored in a separate area. One node can store a lot
141 	 * of orphan inode numbers, but when new orphan comes we just add a new
142 	 * orphan node. At some point the nodes are consolidated into one
143 	 * orphan node.
144 	 */
145 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
146 	if (c->leb_cnt - min_leb_cnt > 1)
147 		/*
148 		 * For debugging purposes it is better to have at least 2
149 		 * orphan LEBs, because the orphan subsystem would need to do
150 		 * consolidations and would be stressed more.
151 		 */
152 		orph_lebs += 1;
153 
154 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
155 	main_lebs -= orph_lebs;
156 
157 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
158 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
159 	c->max_leb_cnt = c->leb_cnt;
160 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
161 				    &big_lpt);
162 	if (err)
163 		return err;
164 
165 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
166 		lpt_first + lpt_lebs - 1);
167 
168 	main_first = c->leb_cnt - main_lebs;
169 
170 	/* Create default superblock */
171 	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
172 	sup = kzalloc(tmp, GFP_KERNEL);
173 	if (!sup)
174 		return -ENOMEM;
175 
176 	tmp64 = (long long)max_buds * c->leb_size;
177 	if (big_lpt)
178 		sup_flags |= UBIFS_FLG_BIGLPT;
179 	sup_flags |= UBIFS_FLG_DOUBLE_HASH;
180 
181 	sup->ch.node_type  = UBIFS_SB_NODE;
182 	sup->key_hash      = UBIFS_KEY_HASH_R5;
183 	sup->flags         = cpu_to_le32(sup_flags);
184 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
185 	sup->leb_size      = cpu_to_le32(c->leb_size);
186 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
187 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
188 	sup->max_bud_bytes = cpu_to_le64(tmp64);
189 	sup->log_lebs      = cpu_to_le32(log_lebs);
190 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
191 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
192 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
193 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
194 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
195 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
196 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
197 	if (c->mount_opts.override_compr)
198 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
199 	else
200 		sup->default_compr = cpu_to_le16(get_default_compressor(c));
201 
202 	generate_random_uuid(sup->uuid);
203 
204 	main_bytes = (long long)main_lebs * c->leb_size;
205 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
206 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
207 		tmp64 = DEFAULT_MAX_RP_SIZE;
208 	sup->rp_size = cpu_to_le64(tmp64);
209 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
210 
211 	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
212 	kfree(sup);
213 	if (err)
214 		return err;
215 
216 	dbg_gen("default superblock created at LEB 0:0");
217 
218 	/* Create default master node */
219 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
220 	if (!mst)
221 		return -ENOMEM;
222 
223 	mst->ch.node_type = UBIFS_MST_NODE;
224 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
225 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
226 	mst->cmt_no       = 0;
227 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
228 	mst->root_offs    = 0;
229 	tmp = ubifs_idx_node_sz(c, 1);
230 	mst->root_len     = cpu_to_le32(tmp);
231 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
232 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
233 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
234 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
235 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
236 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
237 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
238 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
239 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
240 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
241 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
242 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
243 	mst->lscan_lnum   = cpu_to_le32(main_first);
244 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
245 	mst->idx_lebs     = cpu_to_le32(1);
246 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
247 
248 	/* Calculate lprops statistics */
249 	tmp64 = main_bytes;
250 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
251 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
252 	mst->total_free = cpu_to_le64(tmp64);
253 
254 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
255 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
256 			  UBIFS_INO_NODE_SZ;
257 	tmp64 += ino_waste;
258 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
