1 /*
2  * GICv3 ITS emulation
3  *
4  * Copyright (C) 2015,2016 ARM Ltd.
5  * Author: Andre Przywara <andre.przywara@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/cpu.h>
21 #include <linux/kvm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/interrupt.h>
24 #include <linux/list.h>
25 #include <linux/uaccess.h>
26 #include <linux/list_sort.h>
27 
28 #include <linux/irqchip/arm-gic-v3.h>
29 
30 #include <asm/kvm_emulate.h>
31 #include <asm/kvm_arm.h>
32 #include <asm/kvm_mmu.h>
33 
34 #include "vgic.h"
35 #include "vgic-mmio.h"
36 
37 static int vgic_its_save_tables_v0(struct vgic_its *its);
38 static int vgic_its_restore_tables_v0(struct vgic_its *its);
39 static int vgic_its_commit_v0(struct vgic_its *its);
40 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
41 			     struct kvm_vcpu *filter_vcpu, bool needs_inv);
42 
43 /*
44  * Creates a new (reference to a) struct vgic_irq for a given LPI.
45  * If this LPI is already mapped on another ITS, we increase its refcount
46  * and return a pointer to the existing structure.
47  * If this is a "new" LPI, we allocate and initialize a new struct vgic_irq.
48  * This function returns a pointer to the _unlocked_ structure.
49  */
vgic_add_lpi(struct kvm * kvm,u32 intid,struct kvm_vcpu * vcpu)50 static struct vgic_irq *vgic_add_lpi(struct kvm *kvm, u32 intid,
51 				     struct kvm_vcpu *vcpu)
52 {
53 	struct vgic_dist *dist = &kvm->arch.vgic;
54 	struct vgic_irq *irq = vgic_get_irq(kvm, NULL, intid), *oldirq;
55 	unsigned long flags;
56 	int ret;
57 
58 	/* In this case there is no put, since we keep the reference. */
59 	if (irq)
60 		return irq;
61 
62 	irq = kzalloc(sizeof(struct vgic_irq), GFP_KERNEL);
63 	if (!irq)
64 		return ERR_PTR(-ENOMEM);
65 
66 	INIT_LIST_HEAD(&irq->lpi_list);
67 	INIT_LIST_HEAD(&irq->ap_list);
68 	spin_lock_init(&irq->irq_lock);
69 
70 	irq->config = VGIC_CONFIG_EDGE;
71 	kref_init(&irq->refcount);
72 	irq->intid = intid;
73 	irq->target_vcpu = vcpu;
74 	irq->group = 1;
75 
76 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
77 
78 	/*
79 	 * There could be a race with another vgic_add_lpi(), so we need to
80 	 * check that we don't add a second list entry with the same LPI.
81 	 */
82 	list_for_each_entry(oldirq, &dist->lpi_list_head, lpi_list) {
83 		if (oldirq->intid != intid)
84 			continue;
85 
86 		/* Someone was faster with adding this LPI, lets use that. */
87 		kfree(irq);
88 		irq = oldirq;
89 
90 		/*
91 		 * This increases the refcount, the caller is expected to
92 		 * call vgic_put_irq() on the returned pointer once it's
93 		 * finished with the IRQ.
94 		 */
95 		vgic_get_irq_kref(irq);
96 
97 		goto out_unlock;
98 	}
99 
100 	list_add_tail(&irq->lpi_list, &dist->lpi_list_head);
101 	dist->lpi_list_count++;
102 
103 out_unlock:
104 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
105 
106 	/*
107 	 * We "cache" the configuration table entries in our struct vgic_irq's.
108 	 * However we only have those structs for mapped IRQs, so we read in
109 	 * the respective config data from memory here upon mapping the LPI.
110 	 *
111 	 * Should any of these fail, behave as if we couldn't create the LPI
112 	 * by dropping the refcount and returning the error.
113 	 */
114 	ret = update_lpi_config(kvm, irq, NULL, false);
115 	if (ret) {
116 		vgic_put_irq(kvm, irq);
117 		return ERR_PTR(ret);
118 	}
119 
120 	ret = vgic_v3_lpi_sync_pending_status(kvm, irq);
121 	if (ret) {
122 		vgic_put_irq(kvm, irq);
123 		return ERR_PTR(ret);
124 	}
125 
126 	return irq;
127 }
128 
129 struct its_device {
130 	struct list_head dev_list;
131 
132 	/* the head for the list of ITTEs */
133 	struct list_head itt_head;
134 	u32 num_eventid_bits;
135 	gpa_t itt_addr;
136 	u32 device_id;
137 };
138 
139 #define COLLECTION_NOT_MAPPED ((u32)~0)
140 
141 struct its_collection {
142 	struct list_head coll_list;
143 
144 	u32 collection_id;
145 	u32 target_addr;
146 };
147 
148 #define its_is_collection_mapped(coll) ((coll) && \
149 				((coll)->target_addr != COLLECTION_NOT_MAPPED))
150 
151 struct its_ite {
152 	struct list_head ite_list;
153 
154 	struct vgic_irq *irq;
155 	struct its_collection *collection;
156 	u32 event_id;
157 };
158 
159 /**
160  * struct vgic_its_abi - ITS abi ops and settings
161  * @cte_esz: collection table entry size
162  * @dte_esz: device table entry size
163  * @ite_esz: interrupt translation table entry size
164  * @save tables: save the ITS tables into guest RAM
165  * @restore_tables: restore the ITS internal structs from tables
166  *  stored in guest RAM
167  * @commit: initialize the registers which expose the ABI settings,
168  *  especially the entry sizes
169  */
170 struct vgic_its_abi {
171 	int cte_esz;
172 	int dte_esz;
173 	int ite_esz;
174 	int (*save_tables)(struct vgic_its *its);
175 	int (*restore_tables)(struct vgic_its *its);
176 	int (*commit)(struct vgic_its *its);
177 };
178 
179 #define ABI_0_ESZ	8
180 #define ESZ_MAX		ABI_0_ESZ
181 
182 static const struct vgic_its_abi its_table_abi_versions[] = {
183 	[0] = {
184 	 .cte_esz = ABI_0_ESZ,
185 	 .dte_esz = ABI_0_ESZ,
186 	 .ite_esz = ABI_0_ESZ,
187 	 .save_tables = vgic_its_save_tables_v0,
188 	 .restore_tables = vgic_its_restore_tables_v0,
189 	 .commit = vgic_its_commit_v0,
190 	},
191 };
192 
193 #define NR_ITS_ABIS	ARRAY_SIZE(its_table_abi_versions)
194 
vgic_its_get_abi(struct vgic_its * its)195 inline const struct vgic_its_abi *vgic_its_get_abi(struct vgic_its *its)
196 {
197 	return &its_table_abi_versions[its->abi_rev];
198 }
199 
vgic_its_set_abi(struct vgic_its * its,u32 rev)200 static int vgic_its_set_abi(struct vgic_its *its, u32 rev)
201 {
202 	const struct vgic_its_abi *abi;
203 
204 	its->abi_rev = rev;
205 	abi = vgic_its_get_abi(its);
206 	return abi->commit(its);
207 }
208 
209 /*
210  * Find and returns a device in the device table for an ITS.
211  * Must be called with the its_lock mutex held.
212  */
find_its_device(struct vgic_its * its,u32 device_id)213 static struct its_device *find_its_device(struct vgic_its *its, u32 device_id)
214 {
215 	struct its_device *device;
216 
217 	list_for_each_entry(device, &its->device_list, dev_list)
218 		if (device_id == device->device_id)
219 			return device;
220 
221 	return NULL;
222 }
223 
224 /*
225  * Find and returns an interrupt translation table entry (ITTE) for a given
226  * Device ID/Event ID pair on an ITS.
227  * Must be called with the its_lock mutex held.
228  */
find_ite(struct vgic_its * its,u32 device_id,u32 event_id)229 static struct its_ite *find_ite(struct vgic_its *its, u32 device_id,
230 				  u32 event_id)
231 {
232 	struct its_device *device;
233 	struct its_ite *ite;
234 
235 	device = find_its_device(its, device_id);
236 	if (device == NULL)
237 		return NULL;
238 
239 	list_for_each_entry(ite, &device->itt_head, ite_list)
240 		if (ite->event_id == event_id)
241 			return ite;
242 
243 	return NULL;
244 }
245 
246 /* To be used as an iterator this macro misses the enclosing parentheses */
247 #define for_each_lpi_its(dev, ite, its) \
248 	list_for_each_entry(dev, &(its)->device_list, dev_list) \
249 		list_for_each_entry(ite, &(dev)->itt_head, ite_list)
250 
251 /*
252  * We only implement 48 bits of PA at the moment, although the ITS
253  * supports more. Let's be restrictive here.
254  */
255 #define BASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 16))
256 #define CBASER_ADDRESS(x)	((x) & GENMASK_ULL(47, 12))
257 
258 #define GIC_LPI_OFFSET 8192
259 
260 #define VITS_TYPER_IDBITS 16
261 #define VITS_TYPER_DEVBITS 16
262 #define VITS_DTE_MAX_DEVID_OFFSET	(BIT(14) - 1)
263 #define VITS_ITE_MAX_EVENTID_OFFSET	(BIT(16) - 1)
264 
265 /*
266  * Finds and returns a collection in the ITS collection table.
267  * Must be called with the its_lock mutex held.
268  */
find_collection(struct vgic_its * its,int coll_id)269 static struct its_collection *find_collection(struct vgic_its *its, int coll_id)
270 {
271 	struct its_collection *collection;
272 
273 	list_for_each_entry(collection, &its->collection_list, coll_list) {
274 		if (coll_id == collection->collection_id)
275 			return collection;
276 	}
277 
278 	return NULL;
279 }
280 
281 #define LPI_PROP_ENABLE_BIT(p)	((p) & LPI_PROP_ENABLED)
282 #define LPI_PROP_PRIORITY(p)	((p) & 0xfc)
283 
284 /*
285  * Reads the configuration data for a given LPI from guest memory and
286  * updates the fields in struct vgic_irq.
287  * If filter_vcpu is not NULL, applies only if the IRQ is targeting this
288  * VCPU. Unconditionally applies if filter_vcpu is NULL.
289  */
update_lpi_config(struct kvm * kvm,struct vgic_irq * irq,struct kvm_vcpu * filter_vcpu,bool needs_inv)290 static int update_lpi_config(struct kvm *kvm, struct vgic_irq *irq,
291 			     struct kvm_vcpu *filter_vcpu, bool needs_inv)
292 {
293 	u64 propbase = GICR_PROPBASER_ADDRESS(kvm->arch.vgic.propbaser);
294 	u8 prop;
295 	int ret;
296 	unsigned long flags;
297 
298 	ret = kvm_read_guest_lock(kvm, propbase + irq->intid - GIC_LPI_OFFSET,
299 				  &prop, 1);
300 
301 	if (ret)
302 		return ret;
303 
304 	spin_lock_irqsave(&irq->irq_lock, flags);
305 
306 	if (!filter_vcpu || filter_vcpu == irq->target_vcpu) {
307 		irq->priority = LPI_PROP_PRIORITY(prop);
308 		irq->enabled = LPI_PROP_ENABLE_BIT(prop);
309 
310 		if (!irq->hw) {
311 			vgic_queue_irq_unlock(kvm, irq, flags);
312 			return 0;
313 		}
314 	}
315 
316 	spin_unlock_irqrestore(&irq->irq_lock, flags);
317 
318 	if (irq->hw)
319 		return its_prop_update_vlpi(irq->host_irq, prop, needs_inv);
320 
321 	return 0;
322 }
323 
324 /*
325  * Create a snapshot of the current LPIs targeting @vcpu, so that we can
326  * enumerate those LPIs without holding any lock.
