1 /*
2  * V4L2 fwnode binding parsing library
3  *
4  * The origins of the V4L2 fwnode library are in V4L2 OF library that
5  * formerly was located in v4l2-of.c.
6  *
7  * Copyright (c) 2016 Intel Corporation.
8  * Author: Sakari Ailus <sakari.ailus@linux.intel.com>
9  *
10  * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
11  * Author: Sylwester Nawrocki <s.nawrocki@samsung.com>
12  *
13  * Copyright (C) 2012 Renesas Electronics Corp.
14  * Author: Guennadi Liakhovetski <g.liakhovetski@gmx.de>
15  *
16  * This program is free software; you can redistribute it and/or modify
17  * it under the terms of version 2 of the GNU General Public License as
18  * published by the Free Software Foundation.
19  */
20 #include <linux/acpi.h>
21 #include <linux/kernel.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/property.h>
26 #include <linux/slab.h>
27 #include <linux/string.h>
28 #include <linux/types.h>
29 
30 #include <media/v4l2-async.h>
31 #include <media/v4l2-fwnode.h>
32 #include <media/v4l2-subdev.h>
33 
34 enum v4l2_fwnode_bus_type {
35 	V4L2_FWNODE_BUS_TYPE_GUESS = 0,
36 	V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
37 	V4L2_FWNODE_BUS_TYPE_CSI1,
38 	V4L2_FWNODE_BUS_TYPE_CCP2,
39 	NR_OF_V4L2_FWNODE_BUS_TYPE,
40 };
41 
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)42 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
43 					       struct v4l2_fwnode_endpoint *vep)
44 {
45 	struct v4l2_fwnode_bus_mipi_csi2 *bus = &vep->bus.mipi_csi2;
46 	bool have_clk_lane = false;
47 	unsigned int flags = 0, lanes_used = 0;
48 	unsigned int i;
49 	u32 v;
50 	int rval;
51 
52 	rval = fwnode_property_read_u32_array(fwnode, "data-lanes", NULL, 0);
53 	if (rval > 0) {
54 		u32 array[1 + V4L2_FWNODE_CSI2_MAX_DATA_LANES];
55 
56 		bus->num_data_lanes =
57 			min_t(int, V4L2_FWNODE_CSI2_MAX_DATA_LANES, rval);
58 
59 		fwnode_property_read_u32_array(fwnode, "data-lanes", array,
60 					       bus->num_data_lanes);
61 
62 		for (i = 0; i < bus->num_data_lanes; i++) {
63 			if (lanes_used & BIT(array[i]))
64 				pr_warn("duplicated lane %u in data-lanes\n",
65 					array[i]);
66 			lanes_used |= BIT(array[i]);
67 
68 			bus->data_lanes[i] = array[i];
69 		}
70 
71 		rval = fwnode_property_read_u32_array(fwnode,
72 						      "lane-polarities", NULL,
73 						      0);
74 		if (rval > 0) {
75 			if (rval != 1 + bus->num_data_lanes /* clock+data */) {
76 				pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
77 					1 + bus->num_data_lanes, rval);
78 				return -EINVAL;
79 			}
80 
81 			fwnode_property_read_u32_array(fwnode,
82 						       "lane-polarities", array,
83 						       1 + bus->num_data_lanes);
84 
85 			for (i = 0; i < 1 + bus->num_data_lanes; i++)
86 				bus->lane_polarities[i] = array[i];
87 		}
88 
89 	}
90 
91 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
92 		if (lanes_used & BIT(v))
93 			pr_warn("duplicated lane %u in clock-lanes\n", v);
94 		lanes_used |= BIT(v);
95 
96 		bus->clock_lane = v;
97 		have_clk_lane = true;
98 	}
99 
100 	if (fwnode_property_present(fwnode, "clock-noncontinuous"))
101 		flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
102 	else if (have_clk_lane || bus->num_data_lanes > 0)
103 		flags |= V4L2_MBUS_CSI2_CONTINUOUS_CLOCK;
104 
105 	bus->flags = flags;
106 	vep->bus_type = V4L2_MBUS_CSI2;
107 
108 	return 0;
109 }
110 
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)111 static void v4l2_fwnode_endpoint_parse_parallel_bus(
