1 /*
2  * balloc.c
3  *
4  * PURPOSE
5  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *	This file is distributed under the terms of the GNU General Public
9  *	License (GPL). Copies of the GPL can be obtained from:
10  *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *	Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1999-2001 Ben Fennema
14  *  (C) 1999 Stelias Computing Inc
15  *
16  * HISTORY
17  *
18  *  02/24/99 blf  Created.
19  *
20  */
21 
22 #include "udfdecl.h"
23 
24 #include <linux/bitops.h>
25 
26 #include "udf_i.h"
27 #include "udf_sb.h"
28 
29 #define udf_clear_bit	__test_and_clear_bit_le
30 #define udf_set_bit	__test_and_set_bit_le
31 #define udf_test_bit	test_bit_le
32 #define udf_find_next_one_bit	find_next_bit_le
33 
read_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block,unsigned long bitmap_nr)34 static int read_block_bitmap(struct super_block *sb,
35 			     struct udf_bitmap *bitmap, unsigned int block,
36 			     unsigned long bitmap_nr)
37 {
38 	struct buffer_head *bh = NULL;
39 	int i;
40 	int max_bits, off, count;
41 	struct kernel_lb_addr loc;
42 
43 	loc.logicalBlockNum = bitmap->s_extPosition;
44 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
45 
46 	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
47 	bitmap->s_block_bitmap[bitmap_nr] = bh;
48 	if (!bh)
49 		return -EIO;
50 
51 	/* Check consistency of Space Bitmap buffer. */
52 	max_bits = sb->s_blocksize * 8;
53 	if (!bitmap_nr) {
54 		off = sizeof(struct spaceBitmapDesc) << 3;
55 		count = min(max_bits - off, bitmap->s_nr_groups);
56 	} else {
57 		/*
58 		 * Rough check if bitmap number is too big to have any bitmap
59 		 * blocks reserved.
60 		 */
61 		if (bitmap_nr >
62 		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
63 			return 0;
64 		off = 0;
65 		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
66 				(sizeof(struct spaceBitmapDesc) << 3);
67 		count = min(count, max_bits);
68 	}
69 
70 	for (i = 0; i < count; i++)
71 		if (udf_test_bit(i + off, bh->b_data))
72 			return -EFSCORRUPTED;
73 	return 0;
74 }
75 
__load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)76 static int __load_block_bitmap(struct super_block *sb,
77 			       struct udf_bitmap *bitmap,
78 			       unsigned int block_group)
79 {
80 	int retval = 0;
81 	int nr_groups = bitmap->s_nr_groups;
82 
83 	if (block_group >= nr_groups) {
84 		udf_debug("block_group (%u) > nr_groups (%d)\n",
85 			  block_group, nr_groups);
86 	}
87 
88 	if (bitmap->s_block_bitmap[block_group])
89 		return block_group;
90 
91 	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
92 	if (retval < 0)
93 		return retval;
94 
95 	return block_group;
96 }
97 
load_block_bitmap(struct super_block * sb,struct udf_bitmap * bitmap,unsigned int block_group)98 static inline int load_block_bitmap(struct super_block *sb,
99 				    struct udf_bitmap *bitmap,
100 				    unsigned int block_group)
101 {
102 	int slot;
103 
104 	slot = __load_block_bitmap(sb, bitmap, block_group);
105 
106 	if (slot < 0)
107 		return slot;
108 
109 	if (!bitmap->s_block_bitmap[slot])
110 		return -EIO;
111 
112 	return slot;
113 }
114 
udf_add_free_space(struct super_block * sb,u16 partition,u32 cnt)115 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
116 {
117 	struct udf_sb_info *sbi = UDF_SB(sb);
118 	struct logicalVolIntegrityDesc *lvid;
119 
120 	if (!sbi->s_lvid_bh)
121 		return;
122 
123 	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
124 	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
125 	udf_updated_lvid(sb);
126 }
127 
udf_bitmap_free_blocks(struct super_block * sb,struct udf_bitmap * bitmap,struct kernel_lb_addr * bloc,uint32_t offset,uint32_t count)128 static void udf_bitmap_free_blocks(struct super_block *sb,
129 				   struct udf_bitmap *bitmap,
130 				   struct kernel_lb_addr *bloc,
131 				   uint32_t offset,
132 				   uint32_t count)
133 {
134 	struct udf_sb_info *sbi = UDF_SB(sb);
135 	struct buffer_head *bh = NULL;
136 	struct udf_part_map *partmap;
137 	unsigned long block;
138 	unsigned long block_group;
139 	unsigned long bit;
140 	unsigned long i;
141 	int bitmap_nr;
142 	unsigned long overflow;
143 
144 	mutex_lock(&sbi->s_alloc_mutex);
145 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
146 	if (bloc->logicalBlockNum + count < count ||
147 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
148 		udf_debug("%u < %d || %u + %u > %u\n",
149 			  bloc->logicalBlockNum, 0,
150 			  bloc->logicalBlockNum, count,
151 			  partmap->s_partition_len);
152 		goto error_return;
153 	}
154 
155 	block = bloc->logicalBlockNum + offset +
156 		(sizeof(struct spaceBitmapDesc) << 3);
157 
158 	do {
159 		overflow = 0;
160 		block_group = block >> (sb->s_blocksize_bits + 3);
161 		bit = block % (sb->s_blocksize << 3);
162 
163 		/*
164 		* Check to see if we are freeing blocks across a group boundary.
