1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/namei.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * Some corrections by tytso.
10  */
11 
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13  * lookup logic.
14  */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16  */
17 
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
42 #include <linux/build_bug.h>
43 
44 #include "internal.h"
45 #include "mount.h"
46 
47 /* [Feb-1997 T. Schoebel-Theuer]
48  * Fundamental changes in the pathname lookup mechanisms (namei)
49  * were necessary because of omirr.  The reason is that omirr needs
50  * to know the _real_ pathname, not the user-supplied one, in case
51  * of symlinks (and also when transname replacements occur).
52  *
53  * The new code replaces the old recursive symlink resolution with
54  * an iterative one (in case of non-nested symlink chains).  It does
55  * this with calls to <fs>_follow_link().
56  * As a side effect, dir_namei(), _namei() and follow_link() are now
57  * replaced with a single function lookup_dentry() that can handle all
58  * the special cases of the former code.
59  *
60  * With the new dcache, the pathname is stored at each inode, at least as
61  * long as the refcount of the inode is positive.  As a side effect, the
62  * size of the dcache depends on the inode cache and thus is dynamic.
63  *
64  * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65  * resolution to correspond with current state of the code.
66  *
67  * Note that the symlink resolution is not *completely* iterative.
68  * There is still a significant amount of tail- and mid- recursion in
69  * the algorithm.  Also, note that <fs>_readlink() is not used in
70  * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71  * may return different results than <fs>_follow_link().  Many virtual
72  * filesystems (including /proc) exhibit this behavior.
73  */
74 
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76  * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77  * and the name already exists in form of a symlink, try to create the new
78  * name indicated by the symlink. The old code always complained that the
79  * name already exists, due to not following the symlink even if its target
80  * is nonexistent.  The new semantics affects also mknod() and link() when
81  * the name is a symlink pointing to a non-existent name.
82  *
83  * I don't know which semantics is the right one, since I have no access
84  * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85  * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86  * "old" one. Personally, I think the new semantics is much more logical.
87  * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88  * file does succeed in both HP-UX and SunOs, but not in Solaris
89  * and in the old Linux semantics.
90  */
91 
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93  * semantics.  See the comments in "open_namei" and "do_link" below.
94  *
95  * [10-Sep-98 Alan Modra] Another symlink change.
96  */
97 
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99  *	inside the path - always follow.
100  *	in the last component in creation/removal/renaming - never follow.
101  *	if LOOKUP_FOLLOW passed - follow.
102  *	if the pathname has trailing slashes - follow.
103  *	otherwise - don't follow.
104  * (applied in that order).
105  *
106  * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107  * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108  * During the 2.4 we need to fix the userland stuff depending on it -
109  * hopefully we will be able to get rid of that wart in 2.5. So far only
110  * XEmacs seems to be relying on it...
111  */
112 /*
113  * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114  * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
115  * any extra contention...
116  */
117 
118 /* In order to reduce some races, while at the same time doing additional
119  * checking and hopefully speeding things up, we copy filenames to the
120  * kernel data space before using them..
121  *
122  * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123  * PATH_MAX includes the nul terminator --RR.
124  */
125 
126 #define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
127 
128 struct filename *
getname_flags(const char __user * filename,int flags,int * empty)129 getname_flags(const char __user *filename, int flags, int *empty)
130 {
131 	struct filename *result;
132 	char *kname;
133 	int len;
134 	BUILD_BUG_ON(offsetof(struct filename, iname) % sizeof(long) != 0);
135 
136 	result = audit_reusename(filename);
137 	if (result)
138 		return result;
139 
140 	result = __getname();
141 	if (unlikely(!result))
142 		return ERR_PTR(-ENOMEM);
143 
144 	/*
145 	 * First, try to embed the struct filename inside the names_cache
146 	 * allocation
147 	 */
148 	kname = (char *)result->iname;
149 	result->name = kname;
150 
151 	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
152 	if (unlikely(len < 0)) {
153 		__putname(result);
154 		return ERR_PTR(len);
155 	}
156 
157 	/*
158 	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
159 	 * separate struct filename so we can dedicate the entire
160 	 * names_cache allocation for the pathname, and re-do the copy from
161 	 * userland.
162 	 */
163 	if (unlikely(len == EMBEDDED_NAME_MAX)) {
164 		const size_t size = offsetof(struct filename, iname[1]);
165 		kname = (char *)result;
166 
167 		/*
168 		 * size is chosen that way we to guarantee that
169 		 * result->iname[0] is within the same object and that
170 		 * kname can't be equal to result->iname, no matter what.
171 		 */
172 		result = kzalloc(size, GFP_KERNEL);
173 		if (unlikely(!result)) {
174 			__putname(kname);
175 			return ERR_PTR(-ENOMEM);
176 		}
177 		result->name = kname;
178 		len = strncpy_from_user(kname, filename, PATH_MAX);
179 		if (unlikely(len < 0)) {
180 			__putname(kname);
181 			kfree(result);
182 			return ERR_PTR(len);
183 		}
184 		if (unlikely(len == PATH_MAX)) {
185 			__putname(kname);
186 			kfree(result);
187 			return ERR_PTR(-ENAMETOOLONG);
188 		}
189 	}
190 
191 	result->refcnt = 1;
192 	/* The empty path is special. */
193 	if (unlikely(!len)) {
194 		if (empty)
195 			*empty = 1;
196 		if (!(flags & LOOKUP_EMPTY)) {
197 			putname(result);
198 			return ERR_PTR(-ENOENT);
199 		}
200 	}
201 
202 	result->uptr = filename;
203 	result->aname = NULL;
204 	audit_getname(result);
205 	return result;
206 }
207 
208 struct filename *
getname(const char __user * filename)209 getname(const char __user * filename)
210 {
211 	return getname_flags(filename, 0, NULL);
212 }
213 
214 struct filename *
getname_kernel(const char * filename)215 getname_kernel(const char * filename)
216 {
217 	struct filename *result;
218 	int len = strlen(filename) + 1;
219 
220 	result = __getname();
221 	if (unlikely(!result))
222 		return ERR_PTR(-ENOMEM);
223 
224 	if (len <= EMBEDDED_NAME_MAX) {
225 		result->name = (char *)result->iname;
226 	} else if (len <= PATH_MAX) {
227 		const size_t size = offsetof(struct filename, iname[1]);
228 		struct filename *tmp;
229 
230 		tmp = kmalloc(size, GFP_KERNEL);
231 		if (unlikely(!tmp)) {
232 			__putname(result);
233 			return ERR_PTR(-ENOMEM);
234 		}
235 		tmp->name = (char *)result;
236 		result = tmp;
237 	} else {
238 		__putname(result);
239 		return ERR_PTR(-ENAMETOOLONG);
240 	}
241 	memcpy((char *)result->name, filename, len);
242 	result->uptr = NULL;
243 	result->aname = NULL;
244 	result->refcnt = 1;
245 	audit_getname(result);
246 
247 	return result;
248 }
249 
putname(struct filename * name)250 void putname(struct filename *name)
251 {
252 	BUG_ON(name->refcnt <= 0);
253 
254 	if (--name->refcnt > 0)
255 		return;
256 
257 	if (name->name != name->iname) {
258 		__putname(name->name);
259 		kfree(name);
260 	} else
261 		__putname(name);
262 }
263 
check_acl(struct inode * inode,int mask)264 static int check_acl(struct inode *inode, int mask)
265 {
266 #ifdef CONFIG_FS_POSIX_ACL
267 	struct posix_acl *acl;
268 
269 	if (mask & MAY_NOT_BLOCK) {
270 		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
271 	        if (!acl)
272 	                return -EAGAIN;
273 		/* no ->get_acl() calls in RCU mode... */
274 		if (is_uncached_acl(acl))
275 			return -ECHILD;
276 	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 	}
278 
279 	acl = get_acl(inode, ACL_TYPE_ACCESS);
280 	if (IS_ERR(acl))
281 		return PTR_ERR(acl);
282 	if (acl) {
283 	        int error = posix_acl_permission(inode, acl, mask);
284 	        posix_acl_release(acl);
285 	        return error;
286 	}
287 #endif
288 
289 	return -EAGAIN;
290 }
291 
292 /*
293  * This does the basic permission checking
294  */
acl_permission_check(struct inode * inode,int mask)295 static int acl_permission_check(struct inode *inode, int mask)
296 {
297 	unsigned int mode = inode->i_mode;
298 
299 	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
300 		mode >>= 6;
301 	else {
302 		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
303 			int error = check_acl(inode, mask);
304 			if (error != -EAGAIN)
305 				return error;
306 		}
307 
308 		if (in_group_p(inode->i_gid))
309 			mode >>= 3;
310 	}
311 
312 	/*
313 	 * If the DACs are ok we don't need any capability check.
314 	 */
315 	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
316 		return 0;
317 	return -EACCES;
318 }
319 
320 /**
321  * generic_permission -  check for access rights on a Posix-like filesystem
322  * @inode:	inode to check access rights for
323  * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
324  *
325  * Used to check for read/write/execute permissions on a file.
326  * We use "fsuid" for this, letting us set arbitrary permissions
327  * for filesystem access without changing the "normal" uids which
328  * are used for other things.
329  *
330  * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
331  * request cannot be satisfied (eg. requires blocking or too much complexity).
332  * It would then be called again in ref-walk mode.
333  */
generic_permission(struct inode * inode,int mask)334 int generic_permission(struct inode *inode, int mask)
335 {
336 	int ret;
337 
338 	/*
339 	 * Do the basic permission checks.
340 	 */
341 	ret = acl_permission_check(inode, mask);
342 	if (ret != -EACCES)
343 		return ret;
344 
345 	if (S_ISDIR(inode->i_mode)) {
346 		/* DACs are overridable for directories */
347 		if (!(mask & MAY_WRITE))
348 			if (capable_wrt_inode_uidgid(inode,
349 						     CAP_DAC_READ_SEARCH))
350 				return 0;
351 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
352 			return 0;
353 		return -EACCES;
354 	}
355 
356 	/*
357 	 * Searching includes executable on directories, else just read.
358 	 */
359 	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
360 	if (mask == MAY_READ)
361 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
362 			return 0;
363 	/*
364 	 * Read/write DACs are always overridable.
365 	 * Executable DACs are overridable when there is
366 	 * at least one exec bit set.
367 	 */
368 	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
369 		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
370 			return 0;
371 
372 	return -EACCES;
373 }
374 EXPORT_SYMBOL(generic_permission);
375 
376 /*
377  * We _really_ want to just do "generic_permission()" without
378  * even looking at the inode->i_op values. So we keep a cache
379  * flag in inode->i_opflags, that says "this has not special
380  * permission function, use the fast case".
381  */
do_inode_permission(struct inode * inode,int mask)382 static inline int do_inode_permission(struct inode *inode, int mask)
383 {
384 	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
385 		if (likely(inode->i_op->permission))
386 			return inode->i_op->permission(inode, mask);
387 
388 		/* This gets set once for the inode lifetime */
389 		spin_lock(&inode->i_lock);
390 		inode->i_opflags |= IOP_FASTPERM;
391 		spin_unlock(&inode->i_lock);
392 	}
393 	return generic_permission(inode, mask);
394 }
395 
396 /**
397  * sb_permission - Check superblock-level permissions
398  * @sb: Superblock of inode to check permission on
399  * @inode: Inode to check permission on
400  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
401  *
402  * Separate out file-system wide checks from inode-specific permission checks.
403  */
sb_permission(struct super_block * sb,struct inode * inode,int mask)404 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
405 {
406 	if (unlikely(mask & MAY_WRITE)) {
407 		umode_t mode = inode->i_mode;
408 
409 		/* Nobody gets write access to a read-only fs. */
410 		if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
411 			return -EROFS;
412 	}
413 	return 0;
414 }
415 
416 /**
417  * inode_permission - Check for access rights to a given inode
418  * @inode: Inode to check permission on
419  * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
420  *
421  * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
422  * this, letting us set arbitrary permissions for filesystem access without
423  * changing the "normal" UIDs which are used for other things.
424  *
425  * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
426  */
inode_permission(struct inode * inode,int mask)427 int inode_permission(struct inode *inode, int mask)
428 {
429 	int retval;
430 
431 	retval = sb_permission(inode->i_sb, inode, mask);
432 	if (retval)
433 		return retval;
434 
435 	if (unlikely(mask & MAY_WRITE)) {
436 		/*
437 		 * Nobody gets write access to an immutable file.
438 		 */
439 		if (IS_IMMUTABLE(inode))
440 			return -EPERM;
441 
442 		/*
443 		 * Updating mtime will likely cause i_uid and i_gid to be
444 		 * written back improperly if their true value is unknown
445 		 * to the vfs.
446 		 */
447 		if (HAS_UNMAPPED_ID(inode))
448 			return -EACCES;
449 	}
450 
451 	retval = do_inode_permission(inode, mask);
452 	if (retval)
453 		return retval;
454 
455 	retval = devcgroup_inode_permission(inode, mask);
456 	if (retval)
457 		return retval;
458 
459 	return security_inode_permission(inode, mask);
460 }
461 EXPORT_SYMBOL(inode_permission);
462 
463 /**
464  * path_get - get a reference to a path
465  * @path: path to get the reference to
466  *
467  * Given a path increment the reference count to the dentry and the vfsmount.
468  */
path_get(const struct path * path)469 void path_get(const struct path *path)
470 {
471 	mntget(path->mnt);
472 	dget(path->dentry);
473 }
474 EXPORT_SYMBOL(path_get);
475 
476 /**
477  * path_put - put a reference to a path
478  * @path: path to put the reference to
479  *
480  * Given a path decrement the reference count to the dentry and the vfsmount.
481  */
path_put(const struct path * path)482 void path_put(const struct path *path)
483 {
484 	dput(path->dentry);
485 	mntput(path->mnt);
486 }
487 EXPORT_SYMBOL(path_put);
488 
489 #define EMBEDDED_LEVELS 2
490 struct nameidata {
491 	struct path	path;
492 	struct qstr	last;
493 	struct path	root;
494 	struct inode	*inode; /* path.dentry.d_inode */
495 	unsigned int	flags;
496 	unsigned	seq, m_seq;
497 	int		last_type;
498 	unsigned	depth;
499 	int		total_link_count;
500 	struct saved {
501 		struct path link;
502 		struct delayed_call done;
503 		const char *name;
504 		unsigned seq;
505 	} *stack, internal[EMBEDDED_LEVELS];
506 	struct filename	*name;
507 	struct nameidata *saved;
508 	struct inode	*link_inode;
509 	unsigned	root_seq;
510 	int		dfd;
511 } __randomize_layout;
512 
set_nameidata(struct nameidata * p,int dfd,struct filename * name)513 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
514 {
515 	struct nameidata *old = current->nameidata;
516 	p->stack = p->internal;
517 	p->dfd = dfd;
518 	p->name = name;
519 	p->total_link_count = old ? old->total_link_count : 0;
520 	p->saved = old;
521 	current->nameidata = p;
522 }
523 
restore_nameidata(void)524 static void restore_nameidata(void)
525 {
526 	struct nameidata *now = current->nameidata, *old = now->saved;
527 
528 	current->nameidata = old;
529 	if (old)
530 		old->total_link_count = now->total_link_count;
531 	if (now->stack != now->internal)
532 		kfree(now->stack);
533 }
534 
__nd_alloc_stack(struct nameidata * nd)535 static int __nd_alloc_stack(struct nameidata *nd)
536 {
537 	struct saved *p;
538 
539 	if (nd->flags & LOOKUP_RCU) {
540 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
541 				  GFP_ATOMIC);
542 		if (unlikely(!p))
543 			return -ECHILD;
544 	} else {
545 		p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
546 				  GFP_KERNEL);
547 		if (unlikely(!p))
548 			return -ENOMEM;
549 	}
550 	memcpy(p, nd->internal, sizeof(nd->internal));
551 	nd->stack = p;
552 	return 0;
553 }
554 
555 /**
556  * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
557  * @path: nameidate to verify
558  *
559  * Rename can sometimes move a file or directory outside of a bind
560  * mount, path_connected allows those cases to be detected.
561  */
path_connected(const struct path * path)562 static bool path_connected(const struct path *path)
563 {
564 	struct vfsmount *mnt = path->mnt;
565 	struct super_block *sb = mnt->mnt_sb;
566 
567 	/* Bind mounts and multi-root filesystems can have disconnected paths */
568 	if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
569 		return true;
570 
571 	return is_subdir(path->dentry, mnt->mnt_root);
572 }
573 
nd_alloc_stack(struct nameidata * nd)574 static inline int nd_alloc_stack(struct nameidata *nd)
575 {
576 	if (likely(nd->depth != EMBEDDED_LEVELS))
577 		return 0;
578 	if (likely(nd->stack != nd->internal))
579 		return 0;
580 	return __nd_alloc_stack(nd);
581 }
582 
drop_links(struct nameidata * nd)583 static void drop_links(struct nameidata *nd)
584 {
585 	int i = nd->depth;
586 	while (i--) {
587 		struct saved *last = nd->stack + i;
588 		do_delayed_call(&last->done);
589 		clear_delayed_call(&last->done);
590 	}
591 }
592 
terminate_walk(struct nameidata * nd)593 static void terminate_walk(struct nameidata *nd)
594 {
595 	drop_links(nd);
596 	if (!(nd->flags & LOOKUP_RCU)) {
597 		int i;
598 		path_put(&nd->path);
599 		for (i = 0; i < nd->depth; i++)
600 			path_put(&nd->stack[i].link);
601 		if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
602 			path_put(&nd->root);
603 			nd->root.mnt = NULL;
604 		}
605 	} else {
606 		nd->flags &= ~LOOKUP_RCU;
607 		if (!(nd->flags & LOOKUP_ROOT))
608 			nd->root.mnt = NULL;
609 		rcu_read_unlock();
610 	}
611 	nd->depth = 0;
612 }
613 
614 /* path_put is needed afterwards regardless of success or failure */
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)615 static bool legitimize_path(struct nameidata *nd,
616 			    struct path *path, unsigned seq)
617 {
618 	int res = __legitimize_mnt(path->mnt, nd->m_seq);
619 	if (unlikely(res)) {
620 		if (res > 0)
621 			path->mnt = NULL;
622 		path->dentry = NULL;
623 		return false;
624 	}
625 	if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
626 		path->dentry = NULL;
627 		return false;
628 	}
629 	return !read_seqcount_retry(&path->dentry->d_seq, seq);
630 }
631 
legitimize_links(struct nameidata * nd)632 static bool legitimize_links(struct nameidata *nd)
633 {
634 	int i;
635 	for (i = 0; i < nd->depth; i++) {
636 		struct saved *last = nd->stack + i;
637 		if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
638 			drop_links(nd);
639 			nd->depth = i + 1;
640 			return false;
641 		}
642 	}
643 	return true;
644 }
645 
646 /*
647  * Path walking has 2 modes, rcu-walk and ref-walk (see
648  * Documentation/filesystems/path-lookup.txt).  In situations when we can't
649  * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
650  * normal reference counts on dentries and vfsmounts to transition to ref-walk
651  * mode.  Refcounts are grabbed at the last known good point before rcu-walk
652  * got stuck, so ref-walk may continue from there. If this is not successful
653  * (eg. a seqcount has changed), then failure is returned and it's up to caller
654  * to restart the path walk from the beginning in ref-walk mode.
655  */
656 
657 /**
658  * unlazy_walk - try to switch to ref-walk mode.
659  * @nd: nameidata pathwalk data
660  * Returns: 0 on success, -ECHILD on failure
661  *
662  * unlazy_walk attempts to legitimize the current nd->path and nd->root
663  * for ref-walk mode.
664  * Must be called from rcu-walk context.
665  * Nothing should touch nameidata between unlazy_walk() failure and
666  * terminate_walk().
667  */
unlazy_walk(struct nameidata * nd)668 static int unlazy_walk(struct nameidata *nd)
669 {
670 	struct dentry *parent = nd->path.dentry;
671 
672 	BUG_ON(!(nd->flags & LOOKUP_RCU));
673 
674 	nd->flags &= ~LOOKUP_RCU;
675 	if (unlikely(!legitimize_links(nd)))
676 		goto out2;
677 	if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
678 		goto out1;
679 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
680 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq)))
681 			goto out;
682 	}
683 	rcu_read_unlock();
684 	BUG_ON(nd->inode != parent->d_inode);
685 	return 0;
686 
687 out2:
688 	nd->path.mnt = NULL;
689 	nd->path.dentry = NULL;
690 out1:
691 	if (!(nd->flags & LOOKUP_ROOT))
692 		nd->root.mnt = NULL;
693 out:
694 	rcu_read_unlock();
695 	return -ECHILD;
696 }
697 
698 /**
699  * unlazy_child - try to switch to ref-walk mode.