112 	struct fwnode_handle *fwnode, struct v4l2_fwnode_endpoint *vep)
113 {
114 	struct v4l2_fwnode_bus_parallel *bus = &vep->bus.parallel;
115 	unsigned int flags = 0;
116 	u32 v;
117 
118 	if (!fwnode_property_read_u32(fwnode, "hsync-active", &v))
119 		flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
120 			V4L2_MBUS_HSYNC_ACTIVE_LOW;
121 
122 	if (!fwnode_property_read_u32(fwnode, "vsync-active", &v))
123 		flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
124 			V4L2_MBUS_VSYNC_ACTIVE_LOW;
125 
126 	if (!fwnode_property_read_u32(fwnode, "field-even-active", &v))
127 		flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
128 			V4L2_MBUS_FIELD_EVEN_LOW;
129 	if (flags)
130 		vep->bus_type = V4L2_MBUS_PARALLEL;
131 	else
132 		vep->bus_type = V4L2_MBUS_BT656;
133 
134 	if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v))
135 		flags |= v ? V4L2_MBUS_PCLK_SAMPLE_RISING :
136 			V4L2_MBUS_PCLK_SAMPLE_FALLING;
137 
138 	if (!fwnode_property_read_u32(fwnode, "data-active", &v))
139 		flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
140 			V4L2_MBUS_DATA_ACTIVE_LOW;
141 
142 	if (fwnode_property_present(fwnode, "slave-mode"))
143 		flags |= V4L2_MBUS_SLAVE;
144 	else
145 		flags |= V4L2_MBUS_MASTER;
146 
147 	if (!fwnode_property_read_u32(fwnode, "bus-width", &v))
148 		bus->bus_width = v;
149 
150 	if (!fwnode_property_read_u32(fwnode, "data-shift", &v))
151 		bus->data_shift = v;
152 
153 	if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v))
154 		flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
155 			V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
156 
157 	if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v))
158 		flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
159 			V4L2_MBUS_DATA_ENABLE_LOW;
160 
161 	bus->flags = flags;
162 
163 }
164 
165 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,u32 bus_type)166 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
167 				    struct v4l2_fwnode_endpoint *vep,
168 				    u32 bus_type)
169 {
170 	struct v4l2_fwnode_bus_mipi_csi1 *bus = &vep->bus.mipi_csi1;
171 	u32 v;
172 
173 	if (!fwnode_property_read_u32(fwnode, "clock-inv", &v))
174 		bus->clock_inv = v;
175 
176 	if (!fwnode_property_read_u32(fwnode, "strobe", &v))
177 		bus->strobe = v;
178 
179 	if (!fwnode_property_read_u32(fwnode, "data-lanes", &v))
180 		bus->data_lane = v;
181 
182 	if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v))
183 		bus->clock_lane = v;
184 
185 	if (bus_type == V4L2_FWNODE_BUS_TYPE_CCP2)
186 		vep->bus_type = V4L2_MBUS_CCP2;
187 	else
188 		vep->bus_type = V4L2_MBUS_CSI1;
189 }
190 
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)191 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
192 			       struct v4l2_fwnode_endpoint *vep)
193 {
194 	u32 bus_type = 0;
195 	int rval;
196 
197 	fwnode_graph_parse_endpoint(fwnode, &vep->base);
198 
199 	/* Zero fields from bus_type to until the end */
200 	memset(&vep->bus_type, 0, sizeof(*vep) -
201 	       offsetof(typeof(*vep), bus_type));
202 
203 	fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
204 
205 	switch (bus_type) {
206 	case V4L2_FWNODE_BUS_TYPE_GUESS:
207 		rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep);
208 		if (rval)
209 			return rval;
210 		/*
211 		 * Parse the parallel video bus properties only if none
212 		 * of the MIPI CSI-2 specific properties were found.