165 		*/
166 		if (bit + count > (sb->s_blocksize << 3)) {
167 			overflow = bit + count - (sb->s_blocksize << 3);
168 			count -= overflow;
169 		}
170 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
171 		if (bitmap_nr < 0)
172 			goto error_return;
173 
174 		bh = bitmap->s_block_bitmap[bitmap_nr];
175 		for (i = 0; i < count; i++) {
176 			if (udf_set_bit(bit + i, bh->b_data)) {
177 				udf_debug("bit %lu already set\n", bit + i);
178 				udf_debug("byte=%2x\n",
179 					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
180 			}
181 		}
182 		udf_add_free_space(sb, sbi->s_partition, count);
183 		mark_buffer_dirty(bh);
184 		if (overflow) {
185 			block += count;
186 			count = overflow;
187 		}
188 	} while (overflow);
189 
190 error_return:
191 	mutex_unlock(&sbi->s_alloc_mutex);
192 }
193 
udf_bitmap_prealloc_blocks(struct super_block * sb,struct udf_bitmap * bitmap,uint16_t partition,uint32_t first_block,uint32_t block_count)194 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
195 				      struct udf_bitmap *bitmap,
196 				      uint16_t partition, uint32_t first_block,
197 				      uint32_t block_count)
198 {
199 	struct udf_sb_info *sbi = UDF_SB(sb);
200 	int alloc_count = 0;
201 	int bit, block, block_group, group_start;
202 	int nr_groups, bitmap_nr;
203 	struct buffer_head *bh;
204 	__u32 part_len;
205 
206 	mutex_lock(&sbi->s_alloc_mutex);
207 	part_len = sbi->s_partmaps[partition].s_partition_len;
208 	if (first_block >= part_len)
209 		goto out;
210 
211 	if (first_block + block_count > part_len)
212 		block_count = part_len - first_block;
213 
214 	do {
215 		nr_groups = udf_compute_nr_groups(sb, partition);
216 		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
217 		block_group = block >> (sb->s_blocksize_bits + 3);
218 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
219 
220 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
221 		if (bitmap_nr < 0)
222 			goto out;
223 		bh = bitmap->s_block_bitmap[bitmap_nr];
224 
225 		bit = block % (sb->s_blocksize << 3);
226 
227 		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
228 			if (!udf_clear_bit(bit, bh->b_data))
229 				goto out;
230 			block_count--;
231 			alloc_count++;
232 			bit++;
233 			block++;
234 		}
235 		mark_buffer_dirty(bh);
236 	} while (block_count > 0);
237 
238 out:
239 	udf_add_free_space(sb, partition, -alloc_count);
240 	mutex_unlock(&sbi->s_alloc_mutex);
241 	return alloc_count;
242 }
243 
udf_bitmap_new_block(struct super_block * sb,struct udf_bitmap * bitmap,uint16_t partition,uint32_t goal,int * err)244 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
245 				struct udf_bitmap *bitmap, uint16_t partition,
246 				uint32_t goal, int *err)
247 {
248 	struct udf_sb_info *sbi = UDF_SB(sb);
249 	int newbit, bit = 0;
250 	udf_pblk_t block;
251 	int block_group, group_start;
252 	int end_goal, nr_groups, bitmap_nr, i;
253 	struct buffer_head *bh = NULL;
254 	char *ptr;
255 	udf_pblk_t newblock = 0;
256 
257 	*err = -ENOSPC;
258 	mutex_lock(&sbi->s_alloc_mutex);
259 
260 repeat:
261 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
262 		goal = 0;
263 
264 	nr_groups = bitmap->s_nr_groups;
265 	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