700  * @nd: nameidata pathwalk data
701  * @dentry: child of nd->path.dentry
702  * @seq: seq number to check dentry against
703  * Returns: 0 on success, -ECHILD on failure
704  *
705  * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
706  * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
707  * @nd.  Must be called from rcu-walk context.
708  * Nothing should touch nameidata between unlazy_child() failure and
709  * terminate_walk().
710  */
unlazy_child(struct nameidata * nd,struct dentry * dentry,unsigned seq)711 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 {
713 	BUG_ON(!(nd->flags & LOOKUP_RCU));
714 
715 	nd->flags &= ~LOOKUP_RCU;
716 	if (unlikely(!legitimize_links(nd)))
717 		goto out2;
718 	if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
719 		goto out2;
720 	if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
721 		goto out1;
722 
723 	/*
724 	 * We need to move both the parent and the dentry from the RCU domain
725 	 * to be properly refcounted. And the sequence number in the dentry
726 	 * validates *both* dentry counters, since we checked the sequence
727 	 * number of the parent after we got the child sequence number. So we
728 	 * know the parent must still be valid if the child sequence number is
729 	 */
730 	if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
731 		goto out;
732 	if (unlikely(read_seqcount_retry(&dentry->d_seq, seq))) {
733 		rcu_read_unlock();
734 		dput(dentry);
735 		goto drop_root_mnt;
736 	}
737 	/*
738 	 * Sequence counts matched. Now make sure that the root is
739 	 * still valid and get it if required.
740 	 */
741 	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
742 		if (unlikely(!legitimize_path(nd, &nd->root, nd->root_seq))) {
743 			rcu_read_unlock();
744 			dput(dentry);
745 			return -ECHILD;
746 		}
747 	}
748 
749 	rcu_read_unlock();
750 	return 0;
751 
752 out2:
753 	nd->path.mnt = NULL;
754 out1:
755 	nd->path.dentry = NULL;
756 out:
757 	rcu_read_unlock();
758 drop_root_mnt:
759 	if (!(nd->flags & LOOKUP_ROOT))
760 		nd->root.mnt = NULL;
761 	return -ECHILD;
762 }
763 
d_revalidate(struct dentry * dentry,unsigned int flags)764 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
765 {
766 	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
767 		return dentry->d_op->d_revalidate(dentry, flags);
768 	else
769 		return 1;
770 }
771 
772 /**
773  * complete_walk - successful completion of path walk
774  * @nd:  pointer nameidata
775  *
776  * If we had been in RCU mode, drop out of it and legitimize nd->path.
777  * Revalidate the final result, unless we'd already done that during
778  * the path walk or the filesystem doesn't ask for it.  Return 0 on
779  * success, -error on failure.  In case of failure caller does not
780  * need to drop nd->path.
781  */
complete_walk(struct nameidata * nd)782 static int complete_walk(struct nameidata *nd)
783 {
784 	struct dentry *dentry = nd->path.dentry;
785 	int status;
786 
787 	if (nd->flags & LOOKUP_RCU) {
788 		if (!(nd->flags & LOOKUP_ROOT))
789 			nd->root.mnt = NULL;
790 		if (unlikely(unlazy_walk(nd)))
791 			return -ECHILD;
792 	}
793 
794 	if (likely(!(nd->flags & LOOKUP_JUMPED)))
795 		return 0;
796 
797 	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
798 		return 0;
799 
800 	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
801 	if (status > 0)
802 		return 0;
803 
804 	if (!status)
805 		status = -ESTALE;
806 
807 	return status;
808 }
809 
set_root(struct nameidata * nd)810 static void set_root(struct nameidata *nd)
811 {
812 	struct fs_struct *fs = current->fs;
813 
814 	if (nd->flags & LOOKUP_RCU) {
815 		unsigned seq;
816 
817 		do {
818 			seq = read_seqcount_begin(&fs->seq);
819 			nd->root = fs->root;
820 			nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
821 		} while (read_seqcount_retry(&fs->seq, seq));
822 	} else {
823 		get_fs_root(fs, &nd->root);
824 	}
825 }
826 
path_put_conditional(struct path * path,struct nameidata * nd)827 static void path_put_conditional(struct path *path, struct nameidata *nd)
828 {
829 	dput(path->dentry);
830 	if (path->mnt != nd->path.mnt)
831 		mntput(path->mnt);
832 }
833 
path_to_nameidata(const struct path * path,struct nameidata * nd)834 static inline void path_to_nameidata(const struct path *path,
835 					struct nameidata *nd)
836 {
837 	if (!(nd->flags & LOOKUP_RCU)) {
838 		dput(nd->path.dentry);
839 		if (nd->path.mnt != path->mnt)
840 			mntput(nd->path.mnt);
841 	}
842 	nd->path.mnt = path->mnt;
843 	nd->path.dentry = path->dentry;
844 }
845 
nd_jump_root(struct nameidata * nd)846 static int nd_jump_root(struct nameidata *nd)
847 {
848 	if (nd->flags & LOOKUP_RCU) {
849 		struct dentry *d;
850 		nd->path = nd->root;
851 		d = nd->path.dentry;
852 		nd->inode = d->d_inode;
853 		nd->seq = nd->root_seq;
854 		if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
855 			return -ECHILD;
856 	} else {
857 		path_put(&nd->path);
858 		nd->path = nd->root;
859 		path_get(&nd->path);
860 		nd->inode = nd->path.dentry->d_inode;
861 	}
862 	nd->flags |= LOOKUP_JUMPED;
863 	return 0;
864 }
865 
866 /*
867  * Helper to directly jump to a known parsed path from ->get_link,
868  * caller must have taken a reference to path beforehand.
869  */
nd_jump_link(struct path * path)870 void nd_jump_link(struct path *path)
871 {
872 	struct nameidata *nd = current->nameidata;
873 	path_put(&nd->path);
874 
875 	nd->path = *path;
876 	nd->inode = nd->path.dentry->d_inode;
877 	nd->flags |= LOOKUP_JUMPED;
878 }
879 
put_link(struct nameidata * nd)880 static inline void put_link(struct nameidata *nd)
881 {
882 	struct saved *last = nd->stack + --nd->depth;
883 	do_delayed_call(&last->done);
884 	if (!(nd->flags & LOOKUP_RCU))
885 		path_put(&last->link);
886 }
887 
888 int sysctl_protected_symlinks __read_mostly = 0;
889 int sysctl_protected_hardlinks __read_mostly = 0;
890 int sysctl_protected_fifos __read_mostly;
891 int sysctl_protected_regular __read_mostly;
892 
893 /**
894  * may_follow_link - Check symlink following for unsafe situations
895  * @nd: nameidata pathwalk data
896  *
897  * In the case of the sysctl_protected_symlinks sysctl being enabled,
898  * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
899  * in a sticky world-writable directory. This is to protect privileged
900  * processes from failing races against path names that may change out
901  * from under them by way of other users creating malicious symlinks.
902  * It will permit symlinks to be followed only when outside a sticky
903  * world-writable directory, or when the uid of the symlink and follower
904  * match, or when the directory owner matches the symlink's owner.
905  *
906  * Returns 0 if following the symlink is allowed, -ve on error.
907  */
may_follow_link(struct nameidata * nd)908 static inline int may_follow_link(struct nameidata *nd)
909 {
910 	const struct inode *inode;
911 	const struct inode *parent;
912 	kuid_t puid;
913 
914 	if (!sysctl_protected_symlinks)
915 		return 0;
916 
917 	/* Allowed if owner and follower match. */
918 	inode = nd->link_inode;
919 	if (uid_eq(current_cred()->fsuid, inode->i_uid))
920 		return 0;
921 
922 	/* Allowed if parent directory not sticky and world-writable. */
923 	parent = nd->inode;
924 	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
925 		return 0;
926 
927 	/* Allowed if parent directory and link owner match. */
928 	puid = parent->i_uid;
929 	if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
930 		return 0;
931 
932 	if (nd->flags & LOOKUP_RCU)
933 		return -ECHILD;
934 
935 	audit_inode(nd->name, nd->stack[0].link.dentry, 0);
936 	audit_log_link_denied("follow_link");
937 	return -EACCES;
938 }
939 
940 /**
941  * safe_hardlink_source - Check for safe hardlink conditions
942  * @inode: the source inode to hardlink from
943  *
944  * Return false if at least one of the following conditions:
945  *    - inode is not a regular file
946  *    - inode is setuid
947  *    - inode is setgid and group-exec
948  *    - access failure for read and write
949  *
950  * Otherwise returns true.
951  */
safe_hardlink_source(struct inode * inode)952 static bool safe_hardlink_source(struct inode *inode)
953 {
954 	umode_t mode = inode->i_mode;
955 
956 	/* Special files should not get pinned to the filesystem. */
957 	if (!S_ISREG(mode))
958 		return false;
959 
960 	/* Setuid files should not get pinned to the filesystem. */
961 	if (mode & S_ISUID)
962 		return false;
963 
964 	/* Executable setgid files should not get pinned to the filesystem. */
965 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
966 		return false;
967 
968 	/* Hardlinking to unreadable or unwritable sources is dangerous. */
969 	if (inode_permission(inode, MAY_READ | MAY_WRITE))
970 		return false;
971 
972 	return true;
973 }
974 
975 /**
976  * may_linkat - Check permissions for creating a hardlink
977  * @link: the source to hardlink from
978  *
979  * Block hardlink when all of:
980  *  - sysctl_protected_hardlinks enabled
981  *  - fsuid does not match inode
982  *  - hardlink source is unsafe (see safe_hardlink_source() above)
983  *  - not CAP_FOWNER in a namespace with the inode owner uid mapped
984  *
985  * Returns 0 if successful, -ve on error.
986  */
may_linkat(struct path * link)987 static int may_linkat(struct path *link)
988 {
989 	struct inode *inode = link->dentry->d_inode;
990 
991 	/* Inode writeback is not safe when the uid or gid are invalid. */
992 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
993 		return -EOVERFLOW;
994 
995 	if (!sysctl_protected_hardlinks)
996 		return 0;
997 
998 	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
999 	 * otherwise, it must be a safe source.
1000 	 */
1001 	if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
1002 		return 0;
1003 
1004 	audit_log_link_denied("linkat");
1005 	return -EPERM;
1006 }
1007 
1008 /**
1009  * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1010  *			  should be allowed, or not, on files that already
1011  *			  exist.
1012  * @dir_mode: mode bits of directory
1013  * @dir_uid: owner of directory
1014  * @inode: the inode of the file to open
1015  *
1016  * Block an O_CREAT open of a FIFO (or a regular file) when:
1017  *   - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1018  *   - the file already exists
1019  *   - we are in a sticky directory
1020  *   - we don't own the file
1021  *   - the owner of the directory doesn't own the file
1022  *   - the directory is world writable
1023  * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1024  * the directory doesn't have to be world writable: being group writable will
1025  * be enough.
1026  *
1027  * Returns 0 if the open is allowed, -ve on error.
1028  */
may_create_in_sticky(umode_t dir_mode,kuid_t dir_uid,struct inode * const inode)1029 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1030 				struct inode * const inode)
1031 {
1032 	if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1033 	    (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1034 	    likely(!(dir_mode & S_ISVTX)) ||
1035 	    uid_eq(inode->i_uid, dir_uid) ||
1036 	    uid_eq(current_fsuid(), inode->i_uid))
1037 		return 0;
1038 
1039 	if (likely(dir_mode & 0002) ||
1040 	    (dir_mode & 0020 &&
1041 	     ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1042 	      (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1043 		return -EACCES;
1044 	}
1045 	return 0;
1046 }
1047 
1048 static __always_inline
get_link(struct nameidata * nd)1049 const char *get_link(struct nameidata *nd)
1050 {
1051 	struct saved *last = nd->stack + nd->depth - 1;
1052 	struct dentry *dentry = last->link.dentry;
1053 	struct inode *inode = nd->link_inode;
1054 	int error;
1055 	const char *res;
1056 
1057 	if (!(nd->flags & LOOKUP_RCU)) {
1058 		touch_atime(&last->link);
1059 		cond_resched();
1060 	} else if (atime_needs_update(&last->link, inode)) {
1061 		if (unlikely(unlazy_walk(nd)))
1062 			return ERR_PTR(-ECHILD);
1063 		touch_atime(&last->link);
1064 	}
1065 
1066 	error = security_inode_follow_link(dentry, inode,
1067 					   nd->flags & LOOKUP_RCU);
1068 	if (unlikely(error))
1069 		return ERR_PTR(error);
1070 
1071 	nd->last_type = LAST_BIND;
1072 	res = inode->i_link;
1073 	if (!res) {
1074 		const char * (*get)(struct dentry *, struct inode *,
1075 				struct delayed_call *);
1076 		get = inode->i_op->get_link;
1077 		if (nd->flags & LOOKUP_RCU) {
1078 			res = get(NULL, inode, &last->done);
1079 			if (res == ERR_PTR(-ECHILD)) {
1080 				if (unlikely(unlazy_walk(nd)))
1081 					return ERR_PTR(-ECHILD);
1082 				res = get(dentry, inode, &last->done);
1083 			}
1084 		} else {
1085 			res = get(dentry, inode, &last->done);
1086 		}
1087 		if (IS_ERR_OR_NULL(res))
1088 			return res;
1089 	}
1090 	if (*res == '/') {
1091 		if (!nd->root.mnt)
1092 			set_root(nd);
1093 		if (unlikely(nd_jump_root(nd)))
1094 			return ERR_PTR(-ECHILD);
1095 		while (unlikely(*++res == '/'))
1096 			;
1097 	}
1098 	if (!*res)
1099 		res = NULL;
1100 	return res;
1101 }
1102 
1103 /*
1104  * follow_up - Find the mountpoint of path's vfsmount
1105  *
1106  * Given a path, find the mountpoint of its source file system.
1107  * Replace @path with the path of the mountpoint in the parent mount.
1108  * Up is towards /.
1109  *
1110  * Return 1 if we went up a level and 0 if we were already at the
1111  * root.
1112  */
follow_up(struct path * path)1113 int follow_up(struct path *path)
1114 {
1115 	struct mount *mnt = real_mount(path->mnt);
1116 	struct mount *parent;
1117 	struct dentry *mountpoint;
1118 
1119 	read_seqlock_excl(&mount_lock);
1120 	parent = mnt->mnt_parent;
1121 	if (parent == mnt) {
1122 		read_sequnlock_excl(&mount_lock);
1123 		return 0;
1124 	}
1125 	mntget(&parent->mnt);
1126 	mountpoint = dget(mnt->mnt_mountpoint);
1127 	read_sequnlock_excl(&mount_lock);
1128 	dput(path->dentry);
1129 	path->dentry = mountpoint;
1130 	mntput(path->mnt);
1131 	path->mnt = &parent->mnt;
1132 	return 1;
1133 }
1134 EXPORT_SYMBOL(follow_up);
1135 
1136 /*
1137  * Perform an automount
1138  * - return -EISDIR to tell follow_managed() to stop and return the path we
1139  *   were called with.
1140  */
follow_automount(struct path * path,struct nameidata * nd,bool * need_mntput)1141 static int follow_automount(struct path *path, struct nameidata *nd,
1142 			    bool *need_mntput)
1143 {
1144 	struct vfsmount *mnt;
1145 	int err;
1146 
1147 	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1148 		return -EREMOTE;
1149 
1150 	/* We don't want to mount if someone's just doing a stat -
1151 	 * unless they're stat'ing a directory and appended a '/' to
1152 	 * the name.
1153 	 *
1154 	 * We do, however, want to mount if someone wants to open or
1155 	 * create a file of any type under the mountpoint, wants to
1156 	 * traverse through the mountpoint or wants to open the
1157 	 * mounted directory.  Also, autofs may mark negative dentries
1158 	 * as being automount points.  These will need the attentions
1159 	 * of the daemon to instantiate them before they can be used.
1160 	 */
1161 	if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1162 			   LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1163 	    path->dentry->d_inode)
1164 		return -EISDIR;
1165 
1166 	nd->total_link_count++;
1167 	if (nd->total_link_count >= 40)
1168 		return -ELOOP;
1169 
1170 	mnt = path->dentry->d_op->d_automount(path);
1171 	if (IS_ERR(mnt)) {
1172 		/*
1173 		 * The filesystem is allowed to return -EISDIR here to indicate
1174 		 * it doesn't want to automount.  For instance, autofs would do
1175 		 * this so that its userspace daemon can mount on this dentry.
1176 		 *
1177 		 * However, we can only permit this if it's a terminal point in
1178 		 * the path being looked up; if it wasn't then the remainder of
1179 		 * the path is inaccessible and we should say so.
1180 		 */
1181 		if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1182 			return -EREMOTE;
1183 		return PTR_ERR(mnt);
1184 	}
1185 
1186 	if (!mnt) /* mount collision */
1187 		return 0;
1188 
1189 	if (!*need_mntput) {
1190 		/* lock_mount() may release path->mnt on error */
1191 		mntget(path->mnt);
1192 		*need_mntput = true;
1193 	}
1194 	err = finish_automount(mnt, path);
1195 
1196 	switch (err) {
1197 	case -EBUSY:
1198 		/* Someone else made a mount here whilst we were busy */
1199 		return 0;
1200 	case 0:
1201 		path_put(path);
1202 		path->mnt = mnt;
1203 		path->dentry = dget(mnt->mnt_root);
1204 		return 0;
1205 	default:
1206 		return err;
1207 	}
1208 
1209 }
1210 
1211 /*
1212  * Handle a dentry that is managed in some way.
1213  * - Flagged for transit management (autofs)
1214  * - Flagged as mountpoint
1215  * - Flagged as automount point
1216  *
1217  * This may only be called in refwalk mode.
1218  *
1219  * Serialization is taken care of in namespace.c
1220  */
follow_managed(struct path * path,struct nameidata * nd)1221 static int follow_managed(struct path *path, struct nameidata *nd)
1222 {
1223 	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1224 	unsigned managed;
1225 	bool need_mntput = false;
1226 	int ret = 0;
1227 
1228 	/* Given that we're not holding a lock here, we retain the value in a
1229 	 * local variable for each dentry as we look at it so that we don't see
1230 	 * the components of that value change under us */
1231 	while (managed = READ_ONCE(path->dentry->d_flags),
1232 	       managed &= DCACHE_MANAGED_DENTRY,
1233 	       unlikely(managed != 0)) {
1234 		/* Allow the filesystem to manage the transit without i_mutex
1235 		 * being held. */
1236 		if (managed & DCACHE_MANAGE_TRANSIT) {
1237 			BUG_ON(!path->dentry->d_op);
1238 			BUG_ON(!path->dentry->d_op->d_manage);
1239 			ret = path->dentry->d_op->d_manage(path, false);
1240 			if (ret < 0)
1241 				break;
1242 		}
1243 
1244 		/* Transit to a mounted filesystem. */
1245 		if (managed & DCACHE_MOUNTED) {
1246 			struct vfsmount *mounted = lookup_mnt(path);
1247 			if (mounted) {
1248 				dput(path->dentry);
1249 				if (need_mntput)
1250 					mntput(path->mnt);
1251 				path->mnt = mounted;
1252 				path->dentry = dget(mounted->mnt_root);
1253 				need_mntput = true;
1254 				continue;
1255 			}
1256 
1257 			/* Something is mounted on this dentry in another
1258 			 * namespace and/or whatever was mounted there in this
1259 			 * namespace got unmounted before lookup_mnt() could
1260 			 * get it */
1261 		}
1262 
1263 		/* Handle an automount point */
1264 		if (managed & DCACHE_NEED_AUTOMOUNT) {
1265 			ret = follow_automount(path, nd, &need_mntput);
1266 			if (ret < 0)
1267 				break;
1268 			continue;
1269 		}
1270 
1271 		/* We didn't change the current path point */
1272 		break;
1273 	}
1274 
1275 	if (need_mntput && path->mnt == mnt)
1276 		mntput(path->mnt);
1277 	if (ret == -EISDIR || !ret)
1278 		ret = 1;
1279 	if (need_mntput)
1280 		nd->flags |= LOOKUP_JUMPED;
1281 	if (unlikely(ret < 0))
1282 		path_put_conditional(path, nd);
1283 	return ret;
1284 }
1285 
follow_down_one(struct path * path)1286 int follow_down_one(struct path *path)
1287 {
1288 	struct vfsmount *mounted;
1289 
1290 	mounted = lookup_mnt(path);
1291 	if (mounted) {
1292 		dput(path->dentry);
1293 		mntput(path->mnt);
1294 		path->mnt = mounted;
1295 		path->dentry = dget(mounted->mnt_root);
1296 		return 1;
1297 	}
1298 	return 0;
1299 }
1300 EXPORT_SYMBOL(follow_down_one);
1301 
managed_dentry_rcu(const struct path * path)1302 static inline int managed_dentry_rcu(const struct path *path)
1303 {
1304 	return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1305 		path->dentry->d_op->d_manage(path, true) : 0;
1306 }
1307 
1308 /*
1309  * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1310  * we meet a managed dentry that would need blocking.