327  * Returns their number and puts the kmalloc'ed array into intid_ptr.
328  */
vgic_copy_lpi_list(struct kvm * kvm,struct kvm_vcpu * vcpu,u32 ** intid_ptr)329 int vgic_copy_lpi_list(struct kvm *kvm, struct kvm_vcpu *vcpu, u32 **intid_ptr)
330 {
331 	struct vgic_dist *dist = &kvm->arch.vgic;
332 	struct vgic_irq *irq;
333 	unsigned long flags;
334 	u32 *intids;
335 	int irq_count, i = 0;
336 
337 	/*
338 	 * There is an obvious race between allocating the array and LPIs
339 	 * being mapped/unmapped. If we ended up here as a result of a
340 	 * command, we're safe (locks are held, preventing another
341 	 * command). If coming from another path (such as enabling LPIs),
342 	 * we must be careful not to overrun the array.
343 	 */
344 	irq_count = READ_ONCE(dist->lpi_list_count);
345 	intids = kmalloc_array(irq_count, sizeof(intids[0]), GFP_KERNEL);
346 	if (!intids)
347 		return -ENOMEM;
348 
349 	raw_spin_lock_irqsave(&dist->lpi_list_lock, flags);
350 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
351 		if (i == irq_count)
352 			break;
353 		/* We don't need to "get" the IRQ, as we hold the list lock. */
354 		if (vcpu && irq->target_vcpu != vcpu)
355 			continue;
356 		intids[i++] = irq->intid;
357 	}
358 	raw_spin_unlock_irqrestore(&dist->lpi_list_lock, flags);
359 
360 	*intid_ptr = intids;
361 	return i;
362 }
363 
update_affinity(struct vgic_irq * irq,struct kvm_vcpu * vcpu)364 static int update_affinity(struct vgic_irq *irq, struct kvm_vcpu *vcpu)
365 {
366 	int ret = 0;
367 	unsigned long flags;
368 
369 	spin_lock_irqsave(&irq->irq_lock, flags);
370 	irq->target_vcpu = vcpu;
371 	spin_unlock_irqrestore(&irq->irq_lock, flags);
372 
373 	if (irq->hw) {
374 		struct its_vlpi_map map;
375 
376 		ret = its_get_vlpi(irq->host_irq, &map);
377 		if (ret)
378 			return ret;
379 
380 		map.vpe = &vcpu->arch.vgic_cpu.vgic_v3.its_vpe;
381 
382 		ret = its_map_vlpi(irq->host_irq, &map);
383 	}
384 
385 	return ret;
386 }
387 
388 /*
389  * Promotes the ITS view of affinity of an ITTE (which redistributor this LPI
390  * is targeting) to the VGIC's view, which deals with target VCPUs.
391  * Needs to be called whenever either the collection for a LPIs has
392  * changed or the collection itself got retargeted.
393  */
update_affinity_ite(struct kvm * kvm,struct its_ite * ite)394 static void update_affinity_ite(struct kvm *kvm, struct its_ite *ite)
395 {
396 	struct kvm_vcpu *vcpu;
397 
398 	if (!its_is_collection_mapped(ite->collection))
399 		return;
400 
401 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
402 	update_affinity(ite->irq, vcpu);
403 }
404 
405 /*
406  * Updates the target VCPU for every LPI targeting this collection.
407  * Must be called with the its_lock mutex held.
408  */
update_affinity_collection(struct kvm * kvm,struct vgic_its * its,struct its_collection * coll)409 static void update_affinity_collection(struct kvm *kvm, struct vgic_its *its,
410 				       struct its_collection *coll)
411 {
412 	struct its_device *device;
413 	struct its_ite *ite;
414 
415 	for_each_lpi_its(device, ite, its) {
416 		if (!ite->collection || coll != ite->collection)
417 			continue;
418 
419 		update_affinity_ite(kvm, ite);
420 	}
421 }
422 
max_lpis_propbaser(u64 propbaser)423 static u32 max_lpis_propbaser(u64 propbaser)
424 {
425 	int nr_idbits = (propbaser & 0x1f) + 1;
426 
427 	return 1U << min(nr_idbits, INTERRUPT_ID_BITS_ITS);
428 }
429 
430 /*
431  * Sync the pending table pending bit of LPIs targeting @vcpu
432  * with our own data structures. This relies on the LPI being
433  * mapped before.
434  */
its_sync_lpi_pending_table(struct kvm_vcpu * vcpu)435 static int its_sync_lpi_pending_table(struct kvm_vcpu *vcpu)
436 {
437 	gpa_t pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
438 	struct vgic_irq *irq;
439 	int last_byte_offset = -1;
440 	int ret = 0;
441 	u32 *intids;
442 	int nr_irqs, i;
443 	unsigned long flags;
444 	u8 pendmask;
445 
446 	nr_irqs = vgic_copy_lpi_list(vcpu->kvm, vcpu, &intids);
447 	if (nr_irqs < 0)
448 		return nr_irqs;
449 
450 	for (i = 0; i < nr_irqs; i++) {
451 		int byte_offset, bit_nr;
452 
453 		byte_offset = intids[i] / BITS_PER_BYTE;
454 		bit_nr = intids[i] % BITS_PER_BYTE;
455 
456 		/*
457 		 * For contiguously allocated LPIs chances are we just read
458 		 * this very same byte in the last iteration. Reuse that.
459 		 */
460 		if (byte_offset != last_byte_offset) {
461 			ret = kvm_read_guest_lock(vcpu->kvm,
462 						  pendbase + byte_offset,
463 						  &pendmask, 1);
464 			if (ret) {
465 				kfree(intids);
466 				return ret;
467 			}
468 			last_byte_offset = byte_offset;
469 		}
470 
471 		irq = vgic_get_irq(vcpu->kvm, NULL, intids[i]);
472 		spin_lock_irqsave(&irq->irq_lock, flags);
473 		irq->pending_latch = pendmask & (1U << bit_nr);
474 		vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
475 		vgic_put_irq(vcpu->kvm, irq);
476 	}
477 
478 	kfree(intids);
479 
480 	return ret;
481 }
482 
vgic_mmio_read_its_typer(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)483 static unsigned long vgic_mmio_read_its_typer(struct kvm *kvm,
484 					      struct vgic_its *its,
485 					      gpa_t addr, unsigned int len)
486 {
487 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
488 	u64 reg = GITS_TYPER_PLPIS;
489 
490 	/*
491 	 * We use linear CPU numbers for redistributor addressing,
492 	 * so GITS_TYPER.PTA is 0.
493 	 * Also we force all PROPBASER registers to be the same, so
494 	 * CommonLPIAff is 0 as well.
495 	 * To avoid memory waste in the guest, we keep the number of IDBits and
496 	 * DevBits low - as least for the time being.
497 	 */
498 	reg |= GIC_ENCODE_SZ(VITS_TYPER_DEVBITS, 5) << GITS_TYPER_DEVBITS_SHIFT;
499 	reg |= GIC_ENCODE_SZ(VITS_TYPER_IDBITS, 5) << GITS_TYPER_IDBITS_SHIFT;
500 	reg |= GIC_ENCODE_SZ(abi->ite_esz, 4) << GITS_TYPER_ITT_ENTRY_SIZE_SHIFT;
501 
502 	return extract_bytes(reg, addr & 7, len);
503 }
504 
vgic_mmio_read_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)505 static unsigned long vgic_mmio_read_its_iidr(struct kvm *kvm,
506 					     struct vgic_its *its,
507 					     gpa_t addr, unsigned int len)
508 {
509 	u32 val;
510 
511 	val = (its->abi_rev << GITS_IIDR_REV_SHIFT) & GITS_IIDR_REV_MASK;
512 	val |= (PRODUCT_ID_KVM << GITS_IIDR_PRODUCTID_SHIFT) | IMPLEMENTER_ARM;
513 	return val;
514 }
515 
vgic_mmio_uaccess_write_its_iidr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)516 static int vgic_mmio_uaccess_write_its_iidr(struct kvm *kvm,
517 					    struct vgic_its *its,
518 					    gpa_t addr, unsigned int len,
519 					    unsigned long val)
520 {
521 	u32 rev = GITS_IIDR_REV(val);
522 
523 	if (rev >= NR_ITS_ABIS)
524 		return -EINVAL;
525 	return vgic_its_set_abi(its, rev);
526 }
527 
vgic_mmio_read_its_idregs(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)528 static unsigned long vgic_mmio_read_its_idregs(struct kvm *kvm,
529 					       struct vgic_its *its,
530 					       gpa_t addr, unsigned int len)
531 {
532 	switch (addr & 0xffff) {
533 	case GITS_PIDR0:
534 		return 0x92;	/* part number, bits[7:0] */
535 	case GITS_PIDR1:
536 		return 0xb4;	/* part number, bits[11:8] */
537 	case GITS_PIDR2:
538 		return GIC_PIDR2_ARCH_GICv3 | 0x0b;
539 	case GITS_PIDR4:
540 		return 0x40;	/* This is a 64K software visible page */
541 	/* The following are the ID registers for (any) GIC. */
542 	case GITS_CIDR0:
543 		return 0x0d;
544 	case GITS_CIDR1:
545 		return 0xf0;
546 	case GITS_CIDR2:
547 		return 0x05;
548 	case GITS_CIDR3:
549 		return 0xb1;
550 	}
551 
552 	return 0;
553 }
554 
vgic_its_resolve_lpi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid,struct vgic_irq ** irq)555 int vgic_its_resolve_lpi(struct kvm *kvm, struct vgic_its *its,
556 			 u32 devid, u32 eventid, struct vgic_irq **irq)
557 {
558 	struct kvm_vcpu *vcpu;
559 	struct its_ite *ite;
560 
561 	if (!its->enabled)
562 		return -EBUSY;
563 
564 	ite = find_ite(its, devid, eventid);
565 	if (!ite || !its_is_collection_mapped(ite->collection))
566 		return E_ITS_INT_UNMAPPED_INTERRUPT;
567 
568 	vcpu = kvm_get_vcpu(kvm, ite->collection->target_addr);
569 	if (!vcpu)
570 		return E_ITS_INT_UNMAPPED_INTERRUPT;
571 
572 	if (!vcpu->arch.vgic_cpu.lpis_enabled)
573 		return -EBUSY;
574 
575 	*irq = ite->irq;
576 	return 0;
577 }
578 
vgic_msi_to_its(struct kvm * kvm,struct kvm_msi * msi)579 struct vgic_its *vgic_msi_to_its(struct kvm *kvm, struct kvm_msi *msi)
580 {
581 	u64 address;
582 	struct kvm_io_device *kvm_io_dev;
583 	struct vgic_io_device *iodev;
584 
585 	if (!vgic_has_its(kvm))
586 		return ERR_PTR(-ENODEV);
587 
588 	if (!(msi->flags & KVM_MSI_VALID_DEVID))
589 		return ERR_PTR(-EINVAL);
590 
591 	address = (u64)msi->address_hi << 32 | msi->address_lo;
592 
593 	kvm_io_dev = kvm_io_bus_get_dev(kvm, KVM_MMIO_BUS, address);
594 	if (!kvm_io_dev)
595 		return ERR_PTR(-EINVAL);
596 
597 	if (kvm_io_dev->ops != &kvm_io_gic_ops)
598 		return ERR_PTR(-EINVAL);
599 
600 	iodev = container_of(kvm_io_dev, struct vgic_io_device, dev);
601 	if (iodev->iodev_type != IODEV_ITS)
602 		return ERR_PTR(-EINVAL);
603 
604 	return iodev->its;
605 }
606 
607 /*
608  * Find the target VCPU and the LPI number for a given devid/eventid pair
609  * and make this IRQ pending, possibly injecting it.