213 		 */
214 		if (vep->bus.mipi_csi2.flags == 0)
215 			v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep);
216 
217 		return 0;
218 	case V4L2_FWNODE_BUS_TYPE_CCP2:
219 	case V4L2_FWNODE_BUS_TYPE_CSI1:
220 		v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, bus_type);
221 
222 		return 0;
223 	default:
224 		pr_warn("unsupported bus type %u\n", bus_type);
225 		return -EINVAL;
226 	}
227 }
228 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
229 
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)230 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
231 {
232 	if (IS_ERR_OR_NULL(vep))
233 		return;
234 
235 	kfree(vep->link_frequencies);
236 	kfree(vep);
237 }
238 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
239 
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode)240 struct v4l2_fwnode_endpoint *v4l2_fwnode_endpoint_alloc_parse(
241 	struct fwnode_handle *fwnode)
242 {
243 	struct v4l2_fwnode_endpoint *vep;
244 	int rval;
245 
246 	vep = kzalloc(sizeof(*vep), GFP_KERNEL);
247 	if (!vep)
248 		return ERR_PTR(-ENOMEM);
249 
250 	rval = v4l2_fwnode_endpoint_parse(fwnode, vep);
251 	if (rval < 0)
252 		goto out_err;
253 
254 	rval = fwnode_property_read_u64_array(fwnode, "link-frequencies",
255 					      NULL, 0);
256 	if (rval > 0) {
257 		vep->link_frequencies =
258 			kmalloc_array(rval, sizeof(*vep->link_frequencies),
259 				      GFP_KERNEL);
260 		if (!vep->link_frequencies) {
261 			rval = -ENOMEM;
262 			goto out_err;
263 		}
264 
265 		vep->nr_of_link_frequencies = rval;
266 
267 		rval = fwnode_property_read_u64_array(
268 			fwnode, "link-frequencies", vep->link_frequencies,
269 			vep->nr_of_link_frequencies);
270 		if (rval < 0)
271 			goto out_err;
272 	}
273 
274 	return vep;
275 
276 out_err:
277 	v4l2_fwnode_endpoint_free(vep);
278 	return ERR_PTR(rval);
279 }
280 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
281 
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)282 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
283 			   struct v4l2_fwnode_link *link)
284 {
285 	struct fwnode_endpoint fwep;
286 
287 	memset(link, 0, sizeof(*link));
288 
289 	fwnode_graph_parse_endpoint(fwnode, &fwep);
290 	link->local_port = fwep.port;
291 	link->local_node = fwnode_graph_get_port_parent(fwnode);
292 	if (!link->local_node)
293 		return -ENOLINK;
294 
295 	fwnode = fwnode_graph_get_remote_endpoint(fwnode);
296 	if (!fwnode)
297 		goto err_put_local_node;
298 
299 	fwnode_graph_parse_endpoint(fwnode, &fwep);
300 	link->remote_port = fwep.port;
301 	link->remote_node = fwnode_graph_get_port_parent(fwnode);
302 	if (!link->remote_node)
303 		goto err_put_remote_endpoint;
304 
305 	return 0;
306 
307 err_put_remote_endpoint:
308 	fwnode_handle_put(fwnode);
309 
310 err_put_local_node:
311 	fwnode_handle_put(link->local_node);
312 
313 	return -ENOLINK;
314 }
315 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
316 
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)317 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
318 {
319 	fwnode_handle_put(link->local_node);
320 	fwnode_handle_put(link->remote_node);
321 }
322 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
323 
v4l2_async_notifier_realloc(struct v4l2_async_notifier * notifier,unsigned int max_subdevs)324 static int v4l2_async_notifier_realloc(struct v4l2_async_notifier *notifier,
325 				       unsigned int max_subdevs)
326 {
327 	struct v4l2_async_subdev **subdevs;
328 
329 	if (max_subdevs <= notifier->max_subdevs)
330 		return 0;
331 
332 	subdevs = kvmalloc_array(
333 		max_subdevs, sizeof(*notifier->subdevs),
334 		GFP_KERNEL | __GFP_ZERO);
335 	if (!subdevs)