259 	mst->total_dirty = cpu_to_le64(tmp64);
260 
261 	/*  The indexing LEB does not contribute to dark space */
262 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
263 	mst->total_dark = cpu_to_le64(tmp64);
264 
265 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
266 
267 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
268 	if (err) {
269 		kfree(mst);
270 		return err;
271 	}
272 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
273 			       0);
274 	kfree(mst);
275 	if (err)
276 		return err;
277 
278 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
279 
280 	/* Create the root indexing node */
281 	tmp = ubifs_idx_node_sz(c, 1);
282 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
283 	if (!idx)
284 		return -ENOMEM;
285 
286 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
287 	c->key_hash = key_r5_hash;
288 
289 	idx->ch.node_type = UBIFS_IDX_NODE;
290 	idx->child_cnt = cpu_to_le16(1);
291 	ino_key_init(c, &key, UBIFS_ROOT_INO);
292 	br = ubifs_idx_branch(c, idx, 0);
293 	key_write_idx(c, &key, &br->key);
294 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
295 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
296 	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
297 	kfree(idx);
298 	if (err)
299 		return err;
300 
301 	dbg_gen("default root indexing node created LEB %d:0",
302 		main_first + DEFAULT_IDX_LEB);
303 
304 	/* Create default root inode */
305 	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
306 	ino = kzalloc(tmp, GFP_KERNEL);
307 	if (!ino)
308 		return -ENOMEM;
309 
310 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
311 	ino->ch.node_type = UBIFS_INO_NODE;
312 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
313 	ino->nlink = cpu_to_le32(2);
314 
315 	ktime_get_real_ts64(&ts);
316 	ts = timespec64_trunc(ts, DEFAULT_TIME_GRAN);
317 	tmp_le64 = cpu_to_le64(ts.tv_sec);
318 	ino->atime_sec   = tmp_le64;
319 	ino->ctime_sec   = tmp_le64;
320 	ino->mtime_sec   = tmp_le64;
321 	tmp_le32 = cpu_to_le32(ts.tv_nsec);
322 	ino->atime_nsec  = tmp_le32;
323 	ino->ctime_nsec  = tmp_le32;
324 	ino->mtime_nsec  = tmp_le32;
325 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
326 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
327 
328 	/* Set compression enabled by default */
329 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
330 
331 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
332 			       main_first + DEFAULT_DATA_LEB, 0);
333 	kfree(ino);
334 	if (err)
335 		return err;
336 
337 	dbg_gen("root inode created at LEB %d:0",
338 		main_first + DEFAULT_DATA_LEB);
339 
340 	/*
341 	 * The first node in the log has to be the commit start node. This is
342 	 * always the case during normal file-system operation. Write a fake
343 	 * commit start node to the log.
344 	 */
345 	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
346 	cs = kzalloc(tmp, GFP_KERNEL);
347 	if (!cs)
348 		return -ENOMEM;
349 
350 	cs->ch.node_type = UBIFS_CS_NODE;
351 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
352 	kfree(cs);
353 	if (err)
354 		return err;
355 
356 	ubifs_msg(c, "default file-system created");
357 	return 0;
358 }
359 
360 /**
361  * validate_sb - validate superblock node.
362  * @c: UBIFS file-system description object
363  * @sup: superblock node
364  *
365  * This function validates superblock node @sup. Since most of data was read
366  * from the superblock and stored in @c, the function validates fields in @c
367  * instead. Returns zero in case of success and %-EINVAL in case of validation
368  * failure.
369  */
validate_sb(struct ubifs_info * c,struct ubifs_sb_node * sup)370 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
371 {
372 	long long max_bytes;
373 	int err = 1, min_leb_cnt;
374 
375 	if (!c->key_hash) {
376 		err = 2;
377 		goto failed;
378 	}
379 
380 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
381 		err = 3;
382 		goto failed;
383 	}
384 
385 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
386 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
387 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
388 		goto failed;
389 	}
390 
391 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
392 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
393 			  le32_to_cpu(sup->leb_size), c->leb_size);
394 		goto failed;
395 	}
396 
397 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
398 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
399 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
400 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
401 		err = 4;
402 		goto failed;
403 	}
404 
405 	/*
406 	 * Calculate minimum allowed amount of main area LEBs. This is very
407 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
408 	 * have just read from the superblock.