266 	block_group = block >> (sb->s_blocksize_bits + 3);
267 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
268 
269 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
270 	if (bitmap_nr < 0)
271 		goto error_return;
272 	bh = bitmap->s_block_bitmap[bitmap_nr];
273 	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
274 		      sb->s_blocksize - group_start);
275 
276 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
277 		bit = block % (sb->s_blocksize << 3);
278 		if (udf_test_bit(bit, bh->b_data))
279 			goto got_block;
280 
281 		end_goal = (bit + 63) & ~63;
282 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
283 		if (bit < end_goal)
284 			goto got_block;
285 
286 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
287 			      sb->s_blocksize - ((bit + 7) >> 3));
288 		newbit = (ptr - ((char *)bh->b_data)) << 3;
289 		if (newbit < sb->s_blocksize << 3) {
290 			bit = newbit;
291 			goto search_back;
292 		}
293 
294 		newbit = udf_find_next_one_bit(bh->b_data,
295 					       sb->s_blocksize << 3, bit);
296 		if (newbit < sb->s_blocksize << 3) {
297 			bit = newbit;
298 			goto got_block;
299 		}
300 	}
301 
302 	for (i = 0; i < (nr_groups * 2); i++) {
303 		block_group++;
304 		if (block_group >= nr_groups)
305 			block_group = 0;
306 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
307 
308 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
309 		if (bitmap_nr < 0)
310 			goto error_return;
311 		bh = bitmap->s_block_bitmap[bitmap_nr];
312 		if (i < nr_groups) {
313 			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
314 				      sb->s_blocksize - group_start);
315 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
316 				bit = (ptr - ((char *)bh->b_data)) << 3;
317 				break;
318 			}
319 		} else {
320 			bit = udf_find_next_one_bit(bh->b_data,
321 						    sb->s_blocksize << 3,
322 						    group_start << 3);
323 			if (bit < sb->s_blocksize << 3)
324 				break;
325 		}
326 	}
327 	if (i >= (nr_groups * 2)) {
328 		mutex_unlock(&sbi->s_alloc_mutex);
329 		return newblock;
330 	}
331 	if (bit < sb->s_blocksize << 3)
332 		goto search_back;
333 	else
334 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
335 					    group_start << 3);
336 	if (bit >= sb->s_blocksize << 3) {
337 		mutex_unlock(&sbi->s_alloc_mutex);
338 		return 0;
339 	}
340 
341 search_back:
342 	i = 0;
343 	while (i < 7 && bit > (group_start << 3) &&
344 	       udf_test_bit(bit - 1, bh->b_data)) {
345 		++i;
346 		--bit;
347 	}
348 
349 got_block:
350 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
351 		(sizeof(struct spaceBitmapDesc) << 3);
352 
353 	if (!udf_clear_bit(bit, bh->b_data)) {
354 		udf_debug("bit already cleared for block %d\n", bit);
355 		goto repeat;
356 	}
357 
358 	mark_buffer_dirty(bh);
359 
360 	udf_add_free_space(sb, partition, -1);
361 	mutex_unlock(&sbi->s_alloc_mutex);
362 	*err = 0;
363 	return newblock;
364 
365 error_return:
366 	*err = -EIO;
367 	mutex_unlock(&sbi->s_alloc_mutex);
368 	return 0;
369 }
370 
udf_table_free_blocks(struct super_block * sb,struct inode * table,struct kernel_lb_addr * bloc,uint32_t offset,uint32_t count)371 static void udf_table_free_blocks(struct super_block *sb,