1311  */
__follow_mount_rcu(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1312 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1313 			       struct inode **inode, unsigned *seqp)
1314 {
1315 	for (;;) {
1316 		struct mount *mounted;
1317 		/*
1318 		 * Don't forget we might have a non-mountpoint managed dentry
1319 		 * that wants to block transit.
1320 		 */
1321 		switch (managed_dentry_rcu(path)) {
1322 		case -ECHILD:
1323 		default:
1324 			return false;
1325 		case -EISDIR:
1326 			return true;
1327 		case 0:
1328 			break;
1329 		}
1330 
1331 		if (!d_mountpoint(path->dentry))
1332 			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1333 
1334 		mounted = __lookup_mnt(path->mnt, path->dentry);
1335 		if (!mounted)
1336 			break;
1337 		path->mnt = &mounted->mnt;
1338 		path->dentry = mounted->mnt.mnt_root;
1339 		nd->flags |= LOOKUP_JUMPED;
1340 		*seqp = read_seqcount_begin(&path->dentry->d_seq);
1341 		/*
1342 		 * Update the inode too. We don't need to re-check the
1343 		 * dentry sequence number here after this d_inode read,
1344 		 * because a mount-point is always pinned.
1345 		 */
1346 		*inode = path->dentry->d_inode;
1347 	}
1348 	return !read_seqretry(&mount_lock, nd->m_seq) &&
1349 		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1350 }
1351 
follow_dotdot_rcu(struct nameidata * nd)1352 static int follow_dotdot_rcu(struct nameidata *nd)
1353 {
1354 	struct inode *inode = nd->inode;
1355 
1356 	while (1) {
1357 		if (path_equal(&nd->path, &nd->root))
1358 			break;
1359 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1360 			struct dentry *old = nd->path.dentry;
1361 			struct dentry *parent = old->d_parent;
1362 			unsigned seq;
1363 
1364 			inode = parent->d_inode;
1365 			seq = read_seqcount_begin(&parent->d_seq);
1366 			if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1367 				return -ECHILD;
1368 			nd->path.dentry = parent;
1369 			nd->seq = seq;
1370 			if (unlikely(!path_connected(&nd->path)))
1371 				return -ECHILD;
1372 			break;
1373 		} else {
1374 			struct mount *mnt = real_mount(nd->path.mnt);
1375 			struct mount *mparent = mnt->mnt_parent;
1376 			struct dentry *mountpoint = mnt->mnt_mountpoint;
1377 			struct inode *inode2 = mountpoint->d_inode;
1378 			unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1379 			if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1380 				return -ECHILD;
1381 			if (&mparent->mnt == nd->path.mnt)
1382 				break;
1383 			/* we know that mountpoint was pinned */
1384 			nd->path.dentry = mountpoint;
1385 			nd->path.mnt = &mparent->mnt;
1386 			inode = inode2;
1387 			nd->seq = seq;
1388 		}
1389 	}
1390 	while (unlikely(d_mountpoint(nd->path.dentry))) {
1391 		struct mount *mounted;
1392 		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1393 		if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1394 			return -ECHILD;
1395 		if (!mounted)
1396 			break;
1397 		nd->path.mnt = &mounted->mnt;
1398 		nd->path.dentry = mounted->mnt.mnt_root;
1399 		inode = nd->path.dentry->d_inode;
1400 		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1401 	}
1402 	nd->inode = inode;
1403 	return 0;
1404 }
1405 
1406 /*
1407  * Follow down to the covering mount currently visible to userspace.  At each
1408  * point, the filesystem owning that dentry may be queried as to whether the
1409  * caller is permitted to proceed or not.
1410  */
follow_down(struct path * path)1411 int follow_down(struct path *path)
1412 {
1413 	unsigned managed;
1414 	int ret;
1415 
1416 	while (managed = READ_ONCE(path->dentry->d_flags),
1417 	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1418 		/* Allow the filesystem to manage the transit without i_mutex
1419 		 * being held.
1420 		 *
1421 		 * We indicate to the filesystem if someone is trying to mount
1422 		 * something here.  This gives autofs the chance to deny anyone
1423 		 * other than its daemon the right to mount on its
1424 		 * superstructure.
1425 		 *
1426 		 * The filesystem may sleep at this point.
1427 		 */
1428 		if (managed & DCACHE_MANAGE_TRANSIT) {
1429 			BUG_ON(!path->dentry->d_op);
1430 			BUG_ON(!path->dentry->d_op->d_manage);
1431 			ret = path->dentry->d_op->d_manage(path, false);
1432 			if (ret < 0)
1433 				return ret == -EISDIR ? 0 : ret;
1434 		}
1435 
1436 		/* Transit to a mounted filesystem. */
1437 		if (managed & DCACHE_MOUNTED) {
1438 			struct vfsmount *mounted = lookup_mnt(path);
1439 			if (!mounted)
1440 				break;
1441 			dput(path->dentry);
1442 			mntput(path->mnt);
1443 			path->mnt = mounted;
1444 			path->dentry = dget(mounted->mnt_root);
1445 			continue;
1446 		}
1447 
1448 		/* Don't handle automount points here */
1449 		break;
1450 	}
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL(follow_down);
1454 
1455 /*
1456  * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1457  */
follow_mount(struct path * path)1458 static void follow_mount(struct path *path)
1459 {
1460 	while (d_mountpoint(path->dentry)) {
1461 		struct vfsmount *mounted = lookup_mnt(path);
1462 		if (!mounted)
1463 			break;
1464 		dput(path->dentry);
1465 		mntput(path->mnt);
1466 		path->mnt = mounted;
1467 		path->dentry = dget(mounted->mnt_root);
1468 	}
1469 }
1470 
path_parent_directory(struct path * path)1471 static int path_parent_directory(struct path *path)
1472 {
1473 	struct dentry *old = path->dentry;
1474 	/* rare case of legitimate dget_parent()... */
1475 	path->dentry = dget_parent(path->dentry);
1476 	dput(old);
1477 	if (unlikely(!path_connected(path)))
1478 		return -ENOENT;
1479 	return 0;
1480 }
1481 
follow_dotdot(struct nameidata * nd)1482 static int follow_dotdot(struct nameidata *nd)
1483 {
1484 	while(1) {
1485 		if (path_equal(&nd->path, &nd->root))
1486 			break;
1487 		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1488 			int ret = path_parent_directory(&nd->path);
1489 			if (ret)
1490 				return ret;
1491 			break;
1492 		}
1493 		if (!follow_up(&nd->path))
1494 			break;
1495 	}
1496 	follow_mount(&nd->path);
1497 	nd->inode = nd->path.dentry->d_inode;
1498 	return 0;
1499 }
1500 
1501 /*
1502  * This looks up the name in dcache and possibly revalidates the found dentry.
1503  * NULL is returned if the dentry does not exist in the cache.
1504  */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1505 static struct dentry *lookup_dcache(const struct qstr *name,
1506 				    struct dentry *dir,
1507 				    unsigned int flags)
1508 {
1509 	struct dentry *dentry = d_lookup(dir, name);
1510 	if (dentry) {
1511 		int error = d_revalidate(dentry, flags);
1512 		if (unlikely(error <= 0)) {
1513 			if (!error)
1514 				d_invalidate(dentry);
1515 			dput(dentry);
1516 			return ERR_PTR(error);
1517 		}
1518 	}
1519 	return dentry;
1520 }
1521 
1522 /*
1523  * Parent directory has inode locked exclusive.  This is one
1524  * and only case when ->lookup() gets called on non in-lookup
1525  * dentries - as the matter of fact, this only gets called
1526  * when directory is guaranteed to have no in-lookup children
1527  * at all.
1528  */
__lookup_hash(const struct qstr * name,struct dentry * base,unsigned int flags)1529 static struct dentry *__lookup_hash(const struct qstr *name,
1530 		struct dentry *base, unsigned int flags)
1531 {
1532 	struct dentry *dentry = lookup_dcache(name, base, flags);
1533 	struct dentry *old;
1534 	struct inode *dir = base->d_inode;
1535 
1536 	if (dentry)
1537 		return dentry;
1538 
1539 	/* Don't create child dentry for a dead directory. */
1540 	if (unlikely(IS_DEADDIR(dir)))
1541 		return ERR_PTR(-ENOENT);
1542 
1543 	dentry = d_alloc(base, name);
1544 	if (unlikely(!dentry))
1545 		return ERR_PTR(-ENOMEM);
1546 
1547 	old = dir->i_op->lookup(dir, dentry, flags);
1548 	if (unlikely(old)) {
1549 		dput(dentry);
1550 		dentry = old;
1551 	}
1552 	return dentry;
1553 }
1554 
lookup_fast(struct nameidata * nd,struct path * path,struct inode ** inode,unsigned * seqp)1555 static int lookup_fast(struct nameidata *nd,
1556 		       struct path *path, struct inode **inode,
1557 		       unsigned *seqp)
1558 {
1559 	struct vfsmount *mnt = nd->path.mnt;
1560 	struct dentry *dentry, *parent = nd->path.dentry;
1561 	int status = 1;
1562 	int err;
1563 
1564 	/*
1565 	 * Rename seqlock is not required here because in the off chance
1566 	 * of a false negative due to a concurrent rename, the caller is
1567 	 * going to fall back to non-racy lookup.
1568 	 */
1569 	if (nd->flags & LOOKUP_RCU) {
1570 		unsigned seq;
1571 		bool negative;
1572 		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1573 		if (unlikely(!dentry)) {
1574 			if (unlazy_walk(nd))
1575 				return -ECHILD;
1576 			return 0;
1577 		}
1578 
1579 		/*
1580 		 * This sequence count validates that the inode matches
1581 		 * the dentry name information from lookup.
1582 		 */
1583 		*inode = d_backing_inode(dentry);
1584 		negative = d_is_negative(dentry);
1585 		if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1586 			return -ECHILD;
1587 
1588 		/*
1589 		 * This sequence count validates that the parent had no
1590 		 * changes while we did the lookup of the dentry above.
1591 		 *
1592 		 * The memory barrier in read_seqcount_begin of child is
1593 		 *  enough, we can use __read_seqcount_retry here.
1594 		 */
1595 		if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1596 			return -ECHILD;
1597 
1598 		*seqp = seq;
1599 		status = d_revalidate(dentry, nd->flags);
1600 		if (likely(status > 0)) {
1601 			/*
1602 			 * Note: do negative dentry check after revalidation in
1603 			 * case that drops it.
1604 			 */
1605 			if (unlikely(negative))
1606 				return -ENOENT;
1607 			path->mnt = mnt;
1608 			path->dentry = dentry;
1609 			if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1610 				return 1;
1611 		}
1612 		if (unlazy_child(nd, dentry, seq))
1613 			return -ECHILD;
1614 		if (unlikely(status == -ECHILD))
1615 			/* we'd been told to redo it in non-rcu mode */
1616 			status = d_revalidate(dentry, nd->flags);
1617 	} else {
1618 		dentry = __d_lookup(parent, &nd->last);
1619 		if (unlikely(!dentry))
1620 			return 0;
1621 		status = d_revalidate(dentry, nd->flags);
1622 	}
1623 	if (unlikely(status <= 0)) {
1624 		if (!status)
1625 			d_invalidate(dentry);
1626 		dput(dentry);
1627 		return status;
1628 	}
1629 	if (unlikely(d_is_negative(dentry))) {
1630 		dput(dentry);
1631 		return -ENOENT;
1632 	}
1633 
1634 	path->mnt = mnt;
1635 	path->dentry = dentry;
1636 	err = follow_managed(path, nd);
1637 	if (likely(err > 0))
1638 		*inode = d_backing_inode(path->dentry);
1639 	return err;
1640 }
1641 
1642 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1643 static struct dentry *__lookup_slow(const struct qstr *name,
1644 				    struct dentry *dir,
1645 				    unsigned int flags)
1646 {
1647 	struct dentry *dentry, *old;
1648 	struct inode *inode = dir->d_inode;
1649 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1650 
1651 	/* Don't go there if it's already dead */
1652 	if (unlikely(IS_DEADDIR(inode)))
1653 		return ERR_PTR(-ENOENT);
1654 again:
1655 	dentry = d_alloc_parallel(dir, name, &wq);
1656 	if (IS_ERR(dentry))
1657 		return dentry;
1658 	if (unlikely(!d_in_lookup(dentry))) {
1659 		if (!(flags & LOOKUP_NO_REVAL)) {
1660 			int error = d_revalidate(dentry, flags);
1661 			if (unlikely(error <= 0)) {
1662 				if (!error) {
1663 					d_invalidate(dentry);
1664 					dput(dentry);
1665 					goto again;
1666 				}
1667 				dput(dentry);
1668 				dentry = ERR_PTR(error);
1669 			}
1670 		}
1671 	} else {
1672 		old = inode->i_op->lookup(inode, dentry, flags);
1673 		d_lookup_done(dentry);
1674 		if (unlikely(old)) {
1675 			dput(dentry);
1676 			dentry = old;
1677 		}
1678 	}
1679 	return dentry;
1680 }
1681 
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1682 static struct dentry *lookup_slow(const struct qstr *name,
1683 				  struct dentry *dir,
1684 				  unsigned int flags)
1685 {
1686 	struct inode *inode = dir->d_inode;
1687 	struct dentry *res;
1688 	inode_lock_shared(inode);
1689 	res = __lookup_slow(name, dir, flags);
1690 	inode_unlock_shared(inode);
1691 	return res;
1692 }
1693 
may_lookup(struct nameidata * nd)1694 static inline int may_lookup(struct nameidata *nd)
1695 {
1696 	if (nd->flags & LOOKUP_RCU) {
1697 		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1698 		if (err != -ECHILD)
1699 			return err;
1700 		if (unlazy_walk(nd))
1701 			return -ECHILD;
1702 	}
1703 	return inode_permission(nd->inode, MAY_EXEC);
1704 }
1705 
handle_dots(struct nameidata * nd,int type)1706 static inline int handle_dots(struct nameidata *nd, int type)
1707 {
1708 	if (type == LAST_DOTDOT) {
1709 		if (!nd->root.mnt)
1710 			set_root(nd);
1711 		if (nd->flags & LOOKUP_RCU) {
1712 			return follow_dotdot_rcu(nd);
1713 		} else
1714 			return follow_dotdot(nd);
1715 	}
1716 	return 0;
1717 }
1718 
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,unsigned seq)1719 static int pick_link(struct nameidata *nd, struct path *link,
1720 		     struct inode *inode, unsigned seq)
1721 {
1722 	int error;
1723 	struct saved *last;
1724 	if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1725 		path_to_nameidata(link, nd);
1726 		return -ELOOP;
1727 	}
1728 	if (!(nd->flags & LOOKUP_RCU)) {
1729 		if (link->mnt == nd->path.mnt)
1730 			mntget(link->mnt);
1731 	}
1732 	error = nd_alloc_stack(nd);
1733 	if (unlikely(error)) {
1734 		if (error == -ECHILD) {
1735 			if (unlikely(!legitimize_path(nd, link, seq))) {
1736 				drop_links(nd);
1737 				nd->depth = 0;
1738 				nd->flags &= ~LOOKUP_RCU;
1739 				nd->path.mnt = NULL;
1740 				nd->path.dentry = NULL;
1741 				if (!(nd->flags & LOOKUP_ROOT))
1742 					nd->root.mnt = NULL;
1743 				rcu_read_unlock();
1744 			} else if (likely(unlazy_walk(nd)) == 0)
1745 				error = nd_alloc_stack(nd);
1746 		}
1747 		if (error) {
1748 			path_put(link);
1749 			return error;
1750 		}
1751 	}
1752 
1753 	last = nd->stack + nd->depth++;
1754 	last->link = *link;
1755 	clear_delayed_call(&last->done);
1756 	nd->link_inode = inode;
1757 	last->seq = seq;
1758 	return 1;
1759 }
1760 
1761 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1762 
1763 /*
1764  * Do we need to follow links? We _really_ want to be able
1765  * to do this check without having to look at inode->i_op,
1766  * so we keep a cache of "no, this doesn't need follow_link"
1767  * for the common case.
1768  */
step_into(struct nameidata * nd,struct path * path,int flags,struct inode * inode,unsigned seq)1769 static inline int step_into(struct nameidata *nd, struct path *path,
1770 			    int flags, struct inode *inode, unsigned seq)
1771 {
1772 	if (!(flags & WALK_MORE) && nd->depth)
1773 		put_link(nd);
1774 	if (likely(!d_is_symlink(path->dentry)) ||
1775 	   !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1776 		/* not a symlink or should not follow */
1777 		path_to_nameidata(path, nd);
1778 		nd->inode = inode;
1779 		nd->seq = seq;
1780 		return 0;
1781 	}
1782 	/* make sure that d_is_symlink above matches inode */
1783 	if (nd->flags & LOOKUP_RCU) {
1784 		if (read_seqcount_retry(&path->dentry->d_seq, seq))
1785 			return -ECHILD;
1786 	}
1787 	return pick_link(nd, path, inode, seq);
1788 }
1789 
walk_component(struct nameidata * nd,int flags)1790 static int walk_component(struct nameidata *nd, int flags)
1791 {
1792 	struct path path;
1793 	struct inode *inode;
1794 	unsigned seq;
1795 	int err;
1796 	/*
1797 	 * "." and ".." are special - ".." especially so because it has
1798 	 * to be able to know about the current root directory and
1799 	 * parent relationships.
1800 	 */
1801 	if (unlikely(nd->last_type != LAST_NORM)) {
1802 		err = handle_dots(nd, nd->last_type);
1803 		if (!(flags & WALK_MORE) && nd->depth)
1804 			put_link(nd);
1805 		return err;
1806 	}
1807 	err = lookup_fast(nd, &path, &inode, &seq);
1808 	if (unlikely(err <= 0)) {
1809 		if (err < 0)
1810 			return err;
1811 		path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1812 					  nd->flags);
1813 		if (IS_ERR(path.dentry))
1814 			return PTR_ERR(path.dentry);
1815 
1816 		path.mnt = nd->path.mnt;
1817 		err = follow_managed(&path, nd);
1818 		if (unlikely(err < 0))
1819 			return err;
1820 
1821 		if (unlikely(d_is_negative(path.dentry))) {
1822 			path_to_nameidata(&path, nd);
1823 			return -ENOENT;
1824 		}
1825 
1826 		seq = 0;	/* we are already out of RCU mode */
1827 		inode = d_backing_inode(path.dentry);
1828 	}
1829 
1830 	return step_into(nd, &path, flags, inode, seq);
1831 }
1832 
1833 /*
1834  * We can do the critical dentry name comparison and hashing
1835  * operations one word at a time, but we are limited to:
1836  *
1837  * - Architectures with fast unaligned word accesses. We could
1838  *   do a "get_unaligned()" if this helps and is sufficiently
1839  *   fast.
1840  *
1841  * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1842  *   do not trap on the (extremely unlikely) case of a page
1843  *   crossing operation.
1844  *
1845  * - Furthermore, we need an efficient 64-bit compile for the
1846  *   64-bit case in order to generate the "number of bytes in
1847  *   the final mask". Again, that could be replaced with a
1848  *   efficient population count instruction or similar.
1849  */
1850 #ifdef CONFIG_DCACHE_WORD_ACCESS
1851 
1852 #include <asm/word-at-a-time.h>
1853 
1854 #ifdef HASH_MIX
1855 
1856 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1857 
1858 #elif defined(CONFIG_64BIT)
1859 /*
1860  * Register pressure in the mixing function is an issue, particularly
1861  * on 32-bit x86, but almost any function requires one state value and
1862  * one temporary.  Instead, use a function designed for two state values
1863  * and no temporaries.