409 	 */
410 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
411 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
412 
413 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
414 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
415 			  c->leb_cnt, c->vi.size, min_leb_cnt);
416 		goto failed;
417 	}
418 
419 	if (c->max_leb_cnt < c->leb_cnt) {
420 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
421 			  c->max_leb_cnt, c->leb_cnt);
422 		goto failed;
423 	}
424 
425 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
426 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
427 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
428 		goto failed;
429 	}
430 
431 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
432 	if (c->max_bud_bytes < max_bytes) {
433 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
434 			  c->max_bud_bytes, max_bytes);
435 		goto failed;
436 	}
437 
438 	max_bytes = (long long)c->leb_size * c->main_lebs;
439 	if (c->max_bud_bytes > max_bytes) {
440 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
441 			  c->max_bud_bytes, max_bytes);
442 		goto failed;
443 	}
444 
445 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
446 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
447 		err = 9;
448 		goto failed;
449 	}
450 
451 	if (c->fanout < UBIFS_MIN_FANOUT ||
452 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
453 		err = 10;
454 		goto failed;
455 	}
456 
457 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
458 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
459 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
460 		err = 11;
461 		goto failed;
462 	}
463 
464 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
465 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
466 		err = 12;
467 		goto failed;
468 	}
469 
470 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
471 		err = 13;
472 		goto failed;
473 	}
474 
475 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
476 		err = 14;
477 		goto failed;
478 	}
479 
480 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
481 	    le32_to_cpu(sup->time_gran) < 1) {
482 		err = 15;
483 		goto failed;
484 	}
485 
486 	if (!c->double_hash && c->fmt_version >= 5) {
487 		err = 16;
488 		goto failed;
489 	}
490 
491 	if (c->encrypted && c->fmt_version < 5) {
492 		err = 17;
493 		goto failed;
494 	}
495 
496 	return 0;
497 
498 failed:
499 	ubifs_err(c, "bad superblock, error %d", err);
500 	ubifs_dump_node(c, sup);
501 	return -EINVAL;
502 }
503 
504 /**
505  * ubifs_read_sb_node - read superblock node.
506  * @c: UBIFS file-system description object
507  *
508  * This function returns a pointer to the superblock node or a negative error
509  * code. Note, the user of this function is responsible of kfree()'ing the
510  * returned superblock buffer.
511  */
ubifs_read_sb_node(struct ubifs_info * c)512 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
513 {
514 	struct ubifs_sb_node *sup;
515 	int err;
516 
517 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
518 	if (!sup)
519 		return ERR_PTR(-ENOMEM);
520 
521 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
522 			      UBIFS_SB_LNUM, 0);
523 	if (err) {
524 		kfree(sup);
525 		return ERR_PTR(err);
526 	}
527 
528 	return sup;
529 }
530 
531 /**
532  * ubifs_write_sb_node - write superblock node.
533  * @c: UBIFS file-system description object
534  * @sup: superblock node read with 'ubifs_read_sb_node()'
535  *
536  * This function returns %0 on success and a negative error code on failure.
537  */
ubifs_write_sb_node(struct ubifs_info * c,struct ubifs_sb_node * sup)538 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
539 {
540 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
541 
542 	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
543 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
544 }
545 
546 /**
547  * ubifs_read_superblock - read superblock.
548  * @c: UBIFS file-system description object
549  *
550  * This function finds, reads and checks the superblock. If an empty UBI volume
551  * is being mounted, this function creates default superblock. Returns zero in
552  * case of success, and a negative error code in case of failure.
553  */
ubifs_read_superblock(struct ubifs_info * c)554 int ubifs_read_superblock(struct ubifs_info *c)
555 {
556 	int err, sup_flags;
557 	struct ubifs_sb_node *sup;
558 
559 	if (c->empty) {
560 		err = create_default_filesystem(c);
561 		if (err)
562 			return err;
563 	}
564 
565 	sup = ubifs_read_sb_node(c);
566 	if (IS_ERR(sup))
567 		return PTR_ERR(sup);
568 
569 	c->fmt_version = le32_to_cpu(sup->fmt_version);
570 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
571 
572 	/*
573 	 * The software supports all previous versions but not future versions,
574 	 * due to the unavailability of time-travelling equipment.
575 	 */
576 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
577 		ubifs_assert(c, !c->ro_media || c->ro_mount);
578 		if (!c->ro_mount ||
579 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
580 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
581 				  c->fmt_version, c->ro_compat_version,
582 				  UBIFS_FORMAT_VERSION,
583 				  UBIFS_RO_COMPAT_VERSION);
584 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
585 				ubifs_msg(c, "only R/O mounting is possible");
586 				err = -EROFS;
587 			} else
588 				err = -EINVAL;
589 			goto out;
590 		}
591 
592 		/*
593 		 * The FS is mounted R/O, and the media format is
594 		 * R/O-compatible with the UBIFS implementation, so we can
595 		 * mount.