372 				  struct inode *table,
373 				  struct kernel_lb_addr *bloc,
374 				  uint32_t offset,
375 				  uint32_t count)
376 {
377 	struct udf_sb_info *sbi = UDF_SB(sb);
378 	struct udf_part_map *partmap;
379 	uint32_t start, end;
380 	uint32_t elen;
381 	struct kernel_lb_addr eloc;
382 	struct extent_position oepos, epos;
383 	int8_t etype;
384 	struct udf_inode_info *iinfo;
385 
386 	mutex_lock(&sbi->s_alloc_mutex);
387 	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
388 	if (bloc->logicalBlockNum + count < count ||
389 	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
390 		udf_debug("%u < %d || %u + %u > %u\n",
391 			  bloc->logicalBlockNum, 0,
392 			  bloc->logicalBlockNum, count,
393 			  partmap->s_partition_len);
394 		goto error_return;
395 	}
396 
397 	iinfo = UDF_I(table);
398 	udf_add_free_space(sb, sbi->s_partition, count);
399 
400 	start = bloc->logicalBlockNum + offset;
401 	end = bloc->logicalBlockNum + offset + count - 1;
402 
403 	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
404 	elen = 0;
405 	epos.block = oepos.block = iinfo->i_location;
406 	epos.bh = oepos.bh = NULL;
407 
408 	while (count &&
409 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
410 		if (((eloc.logicalBlockNum +
411 			(elen >> sb->s_blocksize_bits)) == start)) {
412 			if ((0x3FFFFFFF - elen) <
413 					(count << sb->s_blocksize_bits)) {
414 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
415 							sb->s_blocksize_bits);
416 				count -= tmp;
417 				start += tmp;
418 				elen = (etype << 30) |
419 					(0x40000000 - sb->s_blocksize);
420 			} else {
421 				elen = (etype << 30) |
422 					(elen +
423 					(count << sb->s_blocksize_bits));
424 				start += count;
425 				count = 0;
426 			}
427 			udf_write_aext(table, &oepos, &eloc, elen, 1);
428 		} else if (eloc.logicalBlockNum == (end + 1)) {
429 			if ((0x3FFFFFFF - elen) <
430 					(count << sb->s_blocksize_bits)) {
431 				uint32_t tmp = ((0x3FFFFFFF - elen) >>
432 						sb->s_blocksize_bits);
433 				count -= tmp;
434 				end -= tmp;
435 				eloc.logicalBlockNum -= tmp;
436 				elen = (etype << 30) |
437 					(0x40000000 - sb->s_blocksize);
438 			} else {
439 				eloc.logicalBlockNum = start;
440 				elen = (etype << 30) |
441 					(elen +
442 					(count << sb->s_blocksize_bits));
443 				end -= count;
444 				count = 0;
445 			}
446 			udf_write_aext(table, &oepos, &eloc, elen, 1);
447 		}
448 
449 		if (epos.bh != oepos.bh) {
450 			oepos.block = epos.block;
451 			brelse(oepos.bh);
452 			get_bh(epos.bh);
453 			oepos.bh = epos.bh;
454 			oepos.offset = 0;
455 		} else {
456 			oepos.offset = epos.offset;
457 		}
458 	}
459 
460 	if (count) {
461 		/*
462 		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
463 		 * allocate a new block, and since we hold the super block
464 		 * lock already very bad things would happen :)
465 		 *
466 		 * We copy the behavior of udf_add_aext, but instead of
467 		 * trying to allocate a new block close to the existing one,
468 		 * we just steal a block from the extent we are trying to add.
469 		 *
470 		 * It would be nice if the blocks were close together, but it
471 		 * isn't required.