1864  *
1865  * This function cannot create a collision in only two iterations, so
1866  * we have two iterations to achieve avalanche.  In those two iterations,
1867  * we have six layers of mixing, which is enough to spread one bit's
1868  * influence out to 2^6 = 64 state bits.
1869  *
1870  * Rotate constants are scored by considering either 64 one-bit input
1871  * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1872  * probability of that delta causing a change to each of the 128 output
1873  * bits, using a sample of random initial states.
1874  *
1875  * The Shannon entropy of the computed probabilities is then summed
1876  * to produce a score.  Ideally, any input change has a 50% chance of
1877  * toggling any given output bit.
1878  *
1879  * Mixing scores (in bits) for (12,45):
1880  * Input delta: 1-bit      2-bit
1881  * 1 round:     713.3    42542.6
1882  * 2 rounds:   2753.7   140389.8
1883  * 3 rounds:   5954.1   233458.2
1884  * 4 rounds:   7862.6   256672.2
1885  * Perfect:    8192     258048
1886  *            (64*128) (64*63/2 * 128)
1887  */
1888 #define HASH_MIX(x, y, a)	\
1889 	(	x ^= (a),	\
1890 	y ^= x,	x = rol64(x,12),\
1891 	x += y,	y = rol64(y,45),\
1892 	y *= 9			)
1893 
1894 /*
1895  * Fold two longs into one 32-bit hash value.  This must be fast, but
1896  * latency isn't quite as critical, as there is a fair bit of additional
1897  * work done before the hash value is used.
1898  */
fold_hash(unsigned long x,unsigned long y)1899 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1900 {
1901 	y ^= x * GOLDEN_RATIO_64;
1902 	y *= GOLDEN_RATIO_64;
1903 	return y >> 32;
1904 }
1905 
1906 #else	/* 32-bit case */
1907 
1908 /*
1909  * Mixing scores (in bits) for (7,20):
1910  * Input delta: 1-bit      2-bit
1911  * 1 round:     330.3     9201.6
1912  * 2 rounds:   1246.4    25475.4
1913  * 3 rounds:   1907.1    31295.1
1914  * 4 rounds:   2042.3    31718.6
1915  * Perfect:    2048      31744
1916  *            (32*64)   (32*31/2 * 64)
1917  */
1918 #define HASH_MIX(x, y, a)	\
1919 	(	x ^= (a),	\
1920 	y ^= x,	x = rol32(x, 7),\
1921 	x += y,	y = rol32(y,20),\
1922 	y *= 9			)
1923 
fold_hash(unsigned long x,unsigned long y)1924 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1925 {
1926 	/* Use arch-optimized multiply if one exists */
1927 	return __hash_32(y ^ __hash_32(x));
1928 }
1929 
1930 #endif
1931 
1932 /*
1933  * Return the hash of a string of known length.  This is carfully
1934  * designed to match hash_name(), which is the more critical function.
1935  * In particular, we must end by hashing a final word containing 0..7
1936  * payload bytes, to match the way that hash_name() iterates until it
1937  * finds the delimiter after the name.
1938  */
full_name_hash(const void * salt,const char * name,unsigned int len)1939 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1940 {
1941 	unsigned long a, x = 0, y = (unsigned long)salt;
1942 
1943 	for (;;) {
1944 		if (!len)
1945 			goto done;
1946 		a = load_unaligned_zeropad(name);
1947 		if (len < sizeof(unsigned long))
1948 			break;
1949 		HASH_MIX(x, y, a);
1950 		name += sizeof(unsigned long);
1951 		len -= sizeof(unsigned long);
1952 	}
1953 	x ^= a & bytemask_from_count(len);
1954 done:
1955 	return fold_hash(x, y);
1956 }
1957 EXPORT_SYMBOL(full_name_hash);
1958 
1959 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)1960 u64 hashlen_string(const void *salt, const char *name)
1961 {
1962 	unsigned long a = 0, x = 0, y = (unsigned long)salt;
1963 	unsigned long adata, mask, len;
1964 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1965 
1966 	len = 0;
1967 	goto inside;
1968 
1969 	do {
1970 		HASH_MIX(x, y, a);
1971 		len += sizeof(unsigned long);
1972 inside:
1973 		a = load_unaligned_zeropad(name+len);
1974 	} while (!has_zero(a, &adata, &constants));
1975 
1976 	adata = prep_zero_mask(a, adata, &constants);
1977 	mask = create_zero_mask(adata);
1978 	x ^= a & zero_bytemask(mask);
1979 
1980 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1981 }
1982 EXPORT_SYMBOL(hashlen_string);
1983 
1984 /*
1985  * Calculate the length and hash of the path component, and
1986  * return the "hash_len" as the result.
1987  */
hash_name(const void * salt,const char * name)1988 static inline u64 hash_name(const void *salt, const char *name)
1989 {
1990 	unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1991 	unsigned long adata, bdata, mask, len;
1992 	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1993 
1994 	len = 0;
1995 	goto inside;
1996 
1997 	do {
1998 		HASH_MIX(x, y, a);
1999 		len += sizeof(unsigned long);
2000 inside:
2001 		a = load_unaligned_zeropad(name+len);
2002 		b = a ^ REPEAT_BYTE('/');
2003 	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2004 
2005 	adata = prep_zero_mask(a, adata, &constants);
2006 	bdata = prep_zero_mask(b, bdata, &constants);
2007 	mask = create_zero_mask(adata | bdata);
2008 	x ^= a & zero_bytemask(mask);
2009 
2010 	return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2011 }
2012 
2013 #else	/* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2014 
2015 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2016 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2017 {
2018 	unsigned long hash = init_name_hash(salt);
2019 	while (len--)
2020 		hash = partial_name_hash((unsigned char)*name++, hash);
2021 	return end_name_hash(hash);
2022 }
2023 EXPORT_SYMBOL(full_name_hash);
2024 
2025 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2026 u64 hashlen_string(const void *salt, const char *name)
2027 {
2028 	unsigned long hash = init_name_hash(salt);
2029 	unsigned long len = 0, c;
2030 
2031 	c = (unsigned char)*name;
2032 	while (c) {
2033 		len++;
2034 		hash = partial_name_hash(c, hash);
2035 		c = (unsigned char)name[len];
2036 	}
2037 	return hashlen_create(end_name_hash(hash), len);
2038 }
2039 EXPORT_SYMBOL(hashlen_string);
2040 
2041 /*
2042  * We know there's a real path component here of at least
2043  * one character.
2044  */
hash_name(const void * salt,const char * name)2045 static inline u64 hash_name(const void *salt, const char *name)
2046 {
2047 	unsigned long hash = init_name_hash(salt);
2048 	unsigned long len = 0, c;
2049 
2050 	c = (unsigned char)*name;
2051 	do {
2052 		len++;
2053 		hash = partial_name_hash(c, hash);
2054 		c = (unsigned char)name[len];
2055 	} while (c && c != '/');
2056 	return hashlen_create(end_name_hash(hash), len);
2057 }
2058 
2059 #endif
2060 
2061 /*
2062  * Name resolution.
2063  * This is the basic name resolution function, turning a pathname into
2064  * the final dentry. We expect 'base' to be positive and a directory.
2065  *
2066  * Returns 0 and nd will have valid dentry and mnt on success.
2067  * Returns error and drops reference to input namei data on failure.
2068  */
link_path_walk(const char * name,struct nameidata * nd)2069 static int link_path_walk(const char *name, struct nameidata *nd)
2070 {
2071 	int err;
2072 
2073 	if (IS_ERR(name))
2074 		return PTR_ERR(name);
2075 	while (*name=='/')
2076 		name++;
2077 	if (!*name)
2078 		return 0;
2079 
2080 	/* At this point we know we have a real path component. */
2081 	for(;;) {
2082 		u64 hash_len;
2083 		int type;
2084 
2085 		err = may_lookup(nd);
2086 		if (err)
2087 			return err;
2088 
2089 		hash_len = hash_name(nd->path.dentry, name);
2090 
2091 		type = LAST_NORM;
2092 		if (name[0] == '.') switch (hashlen_len(hash_len)) {
2093 			case 2:
2094 				if (name[1] == '.') {
2095 					type = LAST_DOTDOT;
2096 					nd->flags |= LOOKUP_JUMPED;
2097 				}
2098 				break;
2099 			case 1:
2100 				type = LAST_DOT;
2101 		}
2102 		if (likely(type == LAST_NORM)) {
2103 			struct dentry *parent = nd->path.dentry;
2104 			nd->flags &= ~LOOKUP_JUMPED;
2105 			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2106 				struct qstr this = { { .hash_len = hash_len }, .name = name };
2107 				err = parent->d_op->d_hash(parent, &this);
2108 				if (err < 0)
2109 					return err;
2110 				hash_len = this.hash_len;
2111 				name = this.name;
2112 			}
2113 		}
2114 
2115 		nd->last.hash_len = hash_len;
2116 		nd->last.name = name;
2117 		nd->last_type = type;
2118 
2119 		name += hashlen_len(hash_len);
2120 		if (!*name)
2121 			goto OK;
2122 		/*
2123 		 * If it wasn't NUL, we know it was '/'. Skip that
2124 		 * slash, and continue until no more slashes.
2125 		 */
2126 		do {
2127 			name++;
2128 		} while (unlikely(*name == '/'));
2129 		if (unlikely(!*name)) {
2130 OK:
2131 			/* pathname body, done */
2132 			if (!nd->depth)
2133 				return 0;
2134 			name = nd->stack[nd->depth - 1].name;
2135 			/* trailing symlink, done */
2136 			if (!name)
2137 				return 0;
2138 			/* last component of nested symlink */
2139 			err = walk_component(nd, WALK_FOLLOW);
2140 		} else {
2141 			/* not the last component */
2142 			err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2143 		}
2144 		if (err < 0)
2145 			return err;
2146 
2147 		if (err) {
2148 			const char *s = get_link(nd);
2149 
2150 			if (IS_ERR(s))
2151 				return PTR_ERR(s);
2152 			err = 0;
2153 			if (unlikely(!s)) {
2154 				/* jumped */
2155 				put_link(nd);
2156 			} else {
2157 				nd->stack[nd->depth - 1].name = name;
2158 				name = s;
2159 				continue;
2160 			}
2161 		}
2162 		if (unlikely(!d_can_lookup(nd->path.dentry))) {
2163 			if (nd->flags & LOOKUP_RCU) {
2164 				if (unlazy_walk(nd))
2165 					return -ECHILD;
2166 			}
2167 			return -ENOTDIR;
2168 		}
2169 	}
2170 }
2171 
2172 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2173 static const char *path_init(struct nameidata *nd, unsigned flags)
2174 {
2175 	const char *s = nd->name->name;
2176 
2177 	if (!*s)
2178 		flags &= ~LOOKUP_RCU;
2179 	if (flags & LOOKUP_RCU)
2180 		rcu_read_lock();
2181 
2182 	nd->last_type = LAST_ROOT; /* if there are only slashes... */
2183 	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2184 	nd->depth = 0;
2185 	if (flags & LOOKUP_ROOT) {
2186 		struct dentry *root = nd->root.dentry;
2187 		struct inode *inode = root->d_inode;
2188 		if (*s && unlikely(!d_can_lookup(root)))
2189 			return ERR_PTR(-ENOTDIR);
2190 		nd->path = nd->root;
2191 		nd->inode = inode;
2192 		if (flags & LOOKUP_RCU) {
2193 			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2194 			nd->root_seq = nd->seq;
2195 			nd->m_seq = read_seqbegin(&mount_lock);
2196 		} else {
2197 			path_get(&nd->path);
2198 		}
2199 		return s;
2200 	}
2201 
2202 	nd->root.mnt = NULL;
2203 	nd->path.mnt = NULL;
2204 	nd->path.dentry = NULL;
2205 
2206 	nd->m_seq = read_seqbegin(&mount_lock);
2207 	if (*s == '/') {
2208 		set_root(nd);
2209 		if (likely(!nd_jump_root(nd)))
2210 			return s;
2211 		return ERR_PTR(-ECHILD);
2212 	} else if (nd->dfd == AT_FDCWD) {
2213 		if (flags & LOOKUP_RCU) {
2214 			struct fs_struct *fs = current->fs;
2215 			unsigned seq;
2216 
2217 			do {
2218 				seq = read_seqcount_begin(&fs->seq);
2219 				nd->path = fs->pwd;
2220 				nd->inode = nd->path.dentry->d_inode;
2221 				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2222 			} while (read_seqcount_retry(&fs->seq, seq));
2223 		} else {
2224 			get_fs_pwd(current->fs, &nd->path);
2225 			nd->inode = nd->path.dentry->d_inode;
2226 		}
2227 		return s;
2228 	} else {
2229 		/* Caller must check execute permissions on the starting path component */
2230 		struct fd f = fdget_raw(nd->dfd);
2231 		struct dentry *dentry;
2232 
2233 		if (!f.file)
2234 			return ERR_PTR(-EBADF);
2235 
2236 		dentry = f.file->f_path.dentry;
2237 
2238 		if (*s && unlikely(!d_can_lookup(dentry))) {
2239 			fdput(f);
2240 			return ERR_PTR(-ENOTDIR);
2241 		}
2242 
2243 		nd->path = f.file->f_path;
2244 		if (flags & LOOKUP_RCU) {
2245 			nd->inode = nd->path.dentry->d_inode;
2246 			nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2247 		} else {
2248 			path_get(&nd->path);
2249 			nd->inode = nd->path.dentry->d_inode;
2250 		}
2251 		fdput(f);
2252 		return s;
2253 	}
2254 }
2255 
trailing_symlink(struct nameidata * nd)2256 static const char *trailing_symlink(struct nameidata *nd)
2257 {
2258 	const char *s;
2259 	int error = may_follow_link(nd);
2260 	if (unlikely(error))
2261 		return ERR_PTR(error);
2262 	nd->flags |= LOOKUP_PARENT;
2263 	nd->stack[0].name = NULL;
2264 	s = get_link(nd);
2265 	return s ? s : "";
2266 }
2267 
lookup_last(struct nameidata * nd)2268 static inline int lookup_last(struct nameidata *nd)
2269 {
2270 	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2271 		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2272 
2273 	nd->flags &= ~LOOKUP_PARENT;
2274 	return walk_component(nd, 0);
2275 }
2276 
handle_lookup_down(struct nameidata * nd)2277 static int handle_lookup_down(struct nameidata *nd)
2278 {
2279 	struct path path = nd->path;
2280 	struct inode *inode = nd->inode;
2281 	unsigned seq = nd->seq;
2282 	int err;
2283 
2284 	if (nd->flags & LOOKUP_RCU) {
2285 		/*
2286 		 * don't bother with unlazy_walk on failure - we are
2287 		 * at the very beginning of walk, so we lose nothing
2288 		 * if we simply redo everything in non-RCU mode
2289 		 */
2290 		if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2291 			return -ECHILD;
2292 	} else {
2293 		dget(path.dentry);
2294 		err = follow_managed(&path, nd);
2295 		if (unlikely(err < 0))
2296 			return err;
2297 		inode = d_backing_inode(path.dentry);
2298 		seq = 0;
2299 	}
2300 	path_to_nameidata(&path, nd);
2301 	nd->inode = inode;
2302 	nd->seq = seq;
2303 	return 0;
2304 }
2305 
2306 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2307 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2308 {
2309 	const char *s = path_init(nd, flags);
2310 	int err;
2311 
2312 	if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2313 		err = handle_lookup_down(nd);
2314 		if (unlikely(err < 0))
2315 			s = ERR_PTR(err);
2316 	}
2317 
2318 	while (!(err = link_path_walk(s, nd))
2319 		&& ((err = lookup_last(nd)) > 0)) {
2320 		s = trailing_symlink(nd);
2321 	}
2322 	if (!err)
2323 		err = complete_walk(nd);
2324 
2325 	if (!err && nd->flags & LOOKUP_DIRECTORY)
2326 		if (!d_can_lookup(nd->path.dentry))
2327 			err = -ENOTDIR;
2328 	if (!err) {
2329 		*path = nd->path;
2330 		nd->path.mnt = NULL;
2331 		nd->path.dentry = NULL;
2332 	}
2333 	terminate_walk(nd);
2334 	return err;
2335 }
2336 
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2337 static int filename_lookup(int dfd, struct filename *name, unsigned flags,
2338 			   struct path *path, struct path *root)
2339 {
2340 	int retval;
2341 	struct nameidata nd;
2342 	if (IS_ERR(name))
2343 		return PTR_ERR(name);
2344 	if (unlikely(root)) {
2345 		nd.root = *root;
2346 		flags |= LOOKUP_ROOT;
2347 	}
2348 	set_nameidata(&nd, dfd, name);
2349 	retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2350 	if (unlikely(retval == -ECHILD))
2351 		retval = path_lookupat(&nd, flags, path);
2352 	if (unlikely(retval == -ESTALE))
2353 		retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2354 
2355 	if (likely(!retval))
2356 		audit_inode(name, path->dentry, flags & LOOKUP_PARENT);
2357 	restore_nameidata();
2358 	putname(name);
2359 	return retval;
2360 }
2361 
2362 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2363 static int path_parentat(struct nameidata *nd, unsigned flags,
2364 				struct path *parent)
2365 {
2366 	const char *s = path_init(nd, flags);
2367 	int err = link_path_walk(s, nd);
2368 	if (!err)
2369 		err = complete_walk(nd);
2370 	if (!err) {
2371 		*parent = nd->path;
2372 		nd->path.mnt = NULL;
2373 		nd->path.dentry = NULL;
2374 	}
2375 	terminate_walk(nd);
2376 	return err;
2377 }
2378 
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2379 static struct filename *filename_parentat(int dfd, struct filename *name,
2380 				unsigned int flags, struct path *parent,
2381 				struct qstr *last, int *type)
2382 {
2383 	int retval;
2384 	struct nameidata nd;
2385 
2386 	if (IS_ERR(name))
2387 		return name;
2388 	set_nameidata(&nd, dfd, name);
2389 	retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2390 	if (unlikely(retval == -ECHILD))
2391 		retval = path_parentat(&nd, flags, parent);
2392 	if (unlikely(retval == -ESTALE))
2393 		retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2394 	if (likely(!retval)) {
2395 		*last = nd.last;
2396 		*type = nd.last_type;
2397 		audit_inode(name, parent->dentry, LOOKUP_PARENT);
2398 	} else {
2399 		putname(name);
2400 		name = ERR_PTR(retval);
2401 	}
2402 	restore_nameidata();
2403 	return name;
2404 }
2405 
2406 /* does lookup, returns the object with parent locked */
kern_path_locked(const char * name,struct path * path)2407 struct dentry *kern_path_locked(const char *name, struct path *path)
2408 {
2409 	struct filename *filename;
2410 	struct dentry *d;
2411 	struct qstr last;
2412 	int type;
2413 
2414 	filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2415 				    &last, &type);
2416 	if (IS_ERR(filename))
2417 		return ERR_CAST(filename);
2418 	if (unlikely(type != LAST_NORM)) {
2419 		path_put(path);
2420 		putname(filename);
2421 		return ERR_PTR(-EINVAL);
2422 	}
2423 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2424 	d = __lookup_hash(&last, path->dentry, 0);
2425 	if (IS_ERR(d)) {
2426 		inode_unlock(path->dentry->d_inode);
2427 		path_put(path);
2428 	}
2429 	putname(filename);
2430 	return d;
2431 }
2432 
kern_path(const char * name,unsigned int flags,struct path * path)2433 int kern_path(const char *name, unsigned int flags, struct path *path)
2434 {
2435 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2436 			       flags, path, NULL);
2437 }
2438 EXPORT_SYMBOL(kern_path);
2439 
2440 /**
2441  * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2442  * @dentry:  pointer to dentry of the base directory
2443  * @mnt: pointer to vfs mount of the base directory
2444  * @name: pointer to file name
2445  * @flags: lookup flags
2446  * @path: pointer to struct path to fill
2447  */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2448 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2449 		    const char *name, unsigned int flags,
2450 		    struct path *path)
2451 {
2452 	struct path root = {.mnt = mnt, .dentry = dentry};
2453 	/* the first argument of filename_lookup() is ignored with root */
2454 	return filename_lookup(AT_FDCWD, getname_kernel(name),
2455 			       flags , path, &root);
2456 }
2457 EXPORT_SYMBOL(vfs_path_lookup);
2458 
lookup_one_len_common(const char * name,struct dentry * base,int len,struct qstr * this)2459 static int lookup_one_len_common(const char *name, struct dentry *base,
2460 				 int len, struct qstr *this)
2461 {
2462 	this->name = name;
2463 	this->len = len;
2464 	this->hash = full_name_hash(base, name, len);
2465 	if (!len)
2466 		return -EACCES;
2467 
2468 	if (unlikely(name[0] == '.')) {
2469 		if (len < 2 || (len == 2 && name[1] == '.'))