336 		return -ENOMEM;
337 
338 	if (notifier->subdevs) {
339 		memcpy(subdevs, notifier->subdevs,
340 		       sizeof(*subdevs) * notifier->num_subdevs);
341 
342 		kvfree(notifier->subdevs);
343 	}
344 
345 	notifier->subdevs = subdevs;
346 	notifier->max_subdevs = max_subdevs;
347 
348 	return 0;
349 }
350 
v4l2_async_notifier_fwnode_parse_endpoint(struct device * dev,struct v4l2_async_notifier * notifier,struct fwnode_handle * endpoint,unsigned int asd_struct_size,int (* parse_endpoint)(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct v4l2_async_subdev * asd))351 static int v4l2_async_notifier_fwnode_parse_endpoint(
352 	struct device *dev, struct v4l2_async_notifier *notifier,
353 	struct fwnode_handle *endpoint, unsigned int asd_struct_size,
354 	int (*parse_endpoint)(struct device *dev,
355 			    struct v4l2_fwnode_endpoint *vep,
356 			    struct v4l2_async_subdev *asd))
357 {
358 	struct v4l2_async_subdev *asd;
359 	struct v4l2_fwnode_endpoint *vep;
360 	int ret = 0;
361 
362 	asd = kzalloc(asd_struct_size, GFP_KERNEL);
363 	if (!asd)
364 		return -ENOMEM;
365 
366 	asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
367 	asd->match.fwnode =
368 		fwnode_graph_get_remote_port_parent(endpoint);
369 	if (!asd->match.fwnode) {
370 		dev_warn(dev, "bad remote port parent\n");
371 		ret = -EINVAL;
372 		goto out_err;
373 	}
374 
375 	vep = v4l2_fwnode_endpoint_alloc_parse(endpoint);
376 	if (IS_ERR(vep)) {
377 		ret = PTR_ERR(vep);
378 		dev_warn(dev, "unable to parse V4L2 fwnode endpoint (%d)\n",
379 			 ret);
380 		goto out_err;
381 	}
382 
383 	ret = parse_endpoint ? parse_endpoint(dev, vep, asd) : 0;
384 	if (ret == -ENOTCONN)
385 		dev_dbg(dev, "ignoring port@%u/endpoint@%u\n", vep->base.port,
386 			vep->base.id);
387 	else if (ret < 0)
388 		dev_warn(dev,
389 			 "driver could not parse port@%u/endpoint@%u (%d)\n",
390 			 vep->base.port, vep->base.id, ret);
391 	v4l2_fwnode_endpoint_free(vep);
392 	if (ret < 0)
393 		goto out_err;
394 
395 	notifier->subdevs[notifier->num_subdevs] = asd;
396 	notifier->num_subdevs++;
397 
398 	return 0;
399 
400 out_err:
401 	fwnode_handle_put(asd->match.fwnode);
402 	kfree(asd);
403 
404 	return ret == -ENOTCONN ? 0 : ret;
405 }
406 
__v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,bool has_port,int (* parse_endpoint)(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct v4l2_async_subdev * asd))407 static int __v4l2_async_notifier_parse_fwnode_endpoints(
408 	struct device *dev, struct v4l2_async_notifier *notifier,
409 	size_t asd_struct_size, unsigned int port, bool has_port,
410 	int (*parse_endpoint)(struct device *dev,
411 			    struct v4l2_fwnode_endpoint *vep,
412 			    struct v4l2_async_subdev *asd))
413 {
414 	struct fwnode_handle *fwnode;
415 	unsigned int max_subdevs = notifier->max_subdevs;
416 	int ret;
417 
418 	if (WARN_ON(asd_struct_size < sizeof(struct v4l2_async_subdev)))
419 		return -EINVAL;
420 
421 	for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint(
422 				     dev_fwnode(dev), fwnode)); ) {
423 		struct fwnode_handle *dev_fwnode;
424 		bool is_available;
425 
426 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
427 		is_available = fwnode_device_is_available(dev_fwnode);
428 		fwnode_handle_put(dev_fwnode);
429 		if (!is_available)
430 			continue;
431 
432 		if (has_port) {
433 			struct fwnode_endpoint ep;
434 
435 			ret = fwnode_graph_parse_endpoint(fwnode, &ep);
436 			if (ret) {
437 				fwnode_handle_put(fwnode);
438 				return ret;
439 			}
440 
441 			if (ep.port != port)
442 				continue;
443 		}
444 		max_subdevs++;
445 	}
446 
447 	/* No subdevs to add? Return here. */