610  * Must be called with the its_lock mutex held.
611  * Returns 0 on success, a positive error value for any ITS mapping
612  * related errors and negative error values for generic errors.
613  */
vgic_its_trigger_msi(struct kvm * kvm,struct vgic_its * its,u32 devid,u32 eventid)614 static int vgic_its_trigger_msi(struct kvm *kvm, struct vgic_its *its,
615 				u32 devid, u32 eventid)
616 {
617 	struct vgic_irq *irq = NULL;
618 	unsigned long flags;
619 	int err;
620 
621 	err = vgic_its_resolve_lpi(kvm, its, devid, eventid, &irq);
622 	if (err)
623 		return err;
624 
625 	if (irq->hw)
626 		return irq_set_irqchip_state(irq->host_irq,
627 					     IRQCHIP_STATE_PENDING, true);
628 
629 	spin_lock_irqsave(&irq->irq_lock, flags);
630 	irq->pending_latch = true;
631 	vgic_queue_irq_unlock(kvm, irq, flags);
632 
633 	return 0;
634 }
635 
636 /*
637  * Queries the KVM IO bus framework to get the ITS pointer from the given
638  * doorbell address.
639  * We then call vgic_its_trigger_msi() with the decoded data.
640  * According to the KVM_SIGNAL_MSI API description returns 1 on success.
641  */
vgic_its_inject_msi(struct kvm * kvm,struct kvm_msi * msi)642 int vgic_its_inject_msi(struct kvm *kvm, struct kvm_msi *msi)
643 {
644 	struct vgic_its *its;
645 	int ret;
646 
647 	its = vgic_msi_to_its(kvm, msi);
648 	if (IS_ERR(its))
649 		return PTR_ERR(its);
650 
651 	mutex_lock(&its->its_lock);
652 	ret = vgic_its_trigger_msi(kvm, its, msi->devid, msi->data);
653 	mutex_unlock(&its->its_lock);
654 
655 	if (ret < 0)
656 		return ret;
657 
658 	/*
659 	 * KVM_SIGNAL_MSI demands a return value > 0 for success and 0
660 	 * if the guest has blocked the MSI. So we map any LPI mapping
661 	 * related error to that.
662 	 */
663 	if (ret)
664 		return 0;
665 	else
666 		return 1;
667 }
668 
669 /* Requires the its_lock to be held. */
its_free_ite(struct kvm * kvm,struct its_ite * ite)670 static void its_free_ite(struct kvm *kvm, struct its_ite *ite)
671 {
672 	list_del(&ite->ite_list);
673 
674 	/* This put matches the get in vgic_add_lpi. */
675 	if (ite->irq) {
676 		if (ite->irq->hw)
677 			WARN_ON(its_unmap_vlpi(ite->irq->host_irq));
678 
679 		vgic_put_irq(kvm, ite->irq);
680 	}
681 
682 	kfree(ite);
683 }
684 
its_cmd_mask_field(u64 * its_cmd,int word,int shift,int size)685 static u64 its_cmd_mask_field(u64 *its_cmd, int word, int shift, int size)
686 {
687 	return (le64_to_cpu(its_cmd[word]) >> shift) & (BIT_ULL(size) - 1);
688 }
689 
690 #define its_cmd_get_command(cmd)	its_cmd_mask_field(cmd, 0,  0,  8)
691 #define its_cmd_get_deviceid(cmd)	its_cmd_mask_field(cmd, 0, 32, 32)
692 #define its_cmd_get_size(cmd)		(its_cmd_mask_field(cmd, 1,  0,  5) + 1)
693 #define its_cmd_get_id(cmd)		its_cmd_mask_field(cmd, 1,  0, 32)
694 #define its_cmd_get_physical_id(cmd)	its_cmd_mask_field(cmd, 1, 32, 32)
695 #define its_cmd_get_collection(cmd)	its_cmd_mask_field(cmd, 2,  0, 16)
696 #define its_cmd_get_ittaddr(cmd)	(its_cmd_mask_field(cmd, 2,  8, 44) << 8)
697 #define its_cmd_get_target_addr(cmd)	its_cmd_mask_field(cmd, 2, 16, 32)
698 #define its_cmd_get_validbit(cmd)	its_cmd_mask_field(cmd, 2, 63,  1)
699 
700 /*
701  * The DISCARD command frees an Interrupt Translation Table Entry (ITTE).
702  * Must be called with the its_lock mutex held.
703  */
vgic_its_cmd_handle_discard(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)704 static int vgic_its_cmd_handle_discard(struct kvm *kvm, struct vgic_its *its,
705 				       u64 *its_cmd)
706 {
707 	u32 device_id = its_cmd_get_deviceid(its_cmd);
708 	u32 event_id = its_cmd_get_id(its_cmd);
709 	struct its_ite *ite;
710 
711 
712 	ite = find_ite(its, device_id, event_id);
713 	if (ite && ite->collection) {
714 		/*
715 		 * Though the spec talks about removing the pending state, we
716 		 * don't bother here since we clear the ITTE anyway and the
717 		 * pending state is a property of the ITTE struct.
718 		 */
719 		its_free_ite(kvm, ite);
720 		return 0;
721 	}
722 
723 	return E_ITS_DISCARD_UNMAPPED_INTERRUPT;
724 }
725 
726 /*
727  * The MOVI command moves an ITTE to a different collection.
728  * Must be called with the its_lock mutex held.
729  */
vgic_its_cmd_handle_movi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)730 static int vgic_its_cmd_handle_movi(struct kvm *kvm, struct vgic_its *its,
731 				    u64 *its_cmd)
732 {
733 	u32 device_id = its_cmd_get_deviceid(its_cmd);
734 	u32 event_id = its_cmd_get_id(its_cmd);
735 	u32 coll_id = its_cmd_get_collection(its_cmd);
736 	struct kvm_vcpu *vcpu;
737 	struct its_ite *ite;
738 	struct its_collection *collection;
739 
740 	ite = find_ite(its, device_id, event_id);
741 	if (!ite)
742 		return E_ITS_MOVI_UNMAPPED_INTERRUPT;
743 
744 	if (!its_is_collection_mapped(ite->collection))
745 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
746 
747 	collection = find_collection(its, coll_id);
748 	if (!its_is_collection_mapped(collection))
749 		return E_ITS_MOVI_UNMAPPED_COLLECTION;
750 
751 	ite->collection = collection;
752 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
753 
754 	return update_affinity(ite->irq, vcpu);
755 }
756 
757 /*
758  * Check whether an ID can be stored into the corresponding guest table.
759  * For a direct table this is pretty easy, but gets a bit nasty for
760  * indirect tables. We check whether the resulting guest physical address
761  * is actually valid (covered by a memslot and guest accessible).
762  * For this we have to read the respective first level entry.
763  */
vgic_its_check_id(struct vgic_its * its,u64 baser,u32 id,gpa_t * eaddr)764 static bool vgic_its_check_id(struct vgic_its *its, u64 baser, u32 id,
765 			      gpa_t *eaddr)
766 {
767 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
768 	u64 indirect_ptr, type = GITS_BASER_TYPE(baser);
769 	int esz = GITS_BASER_ENTRY_SIZE(baser);
770 	int index, idx;
771 	gfn_t gfn;
772 	bool ret;
773 
774 	switch (type) {
775 	case GITS_BASER_TYPE_DEVICE:
776 		if (id >= BIT_ULL(VITS_TYPER_DEVBITS))
777 			return false;
778 		break;
779 	case GITS_BASER_TYPE_COLLECTION:
780 		/* as GITS_TYPER.CIL == 0, ITS supports 16-bit collection ID */
781 		if (id >= BIT_ULL(16))
782 			return false;
783 		break;
784 	default:
785 		return false;
786 	}
787 
788 	if (!(baser & GITS_BASER_INDIRECT)) {
789 		phys_addr_t addr;
790 
791 		if (id >= (l1_tbl_size / esz))
792 			return false;
793 
794 		addr = BASER_ADDRESS(baser) + id * esz;
795 		gfn = addr >> PAGE_SHIFT;
796 
797 		if (eaddr)
798 			*eaddr = addr;
799 
800 		goto out;
801 	}
802 
803 	/* calculate and check the index into the 1st level */
804 	index = id / (SZ_64K / esz);
805 	if (index >= (l1_tbl_size / sizeof(u64)))
806 		return false;
807 
808 	/* Each 1st level entry is represented by a 64-bit value. */
809 	if (kvm_read_guest_lock(its->dev->kvm,
810 			   BASER_ADDRESS(baser) + index * sizeof(indirect_ptr),
811 			   &indirect_ptr, sizeof(indirect_ptr)))
812 		return false;
813 
814 	indirect_ptr = le64_to_cpu(indirect_ptr);
815 
816 	/* check the valid bit of the first level entry */
817 	if (!(indirect_ptr & BIT_ULL(63)))
818 		return false;
819 
820 	/*
821 	 * Mask the guest physical address and calculate the frame number.
822 	 * Any address beyond our supported 48 bits of PA will be caught
823 	 * by the actual check in the final step.
824 	 */
825 	indirect_ptr &= GENMASK_ULL(51, 16);
826 
827 	/* Find the address of the actual entry */
828 	index = id % (SZ_64K / esz);
829 	indirect_ptr += index * esz;
830 	gfn = indirect_ptr >> PAGE_SHIFT;
831 
832 	if (eaddr)
833 		*eaddr = indirect_ptr;
834 
835 out:
836 	idx = srcu_read_lock(&its->dev->kvm->srcu);
837 	ret = kvm_is_visible_gfn(its->dev->kvm, gfn);
838 	srcu_read_unlock(&its->dev->kvm->srcu, idx);
839 	return ret;
840 }
841 
vgic_its_alloc_collection(struct vgic_its * its,struct its_collection ** colp,u32 coll_id)842 static int vgic_its_alloc_collection(struct vgic_its *its,
843 				     struct its_collection **colp,
844 				     u32 coll_id)
845 {
846 	struct its_collection *collection;
847 
848 	if (!vgic_its_check_id(its, its->baser_coll_table, coll_id, NULL))
849 		return E_ITS_MAPC_COLLECTION_OOR;
850 
851 	collection = kzalloc(sizeof(*collection), GFP_KERNEL);
852 	if (!collection)
853 		return -ENOMEM;
854 
855 	collection->collection_id = coll_id;
856 	collection->target_addr = COLLECTION_NOT_MAPPED;
857 
858 	list_add_tail(&collection->coll_list, &its->collection_list);
859 	*colp = collection;
860 
861 	return 0;
862 }
863 
vgic_its_free_collection(struct vgic_its * its,u32 coll_id)864 static void vgic_its_free_collection(struct vgic_its *its, u32 coll_id)
865 {
866 	struct its_collection *collection;
867 	struct its_device *device;
868 	struct its_ite *ite;
869 
870 	/*
871 	 * Clearing the mapping for that collection ID removes the
872 	 * entry from the list. If there wasn't any before, we can
873 	 * go home early.