2470 			return -EACCES;
2471 	}
2472 
2473 	while (len--) {
2474 		unsigned int c = *(const unsigned char *)name++;
2475 		if (c == '/' || c == '\0')
2476 			return -EACCES;
2477 	}
2478 	/*
2479 	 * See if the low-level filesystem might want
2480 	 * to use its own hash..
2481 	 */
2482 	if (base->d_flags & DCACHE_OP_HASH) {
2483 		int err = base->d_op->d_hash(base, this);
2484 		if (err < 0)
2485 			return err;
2486 	}
2487 
2488 	return inode_permission(base->d_inode, MAY_EXEC);
2489 }
2490 
2491 /**
2492  * try_lookup_one_len - filesystem helper to lookup single pathname component
2493  * @name:	pathname component to lookup
2494  * @base:	base directory to lookup from
2495  * @len:	maximum length @len should be interpreted to
2496  *
2497  * Look up a dentry by name in the dcache, returning NULL if it does not
2498  * currently exist.  The function does not try to create a dentry.
2499  *
2500  * Note that this routine is purely a helper for filesystem usage and should
2501  * not be called by generic code.
2502  *
2503  * The caller must hold base->i_mutex.
2504  */
try_lookup_one_len(const char * name,struct dentry * base,int len)2505 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2506 {
2507 	struct qstr this;
2508 	int err;
2509 
2510 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2511 
2512 	err = lookup_one_len_common(name, base, len, &this);
2513 	if (err)
2514 		return ERR_PTR(err);
2515 
2516 	return lookup_dcache(&this, base, 0);
2517 }
2518 EXPORT_SYMBOL(try_lookup_one_len);
2519 
2520 /**
2521  * lookup_one_len - filesystem helper to lookup single pathname component
2522  * @name:	pathname component to lookup
2523  * @base:	base directory to lookup from
2524  * @len:	maximum length @len should be interpreted to
2525  *
2526  * Note that this routine is purely a helper for filesystem usage and should
2527  * not be called by generic code.
2528  *
2529  * The caller must hold base->i_mutex.
2530  */
lookup_one_len(const char * name,struct dentry * base,int len)2531 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2532 {
2533 	struct dentry *dentry;
2534 	struct qstr this;
2535 	int err;
2536 
2537 	WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2538 
2539 	err = lookup_one_len_common(name, base, len, &this);
2540 	if (err)
2541 		return ERR_PTR(err);
2542 
2543 	dentry = lookup_dcache(&this, base, 0);
2544 	return dentry ? dentry : __lookup_slow(&this, base, 0);
2545 }
2546 EXPORT_SYMBOL(lookup_one_len);
2547 
2548 /**
2549  * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2550  * @name:	pathname component to lookup
2551  * @base:	base directory to lookup from
2552  * @len:	maximum length @len should be interpreted to
2553  *
2554  * Note that this routine is purely a helper for filesystem usage and should
2555  * not be called by generic code.
2556  *
2557  * Unlike lookup_one_len, it should be called without the parent
2558  * i_mutex held, and will take the i_mutex itself if necessary.
2559  */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)2560 struct dentry *lookup_one_len_unlocked(const char *name,
2561 				       struct dentry *base, int len)
2562 {
2563 	struct qstr this;
2564 	int err;
2565 	struct dentry *ret;
2566 
2567 	err = lookup_one_len_common(name, base, len, &this);
2568 	if (err)
2569 		return ERR_PTR(err);
2570 
2571 	ret = lookup_dcache(&this, base, 0);
2572 	if (!ret)
2573 		ret = lookup_slow(&this, base, 0);
2574 	return ret;
2575 }
2576 EXPORT_SYMBOL(lookup_one_len_unlocked);
2577 
2578 /*
2579  * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2580  * on negatives.  Returns known positive or ERR_PTR(); that's what
2581  * most of the users want.  Note that pinned negative with unlocked parent
2582  * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2583  * need to be very careful; pinned positives have ->d_inode stable, so
2584  * this one avoids such problems.
2585  */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)2586 struct dentry *lookup_positive_unlocked(const char *name,
2587 				       struct dentry *base, int len)
2588 {
2589 	struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2590 	if (!IS_ERR(ret) && d_is_negative(ret)) {
2591 		dput(ret);
2592 		ret = ERR_PTR(-ENOENT);
2593 	}
2594 	return ret;
2595 }
2596 EXPORT_SYMBOL(lookup_positive_unlocked);
2597 
2598 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)2599 int path_pts(struct path *path)
2600 {
2601 	/* Find something mounted on "pts" in the same directory as
2602 	 * the input path.
2603 	 */
2604 	struct dentry *child, *parent;
2605 	struct qstr this;
2606 	int ret;
2607 
2608 	ret = path_parent_directory(path);
2609 	if (ret)
2610 		return ret;
2611 
2612 	parent = path->dentry;
2613 	this.name = "pts";
2614 	this.len = 3;
2615 	child = d_hash_and_lookup(parent, &this);
2616 	if (IS_ERR_OR_NULL(child))
2617 		return -ENOENT;
2618 
2619 	path->dentry = child;
2620 	dput(parent);
2621 	follow_mount(path);
2622 	return 0;
2623 }
2624 #endif
2625 
user_path_at_empty(int dfd,const char __user * name,unsigned flags,struct path * path,int * empty)2626 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2627 		 struct path *path, int *empty)
2628 {
2629 	return filename_lookup(dfd, getname_flags(name, flags, empty),
2630 			       flags, path, NULL);
2631 }
2632 EXPORT_SYMBOL(user_path_at_empty);
2633 
2634 /**
2635  * mountpoint_last - look up last component for umount
2636  * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2637  *
2638  * This is a special lookup_last function just for umount. In this case, we
2639  * need to resolve the path without doing any revalidation.
2640  *
2641  * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2642  * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2643  * in almost all cases, this lookup will be served out of the dcache. The only
2644  * cases where it won't are if nd->last refers to a symlink or the path is
2645  * bogus and it doesn't exist.
2646  *
2647  * Returns:
2648  * -error: if there was an error during lookup. This includes -ENOENT if the
2649  *         lookup found a negative dentry.
2650  *
2651  * 0:      if we successfully resolved nd->last and found it to not to be a
2652  *         symlink that needs to be followed.
2653  *
2654  * 1:      if we successfully resolved nd->last and found it to be a symlink
2655  *         that needs to be followed.
2656  */
2657 static int
mountpoint_last(struct nameidata * nd)2658 mountpoint_last(struct nameidata *nd)
2659 {
2660 	int error = 0;
2661 	struct dentry *dir = nd->path.dentry;
2662 	struct path path;
2663 
2664 	/* If we're in rcuwalk, drop out of it to handle last component */
2665 	if (nd->flags & LOOKUP_RCU) {
2666 		if (unlazy_walk(nd))
2667 			return -ECHILD;
2668 	}
2669 
2670 	nd->flags &= ~LOOKUP_PARENT;
2671 
2672 	if (unlikely(nd->last_type != LAST_NORM)) {
2673 		error = handle_dots(nd, nd->last_type);
2674 		if (error)
2675 			return error;
2676 		path.dentry = dget(nd->path.dentry);
2677 	} else {
2678 		path.dentry = d_lookup(dir, &nd->last);
2679 		if (!path.dentry) {
2680 			/*
2681 			 * No cached dentry. Mounted dentries are pinned in the
2682 			 * cache, so that means that this dentry is probably
2683 			 * a symlink or the path doesn't actually point
2684 			 * to a mounted dentry.
2685 			 */
2686 			path.dentry = lookup_slow(&nd->last, dir,
2687 					     nd->flags | LOOKUP_NO_REVAL);
2688 			if (IS_ERR(path.dentry))
2689 				return PTR_ERR(path.dentry);
2690 		}
2691 	}
2692 	if (d_is_negative(path.dentry)) {
2693 		dput(path.dentry);
2694 		return -ENOENT;
2695 	}
2696 	path.mnt = nd->path.mnt;
2697 	return step_into(nd, &path, 0, d_backing_inode(path.dentry), 0);
2698 }
2699 
2700 /**
2701  * path_mountpoint - look up a path to be umounted
2702  * @nd:		lookup context
2703  * @flags:	lookup flags
2704  * @path:	pointer to container for result
2705  *
2706  * Look up the given name, but don't attempt to revalidate the last component.
2707  * Returns 0 and "path" will be valid on success; Returns error otherwise.
2708  */
2709 static int
path_mountpoint(struct nameidata * nd,unsigned flags,struct path * path)2710 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2711 {
2712 	const char *s = path_init(nd, flags);
2713 	int err;
2714 
2715 	while (!(err = link_path_walk(s, nd)) &&
2716 		(err = mountpoint_last(nd)) > 0) {
2717 		s = trailing_symlink(nd);
2718 	}
2719 	if (!err) {
2720 		*path = nd->path;
2721 		nd->path.mnt = NULL;
2722 		nd->path.dentry = NULL;
2723 		follow_mount(path);
2724 	}
2725 	terminate_walk(nd);
2726 	return err;
2727 }
2728 
2729 static int
filename_mountpoint(int dfd,struct filename * name,struct path * path,unsigned int flags)2730 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2731 			unsigned int flags)
2732 {
2733 	struct nameidata nd;
2734 	int error;
2735 	if (IS_ERR(name))
2736 		return PTR_ERR(name);
2737 	set_nameidata(&nd, dfd, name);
2738 	error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2739 	if (unlikely(error == -ECHILD))
2740 		error = path_mountpoint(&nd, flags, path);
2741 	if (unlikely(error == -ESTALE))
2742 		error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2743 	if (likely(!error))
2744 		audit_inode(name, path->dentry, 0);
2745 	restore_nameidata();
2746 	putname(name);
2747 	return error;
2748 }
2749 
2750 /**
2751  * user_path_mountpoint_at - lookup a path from userland in order to umount it
2752  * @dfd:	directory file descriptor
2753  * @name:	pathname from userland
2754  * @flags:	lookup flags
2755  * @path:	pointer to container to hold result
2756  *
2757  * A umount is a special case for path walking. We're not actually interested
2758  * in the inode in this situation, and ESTALE errors can be a problem. We
2759  * simply want track down the dentry and vfsmount attached at the mountpoint
2760  * and avoid revalidating the last component.
2761  *
2762  * Returns 0 and populates "path" on success.
2763  */
2764 int
user_path_mountpoint_at(int dfd,const char __user * name,unsigned int flags,struct path * path)2765 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2766 			struct path *path)
2767 {
2768 	return filename_mountpoint(dfd, getname(name), path, flags);
2769 }
2770 
2771 int
kern_path_mountpoint(int dfd,const char * name,struct path * path,unsigned int flags)2772 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2773 			unsigned int flags)
2774 {
2775 	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2776 }
2777 EXPORT_SYMBOL(kern_path_mountpoint);
2778 
__check_sticky(struct inode * dir,struct inode * inode)2779 int __check_sticky(struct inode *dir, struct inode *inode)
2780 {
2781 	kuid_t fsuid = current_fsuid();
2782 
2783 	if (uid_eq(inode->i_uid, fsuid))
2784 		return 0;
2785 	if (uid_eq(dir->i_uid, fsuid))
2786 		return 0;
2787 	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2788 }
2789 EXPORT_SYMBOL(__check_sticky);
2790 
2791 /*
2792  *	Check whether we can remove a link victim from directory dir, check
2793  *  whether the type of victim is right.
2794  *  1. We can't do it if dir is read-only (done in permission())
2795  *  2. We should have write and exec permissions on dir
2796  *  3. We can't remove anything from append-only dir
2797  *  4. We can't do anything with immutable dir (done in permission())
2798  *  5. If the sticky bit on dir is set we should either
2799  *	a. be owner of dir, or
2800  *	b. be owner of victim, or
2801  *	c. have CAP_FOWNER capability
2802  *  6. If the victim is append-only or immutable we can't do antyhing with
2803  *     links pointing to it.
2804  *  7. If the victim has an unknown uid or gid we can't change the inode.
2805  *  8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2806  *  9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2807  * 10. We can't remove a root or mountpoint.
2808  * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2809  *     nfs_async_unlink().
2810  */
may_delete(struct inode * dir,struct dentry * victim,bool isdir)2811 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2812 {
2813 	struct inode *inode = d_backing_inode(victim);
2814 	int error;
2815 
2816 	if (d_is_negative(victim))
2817 		return -ENOENT;
2818 	BUG_ON(!inode);
2819 
2820 	BUG_ON(victim->d_parent->d_inode != dir);
2821 
2822 	/* Inode writeback is not safe when the uid or gid are invalid. */
2823 	if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2824 		return -EOVERFLOW;
2825 
2826 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2827 
2828 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2829 	if (error)
2830 		return error;
2831 	if (IS_APPEND(dir))
2832 		return -EPERM;
2833 
2834 	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2835 	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2836 		return -EPERM;
2837 	if (isdir) {
2838 		if (!d_is_dir(victim))
2839 			return -ENOTDIR;
2840 		if (IS_ROOT(victim))
2841 			return -EBUSY;
2842 	} else if (d_is_dir(victim))
2843 		return -EISDIR;
2844 	if (IS_DEADDIR(dir))
2845 		return -ENOENT;
2846 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2847 		return -EBUSY;
2848 	return 0;
2849 }
2850 
2851 /*	Check whether we can create an object with dentry child in directory
2852  *  dir.
2853  *  1. We can't do it if child already exists (open has special treatment for
2854  *     this case, but since we are inlined it's OK)
2855  *  2. We can't do it if dir is read-only (done in permission())
2856  *  3. We can't do it if the fs can't represent the fsuid or fsgid.
2857  *  4. We should have write and exec permissions on dir
2858  *  5. We can't do it if dir is immutable (done in permission())
2859  */
may_create(struct inode * dir,struct dentry * child)2860 static inline int may_create(struct inode *dir, struct dentry *child)
2861 {
2862 	struct user_namespace *s_user_ns;
2863 	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2864 	if (child->d_inode)
2865 		return -EEXIST;
2866 	if (IS_DEADDIR(dir))
2867 		return -ENOENT;
2868 	s_user_ns = dir->i_sb->s_user_ns;
2869 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2870 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
2871 		return -EOVERFLOW;
2872 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2873 }
2874 
2875 /*
2876  * p1 and p2 should be directories on the same fs.
2877  */
lock_rename(struct dentry * p1,struct dentry * p2)2878 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2879 {
2880 	struct dentry *p;
2881 
2882 	if (p1 == p2) {
2883 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2884 		return NULL;
2885 	}
2886 
2887 	mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2888 
2889 	p = d_ancestor(p2, p1);
2890 	if (p) {
2891 		inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2892 		inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2893 		return p;
2894 	}
2895 
2896 	p = d_ancestor(p1, p2);
2897 	if (p) {
2898 		inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2899 		inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2900 		return p;
2901 	}
2902 
2903 	inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2904 	inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2905 	return NULL;
2906 }
2907 EXPORT_SYMBOL(lock_rename);
2908 
unlock_rename(struct dentry * p1,struct dentry * p2)2909 void unlock_rename(struct dentry *p1, struct dentry *p2)
2910 {
2911 	inode_unlock(p1->d_inode);
2912 	if (p1 != p2) {
2913 		inode_unlock(p2->d_inode);
2914 		mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2915 	}
2916 }
2917 EXPORT_SYMBOL(unlock_rename);
2918 
vfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)2919 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2920 		bool want_excl)
2921 {
2922 	int error = may_create(dir, dentry);
2923 	if (error)
2924 		return error;
2925 
2926 	if (!dir->i_op->create)
2927 		return -EACCES;	/* shouldn't it be ENOSYS? */
2928 	mode &= S_IALLUGO;
2929 	mode |= S_IFREG;
2930 	error = security_inode_create(dir, dentry, mode);
2931 	if (error)
2932 		return error;
2933 	error = dir->i_op->create(dir, dentry, mode, want_excl);
2934 	if (!error)
2935 		fsnotify_create(dir, dentry);
2936 	return error;
2937 }
2938 EXPORT_SYMBOL(vfs_create);
2939 
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)2940 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2941 		int (*f)(struct dentry *, umode_t, void *),
2942 		void *arg)
2943 {
2944 	struct inode *dir = dentry->d_parent->d_inode;
2945 	int error = may_create(dir, dentry);
2946 	if (error)
2947 		return error;
2948 
2949 	mode &= S_IALLUGO;
2950 	mode |= S_IFREG;
2951 	error = security_inode_create(dir, dentry, mode);
2952 	if (error)
2953 		return error;
2954 	error = f(dentry, mode, arg);
2955 	if (!error)
2956 		fsnotify_create(dir, dentry);
2957 	return error;
2958 }
2959 EXPORT_SYMBOL(vfs_mkobj);
2960 
may_open_dev(const struct path * path)2961 bool may_open_dev(const struct path *path)
2962 {
2963 	return !(path->mnt->mnt_flags & MNT_NODEV) &&
2964 		!(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2965 }
2966 
may_open(const struct path * path,int acc_mode,int flag)2967 static int may_open(const struct path *path, int acc_mode, int flag)
2968 {
2969 	struct dentry *dentry = path->dentry;
2970 	struct inode *inode = dentry->d_inode;
2971 	int error;
2972 
2973 	if (!inode)
2974 		return -ENOENT;
2975 
2976 	switch (inode->i_mode & S_IFMT) {
2977 	case S_IFLNK:
2978 		return -ELOOP;
2979 	case S_IFDIR:
2980 		if (acc_mode & MAY_WRITE)
2981 			return -EISDIR;
2982 		break;
2983 	case S_IFBLK:
2984 	case S_IFCHR:
2985 		if (!may_open_dev(path))
2986 			return -EACCES;
2987 		/*FALLTHRU*/
2988 	case S_IFIFO:
2989 	case S_IFSOCK:
2990 		flag &= ~O_TRUNC;
2991 		break;
2992 	}
2993 
2994 	error = inode_permission(inode, MAY_OPEN | acc_mode);
2995 	if (error)
2996 		return error;
2997 
2998 	/*
2999 	 * An append-only file must be opened in append mode for writing.
3000 	 */
3001 	if (IS_APPEND(inode)) {
3002 		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3003 			return -EPERM;
3004 		if (flag & O_TRUNC)
3005 			return -EPERM;
3006 	}
3007 
3008 	/* O_NOATIME can only be set by the owner or superuser */
3009 	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
3010 		return -EPERM;
3011 
3012 	return 0;
3013 }
3014 
handle_truncate(struct file * filp)3015 static int handle_truncate(struct file *filp)
3016 {
3017 	const struct path *path = &filp->f_path;
3018 	struct inode *inode = path->dentry->d_inode;
3019 	int error = get_write_access(inode);
3020 	if (error)
3021 		return error;
3022 	/*
3023 	 * Refuse to truncate files with mandatory locks held on them.
3024 	 */
3025 	error = locks_verify_locked(filp);
3026 	if (!error)
3027 		error = security_path_truncate(path);
3028 	if (!error) {
3029 		error = do_truncate(path->dentry, 0,
3030 				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3031 				    filp);
3032 	}
3033 	put_write_access(inode);
3034 	return error;
3035 }
3036 
open_to_namei_flags(int flag)3037 static inline int open_to_namei_flags(int flag)
3038 {
3039 	if ((flag & O_ACCMODE) == 3)
3040 		flag--;
3041 	return flag;
3042 }
3043 
may_o_create(const struct path * dir,struct dentry * dentry,umode_t mode)3044 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
3045 {
3046 	struct user_namespace *s_user_ns;
3047 	int error = security_path_mknod(dir, dentry, mode, 0);
3048 	if (error)
3049 		return error;
3050 
3051 	s_user_ns = dir->dentry->d_sb->s_user_ns;
3052 	if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
3053 	    !kgid_has_mapping(s_user_ns, current_fsgid()))
3054 		return -EOVERFLOW;
3055 
3056 	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
3057 	if (error)
3058 		return error;
3059 
3060 	return security_inode_create(dir->dentry->d_inode, dentry, mode);
3061 }
3062 
3063 /*
3064  * Attempt to atomically look up, create and open a file from a negative
3065  * dentry.