448 	if (max_subdevs == notifier->max_subdevs)
449 		return 0;
450 
451 	ret = v4l2_async_notifier_realloc(notifier, max_subdevs);
452 	if (ret)
453 		return ret;
454 
455 	for (fwnode = NULL; (fwnode = fwnode_graph_get_next_endpoint(
456 				     dev_fwnode(dev), fwnode)); ) {
457 		struct fwnode_handle *dev_fwnode;
458 		bool is_available;
459 
460 		dev_fwnode = fwnode_graph_get_port_parent(fwnode);
461 		is_available = fwnode_device_is_available(dev_fwnode);
462 		fwnode_handle_put(dev_fwnode);
463 		if (!is_available)
464 			continue;
465 
466 		if (has_port) {
467 			struct fwnode_endpoint ep;
468 
469 			ret = fwnode_graph_parse_endpoint(fwnode, &ep);
470 			if (ret)
471 				break;
472 
473 			if (ep.port != port)
474 				continue;
475 		}
476 
477 		if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
478 			ret = -EINVAL;
479 			break;
480 		}
481 
482 		ret = v4l2_async_notifier_fwnode_parse_endpoint(
483 			dev, notifier, fwnode, asd_struct_size, parse_endpoint);
484 		if (ret < 0)
485 			break;
486 	}
487 
488 	fwnode_handle_put(fwnode);
489 
490 	return ret;
491 }
492 
v4l2_async_notifier_parse_fwnode_endpoints(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,int (* parse_endpoint)(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct v4l2_async_subdev * asd))493 int v4l2_async_notifier_parse_fwnode_endpoints(
494 	struct device *dev, struct v4l2_async_notifier *notifier,
495 	size_t asd_struct_size,
496 	int (*parse_endpoint)(struct device *dev,
497 			    struct v4l2_fwnode_endpoint *vep,
498 			    struct v4l2_async_subdev *asd))
499 {
500 	return __v4l2_async_notifier_parse_fwnode_endpoints(
501 		dev, notifier, asd_struct_size, 0, false, parse_endpoint);
502 }
503 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints);
504 
v4l2_async_notifier_parse_fwnode_endpoints_by_port(struct device * dev,struct v4l2_async_notifier * notifier,size_t asd_struct_size,unsigned int port,int (* parse_endpoint)(struct device * dev,struct v4l2_fwnode_endpoint * vep,struct v4l2_async_subdev * asd))505 int v4l2_async_notifier_parse_fwnode_endpoints_by_port(
506 	struct device *dev, struct v4l2_async_notifier *notifier,
507 	size_t asd_struct_size, unsigned int port,
508 	int (*parse_endpoint)(struct device *dev,
509 			    struct v4l2_fwnode_endpoint *vep,
510 			    struct v4l2_async_subdev *asd))
511 {
512 	return __v4l2_async_notifier_parse_fwnode_endpoints(
513 		dev, notifier, asd_struct_size, port, true, parse_endpoint);
514 }
515 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_endpoints_by_port);
516 
517 /*
518  * v4l2_fwnode_reference_parse - parse references for async sub-devices
519  * @dev: the device node the properties of which are parsed for references
520  * @notifier: the async notifier where the async subdevs will be added
521  * @prop: the name of the property
522  *
523  * Return: 0 on success
524  *	   -ENOENT if no entries were found
525  *	   -ENOMEM if memory allocation failed
526  *	   -EINVAL if property parsing failed
527  */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)528 static int v4l2_fwnode_reference_parse(
529 	struct device *dev, struct v4l2_async_notifier *notifier,
530 	const char *prop)
531 {
532 	struct fwnode_reference_args args;
533 	unsigned int index;
534 	int ret;
535 
536 	for (index = 0;
537 	     !(ret = fwnode_property_get_reference_args(
538 		       dev_fwnode(dev), prop, NULL, 0, index, &args));
539 	     index++)
540 		fwnode_handle_put(args.fwnode);
541 
542 	if (!index)
543 		return -ENOENT;
544 
545 	/*
546 	 * Note that right now both -ENODATA and -ENOENT may signal
547 	 * out-of-bounds access. Return the error in cases other than that.