874 	 */
875 	collection = find_collection(its, coll_id);
876 	if (!collection)
877 		return;
878 
879 	for_each_lpi_its(device, ite, its)
880 		if (ite->collection &&
881 		    ite->collection->collection_id == coll_id)
882 			ite->collection = NULL;
883 
884 	list_del(&collection->coll_list);
885 	kfree(collection);
886 }
887 
888 /* Must be called with its_lock mutex held */
vgic_its_alloc_ite(struct its_device * device,struct its_collection * collection,u32 event_id)889 static struct its_ite *vgic_its_alloc_ite(struct its_device *device,
890 					  struct its_collection *collection,
891 					  u32 event_id)
892 {
893 	struct its_ite *ite;
894 
895 	ite = kzalloc(sizeof(*ite), GFP_KERNEL);
896 	if (!ite)
897 		return ERR_PTR(-ENOMEM);
898 
899 	ite->event_id	= event_id;
900 	ite->collection = collection;
901 
902 	list_add_tail(&ite->ite_list, &device->itt_head);
903 	return ite;
904 }
905 
906 /*
907  * The MAPTI and MAPI commands map LPIs to ITTEs.
908  * Must be called with its_lock mutex held.
909  */
vgic_its_cmd_handle_mapi(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)910 static int vgic_its_cmd_handle_mapi(struct kvm *kvm, struct vgic_its *its,
911 				    u64 *its_cmd)
912 {
913 	u32 device_id = its_cmd_get_deviceid(its_cmd);
914 	u32 event_id = its_cmd_get_id(its_cmd);
915 	u32 coll_id = its_cmd_get_collection(its_cmd);
916 	struct its_ite *ite;
917 	struct kvm_vcpu *vcpu = NULL;
918 	struct its_device *device;
919 	struct its_collection *collection, *new_coll = NULL;
920 	struct vgic_irq *irq;
921 	int lpi_nr;
922 
923 	device = find_its_device(its, device_id);
924 	if (!device)
925 		return E_ITS_MAPTI_UNMAPPED_DEVICE;
926 
927 	if (event_id >= BIT_ULL(device->num_eventid_bits))
928 		return E_ITS_MAPTI_ID_OOR;
929 
930 	if (its_cmd_get_command(its_cmd) == GITS_CMD_MAPTI)
931 		lpi_nr = its_cmd_get_physical_id(its_cmd);
932 	else
933 		lpi_nr = event_id;
934 	if (lpi_nr < GIC_LPI_OFFSET ||
935 	    lpi_nr >= max_lpis_propbaser(kvm->arch.vgic.propbaser))
936 		return E_ITS_MAPTI_PHYSICALID_OOR;
937 
938 	/* If there is an existing mapping, behavior is UNPREDICTABLE. */
939 	if (find_ite(its, device_id, event_id))
940 		return 0;
941 
942 	collection = find_collection(its, coll_id);
943 	if (!collection) {
944 		int ret = vgic_its_alloc_collection(its, &collection, coll_id);
945 		if (ret)
946 			return ret;
947 		new_coll = collection;
948 	}
949 
950 	ite = vgic_its_alloc_ite(device, collection, event_id);
951 	if (IS_ERR(ite)) {
952 		if (new_coll)
953 			vgic_its_free_collection(its, coll_id);
954 		return PTR_ERR(ite);
955 	}
956 
957 	if (its_is_collection_mapped(collection))
958 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
959 
960 	irq = vgic_add_lpi(kvm, lpi_nr, vcpu);
961 	if (IS_ERR(irq)) {
962 		if (new_coll)
963 			vgic_its_free_collection(its, coll_id);
964 		its_free_ite(kvm, ite);
965 		return PTR_ERR(irq);
966 	}
967 	ite->irq = irq;
968 
969 	return 0;
970 }
971 
972 /* Requires the its_lock to be held. */
vgic_its_free_device(struct kvm * kvm,struct its_device * device)973 static void vgic_its_free_device(struct kvm *kvm, struct its_device *device)
974 {
975 	struct its_ite *ite, *temp;
976 
977 	/*
978 	 * The spec says that unmapping a device with still valid
979 	 * ITTEs associated is UNPREDICTABLE. We remove all ITTEs,
980 	 * since we cannot leave the memory unreferenced.
981 	 */
982 	list_for_each_entry_safe(ite, temp, &device->itt_head, ite_list)
983 		its_free_ite(kvm, ite);
984 
985 	list_del(&device->dev_list);
986 	kfree(device);
987 }
988 
989 /* its lock must be held */
vgic_its_free_device_list(struct kvm * kvm,struct vgic_its * its)990 static void vgic_its_free_device_list(struct kvm *kvm, struct vgic_its *its)
991 {
992 	struct its_device *cur, *temp;
993 
994 	list_for_each_entry_safe(cur, temp, &its->device_list, dev_list)
995 		vgic_its_free_device(kvm, cur);
996 }
997 
998 /* its lock must be held */
vgic_its_free_collection_list(struct kvm * kvm,struct vgic_its * its)999 static void vgic_its_free_collection_list(struct kvm *kvm, struct vgic_its *its)
1000 {
1001 	struct its_collection *cur, *temp;
1002 
1003 	list_for_each_entry_safe(cur, temp, &its->collection_list, coll_list)
1004 		vgic_its_free_collection(its, cur->collection_id);
1005 }
1006 
1007 /* Must be called with its_lock mutex held */
vgic_its_alloc_device(struct vgic_its * its,u32 device_id,gpa_t itt_addr,u8 num_eventid_bits)1008 static struct its_device *vgic_its_alloc_device(struct vgic_its *its,
1009 						u32 device_id, gpa_t itt_addr,
1010 						u8 num_eventid_bits)
1011 {
1012 	struct its_device *device;
1013 
1014 	device = kzalloc(sizeof(*device), GFP_KERNEL);
1015 	if (!device)
1016 		return ERR_PTR(-ENOMEM);
1017 
1018 	device->device_id = device_id;
1019 	device->itt_addr = itt_addr;
1020 	device->num_eventid_bits = num_eventid_bits;
1021 	INIT_LIST_HEAD(&device->itt_head);
1022 
1023 	list_add_tail(&device->dev_list, &its->device_list);
1024 	return device;
1025 }
1026 
1027 /*
1028  * MAPD maps or unmaps a device ID to Interrupt Translation Tables (ITTs).
1029  * Must be called with the its_lock mutex held.
1030  */
vgic_its_cmd_handle_mapd(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1031 static int vgic_its_cmd_handle_mapd(struct kvm *kvm, struct vgic_its *its,
1032 				    u64 *its_cmd)
1033 {
1034 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1035 	bool valid = its_cmd_get_validbit(its_cmd);
1036 	u8 num_eventid_bits = its_cmd_get_size(its_cmd);
1037 	gpa_t itt_addr = its_cmd_get_ittaddr(its_cmd);
1038 	struct its_device *device;
1039 
1040 	if (!vgic_its_check_id(its, its->baser_device_table, device_id, NULL))
1041 		return E_ITS_MAPD_DEVICE_OOR;
1042 
1043 	if (valid && num_eventid_bits > VITS_TYPER_IDBITS)
1044 		return E_ITS_MAPD_ITTSIZE_OOR;
1045 
1046 	device = find_its_device(its, device_id);
1047 
1048 	/*
1049 	 * The spec says that calling MAPD on an already mapped device
1050 	 * invalidates all cached data for this device. We implement this
1051 	 * by removing the mapping and re-establishing it.
1052 	 */
1053 	if (device)
1054 		vgic_its_free_device(kvm, device);
1055 
1056 	/*
1057 	 * The spec does not say whether unmapping a not-mapped device
1058 	 * is an error, so we are done in any case.
1059 	 */
1060 	if (!valid)
1061 		return 0;
1062 
1063 	device = vgic_its_alloc_device(its, device_id, itt_addr,
1064 				       num_eventid_bits);
1065 
1066 	return PTR_ERR_OR_ZERO(device);
1067 }
1068 
1069 /*
1070  * The MAPC command maps collection IDs to redistributors.
1071  * Must be called with the its_lock mutex held.
1072  */
vgic_its_cmd_handle_mapc(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1073 static int vgic_its_cmd_handle_mapc(struct kvm *kvm, struct vgic_its *its,
1074 				    u64 *its_cmd)
1075 {
1076 	u16 coll_id;
1077 	u32 target_addr;
1078 	struct its_collection *collection;
1079 	bool valid;
1080 
1081 	valid = its_cmd_get_validbit(its_cmd);
1082 	coll_id = its_cmd_get_collection(its_cmd);
1083 	target_addr = its_cmd_get_target_addr(its_cmd);
1084 
1085 	if (target_addr >= atomic_read(&kvm->online_vcpus))
1086 		return E_ITS_MAPC_PROCNUM_OOR;
1087 
1088 	if (!valid) {
1089 		vgic_its_free_collection(its, coll_id);
1090 	} else {
1091 		collection = find_collection(its, coll_id);
1092 
1093 		if (!collection) {
1094 			int ret;
1095 
1096 			ret = vgic_its_alloc_collection(its, &collection,
1097 							coll_id);
1098 			if (ret)
1099 				return ret;
1100 			collection->target_addr = target_addr;
1101 		} else {
1102 			collection->target_addr = target_addr;
1103 			update_affinity_collection(kvm, its, collection);
1104 		}
1105 	}
1106 
1107 	return 0;
1108 }
1109 
1110 /*
1111  * The CLEAR command removes the pending state for a particular LPI.
1112  * Must be called with the its_lock mutex held.
1113  */
vgic_its_cmd_handle_clear(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1114 static int vgic_its_cmd_handle_clear(struct kvm *kvm, struct vgic_its *its,
1115 				     u64 *its_cmd)
1116 {
1117 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1118 	u32 event_id = its_cmd_get_id(its_cmd);
1119 	struct its_ite *ite;
1120 
1121 
1122 	ite = find_ite(its, device_id, event_id);
1123 	if (!ite)
1124 		return E_ITS_CLEAR_UNMAPPED_INTERRUPT;
1125 
1126 	ite->irq->pending_latch = false;
1127 
1128 	if (ite->irq->hw)
1129 		return irq_set_irqchip_state(ite->irq->host_irq,
1130 					     IRQCHIP_STATE_PENDING, false);
1131 
1132 	return 0;
1133 }
1134 
1135 /*
1136  * The INV command syncs the configuration bits from the memory table.
1137  * Must be called with the its_lock mutex held.
1138  */
vgic_its_cmd_handle_inv(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1139 static int vgic_its_cmd_handle_inv(struct kvm *kvm, struct vgic_its *its,
1140 				   u64 *its_cmd)
1141 {
1142 	u32 device_id = its_cmd_get_deviceid(its_cmd);
1143 	u32 event_id = its_cmd_get_id(its_cmd);
1144 	struct its_ite *ite;
1145 
1146 
1147 	ite = find_ite(its, device_id, event_id);
1148 	if (!ite)
1149 		return E_ITS_INV_UNMAPPED_INTERRUPT;
1150 
1151 	return update_lpi_config(kvm, ite->irq, NULL, true);
1152 }
1153 
1154 /*
1155  * The INVALL command requests flushing of all IRQ data in this collection.
1156  * Find the VCPU mapped to that collection, then iterate over the VM's list
1157  * of mapped LPIs and update the configuration for each IRQ which targets
1158  * the specified vcpu. The configuration will be read from the in-memory
1159  * configuration table.