472 		 */
473 
474 		int adsize;
475 
476 		eloc.logicalBlockNum = start;
477 		elen = EXT_RECORDED_ALLOCATED |
478 			(count << sb->s_blocksize_bits);
479 
480 		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
481 			adsize = sizeof(struct short_ad);
482 		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
483 			adsize = sizeof(struct long_ad);
484 		else {
485 			brelse(oepos.bh);
486 			brelse(epos.bh);
487 			goto error_return;
488 		}
489 
490 		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
491 			/* Steal a block from the extent being free'd */
492 			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
493 						&epos);
494 
495 			eloc.logicalBlockNum++;
496 			elen -= sb->s_blocksize;
497 		}
498 
499 		/* It's possible that stealing the block emptied the extent */
500 		if (elen)
501 			__udf_add_aext(table, &epos, &eloc, elen, 1);
502 	}
503 
504 	brelse(epos.bh);
505 	brelse(oepos.bh);
506 
507 error_return:
508 	mutex_unlock(&sbi->s_alloc_mutex);
509 	return;
510 }
511 
udf_table_prealloc_blocks(struct super_block * sb,struct inode * table,uint16_t partition,uint32_t first_block,uint32_t block_count)512 static int udf_table_prealloc_blocks(struct super_block *sb,
513 				     struct inode *table, uint16_t partition,
514 				     uint32_t first_block, uint32_t block_count)
515 {
516 	struct udf_sb_info *sbi = UDF_SB(sb);
517 	int alloc_count = 0;
518 	uint32_t elen, adsize;
519 	struct kernel_lb_addr eloc;
520 	struct extent_position epos;
521 	int8_t etype = -1;
522 	struct udf_inode_info *iinfo;
523 
524 	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
525 		return 0;
526 
527 	iinfo = UDF_I(table);
528 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
529 		adsize = sizeof(struct short_ad);
530 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
531 		adsize = sizeof(struct long_ad);
532 	else
533 		return 0;
534 
535 	mutex_lock(&sbi->s_alloc_mutex);
536 	epos.offset = sizeof(struct unallocSpaceEntry);
537 	epos.block = iinfo->i_location;
538 	epos.bh = NULL;
539 	eloc.logicalBlockNum = 0xFFFFFFFF;
540 
541 	while (first_block != eloc.logicalBlockNum &&
542 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
543 		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
544 			  eloc.logicalBlockNum, elen, first_block);
545 		; /* empty loop body */
546 	}
547 
548 	if (first_block == eloc.logicalBlockNum) {
549 		epos.offset -= adsize;
550 
551 		alloc_count = (elen >> sb->s_blocksize_bits);
552 		if (alloc_count > block_count) {
553 			alloc_count = block_count;
554 			eloc.logicalBlockNum += alloc_count;
555 			elen -= (alloc_count << sb->s_blocksize_bits);
556 			udf_write_aext(table, &epos, &eloc,
557 					(etype << 30) | elen, 1);
558 		} else
559 			udf_delete_aext(table, epos);
560 	} else {
561 		alloc_count = 0;
562 	}
563 
564 	brelse(epos.bh);
565 
566 	if (alloc_count)
567 		udf_add_free_space(sb, partition, -alloc_count);
568 	mutex_unlock(&sbi->s_alloc_mutex);
569 	return alloc_count;
570 }
571 
udf_table_new_block(struct super_block * sb,struct inode * table,uint16_t partition,uint32_t goal,int * err)572 static udf_pblk_t udf_table_new_block(struct super_block *sb,
573 			       struct inode *table, uint16_t partition,
574 			       uint32_t goal, int *err)
575 {
576 	struct udf_sb_info *sbi = UDF_SB(sb);
577 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
578 	udf_pblk_t newblock = 0;
579 	uint32_t adsize;
580 	uint32_t elen, goal_elen = 0;
581 	struct kernel_lb_addr eloc, goal_eloc;
582 	struct extent_position epos, goal_epos;
583 	int8_t etype;
584 	struct udf_inode_info *iinfo = UDF_I(table);
585 
586 	*err = -ENOSPC;
587 
588 	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
589 		adsize = sizeof(struct short_ad);
590 	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
591 		adsize = sizeof(struct long_ad);
592 	else
593 		return newblock;
594 
595 	mutex_lock(&sbi->s_alloc_mutex);
596 	if (goal >= sbi->s_partmaps[partition].s_partition_len)
597 		goal = 0;
598 
599 	/* We search for the closest matching block to goal. If we find
600 	   a exact hit, we stop. Otherwise we keep going till we run out
601 	   of extents. We store the buffer_head, bloc, and extoffset
602 	   of the current closest match and use that when we are done.
603 	 */
604 	epos.offset = sizeof(struct unallocSpaceEntry);
605 	epos.block = iinfo->i_location;
606 	epos.bh = goal_epos.bh = NULL;
607 
608 	while (spread &&
609 	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
610 		if (goal >= eloc.logicalBlockNum) {
611 			if (goal < eloc.logicalBlockNum +
612 					(elen >> sb->s_blocksize_bits))
613 				nspread = 0;
614 			else
615 				nspread = goal - eloc.logicalBlockNum -
616 					(elen >> sb->s_blocksize_bits);
617 		} else {
618 			nspread = eloc.logicalBlockNum - goal;
619 		}
620 
621 		if (nspread < spread) {
622 			spread = nspread;
623 			if (goal_epos.bh != epos.bh) {
624 				brelse(goal_epos.bh);
625 				goal_epos.bh = epos.bh;
626 				get_bh(goal_epos.bh);
627 			}
628 			goal_epos.block = epos.block;
629 			goal_epos.offset = epos.offset - adsize;
630 			goal_eloc = eloc;
631 			goal_elen = (etype << 30) | elen;
632 		}
633 	}
634 
635 	brelse(epos.bh);
636 
637 	if (spread == 0xFFFFFFFF) {
638 		brelse(goal_epos.bh);
639 		mutex_unlock(&sbi->s_alloc_mutex);
640 		return 0;
641 	}
642 
643 	/* Only allocate blocks from the beginning of the extent.