548 	 */
549 	if (ret != -ENOENT && ret != -ENODATA)
550 		return ret;
551 
552 	ret = v4l2_async_notifier_realloc(notifier,
553 					  notifier->num_subdevs + index);
554 	if (ret)
555 		return ret;
556 
557 	for (index = 0; !fwnode_property_get_reference_args(
558 		     dev_fwnode(dev), prop, NULL, 0, index, &args);
559 	     index++) {
560 		struct v4l2_async_subdev *asd;
561 
562 		if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
563 			ret = -EINVAL;
564 			goto error;
565 		}
566 
567 		asd = kzalloc(sizeof(*asd), GFP_KERNEL);
568 		if (!asd) {
569 			ret = -ENOMEM;
570 			goto error;
571 		}
572 
573 		notifier->subdevs[notifier->num_subdevs] = asd;
574 		asd->match.fwnode = args.fwnode;
575 		asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
576 		notifier->num_subdevs++;
577 	}
578 
579 	return 0;
580 
581 error:
582 	fwnode_handle_put(args.fwnode);
583 	return ret;
584 }
585 
586 /*
587  * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
588  *					arguments
589  * @fwnode: fwnode to read @prop from
590  * @notifier: notifier for @dev
591  * @prop: the name of the property
592  * @index: the index of the reference to get
593  * @props: the array of integer property names
594  * @nprops: the number of integer property names in @nprops
595  *
596  * First find an fwnode referred to by the reference at @index in @prop.
597  *
598  * Then under that fwnode, @nprops times, for each property in @props,
599  * iteratively follow child nodes starting from fwnode such that they have the
600  * property in @props array at the index of the child node distance from the
601  * root node and the value of that property matching with the integer argument
602  * of the reference, at the same index.
603  *
604  * The child fwnode reched at the end of the iteration is then returned to the
605  * caller.
606  *
607  * The core reason for this is that you cannot refer to just any node in ACPI.
608  * So to refer to an endpoint (easy in DT) you need to refer to a device, then
609  * provide a list of (property name, property value) tuples where each tuple
610  * uniquely identifies a child node. The first tuple identifies a child directly
611  * underneath the device fwnode, the next tuple identifies a child node
612  * underneath the fwnode identified by the previous tuple, etc. until you
613  * reached the fwnode you need.
614  *
615  * An example with a graph, as defined in Documentation/acpi/dsd/graph.txt:
616  *
617  *	Scope (\_SB.PCI0.I2C2)
618  *	{
619  *		Device (CAM0)
620  *		{
621  *			Name (_DSD, Package () {
622  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
623  *				Package () {
624  *					Package () {
625  *						"compatible",
626  *						Package () { "nokia,smia" }
627  *					},
628  *				},
629  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
630  *				Package () {
631  *					Package () { "port0", "PRT0" },
632  *				}
633  *			})
634  *			Name (PRT0, Package() {
635  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
636  *				Package () {
637  *					Package () { "port", 0 },
638  *				},
639  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
640  *				Package () {
641  *					Package () { "endpoint0", "EP00" },
642  *				}
643  *			})
644  *			Name (EP00, Package() {
645  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
646  *				Package () {
647  *					Package () { "endpoint", 0 },
648  *					Package () {
649  *						"remote-endpoint",
650  *						Package() {
651  *							\_SB.PCI0.ISP, 4, 0
652  *						}
653  *					},
654  *				}
655  *			})
656  *		}
657  *	}
658  *
659  *	Scope (\_SB.PCI0)
660  *	{
661  *		Device (ISP)
662  *		{
663  *			Name (_DSD, Package () {
664  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
665  *				Package () {
666  *					Package () { "port4", "PRT4" },
667  *				}
668  *			})
669  *
670  *			Name (PRT4, Package() {
671  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
672  *				Package () {
673  *					Package () { "port", 4 },
674  *				},
675  *				ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
676  *				Package () {
677  *					Package () { "endpoint0", "EP40" },
678  *				}
679  *			})
680  *
681  *			Name (EP40, Package() {
682  *				ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
683  *				Package () {
684  *					Package () { "endpoint", 0 },
685  *					Package () {
686  *						"remote-endpoint",
687  *						Package () {
688  *							\_SB.PCI0.I2C2.CAM0,
689  *							0, 0
690  *						}
691  *					},
692  *				}
693  *			})
694  *		}
695  *	}
696  *
697  * From the EP40 node under ISP device, you could parse the graph remote
698  * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
699  *
700  *  @fwnode: fwnode referring to EP40 under ISP.
701  *  @prop: "remote-endpoint"
702  *  @index: 0
703  *  @props: "port", "endpoint"
704  *  @nprops: 2
705  *
706  * And you'd get back fwnode referring to EP00 under CAM0.
707  *
708  * The same works the other way around: if you use EP00 under CAM0 as the
709  * fwnode, you'll get fwnode referring to EP40 under ISP.