3066  *
3067  * Returns 0 if successful.  The file will have been created and attached to
3068  * @file by the filesystem calling finish_open().
3069  *
3070  * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3071  * be set.  The caller will need to perform the open themselves.  @path will
3072  * have been updated to point to the new dentry.  This may be negative.
3073  *
3074  * Returns an error code otherwise.
3075  */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct path * path,struct file * file,const struct open_flags * op,int open_flag,umode_t mode)3076 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3077 			struct path *path, struct file *file,
3078 			const struct open_flags *op,
3079 			int open_flag, umode_t mode)
3080 {
3081 	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3082 	struct inode *dir =  nd->path.dentry->d_inode;
3083 	int error;
3084 
3085 	if (!(~open_flag & (O_EXCL | O_CREAT)))	/* both O_EXCL and O_CREAT */
3086 		open_flag &= ~O_TRUNC;
3087 
3088 	if (nd->flags & LOOKUP_DIRECTORY)
3089 		open_flag |= O_DIRECTORY;
3090 
3091 	file->f_path.dentry = DENTRY_NOT_SET;
3092 	file->f_path.mnt = nd->path.mnt;
3093 	error = dir->i_op->atomic_open(dir, dentry, file,
3094 				       open_to_namei_flags(open_flag), mode);
3095 	d_lookup_done(dentry);
3096 	if (!error) {
3097 		if (file->f_mode & FMODE_OPENED) {
3098 			/*
3099 			 * We didn't have the inode before the open, so check open
3100 			 * permission here.
3101 			 */
3102 			int acc_mode = op->acc_mode;
3103 			if (file->f_mode & FMODE_CREATED) {
3104 				WARN_ON(!(open_flag & O_CREAT));
3105 				fsnotify_create(dir, dentry);
3106 				acc_mode = 0;
3107 			}
3108 			error = may_open(&file->f_path, acc_mode, open_flag);
3109 			if (WARN_ON(error > 0))
3110 				error = -EINVAL;
3111 		} else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3112 			error = -EIO;
3113 		} else {
3114 			if (file->f_path.dentry) {
3115 				dput(dentry);
3116 				dentry = file->f_path.dentry;
3117 			}
3118 			if (file->f_mode & FMODE_CREATED)
3119 				fsnotify_create(dir, dentry);
3120 			if (unlikely(d_is_negative(dentry))) {
3121 				error = -ENOENT;
3122 			} else {
3123 				path->dentry = dentry;
3124 				path->mnt = nd->path.mnt;
3125 				return 0;
3126 			}
3127 		}
3128 	}
3129 	dput(dentry);
3130 	return error;
3131 }
3132 
3133 /*
3134  * Look up and maybe create and open the last component.
3135  *
3136  * Must be called with parent locked (exclusive in O_CREAT case).
3137  *
3138  * Returns 0 on success, that is, if
3139  *  the file was successfully atomically created (if necessary) and opened, or
3140  *  the file was not completely opened at this time, though lookups and
3141  *  creations were performed.
3142  * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3143  * In the latter case dentry returned in @path might be negative if O_CREAT
3144  * hadn't been specified.
3145  *
3146  * An error code is returned on failure.
3147  */
lookup_open(struct nameidata * nd,struct path * path,struct file * file,const struct open_flags * op,bool got_write)3148 static int lookup_open(struct nameidata *nd, struct path *path,
3149 			struct file *file,
3150 			const struct open_flags *op,
3151 			bool got_write)
3152 {
3153 	struct dentry *dir = nd->path.dentry;
3154 	struct inode *dir_inode = dir->d_inode;
3155 	int open_flag = op->open_flag;
3156 	struct dentry *dentry;
3157 	int error, create_error = 0;
3158 	umode_t mode = op->mode;
3159 	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3160 
3161 	if (unlikely(IS_DEADDIR(dir_inode)))
3162 		return -ENOENT;
3163 
3164 	file->f_mode &= ~FMODE_CREATED;
3165 	dentry = d_lookup(dir, &nd->last);
3166 	for (;;) {
3167 		if (!dentry) {
3168 			dentry = d_alloc_parallel(dir, &nd->last, &wq);
3169 			if (IS_ERR(dentry))
3170 				return PTR_ERR(dentry);
3171 		}
3172 		if (d_in_lookup(dentry))
3173 			break;
3174 
3175 		error = d_revalidate(dentry, nd->flags);
3176 		if (likely(error > 0))
3177 			break;
3178 		if (error)
3179 			goto out_dput;
3180 		d_invalidate(dentry);
3181 		dput(dentry);
3182 		dentry = NULL;
3183 	}
3184 	if (dentry->d_inode) {
3185 		/* Cached positive dentry: will open in f_op->open */
3186 		goto out_no_open;
3187 	}
3188 
3189 	/*
3190 	 * Checking write permission is tricky, bacuse we don't know if we are
3191 	 * going to actually need it: O_CREAT opens should work as long as the
3192 	 * file exists.  But checking existence breaks atomicity.  The trick is
3193 	 * to check access and if not granted clear O_CREAT from the flags.
3194 	 *
3195 	 * Another problem is returing the "right" error value (e.g. for an
3196 	 * O_EXCL open we want to return EEXIST not EROFS).
3197 	 */
3198 	if (open_flag & O_CREAT) {
3199 		if (!IS_POSIXACL(dir->d_inode))
3200 			mode &= ~current_umask();
3201 		if (unlikely(!got_write)) {
3202 			create_error = -EROFS;
3203 			open_flag &= ~O_CREAT;
3204 			if (open_flag & (O_EXCL | O_TRUNC))
3205 				goto no_open;
3206 			/* No side effects, safe to clear O_CREAT */
3207 		} else {
3208 			create_error = may_o_create(&nd->path, dentry, mode);
3209 			if (create_error) {
3210 				open_flag &= ~O_CREAT;
3211 				if (open_flag & O_EXCL)
3212 					goto no_open;
3213 			}
3214 		}
3215 	} else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3216 		   unlikely(!got_write)) {
3217 		/*
3218 		 * No O_CREATE -> atomicity not a requirement -> fall
3219 		 * back to lookup + open
3220 		 */
3221 		goto no_open;
3222 	}
3223 
3224 	if (dir_inode->i_op->atomic_open) {
3225 		error = atomic_open(nd, dentry, path, file, op, open_flag,
3226 				    mode);
3227 		if (unlikely(error == -ENOENT) && create_error)
3228 			error = create_error;
3229 		return error;
3230 	}
3231 
3232 no_open:
3233 	if (d_in_lookup(dentry)) {
3234 		struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3235 							     nd->flags);
3236 		d_lookup_done(dentry);
3237 		if (unlikely(res)) {
3238 			if (IS_ERR(res)) {
3239 				error = PTR_ERR(res);
3240 				goto out_dput;
3241 			}
3242 			dput(dentry);
3243 			dentry = res;
3244 		}
3245 	}
3246 
3247 	/* Negative dentry, just create the file */
3248 	if (!dentry->d_inode && (open_flag & O_CREAT)) {
3249 		file->f_mode |= FMODE_CREATED;
3250 		audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3251 		if (!dir_inode->i_op->create) {
3252 			error = -EACCES;
3253 			goto out_dput;
3254 		}
3255 		error = dir_inode->i_op->create(dir_inode, dentry, mode,
3256 						open_flag & O_EXCL);
3257 		if (error)
3258 			goto out_dput;
3259 		fsnotify_create(dir_inode, dentry);
3260 	}
3261 	if (unlikely(create_error) && !dentry->d_inode) {
3262 		error = create_error;
3263 		goto out_dput;
3264 	}
3265 out_no_open:
3266 	path->dentry = dentry;
3267 	path->mnt = nd->path.mnt;
3268 	return 0;
3269 
3270 out_dput:
3271 	dput(dentry);
3272 	return error;
3273 }
3274 
3275 /*
3276  * Handle the last step of open()
3277  */
do_last(struct nameidata * nd,struct file * file,const struct open_flags * op)3278 static int do_last(struct nameidata *nd,
3279 		   struct file *file, const struct open_flags *op)
3280 {
3281 	struct dentry *dir = nd->path.dentry;
3282 	kuid_t dir_uid = nd->inode->i_uid;
3283 	umode_t dir_mode = nd->inode->i_mode;
3284 	int open_flag = op->open_flag;
3285 	bool will_truncate = (open_flag & O_TRUNC) != 0;
3286 	bool got_write = false;
3287 	int acc_mode = op->acc_mode;
3288 	unsigned seq;
3289 	struct inode *inode;
3290 	struct path path;
3291 	int error;
3292 
3293 	nd->flags &= ~LOOKUP_PARENT;
3294 	nd->flags |= op->intent;
3295 
3296 	if (nd->last_type != LAST_NORM) {
3297 		error = handle_dots(nd, nd->last_type);
3298 		if (unlikely(error))
3299 			return error;
3300 		goto finish_open;
3301 	}
3302 
3303 	if (!(open_flag & O_CREAT)) {
3304 		if (nd->last.name[nd->last.len])
3305 			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3306 		/* we _can_ be in RCU mode here */
3307 		error = lookup_fast(nd, &path, &inode, &seq);
3308 		if (likely(error > 0))
3309 			goto finish_lookup;
3310 
3311 		if (error < 0)
3312 			return error;
3313 
3314 		BUG_ON(nd->inode != dir->d_inode);
3315 		BUG_ON(nd->flags & LOOKUP_RCU);
3316 	} else {
3317 		/* create side of things */
3318 		/*
3319 		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3320 		 * has been cleared when we got to the last component we are
3321 		 * about to look up
3322 		 */
3323 		error = complete_walk(nd);
3324 		if (error)
3325 			return error;
3326 
3327 		audit_inode(nd->name, dir, LOOKUP_PARENT);
3328 		/* trailing slashes? */
3329 		if (unlikely(nd->last.name[nd->last.len]))
3330 			return -EISDIR;
3331 	}
3332 
3333 	if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3334 		error = mnt_want_write(nd->path.mnt);
3335 		if (!error)
3336 			got_write = true;
3337 		/*
3338 		 * do _not_ fail yet - we might not need that or fail with
3339 		 * a different error; let lookup_open() decide; we'll be
3340 		 * dropping this one anyway.
3341 		 */
3342 	}
3343 	if (open_flag & O_CREAT)
3344 		inode_lock(dir->d_inode);
3345 	else
3346 		inode_lock_shared(dir->d_inode);
3347 	error = lookup_open(nd, &path, file, op, got_write);
3348 	if (open_flag & O_CREAT)
3349 		inode_unlock(dir->d_inode);
3350 	else
3351 		inode_unlock_shared(dir->d_inode);
3352 
3353 	if (error)
3354 		goto out;
3355 
3356 	if (file->f_mode & FMODE_OPENED) {
3357 		if ((file->f_mode & FMODE_CREATED) ||
3358 		    !S_ISREG(file_inode(file)->i_mode))
3359 			will_truncate = false;
3360 
3361 		audit_inode(nd->name, file->f_path.dentry, 0);
3362 		goto opened;
3363 	}
3364 
3365 	if (file->f_mode & FMODE_CREATED) {
3366 		/* Don't check for write permission, don't truncate */
3367 		open_flag &= ~O_TRUNC;
3368 		will_truncate = false;
3369 		acc_mode = 0;
3370 		path_to_nameidata(&path, nd);
3371 		goto finish_open_created;
3372 	}
3373 
3374 	/*
3375 	 * If atomic_open() acquired write access it is dropped now due to
3376 	 * possible mount and symlink following (this might be optimized away if
3377 	 * necessary...)
3378 	 */
3379 	if (got_write) {
3380 		mnt_drop_write(nd->path.mnt);
3381 		got_write = false;
3382 	}
3383 
3384 	error = follow_managed(&path, nd);
3385 	if (unlikely(error < 0))
3386 		return error;
3387 
3388 	if (unlikely(d_is_negative(path.dentry))) {
3389 		path_to_nameidata(&path, nd);
3390 		return -ENOENT;
3391 	}
3392 
3393 	/*
3394 	 * create/update audit record if it already exists.
3395 	 */
3396 	audit_inode(nd->name, path.dentry, 0);
3397 
3398 	if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3399 		path_to_nameidata(&path, nd);
3400 		return -EEXIST;
3401 	}
3402 
3403 	seq = 0;	/* out of RCU mode, so the value doesn't matter */
3404 	inode = d_backing_inode(path.dentry);
3405 finish_lookup:
3406 	error = step_into(nd, &path, 0, inode, seq);
3407 	if (unlikely(error))
3408 		return error;
3409 finish_open:
3410 	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3411 	error = complete_walk(nd);
3412 	if (error)
3413 		return error;
3414 	audit_inode(nd->name, nd->path.dentry, 0);
3415 	if (open_flag & O_CREAT) {
3416 		error = -EISDIR;
3417 		if (d_is_dir(nd->path.dentry))
3418 			goto out;
3419 		error = may_create_in_sticky(dir_mode, dir_uid,
3420 					     d_backing_inode(nd->path.dentry));
3421 		if (unlikely(error))
3422 			goto out;
3423 	}
3424 	error = -ENOTDIR;
3425 	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3426 		goto out;
3427 	if (!d_is_reg(nd->path.dentry))
3428 		will_truncate = false;
3429 
3430 	if (will_truncate) {
3431 		error = mnt_want_write(nd->path.mnt);
3432 		if (error)
3433 			goto out;
3434 		got_write = true;
3435 	}
3436 finish_open_created:
3437 	error = may_open(&nd->path, acc_mode, open_flag);
3438 	if (error)
3439 		goto out;
3440 	BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3441 	error = vfs_open(&nd->path, file);
3442 	if (error)
3443 		goto out;
3444 opened:
3445 	error = ima_file_check(file, op->acc_mode);
3446 	if (!error && will_truncate)
3447 		error = handle_truncate(file);
3448 out:
3449 	if (unlikely(error > 0)) {
3450 		WARN_ON(1);
3451 		error = -EINVAL;
3452 	}
3453 	if (got_write)
3454 		mnt_drop_write(nd->path.mnt);
3455 	return error;
3456 }
3457 
vfs_tmpfile(struct dentry * dentry,umode_t mode,int open_flag)3458 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3459 {
3460 	struct dentry *child = NULL;
3461 	struct inode *dir = dentry->d_inode;
3462 	struct inode *inode;
3463 	int error;
3464 
3465 	/* we want directory to be writable */
3466 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3467 	if (error)
3468 		goto out_err;
3469 	error = -EOPNOTSUPP;
3470 	if (!dir->i_op->tmpfile)
3471 		goto out_err;
3472 	error = -ENOMEM;
3473 	child = d_alloc(dentry, &slash_name);
3474 	if (unlikely(!child))
3475 		goto out_err;
3476 	if (!IS_POSIXACL(dir))
3477 		mode &= ~current_umask();
3478 	error = dir->i_op->tmpfile(dir, child, mode);
3479 	if (error)
3480 		goto out_err;
3481 	error = -ENOENT;
3482 	inode = child->d_inode;
3483 	if (unlikely(!inode))
3484 		goto out_err;
3485 	if (!(open_flag & O_EXCL)) {
3486 		spin_lock(&inode->i_lock);
3487 		inode->i_state |= I_LINKABLE;
3488 		spin_unlock(&inode->i_lock);
3489 	}
3490 	return child;
3491 
3492 out_err:
3493 	dput(child);
3494 	return ERR_PTR(error);
3495 }
3496 EXPORT_SYMBOL(vfs_tmpfile);
3497 
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3498 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3499 		const struct open_flags *op,
3500 		struct file *file)
3501 {
3502 	struct dentry *child;
3503 	struct path path;
3504 	int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3505 	if (unlikely(error))
3506 		return error;
3507 	error = mnt_want_write(path.mnt);
3508 	if (unlikely(error))
3509 		goto out;
3510 	child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3511 	error = PTR_ERR(child);
3512 	if (IS_ERR(child))
3513 		goto out2;
3514 	dput(path.dentry);
3515 	path.dentry = child;
3516 	audit_inode(nd->name, child, 0);
3517 	/* Don't check for other permissions, the inode was just created */
3518 	error = may_open(&path, 0, op->open_flag);
3519 	if (error)
3520 		goto out2;
3521 	file->f_path.mnt = path.mnt;
3522 	error = finish_open(file, child, NULL);
3523 out2:
3524 	mnt_drop_write(path.mnt);
3525 out:
3526 	path_put(&path);
3527 	return error;
3528 }
3529 
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)3530 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3531 {
3532 	struct path path;
3533 	int error = path_lookupat(nd, flags, &path);
3534 	if (!error) {
3535 		audit_inode(nd->name, path.dentry, 0);
3536 		error = vfs_open(&path, file);
3537 		path_put(&path);
3538 	}
3539 	return error;
3540 }
3541 
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)3542 static struct file *path_openat(struct nameidata *nd,
3543 			const struct open_flags *op, unsigned flags)
3544 {
3545 	struct file *file;
3546 	int error;
3547 
3548 	file = alloc_empty_file(op->open_flag, current_cred());
3549 	if (IS_ERR(file))
3550 		return file;
3551 
3552 	if (unlikely(file->f_flags & __O_TMPFILE)) {
3553 		error = do_tmpfile(nd, flags, op, file);
3554 	} else if (unlikely(file->f_flags & O_PATH)) {
3555 		error = do_o_path(nd, flags, file);
3556 	} else {
3557 		const char *s = path_init(nd, flags);
3558 		while (!(error = link_path_walk(s, nd)) &&
3559 			(error = do_last(nd, file, op)) > 0) {
3560 			nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3561 			s = trailing_symlink(nd);
3562 		}
3563 		terminate_walk(nd);
3564 	}
3565 	if (likely(!error)) {
3566 		if (likely(file->f_mode & FMODE_OPENED))
3567 			return file;
3568 		WARN_ON(1);
3569 		error = -EINVAL;
3570 	}
3571 	fput(file);
3572 	if (error == -EOPENSTALE) {
3573 		if (flags & LOOKUP_RCU)
3574 			error = -ECHILD;
3575 		else
3576 			error = -ESTALE;
3577 	}
3578 	return ERR_PTR(error);
3579 }
3580 
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)3581 struct file *do_filp_open(int dfd, struct filename *pathname,
3582 		const struct open_flags *op)
3583 {
3584 	struct nameidata nd;
3585 	int flags = op->lookup_flags;
3586 	struct file *filp;
3587 
3588 	set_nameidata(&nd, dfd, pathname);
3589 	filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3590 	if (unlikely(filp == ERR_PTR(-ECHILD)))
3591 		filp = path_openat(&nd, op, flags);
3592 	if (unlikely(filp == ERR_PTR(-ESTALE)))
3593 		filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3594 	restore_nameidata();
3595 	return filp;
3596 }
3597 
do_file_open_root(struct dentry * dentry,struct vfsmount * mnt,const char * name,const struct open_flags * op)3598 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3599 		const char *name, const struct open_flags *op)
3600 {
3601 	struct nameidata nd;
3602 	struct file *file;
3603 	struct filename *filename;
3604 	int flags = op->lookup_flags | LOOKUP_ROOT;
3605 
3606 	nd.root.mnt = mnt;
3607 	nd.root.dentry = dentry;
3608 
3609 	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3610 		return ERR_PTR(-ELOOP);
3611 
3612 	filename = getname_kernel(name);
3613 	if (IS_ERR(filename))
3614 		return ERR_CAST(filename);
3615 
3616 	set_nameidata(&nd, -1, filename);
3617 	file = path_openat(&nd, op, flags | LOOKUP_RCU);
3618 	if (unlikely(file == ERR_PTR(-ECHILD)))
3619 		file = path_openat(&nd, op, flags);
3620 	if (unlikely(file == ERR_PTR(-ESTALE)))
3621 		file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3622 	restore_nameidata();
3623 	putname(filename);
3624 	return file;
3625 }
3626 
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)3627 static struct dentry *filename_create(int dfd, struct filename *name,
3628 				struct path *path, unsigned int lookup_flags)
3629 {
3630 	struct dentry *dentry = ERR_PTR(-EEXIST);
3631 	struct qstr last;
3632 	int type;
3633 	int err2;
3634 	int error;
3635 	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3636 
3637 	/*
3638 	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3639 	 * other flags passed in are ignored!