596 		 */
597 		c->rw_incompat = 1;
598 	}
599 
600 	if (c->fmt_version < 3) {
601 		ubifs_err(c, "on-flash format version %d is not supported",
602 			  c->fmt_version);
603 		err = -EINVAL;
604 		goto out;
605 	}
606 
607 	switch (sup->key_hash) {
608 	case UBIFS_KEY_HASH_R5:
609 		c->key_hash = key_r5_hash;
610 		c->key_hash_type = UBIFS_KEY_HASH_R5;
611 		break;
612 
613 	case UBIFS_KEY_HASH_TEST:
614 		c->key_hash = key_test_hash;
615 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
616 		break;
617 	};
618 
619 	c->key_fmt = sup->key_fmt;
620 
621 	switch (c->key_fmt) {
622 	case UBIFS_SIMPLE_KEY_FMT:
623 		c->key_len = UBIFS_SK_LEN;
624 		break;
625 	default:
626 		ubifs_err(c, "unsupported key format");
627 		err = -EINVAL;
628 		goto out;
629 	}
630 
631 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
632 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
633 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
634 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
635 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
636 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
637 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
638 	c->fanout        = le32_to_cpu(sup->fanout);
639 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
640 	c->rp_size       = le64_to_cpu(sup->rp_size);
641 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
642 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
643 	sup_flags        = le32_to_cpu(sup->flags);
644 	if (!c->mount_opts.override_compr)
645 		c->default_compr = le16_to_cpu(sup->default_compr);
646 
647 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
648 	memcpy(&c->uuid, &sup->uuid, 16);
649 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
650 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
651 	c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
652 	c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
653 
654 	if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
655 		ubifs_err(c, "Unknown feature flags found: %#x",
656 			  sup_flags & ~UBIFS_FLG_MASK);
657 		err = -EINVAL;
658 		goto out;
659 	}
660 
661 #ifndef CONFIG_UBIFS_FS_ENCRYPTION
662 	if (c->encrypted) {
663 		ubifs_err(c, "file system contains encrypted files but UBIFS"
664 			     " was built without crypto support.");
665 		err = -EINVAL;
666 		goto out;
667 	}
668 #endif
669 
670 	/* Automatically increase file system size to the maximum size */
671 	c->old_leb_cnt = c->leb_cnt;
672 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
673 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
674 		if (c->ro_mount)
675 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
676 				c->old_leb_cnt,	c->leb_cnt);
677 		else {
678 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
679 				c->old_leb_cnt, c->leb_cnt);
680 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
681 			err = ubifs_write_sb_node(c, sup);
682 			if (err)
683 				goto out;
684 			c->old_leb_cnt = c->leb_cnt;
685 		}
686 	}
687 
688 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
689 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
690 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
691 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
692 	c->orph_first = c->lpt_last + 1;
693 	c->orph_last = c->orph_first + c->orph_lebs - 1;
694 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
695 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
696 	c->main_first = c->leb_cnt - c->main_lebs;
697 
698 	err = validate_sb(c, sup);
699 out:
700 	kfree(sup);
701 	return err;
702 }
703 
704 /**
705  * fixup_leb - fixup/unmap an LEB containing free space.
706  * @c: UBIFS file-system description object
707  * @lnum: the LEB number to fix up
708  * @len: number of used bytes in LEB (starting at offset 0)
709  *
710  * This function reads the contents of the given LEB number @lnum, then fixes
711  * it up, so that empty min. I/O units in the end of LEB are actually erased on
712  * flash (rather than being just all-0xff real data). If the LEB is completely
713  * empty, it is simply unmapped.
714  */
fixup_leb(struct ubifs_info * c,int lnum,int len)715 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
716 {
717 	int err;
718 
719 	ubifs_assert(c, len >= 0);
720 	ubifs_assert(c, len % c->min_io_size == 0);
721 	ubifs_assert(c, len < c->leb_size);
722 
723 	if (len == 0) {
724 		dbg_mnt("unmap empty LEB %d", lnum);
725 		return ubifs_leb_unmap(c, lnum);
726 	}
727 
728 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
729 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
730 	if (err)
731 		return err;
732 
733 	return ubifs_leb_change(c, lnum, c->sbuf, len);
734 }
735 
736 /**
737  * fixup_free_space - find & remap all LEBs containing free space.
738  * @c: UBIFS file-system description object
739  *
740  * This function walks through all LEBs in the filesystem and fiexes up those
741  * containing free/empty space.