1160  * Must be called with the its_lock mutex held.
1161  */
vgic_its_cmd_handle_invall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1162 static int vgic_its_cmd_handle_invall(struct kvm *kvm, struct vgic_its *its,
1163 				      u64 *its_cmd)
1164 {
1165 	u32 coll_id = its_cmd_get_collection(its_cmd);
1166 	struct its_collection *collection;
1167 	struct kvm_vcpu *vcpu;
1168 	struct vgic_irq *irq;
1169 	u32 *intids;
1170 	int irq_count, i;
1171 
1172 	collection = find_collection(its, coll_id);
1173 	if (!its_is_collection_mapped(collection))
1174 		return E_ITS_INVALL_UNMAPPED_COLLECTION;
1175 
1176 	vcpu = kvm_get_vcpu(kvm, collection->target_addr);
1177 
1178 	irq_count = vgic_copy_lpi_list(kvm, vcpu, &intids);
1179 	if (irq_count < 0)
1180 		return irq_count;
1181 
1182 	for (i = 0; i < irq_count; i++) {
1183 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1184 		if (!irq)
1185 			continue;
1186 		update_lpi_config(kvm, irq, vcpu, false);
1187 		vgic_put_irq(kvm, irq);
1188 	}
1189 
1190 	kfree(intids);
1191 
1192 	if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.its_vm)
1193 		its_invall_vpe(&vcpu->arch.vgic_cpu.vgic_v3.its_vpe);
1194 
1195 	return 0;
1196 }
1197 
1198 /*
1199  * The MOVALL command moves the pending state of all IRQs targeting one
1200  * redistributor to another. We don't hold the pending state in the VCPUs,
1201  * but in the IRQs instead, so there is really not much to do for us here.
1202  * However the spec says that no IRQ must target the old redistributor
1203  * afterwards, so we make sure that no LPI is using the associated target_vcpu.
1204  * This command affects all LPIs in the system that target that redistributor.
1205  */
vgic_its_cmd_handle_movall(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1206 static int vgic_its_cmd_handle_movall(struct kvm *kvm, struct vgic_its *its,
1207 				      u64 *its_cmd)
1208 {
1209 	u32 target1_addr = its_cmd_get_target_addr(its_cmd);
1210 	u32 target2_addr = its_cmd_mask_field(its_cmd, 3, 16, 32);
1211 	struct kvm_vcpu *vcpu1, *vcpu2;
1212 	struct vgic_irq *irq;
1213 	u32 *intids;
1214 	int irq_count, i;
1215 
1216 	if (target1_addr >= atomic_read(&kvm->online_vcpus) ||
1217 	    target2_addr >= atomic_read(&kvm->online_vcpus))
1218 		return E_ITS_MOVALL_PROCNUM_OOR;
1219 
1220 	if (target1_addr == target2_addr)
1221 		return 0;
1222 
1223 	vcpu1 = kvm_get_vcpu(kvm, target1_addr);
1224 	vcpu2 = kvm_get_vcpu(kvm, target2_addr);
1225 
1226 	irq_count = vgic_copy_lpi_list(kvm, vcpu1, &intids);
1227 	if (irq_count < 0)
1228 		return irq_count;
1229 
1230 	for (i = 0; i < irq_count; i++) {
1231 		irq = vgic_get_irq(kvm, NULL, intids[i]);
1232 
1233 		update_affinity(irq, vcpu2);
1234 
1235 		vgic_put_irq(kvm, irq);
1236 	}
1237 
1238 	kfree(intids);
1239 	return 0;
1240 }
1241 
1242 /*
1243  * The INT command injects the LPI associated with that DevID/EvID pair.
1244  * Must be called with the its_lock mutex held.
1245  */
vgic_its_cmd_handle_int(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1246 static int vgic_its_cmd_handle_int(struct kvm *kvm, struct vgic_its *its,
1247 				   u64 *its_cmd)
1248 {
1249 	u32 msi_data = its_cmd_get_id(its_cmd);
1250 	u64 msi_devid = its_cmd_get_deviceid(its_cmd);
1251 
1252 	return vgic_its_trigger_msi(kvm, its, msi_devid, msi_data);
1253 }
1254 
1255 /*
1256  * This function is called with the its_cmd lock held, but the ITS data
1257  * structure lock dropped.
1258  */
vgic_its_handle_command(struct kvm * kvm,struct vgic_its * its,u64 * its_cmd)1259 static int vgic_its_handle_command(struct kvm *kvm, struct vgic_its *its,
1260 				   u64 *its_cmd)
1261 {
1262 	int ret = -ENODEV;
1263 
1264 	mutex_lock(&its->its_lock);
1265 	switch (its_cmd_get_command(its_cmd)) {
1266 	case GITS_CMD_MAPD:
1267 		ret = vgic_its_cmd_handle_mapd(kvm, its, its_cmd);
1268 		break;
1269 	case GITS_CMD_MAPC:
1270 		ret = vgic_its_cmd_handle_mapc(kvm, its, its_cmd);
1271 		break;
1272 	case GITS_CMD_MAPI:
1273 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1274 		break;
1275 	case GITS_CMD_MAPTI:
1276 		ret = vgic_its_cmd_handle_mapi(kvm, its, its_cmd);
1277 		break;
1278 	case GITS_CMD_MOVI:
1279 		ret = vgic_its_cmd_handle_movi(kvm, its, its_cmd);
1280 		break;
1281 	case GITS_CMD_DISCARD:
1282 		ret = vgic_its_cmd_handle_discard(kvm, its, its_cmd);
1283 		break;
1284 	case GITS_CMD_CLEAR:
1285 		ret = vgic_its_cmd_handle_clear(kvm, its, its_cmd);
1286 		break;
1287 	case GITS_CMD_MOVALL:
1288 		ret = vgic_its_cmd_handle_movall(kvm, its, its_cmd);
1289 		break;
1290 	case GITS_CMD_INT:
1291 		ret = vgic_its_cmd_handle_int(kvm, its, its_cmd);
1292 		break;
1293 	case GITS_CMD_INV:
1294 		ret = vgic_its_cmd_handle_inv(kvm, its, its_cmd);
1295 		break;
1296 	case GITS_CMD_INVALL:
1297 		ret = vgic_its_cmd_handle_invall(kvm, its, its_cmd);
1298 		break;
1299 	case GITS_CMD_SYNC:
1300 		/* we ignore this command: we are in sync all of the time */
1301 		ret = 0;
1302 		break;
1303 	}
1304 	mutex_unlock(&its->its_lock);
1305 
1306 	return ret;
1307 }
1308 
vgic_sanitise_its_baser(u64 reg)1309 static u64 vgic_sanitise_its_baser(u64 reg)
1310 {
1311 	reg = vgic_sanitise_field(reg, GITS_BASER_SHAREABILITY_MASK,
1312 				  GITS_BASER_SHAREABILITY_SHIFT,
1313 				  vgic_sanitise_shareability);
1314 	reg = vgic_sanitise_field(reg, GITS_BASER_INNER_CACHEABILITY_MASK,
1315 				  GITS_BASER_INNER_CACHEABILITY_SHIFT,
1316 				  vgic_sanitise_inner_cacheability);
1317 	reg = vgic_sanitise_field(reg, GITS_BASER_OUTER_CACHEABILITY_MASK,
1318 				  GITS_BASER_OUTER_CACHEABILITY_SHIFT,
1319 				  vgic_sanitise_outer_cacheability);
1320 
1321 	/* Bits 15:12 contain bits 51:48 of the PA, which we don't support. */
1322 	reg &= ~GENMASK_ULL(15, 12);
1323 
1324 	/* We support only one (ITS) page size: 64K */
1325 	reg = (reg & ~GITS_BASER_PAGE_SIZE_MASK) | GITS_BASER_PAGE_SIZE_64K;
1326 
1327 	return reg;
1328 }
1329 
vgic_sanitise_its_cbaser(u64 reg)1330 static u64 vgic_sanitise_its_cbaser(u64 reg)
1331 {
1332 	reg = vgic_sanitise_field(reg, GITS_CBASER_SHAREABILITY_MASK,
1333 				  GITS_CBASER_SHAREABILITY_SHIFT,
1334 				  vgic_sanitise_shareability);
1335 	reg = vgic_sanitise_field(reg, GITS_CBASER_INNER_CACHEABILITY_MASK,
1336 				  GITS_CBASER_INNER_CACHEABILITY_SHIFT,
1337 				  vgic_sanitise_inner_cacheability);
1338 	reg = vgic_sanitise_field(reg, GITS_CBASER_OUTER_CACHEABILITY_MASK,
1339 				  GITS_CBASER_OUTER_CACHEABILITY_SHIFT,
1340 				  vgic_sanitise_outer_cacheability);
1341 
1342 	/*
1343 	 * Sanitise the physical address to be 64k aligned.
1344 	 * Also limit the physical addresses to 48 bits.
1345 	 */
1346 	reg &= ~(GENMASK_ULL(51, 48) | GENMASK_ULL(15, 12));
1347 
1348 	return reg;
1349 }
1350 
vgic_mmio_read_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1351 static unsigned long vgic_mmio_read_its_cbaser(struct kvm *kvm,
1352 					       struct vgic_its *its,
1353 					       gpa_t addr, unsigned int len)
1354 {
1355 	return extract_bytes(its->cbaser, addr & 7, len);
1356 }
1357 
vgic_mmio_write_its_cbaser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1358 static void vgic_mmio_write_its_cbaser(struct kvm *kvm, struct vgic_its *its,
1359 				       gpa_t addr, unsigned int len,
1360 				       unsigned long val)
1361 {
1362 	/* When GITS_CTLR.Enable is 1, this register is RO. */
1363 	if (its->enabled)
1364 		return;
1365 
1366 	mutex_lock(&its->cmd_lock);
1367 	its->cbaser = update_64bit_reg(its->cbaser, addr & 7, len, val);
1368 	its->cbaser = vgic_sanitise_its_cbaser(its->cbaser);
1369 	its->creadr = 0;
1370 	/*
1371 	 * CWRITER is architecturally UNKNOWN on reset, but we need to reset
1372 	 * it to CREADR to make sure we start with an empty command buffer.
1373 	 */
1374 	its->cwriter = its->creadr;
1375 	mutex_unlock(&its->cmd_lock);
1376 }
1377 
1378 #define ITS_CMD_BUFFER_SIZE(baser)	((((baser) & 0xff) + 1) << 12)
1379 #define ITS_CMD_SIZE			32
1380 #define ITS_CMD_OFFSET(reg)		((reg) & GENMASK(19, 5))
1381 
1382 /* Must be called with the cmd_lock held. */
vgic_its_process_commands(struct kvm * kvm,struct vgic_its * its)1383 static void vgic_its_process_commands(struct kvm *kvm, struct vgic_its *its)
1384 {
1385 	gpa_t cbaser;
1386 	u64 cmd_buf[4];
1387 
1388 	/* Commands are only processed when the ITS is enabled. */
1389 	if (!its->enabled)
1390 		return;
1391 
1392 	cbaser = CBASER_ADDRESS(its->cbaser);
1393 
1394 	while (its->cwriter != its->creadr) {
1395 		int ret = kvm_read_guest_lock(kvm, cbaser + its->creadr,
1396 					      cmd_buf, ITS_CMD_SIZE);
1397 		/*
1398 		 * If kvm_read_guest() fails, this could be due to the guest
1399 		 * programming a bogus value in CBASER or something else going
1400 		 * wrong from which we cannot easily recover.