3640 	 */
3641 	lookup_flags &= LOOKUP_REVAL;
3642 
3643 	name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3644 	if (IS_ERR(name))
3645 		return ERR_CAST(name);
3646 
3647 	/*
3648 	 * Yucky last component or no last component at all?
3649 	 * (foo/., foo/.., /////)
3650 	 */
3651 	if (unlikely(type != LAST_NORM))
3652 		goto out;
3653 
3654 	/* don't fail immediately if it's r/o, at least try to report other errors */
3655 	err2 = mnt_want_write(path->mnt);
3656 	/*
3657 	 * Do the final lookup.
3658 	 */
3659 	lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3660 	inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3661 	dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3662 	if (IS_ERR(dentry))
3663 		goto unlock;
3664 
3665 	error = -EEXIST;
3666 	if (d_is_positive(dentry))
3667 		goto fail;
3668 
3669 	/*
3670 	 * Special case - lookup gave negative, but... we had foo/bar/
3671 	 * From the vfs_mknod() POV we just have a negative dentry -
3672 	 * all is fine. Let's be bastards - you had / on the end, you've
3673 	 * been asking for (non-existent) directory. -ENOENT for you.
3674 	 */
3675 	if (unlikely(!is_dir && last.name[last.len])) {
3676 		error = -ENOENT;
3677 		goto fail;
3678 	}
3679 	if (unlikely(err2)) {
3680 		error = err2;
3681 		goto fail;
3682 	}
3683 	putname(name);
3684 	return dentry;
3685 fail:
3686 	dput(dentry);
3687 	dentry = ERR_PTR(error);
3688 unlock:
3689 	inode_unlock(path->dentry->d_inode);
3690 	if (!err2)
3691 		mnt_drop_write(path->mnt);
3692 out:
3693 	path_put(path);
3694 	putname(name);
3695 	return dentry;
3696 }
3697 
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)3698 struct dentry *kern_path_create(int dfd, const char *pathname,
3699 				struct path *path, unsigned int lookup_flags)
3700 {
3701 	return filename_create(dfd, getname_kernel(pathname),
3702 				path, lookup_flags);
3703 }
3704 EXPORT_SYMBOL(kern_path_create);
3705 
done_path_create(struct path * path,struct dentry * dentry)3706 void done_path_create(struct path *path, struct dentry *dentry)
3707 {
3708 	dput(dentry);
3709 	inode_unlock(path->dentry->d_inode);
3710 	mnt_drop_write(path->mnt);
3711 	path_put(path);
3712 }
3713 EXPORT_SYMBOL(done_path_create);
3714 
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)3715 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3716 				struct path *path, unsigned int lookup_flags)
3717 {
3718 	return filename_create(dfd, getname(pathname), path, lookup_flags);
3719 }
3720 EXPORT_SYMBOL(user_path_create);
3721 
vfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)3722 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3723 {
3724 	int error = may_create(dir, dentry);
3725 
3726 	if (error)
3727 		return error;
3728 
3729 	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3730 		return -EPERM;
3731 
3732 	if (!dir->i_op->mknod)
3733 		return -EPERM;
3734 
3735 	error = devcgroup_inode_mknod(mode, dev);
3736 	if (error)
3737 		return error;
3738 
3739 	error = security_inode_mknod(dir, dentry, mode, dev);
3740 	if (error)
3741 		return error;
3742 
3743 	error = dir->i_op->mknod(dir, dentry, mode, dev);
3744 	if (!error)
3745 		fsnotify_create(dir, dentry);
3746 	return error;
3747 }
3748 EXPORT_SYMBOL(vfs_mknod);
3749 
may_mknod(umode_t mode)3750 static int may_mknod(umode_t mode)
3751 {
3752 	switch (mode & S_IFMT) {
3753 	case S_IFREG:
3754 	case S_IFCHR:
3755 	case S_IFBLK:
3756 	case S_IFIFO:
3757 	case S_IFSOCK:
3758 	case 0: /* zero mode translates to S_IFREG */
3759 		return 0;
3760 	case S_IFDIR:
3761 		return -EPERM;
3762 	default:
3763 		return -EINVAL;
3764 	}
3765 }
3766 
do_mknodat(int dfd,const char __user * filename,umode_t mode,unsigned int dev)3767 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3768 		unsigned int dev)
3769 {
3770 	struct dentry *dentry;
3771 	struct path path;
3772 	int error;
3773 	unsigned int lookup_flags = 0;
3774 
3775 	error = may_mknod(mode);
3776 	if (error)
3777 		return error;
3778 retry:
3779 	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3780 	if (IS_ERR(dentry))
3781 		return PTR_ERR(dentry);
3782 
3783 	if (!IS_POSIXACL(path.dentry->d_inode))
3784 		mode &= ~current_umask();
3785 	error = security_path_mknod(&path, dentry, mode, dev);
3786 	if (error)
3787 		goto out;
3788 	switch (mode & S_IFMT) {
3789 		case 0: case S_IFREG:
3790 			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3791 			if (!error)
3792 				ima_post_path_mknod(dentry);
3793 			break;
3794 		case S_IFCHR: case S_IFBLK:
3795 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3796 					new_decode_dev(dev));
3797 			break;
3798 		case S_IFIFO: case S_IFSOCK:
3799 			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3800 			break;
3801 	}
3802 out:
3803 	done_path_create(&path, dentry);
3804 	if (retry_estale(error, lookup_flags)) {
3805 		lookup_flags |= LOOKUP_REVAL;
3806 		goto retry;
3807 	}
3808 	return error;
3809 }
3810 
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)3811 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3812 		unsigned int, dev)
3813 {
3814 	return do_mknodat(dfd, filename, mode, dev);
3815 }
3816 
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)3817 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3818 {
3819 	return do_mknodat(AT_FDCWD, filename, mode, dev);
3820 }
3821 
vfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)3822 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3823 {
3824 	int error = may_create(dir, dentry);
3825 	unsigned max_links = dir->i_sb->s_max_links;
3826 
3827 	if (error)
3828 		return error;
3829 
3830 	if (!dir->i_op->mkdir)
3831 		return -EPERM;
3832 
3833 	mode &= (S_IRWXUGO|S_ISVTX);
3834 	error = security_inode_mkdir(dir, dentry, mode);
3835 	if (error)
3836 		return error;
3837 
3838 	if (max_links && dir->i_nlink >= max_links)
3839 		return -EMLINK;
3840 
3841 	error = dir->i_op->mkdir(dir, dentry, mode);
3842 	if (!error)
3843 		fsnotify_mkdir(dir, dentry);
3844 	return error;
3845 }
3846 EXPORT_SYMBOL(vfs_mkdir);
3847 
do_mkdirat(int dfd,const char __user * pathname,umode_t mode)3848 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3849 {
3850 	struct dentry *dentry;
3851 	struct path path;
3852 	int error;
3853 	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3854 
3855 retry:
3856 	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3857 	if (IS_ERR(dentry))
3858 		return PTR_ERR(dentry);
3859 
3860 	if (!IS_POSIXACL(path.dentry->d_inode))
3861 		mode &= ~current_umask();
3862 	error = security_path_mkdir(&path, dentry, mode);
3863 	if (!error)
3864 		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3865 	done_path_create(&path, dentry);
3866 	if (retry_estale(error, lookup_flags)) {
3867 		lookup_flags |= LOOKUP_REVAL;
3868 		goto retry;
3869 	}
3870 	return error;
3871 }
3872 
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)3873 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3874 {
3875 	return do_mkdirat(dfd, pathname, mode);
3876 }
3877 
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)3878 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3879 {
3880 	return do_mkdirat(AT_FDCWD, pathname, mode);
3881 }
3882 
vfs_rmdir(struct inode * dir,struct dentry * dentry)3883 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3884 {
3885 	int error = may_delete(dir, dentry, 1);
3886 
3887 	if (error)
3888 		return error;
3889 
3890 	if (!dir->i_op->rmdir)
3891 		return -EPERM;
3892 
3893 	dget(dentry);
3894 	inode_lock(dentry->d_inode);
3895 
3896 	error = -EBUSY;
3897 	if (is_local_mountpoint(dentry))
3898 		goto out;
3899 
3900 	error = security_inode_rmdir(dir, dentry);
3901 	if (error)
3902 		goto out;
3903 
3904 	error = dir->i_op->rmdir(dir, dentry);
3905 	if (error)
3906 		goto out;
3907 
3908 	shrink_dcache_parent(dentry);
3909 	dentry->d_inode->i_flags |= S_DEAD;
3910 	dont_mount(dentry);
3911 	detach_mounts(dentry);
3912 
3913 out:
3914 	inode_unlock(dentry->d_inode);
3915 	dput(dentry);
3916 	if (!error)
3917 		d_delete(dentry);
3918 	return error;
3919 }
3920 EXPORT_SYMBOL(vfs_rmdir);
3921 
do_rmdir(int dfd,const char __user * pathname)3922 long do_rmdir(int dfd, const char __user *pathname)
3923 {
3924 	int error = 0;
3925 	struct filename *name;
3926 	struct dentry *dentry;
3927 	struct path path;
3928 	struct qstr last;
3929 	int type;
3930 	unsigned int lookup_flags = 0;
3931 retry:
3932 	name = filename_parentat(dfd, getname(pathname), lookup_flags,
3933 				&path, &last, &type);
3934 	if (IS_ERR(name))
3935 		return PTR_ERR(name);
3936 
3937 	switch (type) {
3938 	case LAST_DOTDOT:
3939 		error = -ENOTEMPTY;
3940 		goto exit1;
3941 	case LAST_DOT:
3942 		error = -EINVAL;
3943 		goto exit1;
3944 	case LAST_ROOT:
3945 		error = -EBUSY;
3946 		goto exit1;
3947 	}
3948 
3949 	error = mnt_want_write(path.mnt);
3950 	if (error)
3951 		goto exit1;
3952 
3953 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3954 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3955 	error = PTR_ERR(dentry);
3956 	if (IS_ERR(dentry))
3957 		goto exit2;
3958 	if (!dentry->d_inode) {
3959 		error = -ENOENT;
3960 		goto exit3;
3961 	}
3962 	error = security_path_rmdir(&path, dentry);
3963 	if (error)
3964 		goto exit3;
3965 	error = vfs_rmdir(path.dentry->d_inode, dentry);
3966 exit3:
3967 	dput(dentry);
3968 exit2:
3969 	inode_unlock(path.dentry->d_inode);
3970 	mnt_drop_write(path.mnt);
3971 exit1:
3972 	path_put(&path);
3973 	putname(name);
3974 	if (retry_estale(error, lookup_flags)) {
3975 		lookup_flags |= LOOKUP_REVAL;
3976 		goto retry;
3977 	}
3978 	return error;
3979 }
3980 
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)3981 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3982 {
3983 	return do_rmdir(AT_FDCWD, pathname);
3984 }
3985 
3986 /**
3987  * vfs_unlink - unlink a filesystem object
3988  * @dir:	parent directory
3989  * @dentry:	victim
3990  * @delegated_inode: returns victim inode, if the inode is delegated.
3991  *
3992  * The caller must hold dir->i_mutex.
3993  *
3994  * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3995  * return a reference to the inode in delegated_inode.  The caller
3996  * should then break the delegation on that inode and retry.  Because
3997  * breaking a delegation may take a long time, the caller should drop
3998  * dir->i_mutex before doing so.
3999  *
4000  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4001  * be appropriate for callers that expect the underlying filesystem not
4002  * to be NFS exported.
4003  */
vfs_unlink(struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4004 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
4005 {
4006 	struct inode *target = dentry->d_inode;
4007 	int error = may_delete(dir, dentry, 0);
4008 
4009 	if (error)
4010 		return error;
4011 
4012 	if (!dir->i_op->unlink)
4013 		return -EPERM;
4014 
4015 	inode_lock(target);
4016 	if (is_local_mountpoint(dentry))
4017 		error = -EBUSY;
4018 	else {
4019 		error = security_inode_unlink(dir, dentry);
4020 		if (!error) {
4021 			error = try_break_deleg(target, delegated_inode);
4022 			if (error)
4023 				goto out;
4024 			error = dir->i_op->unlink(dir, dentry);
4025 			if (!error) {
4026 				dont_mount(dentry);
4027 				detach_mounts(dentry);
4028 			}
4029 		}
4030 	}
4031 out:
4032 	inode_unlock(target);
4033 
4034 	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
4035 	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
4036 		fsnotify_link_count(target);
4037 		d_delete(dentry);
4038 	}
4039 
4040 	return error;
4041 }
4042 EXPORT_SYMBOL(vfs_unlink);
4043 
4044 /*
4045  * Make sure that the actual truncation of the file will occur outside its
4046  * directory's i_mutex.  Truncate can take a long time if there is a lot of
4047  * writeout happening, and we don't want to prevent access to the directory
4048  * while waiting on the I/O.
4049  */
do_unlinkat(int dfd,struct filename * name)4050 long do_unlinkat(int dfd, struct filename *name)
4051 {
4052 	int error;
4053 	struct dentry *dentry;
4054 	struct path path;
4055 	struct qstr last;
4056 	int type;
4057 	struct inode *inode = NULL;
4058 	struct inode *delegated_inode = NULL;
4059 	unsigned int lookup_flags = 0;
4060 retry:
4061 	name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4062 	if (IS_ERR(name))
4063 		return PTR_ERR(name);
4064 
4065 	error = -EISDIR;
4066 	if (type != LAST_NORM)
4067 		goto exit1;
4068 
4069 	error = mnt_want_write(path.mnt);
4070 	if (error)
4071 		goto exit1;
4072 retry_deleg:
4073 	inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4074 	dentry = __lookup_hash(&last, path.dentry, lookup_flags);
4075 	error = PTR_ERR(dentry);
4076 	if (!IS_ERR(dentry)) {
4077 		/* Why not before? Because we want correct error value */
4078 		if (last.name[last.len])
4079 			goto slashes;
4080 		inode = dentry->d_inode;
4081 		if (d_is_negative(dentry))
4082 			goto slashes;
4083 		ihold(inode);
4084 		error = security_path_unlink(&path, dentry);
4085 		if (error)
4086 			goto exit2;
4087 		error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4088 exit2:
4089 		dput(dentry);
4090 	}
4091 	inode_unlock(path.dentry->d_inode);
4092 	if (inode)
4093 		iput(inode);	/* truncate the inode here */
4094 	inode = NULL;
4095 	if (delegated_inode) {
4096 		error = break_deleg_wait(&delegated_inode);
4097 		if (!error)
4098 			goto retry_deleg;
4099 	}
4100 	mnt_drop_write(path.mnt);
4101 exit1:
4102 	path_put(&path);
4103 	if (retry_estale(error, lookup_flags)) {
4104 		lookup_flags |= LOOKUP_REVAL;
4105 		inode = NULL;
4106 		goto retry;
4107 	}
4108 	putname(name);
4109 	return error;
4110 
4111 slashes:
4112 	if (d_is_negative(dentry))
4113 		error = -ENOENT;
4114 	else if (d_is_dir(dentry))
4115 		error = -EISDIR;
4116 	else
4117 		error = -ENOTDIR;
4118 	goto exit2;
4119 }
4120 
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4121 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4122 {
4123 	if ((flag & ~AT_REMOVEDIR) != 0)
4124 		return -EINVAL;
4125 
4126 	if (flag & AT_REMOVEDIR)
4127 		return do_rmdir(dfd, pathname);
4128 
4129 	return do_unlinkat(dfd, getname(pathname));
4130 }
4131 
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4132 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4133 {
4134 	return do_unlinkat(AT_FDCWD, getname(pathname));
4135 }
4136 
vfs_symlink(struct inode * dir,struct dentry * dentry,const char * oldname)4137 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4138 {
4139 	int error = may_create(dir, dentry);
4140 
4141 	if (error)
4142 		return error;
4143 
4144 	if (!dir->i_op->symlink)
4145 		return -EPERM;
4146 
4147 	error = security_inode_symlink(dir, dentry, oldname);
4148 	if (error)
4149 		return error;
4150 
4151 	error = dir->i_op->symlink(dir, dentry, oldname);
4152 	if (!error)
4153 		fsnotify_create(dir, dentry);
4154 	return error;
4155 }
4156 EXPORT_SYMBOL(vfs_symlink);
4157 
do_symlinkat(const char __user * oldname,int newdfd,const char __user * newname)4158 long do_symlinkat(const char __user *oldname, int newdfd,
4159 		  const char __user *newname)
4160 {
4161 	int error;
4162 	struct filename *from;
4163 	struct dentry *dentry;
4164 	struct path path;
4165 	unsigned int lookup_flags = 0;
4166 
4167 	from = getname(oldname);
4168 	if (IS_ERR(from))
4169 		return PTR_ERR(from);
4170 retry:
4171 	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4172 	error = PTR_ERR(dentry);
4173 	if (IS_ERR(dentry))
4174 		goto out_putname;
4175 
4176 	error = security_path_symlink(&path, dentry, from->name);
4177 	if (!error)
4178 		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4179 	done_path_create(&path, dentry);
4180 	if (retry_estale(error, lookup_flags)) {
4181 		lookup_flags |= LOOKUP_REVAL;
4182 		goto retry;
4183 	}
4184 out_putname:
4185 	putname(from);
4186 	return error;
4187 }
4188 
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4189 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4190 		int, newdfd, const char __user *, newname)
4191 {
4192 	return do_symlinkat(oldname, newdfd, newname);
4193 }
4194 
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4195 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4196 {
4197 	return do_symlinkat(oldname, AT_FDCWD, newname);
4198 }
4199 
4200 /**
4201  * vfs_link - create a new link
4202  * @old_dentry:	object to be linked
4203  * @dir:	new parent
4204  * @new_dentry:	where to create the new link
4205  * @delegated_inode: returns inode needing a delegation break
4206  *
4207  * The caller must hold dir->i_mutex
4208  *
4209  * If vfs_link discovers a delegation on the to-be-linked file in need
4210  * of breaking, it will return -EWOULDBLOCK and return a reference to the
4211  * inode in delegated_inode.  The caller should then break the delegation
4212  * and retry.  Because breaking a delegation may take a long time, the
4213  * caller should drop the i_mutex before doing so.
4214  *
4215  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4216  * be appropriate for callers that expect the underlying filesystem not
4217  * to be NFS exported.
4218  */
vfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4219 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4220 {
4221 	struct inode *inode = old_dentry->d_inode;
4222 	unsigned max_links = dir->i_sb->s_max_links;
4223 	int error;
4224 
4225 	if (!inode)
4226 		return -ENOENT;
4227 
4228 	error = may_create(dir, new_dentry);
4229 	if (error)
4230 		return error;
4231 
4232 	if (dir->i_sb != inode->i_sb)
4233 		return -EXDEV;
4234 
4235 	/*
4236 	 * A link to an append-only or immutable file cannot be created.
4237 	 */
4238 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4239 		return -EPERM;
4240 	/*
4241 	 * Updating the link count will likely cause i_uid and i_gid to
4242 	 * be writen back improperly if their true value is unknown to
4243 	 * the vfs.
4244 	 */
4245 	if (HAS_UNMAPPED_ID(inode))
4246 		return -EPERM;
4247 	if (!dir->i_op->link)
4248 		return -EPERM;
4249 	if (S_ISDIR(inode->i_mode))
4250 		return -EPERM;
4251 
4252 	error = security_inode_link(old_dentry, dir, new_dentry);
4253 	if (error)
4254 		return error;
4255 
4256 	inode_lock(inode);
4257 	/* Make sure we don't allow creating hardlink to an unlinked file */
4258 	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4259 		error =  -ENOENT;
4260 	else if (max_links && inode->i_nlink >= max_links)
4261 		error = -EMLINK;
4262 	else {
4263 		error = try_break_deleg(inode, delegated_inode);
4264 		if (!error)
4265 			error = dir->i_op->link(old_dentry, dir, new_dentry);
4266 	}
4267 
4268 	if (!error && (inode->i_state & I_LINKABLE)) {
4269 		spin_lock(&inode->i_lock);
4270 		inode->i_state &= ~I_LINKABLE;
4271 		spin_unlock(&inode->i_lock);
4272 	}
4273 	inode_unlock(inode);
4274 	if (!error)
4275 		fsnotify_link(dir, inode, new_dentry);
4276 	return error;
4277 }
4278 EXPORT_SYMBOL(vfs_link);
4279 
4280 /*
4281  * Hardlinks are often used in delicate situations.  We avoid
4282  * security-related surprises by not following symlinks on the
4283  * newname.  --KAB
4284  *
4285  * We don't follow them on the oldname either to be compatible
4286  * with linux 2.0, and to avoid hard-linking to directories
4287  * and other special files.  --ADM
4288  */
do_linkat(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,int flags)4289 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4290 	      const char __user *newname, int flags)
4291 {
4292 	struct dentry *new_dentry;
4293 	struct path old_path, new_path;
4294 	struct inode *delegated_inode = NULL;
4295 	int how = 0;
4296 	int error;
4297 
4298 	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4299 		return -EINVAL;
4300 	/*
4301 	 * To use null names we require CAP_DAC_READ_SEARCH
4302 	 * This ensures that not everyone will be able to create
4303 	 * handlink using the passed filedescriptor.