742  */
fixup_free_space(struct ubifs_info * c)743 static int fixup_free_space(struct ubifs_info *c)
744 {
745 	int lnum, err = 0;
746 	struct ubifs_lprops *lprops;
747 
748 	ubifs_get_lprops(c);
749 
750 	/* Fixup LEBs in the master area */
751 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
752 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
753 		if (err)
754 			goto out;
755 	}
756 
757 	/* Unmap unused log LEBs */
758 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
759 	while (lnum != c->ltail_lnum) {
760 		err = fixup_leb(c, lnum, 0);
761 		if (err)
762 			goto out;
763 		lnum = ubifs_next_log_lnum(c, lnum);
764 	}
765 
766 	/*
767 	 * Fixup the log head which contains the only a CS node at the
768 	 * beginning.
769 	 */
770 	err = fixup_leb(c, c->lhead_lnum,
771 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
772 	if (err)
773 		goto out;
774 
775 	/* Fixup LEBs in the LPT area */
776 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
777 		int free = c->ltab[lnum - c->lpt_first].free;
778 
779 		if (free > 0) {
780 			err = fixup_leb(c, lnum, c->leb_size - free);
781 			if (err)
782 				goto out;
783 		}
784 	}
785 
786 	/* Unmap LEBs in the orphans area */
787 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
788 		err = fixup_leb(c, lnum, 0);
789 		if (err)
790 			goto out;
791 	}
792 
793 	/* Fixup LEBs in the main area */
794 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
795 		lprops = ubifs_lpt_lookup(c, lnum);
796 		if (IS_ERR(lprops)) {
797 			err = PTR_ERR(lprops);
798 			goto out;
799 		}
800 
801 		if (lprops->free > 0) {
802 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
803 			if (err)
804 				goto out;
805 		}
806 	}
807 
808 out:
809 	ubifs_release_lprops(c);
810 	return err;
811 }
812 
813 /**
814  * ubifs_fixup_free_space - find & fix all LEBs with free space.
815  * @c: UBIFS file-system description object
816  *
817  * This function fixes up LEBs containing free space on first mount, if the
818  * appropriate flag was set when the FS was created. Each LEB with one or more
819  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
820  * the free space is actually erased. E.g., this is necessary for some NAND
821  * chips, since the free space may have been programmed like real "0xff" data
822  * (generating a non-0xff ECC), causing future writes to the not-really-erased
823  * NAND pages to behave badly. After the space is fixed up, the superblock flag
824  * is cleared, so that this is skipped for all future mounts.
825  */
ubifs_fixup_free_space(struct ubifs_info * c)826 int ubifs_fixup_free_space(struct ubifs_info *c)
827 {
828 	int err;
829 	struct ubifs_sb_node *sup;
830 
831 	ubifs_assert(c, c->space_fixup);
832 	ubifs_assert(c, !c->ro_mount);
833 
834 	ubifs_msg(c, "start fixing up free space");
835 
836 	err = fixup_free_space(c);
837 	if (err)
838 		return err;
839 
840 	sup = ubifs_read_sb_node(c);
841 	if (IS_ERR(sup))
842 		return PTR_ERR(sup);
843 
844 	/* Free-space fixup is no longer required */
845 	c->space_fixup = 0;
846 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
847 
848 	err = ubifs_write_sb_node(c, sup);
849 	kfree(sup);
850 	if (err)
851 		return err;
852 
853 	ubifs_msg(c, "free space fixup complete");
854 	return err;
855 }
856 
ubifs_enable_encryption(struct ubifs_info * c)857 int ubifs_enable_encryption(struct ubifs_info *c)
858 {
859 	int err;
860 	struct ubifs_sb_node *sup;
861 
862 	if (c->encrypted)
863 		return 0;
864 
865 	if (c->ro_mount || c->ro_media)
866 		return -EROFS;
867 
868 	if (c->fmt_version < 5) {
869 		ubifs_err(c, "on-flash format version 5 is needed for encryption");
870 		return -EINVAL;
871 	}
872 
873 	sup = ubifs_read_sb_node(c);
874 	if (IS_ERR(sup))
875 		return PTR_ERR(sup);
876 
877 	sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
878 
879 	err = ubifs_write_sb_node(c, sup);
880 	if (!err)
881 		c->encrypted = 1;
882 	kfree(sup);
883 
884 	return err;
885 }
886