1401 		 * According to section 6.3.2 in the GICv3 spec we can just
1402 		 * ignore that command then.
1403 		 */
1404 		if (!ret)
1405 			vgic_its_handle_command(kvm, its, cmd_buf);
1406 
1407 		its->creadr += ITS_CMD_SIZE;
1408 		if (its->creadr == ITS_CMD_BUFFER_SIZE(its->cbaser))
1409 			its->creadr = 0;
1410 	}
1411 }
1412 
1413 /*
1414  * By writing to CWRITER the guest announces new commands to be processed.
1415  * To avoid any races in the first place, we take the its_cmd lock, which
1416  * protects our ring buffer variables, so that there is only one user
1417  * per ITS handling commands at a given time.
1418  */
vgic_mmio_write_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1419 static void vgic_mmio_write_its_cwriter(struct kvm *kvm, struct vgic_its *its,
1420 					gpa_t addr, unsigned int len,
1421 					unsigned long val)
1422 {
1423 	u64 reg;
1424 
1425 	if (!its)
1426 		return;
1427 
1428 	mutex_lock(&its->cmd_lock);
1429 
1430 	reg = update_64bit_reg(its->cwriter, addr & 7, len, val);
1431 	reg = ITS_CMD_OFFSET(reg);
1432 	if (reg >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1433 		mutex_unlock(&its->cmd_lock);
1434 		return;
1435 	}
1436 	its->cwriter = reg;
1437 
1438 	vgic_its_process_commands(kvm, its);
1439 
1440 	mutex_unlock(&its->cmd_lock);
1441 }
1442 
vgic_mmio_read_its_cwriter(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1443 static unsigned long vgic_mmio_read_its_cwriter(struct kvm *kvm,
1444 						struct vgic_its *its,
1445 						gpa_t addr, unsigned int len)
1446 {
1447 	return extract_bytes(its->cwriter, addr & 0x7, len);
1448 }
1449 
vgic_mmio_read_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1450 static unsigned long vgic_mmio_read_its_creadr(struct kvm *kvm,
1451 					       struct vgic_its *its,
1452 					       gpa_t addr, unsigned int len)
1453 {
1454 	return extract_bytes(its->creadr, addr & 0x7, len);
1455 }
1456 
vgic_mmio_uaccess_write_its_creadr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1457 static int vgic_mmio_uaccess_write_its_creadr(struct kvm *kvm,
1458 					      struct vgic_its *its,
1459 					      gpa_t addr, unsigned int len,
1460 					      unsigned long val)
1461 {
1462 	u32 cmd_offset;
1463 	int ret = 0;
1464 
1465 	mutex_lock(&its->cmd_lock);
1466 
1467 	if (its->enabled) {
1468 		ret = -EBUSY;
1469 		goto out;
1470 	}
1471 
1472 	cmd_offset = ITS_CMD_OFFSET(val);
1473 	if (cmd_offset >= ITS_CMD_BUFFER_SIZE(its->cbaser)) {
1474 		ret = -EINVAL;
1475 		goto out;
1476 	}
1477 
1478 	its->creadr = cmd_offset;
1479 out:
1480 	mutex_unlock(&its->cmd_lock);
1481 	return ret;
1482 }
1483 
1484 #define BASER_INDEX(addr) (((addr) / sizeof(u64)) & 0x7)
vgic_mmio_read_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len)1485 static unsigned long vgic_mmio_read_its_baser(struct kvm *kvm,
1486 					      struct vgic_its *its,
1487 					      gpa_t addr, unsigned int len)
1488 {
1489 	u64 reg;
1490 
1491 	switch (BASER_INDEX(addr)) {
1492 	case 0:
1493 		reg = its->baser_device_table;
1494 		break;
1495 	case 1:
1496 		reg = its->baser_coll_table;
1497 		break;
1498 	default:
1499 		reg = 0;
1500 		break;
1501 	}
1502 
1503 	return extract_bytes(reg, addr & 7, len);
1504 }
1505 
1506 #define GITS_BASER_RO_MASK	(GENMASK_ULL(52, 48) | GENMASK_ULL(58, 56))
vgic_mmio_write_its_baser(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1507 static void vgic_mmio_write_its_baser(struct kvm *kvm,
1508 				      struct vgic_its *its,
1509 				      gpa_t addr, unsigned int len,
1510 				      unsigned long val)
1511 {
1512 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
1513 	u64 entry_size, table_type;
1514 	u64 reg, *regptr, clearbits = 0;
1515 
1516 	/* When GITS_CTLR.Enable is 1, we ignore write accesses. */
1517 	if (its->enabled)
1518 		return;
1519 
1520 	switch (BASER_INDEX(addr)) {
1521 	case 0:
1522 		regptr = &its->baser_device_table;
1523 		entry_size = abi->dte_esz;
1524 		table_type = GITS_BASER_TYPE_DEVICE;
1525 		break;
1526 	case 1:
1527 		regptr = &its->baser_coll_table;
1528 		entry_size = abi->cte_esz;
1529 		table_type = GITS_BASER_TYPE_COLLECTION;
1530 		clearbits = GITS_BASER_INDIRECT;
1531 		break;
1532 	default:
1533 		return;
1534 	}
1535 
1536 	reg = update_64bit_reg(*regptr, addr & 7, len, val);
1537 	reg &= ~GITS_BASER_RO_MASK;
1538 	reg &= ~clearbits;
1539 
1540 	reg |= (entry_size - 1) << GITS_BASER_ENTRY_SIZE_SHIFT;
1541 	reg |= table_type << GITS_BASER_TYPE_SHIFT;
1542 	reg = vgic_sanitise_its_baser(reg);
1543 
1544 	*regptr = reg;
1545 
1546 	if (!(reg & GITS_BASER_VALID)) {
1547 		/* Take the its_lock to prevent a race with a save/restore */
1548 		mutex_lock(&its->its_lock);
1549 		switch (table_type) {
1550 		case GITS_BASER_TYPE_DEVICE:
1551 			vgic_its_free_device_list(kvm, its);
1552 			break;
1553 		case GITS_BASER_TYPE_COLLECTION:
1554 			vgic_its_free_collection_list(kvm, its);
1555 			break;
1556 		}
1557 		mutex_unlock(&its->its_lock);
1558 	}
1559 }
1560 
vgic_mmio_read_its_ctlr(struct kvm * vcpu,struct vgic_its * its,gpa_t addr,unsigned int len)1561 static unsigned long vgic_mmio_read_its_ctlr(struct kvm *vcpu,
1562 					     struct vgic_its *its,
1563 					     gpa_t addr, unsigned int len)
1564 {
1565 	u32 reg = 0;
1566 
1567 	mutex_lock(&its->cmd_lock);
1568 	if (its->creadr == its->cwriter)
1569 		reg |= GITS_CTLR_QUIESCENT;
1570 	if (its->enabled)
1571 		reg |= GITS_CTLR_ENABLE;
1572 	mutex_unlock(&its->cmd_lock);
1573 
1574 	return reg;
1575 }
1576 
vgic_mmio_write_its_ctlr(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1577 static void vgic_mmio_write_its_ctlr(struct kvm *kvm, struct vgic_its *its,
1578 				     gpa_t addr, unsigned int len,
1579 				     unsigned long val)
1580 {
1581 	mutex_lock(&its->cmd_lock);
1582 
1583 	/*
1584 	 * It is UNPREDICTABLE to enable the ITS if any of the CBASER or
1585 	 * device/collection BASER are invalid
1586 	 */
1587 	if (!its->enabled && (val & GITS_CTLR_ENABLE) &&
1588 		(!(its->baser_device_table & GITS_BASER_VALID) ||
1589 		 !(its->baser_coll_table & GITS_BASER_VALID) ||
1590 		 !(its->cbaser & GITS_CBASER_VALID)))
1591 		goto out;
1592 
1593 	its->enabled = !!(val & GITS_CTLR_ENABLE);
1594 
1595 	/*
1596 	 * Try to process any pending commands. This function bails out early
1597 	 * if the ITS is disabled or no commands have been queued.
1598 	 */
1599 	vgic_its_process_commands(kvm, its);
1600 
1601 out:
1602 	mutex_unlock(&its->cmd_lock);
1603 }
1604 
1605 #define REGISTER_ITS_DESC(off, rd, wr, length, acc)		\
1606 {								\
1607 	.reg_offset = off,					\
1608 	.len = length,						\
1609 	.access_flags = acc,					\
1610 	.its_read = rd,						\
1611 	.its_write = wr,					\
1612 }
1613 
1614 #define REGISTER_ITS_DESC_UACCESS(off, rd, wr, uwr, length, acc)\
1615 {								\
1616 	.reg_offset = off,					\
1617 	.len = length,						\
1618 	.access_flags = acc,					\
1619 	.its_read = rd,						\
1620 	.its_write = wr,					\
1621 	.uaccess_its_write = uwr,				\
1622 }
1623 
its_mmio_write_wi(struct kvm * kvm,struct vgic_its * its,gpa_t addr,unsigned int len,unsigned long val)1624 static void its_mmio_write_wi(struct kvm *kvm, struct vgic_its *its,
1625 			      gpa_t addr, unsigned int len, unsigned long val)
1626 {
1627 	/* Ignore */
1628 }
1629 
1630 static struct vgic_register_region its_registers[] = {
1631 	REGISTER_ITS_DESC(GITS_CTLR,
1632 		vgic_mmio_read_its_ctlr, vgic_mmio_write_its_ctlr, 4,
1633 		VGIC_ACCESS_32bit),
1634 	REGISTER_ITS_DESC_UACCESS(GITS_IIDR,
1635 		vgic_mmio_read_its_iidr, its_mmio_write_wi,
1636 		vgic_mmio_uaccess_write_its_iidr, 4,
1637 		VGIC_ACCESS_32bit),
1638 	REGISTER_ITS_DESC(GITS_TYPER,
1639 		vgic_mmio_read_its_typer, its_mmio_write_wi, 8,
1640 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1641 	REGISTER_ITS_DESC(GITS_CBASER,
1642 		vgic_mmio_read_its_cbaser, vgic_mmio_write_its_cbaser, 8,
1643 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1644 	REGISTER_ITS_DESC(GITS_CWRITER,
1645 		vgic_mmio_read_its_cwriter, vgic_mmio_write_its_cwriter, 8,
1646 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1647 	REGISTER_ITS_DESC_UACCESS(GITS_CREADR,
1648 		vgic_mmio_read_its_creadr, its_mmio_write_wi,
1649 		vgic_mmio_uaccess_write_its_creadr, 8,
1650 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1651 	REGISTER_ITS_DESC(GITS_BASER,
1652 		vgic_mmio_read_its_baser, vgic_mmio_write_its_baser, 0x40,
1653 		VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
1654 	REGISTER_ITS_DESC(GITS_IDREGS_BASE,
1655 		vgic_mmio_read_its_idregs, its_mmio_write_wi, 0x30,
1656 		VGIC_ACCESS_32bit),
1657 };
1658 
1659 /* This is called on setting the LPI enable bit in the redistributor. */
vgic_enable_lpis(struct kvm_vcpu * vcpu)1660 void vgic_enable_lpis(struct kvm_vcpu *vcpu)
1661 {
1662 	if (!(vcpu->arch.vgic_cpu.pendbaser & GICR_PENDBASER_PTZ))