710  *
711  * The same example in DT syntax would look like this:
712  *
713  * cam: cam0 {
714  *	compatible = "nokia,smia";
715  *
716  *	port {
717  *		port = <0>;
718  *		endpoint {
719  *			endpoint = <0>;
720  *			remote-endpoint = <&isp 4 0>;
721  *		};
722  *	};
723  * };
724  *
725  * isp: isp {
726  *	ports {
727  *		port@4 {
728  *			port = <4>;
729  *			endpoint {
730  *				endpoint = <0>;
731  *				remote-endpoint = <&cam 0 0>;
732  *			};
733  *		};
734  *	};
735  * };
736  *
737  * Return: 0 on success
738  *	   -ENOENT if no entries (or the property itself) were found
739  *	   -EINVAL if property parsing otherwise failed
740  *	   -ENOMEM if memory allocation failed
741  */
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)742 static struct fwnode_handle *v4l2_fwnode_reference_get_int_prop(
743 	struct fwnode_handle *fwnode, const char *prop, unsigned int index,
744 	const char * const *props, unsigned int nprops)
745 {
746 	struct fwnode_reference_args fwnode_args;
747 	u64 *args = fwnode_args.args;
748 	struct fwnode_handle *child;
749 	int ret;
750 
751 	/*
752 	 * Obtain remote fwnode as well as the integer arguments.
753 	 *
754 	 * Note that right now both -ENODATA and -ENOENT may signal
755 	 * out-of-bounds access. Return -ENOENT in that case.
756 	 */
757 	ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
758 						 index, &fwnode_args);
759 	if (ret)
760 		return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
761 
762 	/*
763 	 * Find a node in the tree under the referred fwnode corresponding to
764 	 * the integer arguments.
765 	 */
766 	fwnode = fwnode_args.fwnode;
767 	while (nprops--) {
768 		u32 val;
769 
770 		/* Loop over all child nodes under fwnode. */
771 		fwnode_for_each_child_node(fwnode, child) {
772 			if (fwnode_property_read_u32(child, *props, &val))
773 				continue;
774 
775 			/* Found property, see if its value matches. */
776 			if (val == *args)
777 				break;
778 		}
779 
780 		fwnode_handle_put(fwnode);
781 
782 		/* No property found; return an error here. */
783 		if (!child) {
784 			fwnode = ERR_PTR(-ENOENT);
785 			break;
786 		}
787 
788 		props++;
789 		args++;
790 		fwnode = child;
791 	}
792 
793 	return fwnode;
794 }
795 
796 /*
797  * v4l2_fwnode_reference_parse_int_props - parse references for async
798  *					   sub-devices
799  * @dev: struct device pointer
800  * @notifier: notifier for @dev
801  * @prop: the name of the property
802  * @props: the array of integer property names
803  * @nprops: the number of integer properties
804  *
805  * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
806  * property @prop with integer arguments with child nodes matching in properties
807  * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
808  * accordingly.
809  *
810  * While it is technically possible to use this function on DT, it is only
811  * meaningful on ACPI. On Device tree you can refer to any node in the tree but
812  * on ACPI the references are limited to devices.
813  *
814  * Return: 0 on success
815  *	   -ENOENT if no entries (or the property itself) were found
816  *	   -EINVAL if property parsing otherwisefailed
817  *	   -ENOMEM if memory allocation failed
818  */
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop,const char * const * props,unsigned int nprops)819 static int v4l2_fwnode_reference_parse_int_props(
820 	struct device *dev, struct v4l2_async_notifier *notifier,
821 	const char *prop, const char * const *props, unsigned int nprops)
822 {
823 	struct fwnode_handle *fwnode;
824 	unsigned int index;
825 	int ret;
826 
827 	index = 0;
828 	do {
829 		fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
830 							    prop, index,
831 							    props, nprops);
832 		if (IS_ERR(fwnode)) {
833 			/*
834 			 * Note that right now both -ENODATA and -ENOENT may
835 			 * signal out-of-bounds access. Return the error in
836 			 * cases other than that.