4304 	 */
4305 	if (flags & AT_EMPTY_PATH) {
4306 		if (!capable(CAP_DAC_READ_SEARCH))
4307 			return -ENOENT;
4308 		how = LOOKUP_EMPTY;
4309 	}
4310 
4311 	if (flags & AT_SYMLINK_FOLLOW)
4312 		how |= LOOKUP_FOLLOW;
4313 retry:
4314 	error = user_path_at(olddfd, oldname, how, &old_path);
4315 	if (error)
4316 		return error;
4317 
4318 	new_dentry = user_path_create(newdfd, newname, &new_path,
4319 					(how & LOOKUP_REVAL));
4320 	error = PTR_ERR(new_dentry);
4321 	if (IS_ERR(new_dentry))
4322 		goto out;
4323 
4324 	error = -EXDEV;
4325 	if (old_path.mnt != new_path.mnt)
4326 		goto out_dput;
4327 	error = may_linkat(&old_path);
4328 	if (unlikely(error))
4329 		goto out_dput;
4330 	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4331 	if (error)
4332 		goto out_dput;
4333 	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4334 out_dput:
4335 	done_path_create(&new_path, new_dentry);
4336 	if (delegated_inode) {
4337 		error = break_deleg_wait(&delegated_inode);
4338 		if (!error) {
4339 			path_put(&old_path);
4340 			goto retry;
4341 		}
4342 	}
4343 	if (retry_estale(error, how)) {
4344 		path_put(&old_path);
4345 		how |= LOOKUP_REVAL;
4346 		goto retry;
4347 	}
4348 out:
4349 	path_put(&old_path);
4350 
4351 	return error;
4352 }
4353 
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4354 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4355 		int, newdfd, const char __user *, newname, int, flags)
4356 {
4357 	return do_linkat(olddfd, oldname, newdfd, newname, flags);
4358 }
4359 
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4360 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4361 {
4362 	return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4363 }
4364 
4365 /**
4366  * vfs_rename - rename a filesystem object
4367  * @old_dir:	parent of source
4368  * @old_dentry:	source
4369  * @new_dir:	parent of destination
4370  * @new_dentry:	destination
4371  * @delegated_inode: returns an inode needing a delegation break
4372  * @flags:	rename flags
4373  *
4374  * The caller must hold multiple mutexes--see lock_rename()).
4375  *
4376  * If vfs_rename discovers a delegation in need of breaking at either
4377  * the source or destination, it will return -EWOULDBLOCK and return a
4378  * reference to the inode in delegated_inode.  The caller should then
4379  * break the delegation and retry.  Because breaking a delegation may
4380  * take a long time, the caller should drop all locks before doing
4381  * so.
4382  *
4383  * Alternatively, a caller may pass NULL for delegated_inode.  This may
4384  * be appropriate for callers that expect the underlying filesystem not
4385  * to be NFS exported.
4386  *
4387  * The worst of all namespace operations - renaming directory. "Perverted"
4388  * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4389  * Problems:
4390  *
4391  *	a) we can get into loop creation.
4392  *	b) race potential - two innocent renames can create a loop together.
4393  *	   That's where 4.4 screws up. Current fix: serialization on
4394  *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4395  *	   story.
4396  *	c) we have to lock _four_ objects - parents and victim (if it exists),
4397  *	   and source (if it is not a directory).
4398  *	   And that - after we got ->i_mutex on parents (until then we don't know
4399  *	   whether the target exists).  Solution: try to be smart with locking
4400  *	   order for inodes.  We rely on the fact that tree topology may change
4401  *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4402  *	   move will be locked.  Thus we can rank directories by the tree
4403  *	   (ancestors first) and rank all non-directories after them.
4404  *	   That works since everybody except rename does "lock parent, lookup,
4405  *	   lock child" and rename is under ->s_vfs_rename_mutex.
4406  *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4407  *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4408  *	   we'd better make sure that there's no link(2) for them.
4409  *	d) conversion from fhandle to dentry may come in the wrong moment - when
4410  *	   we are removing the target. Solution: we will have to grab ->i_mutex
4411  *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4412  *	   ->i_mutex on parents, which works but leads to some truly excessive
4413  *	   locking].
4414  */
vfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,struct inode ** delegated_inode,unsigned int flags)4415 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4416 	       struct inode *new_dir, struct dentry *new_dentry,
4417 	       struct inode **delegated_inode, unsigned int flags)
4418 {
4419 	int error;
4420 	bool is_dir = d_is_dir(old_dentry);
4421 	struct inode *source = old_dentry->d_inode;
4422 	struct inode *target = new_dentry->d_inode;
4423 	bool new_is_dir = false;
4424 	unsigned max_links = new_dir->i_sb->s_max_links;
4425 	struct name_snapshot old_name;
4426 
4427 	if (source == target)
4428 		return 0;
4429 
4430 	error = may_delete(old_dir, old_dentry, is_dir);
4431 	if (error)
4432 		return error;
4433 
4434 	if (!target) {
4435 		error = may_create(new_dir, new_dentry);
4436 	} else {
4437 		new_is_dir = d_is_dir(new_dentry);
4438 
4439 		if (!(flags & RENAME_EXCHANGE))
4440 			error = may_delete(new_dir, new_dentry, is_dir);
4441 		else
4442 			error = may_delete(new_dir, new_dentry, new_is_dir);
4443 	}
4444 	if (error)
4445 		return error;
4446 
4447 	if (!old_dir->i_op->rename)
4448 		return -EPERM;
4449 
4450 	/*
4451 	 * If we are going to change the parent - check write permissions,
4452 	 * we'll need to flip '..'.
4453 	 */
4454 	if (new_dir != old_dir) {
4455 		if (is_dir) {
4456 			error = inode_permission(source, MAY_WRITE);
4457 			if (error)
4458 				return error;
4459 		}
4460 		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4461 			error = inode_permission(target, MAY_WRITE);
4462 			if (error)
4463 				return error;
4464 		}
4465 	}
4466 
4467 	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4468 				      flags);
4469 	if (error)
4470 		return error;
4471 
4472 	take_dentry_name_snapshot(&old_name, old_dentry);
4473 	dget(new_dentry);
4474 	if (!is_dir || (flags & RENAME_EXCHANGE))
4475 		lock_two_nondirectories(source, target);
4476 	else if (target)
4477 		inode_lock(target);
4478 
4479 	error = -EBUSY;
4480 	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4481 		goto out;
4482 
4483 	if (max_links && new_dir != old_dir) {
4484 		error = -EMLINK;
4485 		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4486 			goto out;
4487 		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4488 		    old_dir->i_nlink >= max_links)
4489 			goto out;
4490 	}
4491 	if (!is_dir) {
4492 		error = try_break_deleg(source, delegated_inode);
4493 		if (error)
4494 			goto out;
4495 	}
4496 	if (target && !new_is_dir) {
4497 		error = try_break_deleg(target, delegated_inode);
4498 		if (error)
4499 			goto out;
4500 	}
4501 	error = old_dir->i_op->rename(old_dir, old_dentry,
4502 				       new_dir, new_dentry, flags);
4503 	if (error)
4504 		goto out;
4505 
4506 	if (!(flags & RENAME_EXCHANGE) && target) {
4507 		if (is_dir) {
4508 			shrink_dcache_parent(new_dentry);
4509 			target->i_flags |= S_DEAD;
4510 		}
4511 		dont_mount(new_dentry);
4512 		detach_mounts(new_dentry);
4513 	}
4514 	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4515 		if (!(flags & RENAME_EXCHANGE))
4516 			d_move(old_dentry, new_dentry);
4517 		else
4518 			d_exchange(old_dentry, new_dentry);
4519 	}
4520 out:
4521 	if (!is_dir || (flags & RENAME_EXCHANGE))
4522 		unlock_two_nondirectories(source, target);
4523 	else if (target)
4524 		inode_unlock(target);
4525 	dput(new_dentry);
4526 	if (!error) {
4527 		fsnotify_move(old_dir, new_dir, old_name.name, is_dir,
4528 			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4529 		if (flags & RENAME_EXCHANGE) {
4530 			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4531 				      new_is_dir, NULL, new_dentry);
4532 		}
4533 	}
4534 	release_dentry_name_snapshot(&old_name);
4535 
4536 	return error;
4537 }
4538 EXPORT_SYMBOL(vfs_rename);
4539 
do_renameat2(int olddfd,const char __user * oldname,int newdfd,const char __user * newname,unsigned int flags)4540 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4541 			const char __user *newname, unsigned int flags)
4542 {
4543 	struct dentry *old_dentry, *new_dentry;
4544 	struct dentry *trap;
4545 	struct path old_path, new_path;
4546 	struct qstr old_last, new_last;
4547 	int old_type, new_type;
4548 	struct inode *delegated_inode = NULL;
4549 	struct filename *from;
4550 	struct filename *to;
4551 	unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4552 	bool should_retry = false;
4553 	int error;
4554 
4555 	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4556 		return -EINVAL;
4557 
4558 	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4559 	    (flags & RENAME_EXCHANGE))
4560 		return -EINVAL;
4561 
4562 	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4563 		return -EPERM;
4564 
4565 	if (flags & RENAME_EXCHANGE)
4566 		target_flags = 0;
4567 
4568 retry:
4569 	from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4570 				&old_path, &old_last, &old_type);
4571 	if (IS_ERR(from)) {
4572 		error = PTR_ERR(from);
4573 		goto exit;
4574 	}
4575 
4576 	to = filename_parentat(newdfd, getname(newname), lookup_flags,
4577 				&new_path, &new_last, &new_type);
4578 	if (IS_ERR(to)) {
4579 		error = PTR_ERR(to);
4580 		goto exit1;
4581 	}
4582 
4583 	error = -EXDEV;
4584 	if (old_path.mnt != new_path.mnt)
4585 		goto exit2;
4586 
4587 	error = -EBUSY;
4588 	if (old_type != LAST_NORM)
4589 		goto exit2;
4590 
4591 	if (flags & RENAME_NOREPLACE)
4592 		error = -EEXIST;
4593 	if (new_type != LAST_NORM)
4594 		goto exit2;
4595 
4596 	error = mnt_want_write(old_path.mnt);
4597 	if (error)
4598 		goto exit2;
4599 
4600 retry_deleg:
4601 	trap = lock_rename(new_path.dentry, old_path.dentry);
4602 
4603 	old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4604 	error = PTR_ERR(old_dentry);
4605 	if (IS_ERR(old_dentry))
4606 		goto exit3;
4607 	/* source must exist */
4608 	error = -ENOENT;
4609 	if (d_is_negative(old_dentry))
4610 		goto exit4;
4611 	new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4612 	error = PTR_ERR(new_dentry);
4613 	if (IS_ERR(new_dentry))
4614 		goto exit4;
4615 	error = -EEXIST;
4616 	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4617 		goto exit5;
4618 	if (flags & RENAME_EXCHANGE) {
4619 		error = -ENOENT;
4620 		if (d_is_negative(new_dentry))
4621 			goto exit5;
4622 
4623 		if (!d_is_dir(new_dentry)) {
4624 			error = -ENOTDIR;
4625 			if (new_last.name[new_last.len])
4626 				goto exit5;
4627 		}
4628 	}
4629 	/* unless the source is a directory trailing slashes give -ENOTDIR */
4630 	if (!d_is_dir(old_dentry)) {
4631 		error = -ENOTDIR;
4632 		if (old_last.name[old_last.len])
4633 			goto exit5;
4634 		if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4635 			goto exit5;
4636 	}
4637 	/* source should not be ancestor of target */
4638 	error = -EINVAL;
4639 	if (old_dentry == trap)
4640 		goto exit5;
4641 	/* target should not be an ancestor of source */
4642 	if (!(flags & RENAME_EXCHANGE))
4643 		error = -ENOTEMPTY;
4644 	if (new_dentry == trap)
4645 		goto exit5;
4646 
4647 	error = security_path_rename(&old_path, old_dentry,
4648 				     &new_path, new_dentry, flags);
4649 	if (error)
4650 		goto exit5;
4651 	error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4652 			   new_path.dentry->d_inode, new_dentry,
4653 			   &delegated_inode, flags);
4654 exit5:
4655 	dput(new_dentry);
4656 exit4:
4657 	dput(old_dentry);
4658 exit3:
4659 	unlock_rename(new_path.dentry, old_path.dentry);
4660 	if (delegated_inode) {
4661 		error = break_deleg_wait(&delegated_inode);
4662 		if (!error)
4663 			goto retry_deleg;
4664 	}
4665 	mnt_drop_write(old_path.mnt);
4666 exit2:
4667 	if (retry_estale(error, lookup_flags))
4668 		should_retry = true;
4669 	path_put(&new_path);
4670 	putname(to);
4671 exit1:
4672 	path_put(&old_path);
4673 	putname(from);
4674 	if (should_retry) {
4675 		should_retry = false;
4676 		lookup_flags |= LOOKUP_REVAL;
4677 		goto retry;
4678 	}
4679 exit:
4680 	return error;
4681 }
4682 
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)4683 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4684 		int, newdfd, const char __user *, newname, unsigned int, flags)
4685 {
4686 	return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4687 }
4688 
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)4689 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4690 		int, newdfd, const char __user *, newname)
4691 {
4692 	return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4693 }
4694 
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)4695 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4696 {
4697 	return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4698 }
4699 
vfs_whiteout(struct inode * dir,struct dentry * dentry)4700 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4701 {
4702 	int error = may_create(dir, dentry);
4703 	if (error)
4704 		return error;
4705 
4706 	if (!dir->i_op->mknod)
4707 		return -EPERM;
4708 
4709 	return dir->i_op->mknod(dir, dentry,
4710 				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4711 }
4712 EXPORT_SYMBOL(vfs_whiteout);
4713 
readlink_copy(char __user * buffer,int buflen,const char * link)4714 int readlink_copy(char __user *buffer, int buflen, const char *link)
4715 {
4716 	int len = PTR_ERR(link);
4717 	if (IS_ERR(link))
4718 		goto out;
4719 
4720 	len = strlen(link);
4721 	if (len > (unsigned) buflen)
4722 		len = buflen;
4723 	if (copy_to_user(buffer, link, len))
4724 		len = -EFAULT;
4725 out:
4726 	return len;
4727 }
4728 
4729 /**
4730  * vfs_readlink - copy symlink body into userspace buffer
4731  * @dentry: dentry on which to get symbolic link
4732  * @buffer: user memory pointer
4733  * @buflen: size of buffer
4734  *
4735  * Does not touch atime.  That's up to the caller if necessary
4736  *
4737  * Does not call security hook.
4738  */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)4739 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4740 {
4741 	struct inode *inode = d_inode(dentry);
4742 	DEFINE_DELAYED_CALL(done);
4743 	const char *link;
4744 	int res;
4745 
4746 	if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4747 		if (unlikely(inode->i_op->readlink))
4748 			return inode->i_op->readlink(dentry, buffer, buflen);
4749 
4750 		if (!d_is_symlink(dentry))
4751 			return -EINVAL;
4752 
4753 		spin_lock(&inode->i_lock);
4754 		inode->i_opflags |= IOP_DEFAULT_READLINK;
4755 		spin_unlock(&inode->i_lock);
4756 	}
4757 
4758 	link = inode->i_link;
4759 	if (!link) {
4760 		link = inode->i_op->get_link(dentry, inode, &done);
4761 		if (IS_ERR(link))
4762 			return PTR_ERR(link);
4763 	}
4764 	res = readlink_copy(buffer, buflen, link);
4765 	do_delayed_call(&done);
4766 	return res;
4767 }
4768 EXPORT_SYMBOL(vfs_readlink);
4769 
4770 /**
4771  * vfs_get_link - get symlink body
4772  * @dentry: dentry on which to get symbolic link
4773  * @done: caller needs to free returned data with this
4774  *
4775  * Calls security hook and i_op->get_link() on the supplied inode.
4776  *
4777  * It does not touch atime.  That's up to the caller if necessary.
4778  *
4779  * Does not work on "special" symlinks like /proc/$$/fd/N
4780  */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)4781 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4782 {
4783 	const char *res = ERR_PTR(-EINVAL);
4784 	struct inode *inode = d_inode(dentry);
4785 
4786 	if (d_is_symlink(dentry)) {
4787 		res = ERR_PTR(security_inode_readlink(dentry));
4788 		if (!res)
4789 			res = inode->i_op->get_link(dentry, inode, done);
4790 	}
4791 	return res;
4792 }
4793 EXPORT_SYMBOL(vfs_get_link);
4794 
4795 /* get the link contents into pagecache */
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)4796 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4797 			  struct delayed_call *callback)
4798 {
4799 	char *kaddr;
4800 	struct page *page;
4801 	struct address_space *mapping = inode->i_mapping;
4802 
4803 	if (!dentry) {
4804 		page = find_get_page(mapping, 0);
4805 		if (!page)
4806 			return ERR_PTR(-ECHILD);
4807 		if (!PageUptodate(page)) {
4808 			put_page(page);
4809 			return ERR_PTR(-ECHILD);
4810 		}
4811 	} else {
4812 		page = read_mapping_page(mapping, 0, NULL);
4813 		if (IS_ERR(page))
4814 			return (char*)page;
4815 	}
4816 	set_delayed_call(callback, page_put_link, page);
4817 	BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4818 	kaddr = page_address(page);
4819 	nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4820 	return kaddr;
4821 }
4822 
4823 EXPORT_SYMBOL(page_get_link);
4824 
page_put_link(void * arg)4825 void page_put_link(void *arg)
4826 {
4827 	put_page(arg);
4828 }
4829 EXPORT_SYMBOL(page_put_link);
4830 
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)4831 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4832 {
4833 	DEFINE_DELAYED_CALL(done);
4834 	int res = readlink_copy(buffer, buflen,
4835 				page_get_link(dentry, d_inode(dentry),
4836 					      &done));
4837 	do_delayed_call(&done);
4838 	return res;
4839 }
4840 EXPORT_SYMBOL(page_readlink);
4841 
4842 /*
4843  * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4844  */
__page_symlink(struct inode * inode,const char * symname,int len,int nofs)4845 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4846 {
4847 	struct address_space *mapping = inode->i_mapping;
4848 	struct page *page;
4849 	void *fsdata = NULL;
4850 	int err;
4851 	unsigned int flags = 0;
4852 	if (nofs)
4853 		flags |= AOP_FLAG_NOFS;
4854 
4855 retry:
4856 	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4857 				flags, &page, &fsdata);
4858 	if (err)
4859 		goto fail;
4860 
4861 	memcpy(page_address(page), symname, len-1);
4862 
4863 	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4864 							page, fsdata);
4865 	if (err < 0)
4866 		goto fail;
4867 	if (err < len-1)
4868 		goto retry;
4869 
4870 	mark_inode_dirty(inode);
4871 	return 0;
4872 fail:
4873 	return err;
4874 }
4875 EXPORT_SYMBOL(__page_symlink);
4876 
page_symlink(struct inode * inode,const char * symname,int len)4877 int page_symlink(struct inode *inode, const char *symname, int len)
4878 {
4879 	return __page_symlink(inode, symname, len,
4880 			!mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4881 }
4882 EXPORT_SYMBOL(page_symlink);
4883 
4884 const struct inode_operations page_symlink_inode_operations = {
4885 	.get_link	= page_get_link,
4886 };
4887 EXPORT_SYMBOL(page_symlink_inode_operations);
4888