1663 		its_sync_lpi_pending_table(vcpu);
1664 }
1665 
vgic_register_its_iodev(struct kvm * kvm,struct vgic_its * its,u64 addr)1666 static int vgic_register_its_iodev(struct kvm *kvm, struct vgic_its *its,
1667 				   u64 addr)
1668 {
1669 	struct vgic_io_device *iodev = &its->iodev;
1670 	int ret;
1671 
1672 	mutex_lock(&kvm->slots_lock);
1673 	if (!IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1674 		ret = -EBUSY;
1675 		goto out;
1676 	}
1677 
1678 	its->vgic_its_base = addr;
1679 	iodev->regions = its_registers;
1680 	iodev->nr_regions = ARRAY_SIZE(its_registers);
1681 	kvm_iodevice_init(&iodev->dev, &kvm_io_gic_ops);
1682 
1683 	iodev->base_addr = its->vgic_its_base;
1684 	iodev->iodev_type = IODEV_ITS;
1685 	iodev->its = its;
1686 	ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, iodev->base_addr,
1687 				      KVM_VGIC_V3_ITS_SIZE, &iodev->dev);
1688 out:
1689 	mutex_unlock(&kvm->slots_lock);
1690 
1691 	return ret;
1692 }
1693 
1694 #define INITIAL_BASER_VALUE						  \
1695 	(GIC_BASER_CACHEABILITY(GITS_BASER, INNER, RaWb)		| \
1696 	 GIC_BASER_CACHEABILITY(GITS_BASER, OUTER, SameAsInner)		| \
1697 	 GIC_BASER_SHAREABILITY(GITS_BASER, InnerShareable)		| \
1698 	 GITS_BASER_PAGE_SIZE_64K)
1699 
1700 #define INITIAL_PROPBASER_VALUE						  \
1701 	(GIC_BASER_CACHEABILITY(GICR_PROPBASER, INNER, RaWb)		| \
1702 	 GIC_BASER_CACHEABILITY(GICR_PROPBASER, OUTER, SameAsInner)	| \
1703 	 GIC_BASER_SHAREABILITY(GICR_PROPBASER, InnerShareable))
1704 
vgic_its_create(struct kvm_device * dev,u32 type)1705 static int vgic_its_create(struct kvm_device *dev, u32 type)
1706 {
1707 	struct vgic_its *its;
1708 
1709 	if (type != KVM_DEV_TYPE_ARM_VGIC_ITS)
1710 		return -ENODEV;
1711 
1712 	its = kzalloc(sizeof(struct vgic_its), GFP_KERNEL);
1713 	if (!its)
1714 		return -ENOMEM;
1715 
1716 	if (vgic_initialized(dev->kvm)) {
1717 		int ret = vgic_v4_init(dev->kvm);
1718 		if (ret < 0) {
1719 			kfree(its);
1720 			return ret;
1721 		}
1722 	}
1723 
1724 	mutex_init(&its->its_lock);
1725 	mutex_init(&its->cmd_lock);
1726 
1727 	its->vgic_its_base = VGIC_ADDR_UNDEF;
1728 
1729 	INIT_LIST_HEAD(&its->device_list);
1730 	INIT_LIST_HEAD(&its->collection_list);
1731 
1732 	dev->kvm->arch.vgic.msis_require_devid = true;
1733 	dev->kvm->arch.vgic.has_its = true;
1734 	its->enabled = false;
1735 	its->dev = dev;
1736 
1737 	its->baser_device_table = INITIAL_BASER_VALUE			|
1738 		((u64)GITS_BASER_TYPE_DEVICE << GITS_BASER_TYPE_SHIFT);
1739 	its->baser_coll_table = INITIAL_BASER_VALUE |
1740 		((u64)GITS_BASER_TYPE_COLLECTION << GITS_BASER_TYPE_SHIFT);
1741 	dev->kvm->arch.vgic.propbaser = INITIAL_PROPBASER_VALUE;
1742 
1743 	dev->private = its;
1744 
1745 	return vgic_its_set_abi(its, NR_ITS_ABIS - 1);
1746 }
1747 
vgic_its_destroy(struct kvm_device * kvm_dev)1748 static void vgic_its_destroy(struct kvm_device *kvm_dev)
1749 {
1750 	struct kvm *kvm = kvm_dev->kvm;
1751 	struct vgic_its *its = kvm_dev->private;
1752 
1753 	mutex_lock(&its->its_lock);
1754 
1755 	vgic_its_free_device_list(kvm, its);
1756 	vgic_its_free_collection_list(kvm, its);
1757 
1758 	mutex_unlock(&its->its_lock);
1759 	kfree(its);
1760 	kfree(kvm_dev);/* alloc by kvm_ioctl_create_device, free by .destroy */
1761 }
1762 
vgic_its_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)1763 int vgic_its_has_attr_regs(struct kvm_device *dev,
1764 			   struct kvm_device_attr *attr)
1765 {
1766 	const struct vgic_register_region *region;
1767 	gpa_t offset = attr->attr;
1768 	int align;
1769 
1770 	align = (offset < GITS_TYPER) || (offset >= GITS_PIDR4) ? 0x3 : 0x7;
1771 
1772 	if (offset & align)
1773 		return -EINVAL;
1774 
1775 	region = vgic_find_mmio_region(its_registers,
1776 				       ARRAY_SIZE(its_registers),
1777 				       offset);
1778 	if (!region)
1779 		return -ENXIO;
1780 
1781 	return 0;
1782 }
1783 
vgic_its_attr_regs_access(struct kvm_device * dev,struct kvm_device_attr * attr,u64 * reg,bool is_write)1784 int vgic_its_attr_regs_access(struct kvm_device *dev,
1785 			      struct kvm_device_attr *attr,
1786 			      u64 *reg, bool is_write)
1787 {
1788 	const struct vgic_register_region *region;
1789 	struct vgic_its *its;
1790 	gpa_t addr, offset;
1791 	unsigned int len;
1792 	int align, ret = 0;
1793 
1794 	its = dev->private;
1795 	offset = attr->attr;
1796 
1797 	/*
1798 	 * Although the spec supports upper/lower 32-bit accesses to
1799 	 * 64-bit ITS registers, the userspace ABI requires 64-bit
1800 	 * accesses to all 64-bit wide registers. We therefore only
1801 	 * support 32-bit accesses to GITS_CTLR, GITS_IIDR and GITS ID
1802 	 * registers
1803 	 */
1804 	if ((offset < GITS_TYPER) || (offset >= GITS_PIDR4))
1805 		align = 0x3;
1806 	else
1807 		align = 0x7;
1808 
1809 	if (offset & align)
1810 		return -EINVAL;
1811 
1812 	mutex_lock(&dev->kvm->lock);
1813 
1814 	if (IS_VGIC_ADDR_UNDEF(its->vgic_its_base)) {
1815 		ret = -ENXIO;
1816 		goto out;
1817 	}
1818 
1819 	region = vgic_find_mmio_region(its_registers,
1820 				       ARRAY_SIZE(its_registers),
1821 				       offset);
1822 	if (!region) {
1823 		ret = -ENXIO;
1824 		goto out;
1825 	}
1826 
1827 	if (!lock_all_vcpus(dev->kvm)) {
1828 		ret = -EBUSY;
1829 		goto out;
1830 	}
1831 
1832 	addr = its->vgic_its_base + offset;
1833 
1834 	len = region->access_flags & VGIC_ACCESS_64bit ? 8 : 4;
1835 
1836 	if (is_write) {
1837 		if (region->uaccess_its_write)
1838 			ret = region->uaccess_its_write(dev->kvm, its, addr,
1839 							len, *reg);
1840 		else
1841 			region->its_write(dev->kvm, its, addr, len, *reg);
1842 	} else {
1843 		*reg = region->its_read(dev->kvm, its, addr, len);
1844 	}
1845 	unlock_all_vcpus(dev->kvm);
1846 out:
1847 	mutex_unlock(&dev->kvm->lock);
1848 	return ret;
1849 }
1850 
compute_next_devid_offset(struct list_head * h,struct its_device * dev)1851 static u32 compute_next_devid_offset(struct list_head *h,
1852 				     struct its_device *dev)
1853 {
1854 	struct its_device *next;
1855 	u32 next_offset;
1856 
1857 	if (list_is_last(&dev->dev_list, h))
1858 		return 0;
1859 	next = list_next_entry(dev, dev_list);
1860 	next_offset = next->device_id - dev->device_id;
1861 
1862 	return min_t(u32, next_offset, VITS_DTE_MAX_DEVID_OFFSET);
1863 }
1864 
compute_next_eventid_offset(struct list_head * h,struct its_ite * ite)1865 static u32 compute_next_eventid_offset(struct list_head *h, struct its_ite *ite)
1866 {
1867 	struct its_ite *next;
1868 	u32 next_offset;
1869 
1870 	if (list_is_last(&ite->ite_list, h))
1871 		return 0;
1872 	next = list_next_entry(ite, ite_list);
1873 	next_offset = next->event_id - ite->event_id;
1874 
1875 	return min_t(u32, next_offset, VITS_ITE_MAX_EVENTID_OFFSET);
1876 }
1877 
1878 /**
1879  * entry_fn_t - Callback called on a table entry restore path
1880  * @its: its handle
1881  * @id: id of the entry
1882  * @entry: pointer to the entry
1883  * @opaque: pointer to an opaque data
1884  *
1885  * Return: < 0 on error, 0 if last element was identified, id offset to next
1886  * element otherwise
1887  */
1888 typedef int (*entry_fn_t)(struct vgic_its *its, u32 id, void *entry,
1889 			  void *opaque);
1890 
1891 /**
1892  * scan_its_table - Scan a contiguous table in guest RAM and applies a function
1893  * to each entry
1894  *
1895  * @its: its handle
1896  * @base: base gpa of the table
1897  * @size: size of the table in bytes
1898  * @esz: entry size in bytes
1899  * @start_id: the ID of the first entry in the table
1900  * (non zero for 2d level tables)
1901  * @fn: function to apply on each entry
1902  *
1903  * Return: < 0 on error, 0 if last element was identified, 1 otherwise
1904  * (the last element may not be found on second level tables)
1905  */
scan_its_table(struct vgic_its * its,gpa_t base,int size,u32 esz,int start_id,entry_fn_t fn,void * opaque)1906 static int scan_its_table(struct vgic_its *its, gpa_t base, int size, u32 esz,
1907 			  int start_id, entry_fn_t fn, void *opaque)
1908 {
1909 	struct kvm *kvm = its->dev->kvm;
1910 	unsigned long len = size;
1911 	int id = start_id;
1912 	gpa_t gpa = base;
1913 	char entry[ESZ_MAX];
1914 	int ret;
1915 
1916 	memset(entry, 0, esz);
1917 
1918 	while (true) {
1919 		int next_offset;
1920 		size_t byte_offset;
1921 
1922 		ret = kvm_read_guest_lock(kvm, gpa, entry, esz);
1923 		if (ret)
1924 			return ret;
1925 
1926 		next_offset = fn(its, id, entry, opaque);
1927 		if (next_offset <= 0)
1928 			return next_offset;
1929 
1930 		byte_offset = next_offset * esz;
1931 		if (byte_offset >= len)
1932 			break;
1933 
1934 		id += next_offset;
1935 		gpa += byte_offset;
1936 		len -= byte_offset;
1937 	}
1938 	return 1;
1939 }
1940 
1941 /**
1942  * vgic_its_save_ite - Save an interrupt translation entry at @gpa
1943  */