644 	   That way, we only delete (empty) extents, never have to insert an
645 	   extent because of splitting */
646 	/* This works, but very poorly.... */
647 
648 	newblock = goal_eloc.logicalBlockNum;
649 	goal_eloc.logicalBlockNum++;
650 	goal_elen -= sb->s_blocksize;
651 
652 	if (goal_elen)
653 		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
654 	else
655 		udf_delete_aext(table, goal_epos);
656 	brelse(goal_epos.bh);
657 
658 	udf_add_free_space(sb, partition, -1);
659 
660 	mutex_unlock(&sbi->s_alloc_mutex);
661 	*err = 0;
662 	return newblock;
663 }
664 
udf_free_blocks(struct super_block * sb,struct inode * inode,struct kernel_lb_addr * bloc,uint32_t offset,uint32_t count)665 void udf_free_blocks(struct super_block *sb, struct inode *inode,
666 		     struct kernel_lb_addr *bloc, uint32_t offset,
667 		     uint32_t count)
668 {
669 	uint16_t partition = bloc->partitionReferenceNum;
670 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
671 
672 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
673 		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
674 				       bloc, offset, count);
675 	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
676 		udf_table_free_blocks(sb, map->s_uspace.s_table,
677 				      bloc, offset, count);
678 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
679 		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
680 				       bloc, offset, count);
681 	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
682 		udf_table_free_blocks(sb, map->s_fspace.s_table,
683 				      bloc, offset, count);
684 	}
685 
686 	if (inode) {
687 		inode_sub_bytes(inode,
688 				((sector_t)count) << sb->s_blocksize_bits);
689 	}
690 }
691 
udf_prealloc_blocks(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t first_block,uint32_t block_count)692 inline int udf_prealloc_blocks(struct super_block *sb,
693 			       struct inode *inode,
694 			       uint16_t partition, uint32_t first_block,
695 			       uint32_t block_count)
696 {
697 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
698 	int allocated;
699 
700 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
701 		allocated = udf_bitmap_prealloc_blocks(sb,
702 						       map->s_uspace.s_bitmap,
703 						       partition, first_block,
704 						       block_count);
705 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
706 		allocated = udf_table_prealloc_blocks(sb,
707 						      map->s_uspace.s_table,
708 						      partition, first_block,
709 						      block_count);
710 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
711 		allocated = udf_bitmap_prealloc_blocks(sb,
712 						       map->s_fspace.s_bitmap,
713 						       partition, first_block,
714 						       block_count);
715 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
716 		allocated = udf_table_prealloc_blocks(sb,
717 						      map->s_fspace.s_table,
718 						      partition, first_block,
719 						      block_count);
720 	else
721 		return 0;
722 
723 	if (inode && allocated > 0)
724 		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
725 	return allocated;
726 }
727 
udf_new_block(struct super_block * sb,struct inode * inode,uint16_t partition,uint32_t goal,int * err)728 inline udf_pblk_t udf_new_block(struct super_block *sb,
729 			 struct inode *inode,
730 			 uint16_t partition, uint32_t goal, int *err)
731 {
732 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
733 	udf_pblk_t block;
734 
735 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
736 		block = udf_bitmap_new_block(sb,
737 					     map->s_uspace.s_bitmap,
738 					     partition, goal, err);
739 	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
740 		block = udf_table_new_block(sb,
741 					    map->s_uspace.s_table,
742 					    partition, goal, err);
743 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
744 		block = udf_bitmap_new_block(sb,
745 					     map->s_fspace.s_bitmap,
746 					     partition, goal, err);
747 	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
748 		block = udf_table_new_block(sb,
749 					    map->s_fspace.s_table,
750 					    partition, goal, err);
751 	else {
752 		*err = -EIO;
753 		return 0;
754 	}
755 	if (inode && block)
756 		inode_add_bytes(inode, sb->s_blocksize);
757 	return block;
758 }
759