837 			 */
838 			if (PTR_ERR(fwnode) != -ENOENT &&
839 			    PTR_ERR(fwnode) != -ENODATA)
840 				return PTR_ERR(fwnode);
841 			break;
842 		}
843 		fwnode_handle_put(fwnode);
844 		index++;
845 	} while (1);
846 
847 	ret = v4l2_async_notifier_realloc(notifier,
848 					  notifier->num_subdevs + index);
849 	if (ret)
850 		return -ENOMEM;
851 
852 	for (index = 0; !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(
853 					 dev_fwnode(dev), prop, index, props,
854 					 nprops))); index++) {
855 		struct v4l2_async_subdev *asd;
856 
857 		if (WARN_ON(notifier->num_subdevs >= notifier->max_subdevs)) {
858 			ret = -EINVAL;
859 			goto error;
860 		}
861 
862 		asd = kzalloc(sizeof(struct v4l2_async_subdev), GFP_KERNEL);
863 		if (!asd) {
864 			ret = -ENOMEM;
865 			goto error;
866 		}
867 
868 		notifier->subdevs[notifier->num_subdevs] = asd;
869 		asd->match.fwnode = fwnode;
870 		asd->match_type = V4L2_ASYNC_MATCH_FWNODE;
871 		notifier->num_subdevs++;
872 	}
873 
874 	return PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
875 
876 error:
877 	fwnode_handle_put(fwnode);
878 	return ret;
879 }
880 
v4l2_async_notifier_parse_fwnode_sensor_common(struct device * dev,struct v4l2_async_notifier * notifier)881 int v4l2_async_notifier_parse_fwnode_sensor_common(
882 	struct device *dev, struct v4l2_async_notifier *notifier)
883 {
884 	static const char * const led_props[] = { "led" };
885 	static const struct {
886 		const char *name;
887 		const char * const *props;
888 		unsigned int nprops;
889 	} props[] = {
890 		{ "flash-leds", led_props, ARRAY_SIZE(led_props) },
891 		{ "lens-focus", NULL, 0 },
892 	};
893 	unsigned int i;
894 
895 	for (i = 0; i < ARRAY_SIZE(props); i++) {
896 		int ret;
897 
898 		if (props[i].props && is_acpi_node(dev_fwnode(dev)))
899 			ret = v4l2_fwnode_reference_parse_int_props(
900 				dev, notifier, props[i].name,
901 				props[i].props, props[i].nprops);
902 		else
903 			ret = v4l2_fwnode_reference_parse(
904 				dev, notifier, props[i].name);
905 		if (ret && ret != -ENOENT) {
906 			dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
907 				 props[i].name, ret);
908 			return ret;
909 		}
910 	}
911 
912 	return 0;
913 }
914 EXPORT_SYMBOL_GPL(v4l2_async_notifier_parse_fwnode_sensor_common);
915 
v4l2_async_register_subdev_sensor_common(struct v4l2_subdev * sd)916 int v4l2_async_register_subdev_sensor_common(struct v4l2_subdev *sd)
917 {
918 	struct v4l2_async_notifier *notifier;
919 	int ret;
920 
921 	if (WARN_ON(!sd->dev))
922 		return -ENODEV;
923 
924 	notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
925 	if (!notifier)
926 		return -ENOMEM;
927 
928 	ret = v4l2_async_notifier_parse_fwnode_sensor_common(sd->dev,
929 							     notifier);
930 	if (ret < 0)
931 		goto out_cleanup;
932 
933 	ret = v4l2_async_subdev_notifier_register(sd, notifier);
934 	if (ret < 0)
935 		goto out_cleanup;
936 
937 	ret = v4l2_async_register_subdev(sd);
938 	if (ret < 0)
939 		goto out_unregister;
940 
941 	sd->subdev_notifier = notifier;
942 
943 	return 0;
944 
945 out_unregister:
946 	v4l2_async_notifier_unregister(notifier);
947 
948 out_cleanup:
949 	v4l2_async_notifier_cleanup(notifier);
950 	kfree(notifier);
951 
952 	return ret;
953 }
954 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor_common);
955 
956 MODULE_LICENSE("GPL");
957 MODULE_AUTHOR("Sakari Ailus <sakari.ailus@linux.intel.com>");
958 MODULE_AUTHOR("Sylwester Nawrocki <s.nawrocki@samsung.com>");
959 MODULE_AUTHOR("Guennadi Liakhovetski <g.liakhovetski@gmx.de>");
960