vgic_its_save_ite(struct vgic_its * its,struct its_device * dev,struct its_ite * ite,gpa_t gpa,int ite_esz)1944 static int vgic_its_save_ite(struct vgic_its *its, struct its_device *dev,
1945 			      struct its_ite *ite, gpa_t gpa, int ite_esz)
1946 {
1947 	struct kvm *kvm = its->dev->kvm;
1948 	u32 next_offset;
1949 	u64 val;
1950 
1951 	next_offset = compute_next_eventid_offset(&dev->itt_head, ite);
1952 	val = ((u64)next_offset << KVM_ITS_ITE_NEXT_SHIFT) |
1953 	       ((u64)ite->irq->intid << KVM_ITS_ITE_PINTID_SHIFT) |
1954 		ite->collection->collection_id;
1955 	val = cpu_to_le64(val);
1956 	return kvm_write_guest_lock(kvm, gpa, &val, ite_esz);
1957 }
1958 
1959 /**
1960  * vgic_its_restore_ite - restore an interrupt translation entry
1961  * @event_id: id used for indexing
1962  * @ptr: pointer to the ITE entry
1963  * @opaque: pointer to the its_device
1964  */
vgic_its_restore_ite(struct vgic_its * its,u32 event_id,void * ptr,void * opaque)1965 static int vgic_its_restore_ite(struct vgic_its *its, u32 event_id,
1966 				void *ptr, void *opaque)
1967 {
1968 	struct its_device *dev = (struct its_device *)opaque;
1969 	struct its_collection *collection;
1970 	struct kvm *kvm = its->dev->kvm;
1971 	struct kvm_vcpu *vcpu = NULL;
1972 	u64 val;
1973 	u64 *p = (u64 *)ptr;
1974 	struct vgic_irq *irq;
1975 	u32 coll_id, lpi_id;
1976 	struct its_ite *ite;
1977 	u32 offset;
1978 
1979 	val = *p;
1980 
1981 	val = le64_to_cpu(val);
1982 
1983 	coll_id = val & KVM_ITS_ITE_ICID_MASK;
1984 	lpi_id = (val & KVM_ITS_ITE_PINTID_MASK) >> KVM_ITS_ITE_PINTID_SHIFT;
1985 
1986 	if (!lpi_id)
1987 		return 1; /* invalid entry, no choice but to scan next entry */
1988 
1989 	if (lpi_id < VGIC_MIN_LPI)
1990 		return -EINVAL;
1991 
1992 	offset = val >> KVM_ITS_ITE_NEXT_SHIFT;
1993 	if (event_id + offset >= BIT_ULL(dev->num_eventid_bits))
1994 		return -EINVAL;
1995 
1996 	collection = find_collection(its, coll_id);
1997 	if (!collection)
1998 		return -EINVAL;
1999 
2000 	ite = vgic_its_alloc_ite(dev, collection, event_id);
2001 	if (IS_ERR(ite))
2002 		return PTR_ERR(ite);
2003 
2004 	if (its_is_collection_mapped(collection))
2005 		vcpu = kvm_get_vcpu(kvm, collection->target_addr);
2006 
2007 	irq = vgic_add_lpi(kvm, lpi_id, vcpu);
2008 	if (IS_ERR(irq))
2009 		return PTR_ERR(irq);
2010 	ite->irq = irq;
2011 
2012 	return offset;
2013 }
2014 
vgic_its_ite_cmp(void * priv,struct list_head * a,struct list_head * b)2015 static int vgic_its_ite_cmp(void *priv, struct list_head *a,
2016 			    struct list_head *b)
2017 {
2018 	struct its_ite *itea = container_of(a, struct its_ite, ite_list);
2019 	struct its_ite *iteb = container_of(b, struct its_ite, ite_list);
2020 
2021 	if (itea->event_id < iteb->event_id)
2022 		return -1;
2023 	else
2024 		return 1;
2025 }
2026 
vgic_its_save_itt(struct vgic_its * its,struct its_device * device)2027 static int vgic_its_save_itt(struct vgic_its *its, struct its_device *device)
2028 {
2029 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2030 	gpa_t base = device->itt_addr;
2031 	struct its_ite *ite;
2032 	int ret;
2033 	int ite_esz = abi->ite_esz;
2034 
2035 	list_sort(NULL, &device->itt_head, vgic_its_ite_cmp);
2036 
2037 	list_for_each_entry(ite, &device->itt_head, ite_list) {
2038 		gpa_t gpa = base + ite->event_id * ite_esz;
2039 
2040 		/*
2041 		 * If an LPI carries the HW bit, this means that this
2042 		 * interrupt is controlled by GICv4, and we do not
2043 		 * have direct access to that state. Let's simply fail
2044 		 * the save operation...
2045 		 */
2046 		if (ite->irq->hw)
2047 			return -EACCES;
2048 
2049 		ret = vgic_its_save_ite(its, device, ite, gpa, ite_esz);
2050 		if (ret)
2051 			return ret;
2052 	}
2053 	return 0;
2054 }
2055 
2056 /**
2057  * vgic_its_restore_itt - restore the ITT of a device
2058  *
2059  * @its: its handle
2060  * @dev: device handle
2061  *
2062  * Return 0 on success, < 0 on error
2063  */
vgic_its_restore_itt(struct vgic_its * its,struct its_device * dev)2064 static int vgic_its_restore_itt(struct vgic_its *its, struct its_device *dev)
2065 {
2066 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2067 	gpa_t base = dev->itt_addr;
2068 	int ret;
2069 	int ite_esz = abi->ite_esz;
2070 	size_t max_size = BIT_ULL(dev->num_eventid_bits) * ite_esz;
2071 
2072 	ret = scan_its_table(its, base, max_size, ite_esz, 0,
2073 			     vgic_its_restore_ite, dev);
2074 
2075 	/* scan_its_table returns +1 if all ITEs are invalid */
2076 	if (ret > 0)
2077 		ret = 0;
2078 
2079 	return ret;
2080 }
2081 
2082 /**
2083  * vgic_its_save_dte - Save a device table entry at a given GPA
2084  *
2085  * @its: ITS handle
2086  * @dev: ITS device
2087  * @ptr: GPA
2088  */
vgic_its_save_dte(struct vgic_its * its,struct its_device * dev,gpa_t ptr,int dte_esz)2089 static int vgic_its_save_dte(struct vgic_its *its, struct its_device *dev,
2090 			     gpa_t ptr, int dte_esz)
2091 {
2092 	struct kvm *kvm = its->dev->kvm;
2093 	u64 val, itt_addr_field;
2094 	u32 next_offset;
2095 
2096 	itt_addr_field = dev->itt_addr >> 8;
2097 	next_offset = compute_next_devid_offset(&its->device_list, dev);
2098 	val = (1ULL << KVM_ITS_DTE_VALID_SHIFT |
2099 	       ((u64)next_offset << KVM_ITS_DTE_NEXT_SHIFT) |
2100 	       (itt_addr_field << KVM_ITS_DTE_ITTADDR_SHIFT) |
2101 		(dev->num_eventid_bits - 1));
2102 	val = cpu_to_le64(val);
2103 	return kvm_write_guest_lock(kvm, ptr, &val, dte_esz);
2104 }
2105 
2106 /**
2107  * vgic_its_restore_dte - restore a device table entry
2108  *
2109  * @its: its handle
2110  * @id: device id the DTE corresponds to
2111  * @ptr: kernel VA where the 8 byte DTE is located
2112  * @opaque: unused
2113  *
2114  * Return: < 0 on error, 0 if the dte is the last one, id offset to the
2115  * next dte otherwise
2116  */
vgic_its_restore_dte(struct vgic_its * its,u32 id,void * ptr,void * opaque)2117 static int vgic_its_restore_dte(struct vgic_its *its, u32 id,
2118 				void *ptr, void *opaque)
2119 {
2120 	struct its_device *dev;
2121 	gpa_t itt_addr;
2122 	u8 num_eventid_bits;
2123 	u64 entry = *(u64 *)ptr;
2124 	bool valid;
2125 	u32 offset;
2126 	int ret;
2127 
2128 	entry = le64_to_cpu(entry);
2129 
2130 	valid = entry >> KVM_ITS_DTE_VALID_SHIFT;
2131 	num_eventid_bits = (entry & KVM_ITS_DTE_SIZE_MASK) + 1;
2132 	itt_addr = ((entry & KVM_ITS_DTE_ITTADDR_MASK)
2133 			>> KVM_ITS_DTE_ITTADDR_SHIFT) << 8;
2134 
2135 	if (!valid)
2136 		return 1;
2137 
2138 	/* dte entry is valid */
2139 	offset = (entry & KVM_ITS_DTE_NEXT_MASK) >> KVM_ITS_DTE_NEXT_SHIFT;
2140 
2141 	dev = vgic_its_alloc_device(its, id, itt_addr, num_eventid_bits);
2142 	if (IS_ERR(dev))
2143 		return PTR_ERR(dev);
2144 
2145 	ret = vgic_its_restore_itt(its, dev);
2146 	if (ret) {
2147 		vgic_its_free_device(its->dev->kvm, dev);
2148 		return ret;
2149 	}
2150 
2151 	return offset;
2152 }
2153 
vgic_its_device_cmp(void * priv,struct list_head * a,struct list_head * b)2154 static int vgic_its_device_cmp(void *priv, struct list_head *a,
2155 			       struct list_head *b)
2156 {
2157 	struct its_device *deva = container_of(a, struct its_device, dev_list);
2158 	struct its_device *devb = container_of(b, struct its_device, dev_list);
2159 
2160 	if (deva->device_id < devb->device_id)
2161 		return -1;
2162 	else
2163 		return 1;
2164 }
2165 
2166 /**
2167  * vgic_its_save_device_tables - Save the device table and all ITT
2168  * into guest RAM
2169  *
2170  * L1/L2 handling is hidden by vgic_its_check_id() helper which directly
2171  * returns the GPA of the device entry
2172  */
vgic_its_save_device_tables(struct vgic_its * its)2173 static int vgic_its_save_device_tables(struct vgic_its *its)
2174 {
2175 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2176 	u64 baser = its->baser_device_table;
2177 	struct its_device *dev;
2178 	int dte_esz = abi->dte_esz;
2179 
2180 	if (!(baser & GITS_BASER_VALID))
2181 		return 0;
2182 
2183 	list_sort(NULL, &its->device_list, vgic_its_device_cmp);
2184 
2185 	list_for_each_entry(dev, &its->device_list, dev_list) {
2186 		int ret;
2187 		gpa_t eaddr;
2188 
2189 		if (!vgic_its_check_id(its, baser,
2190 				       dev->device_id, &eaddr))
2191 			return -EINVAL;
2192 
2193 		ret = vgic_its_save_itt(its, dev);
2194 		if (ret)
2195 			return ret;
2196 
2197 		ret = vgic_its_save_dte(its, dev, eaddr, dte_esz);
2198 		if (ret)
2199 			return ret;
2200 	}
2201 	return 0;
2202 }
2203 
2204 /**
2205  * handle_l1_dte - callback used for L1 device table entries (2 stage case)
2206  *
2207  * @its: its handle
2208  * @id: index of the entry in the L1 table
2209  * @addr: kernel VA
2210  * @opaque: unused
2211  *
2212  * L1 table entries are scanned by steps of 1 entry
2213  * Return < 0 if error, 0 if last dte was found when scanning the L2
2214  * table, +1 otherwise (meaning next L1 entry must be scanned)
2215  */
handle_l1_dte(struct vgic_its * its,u32 id,void * addr,void * opaque)2216 static int handle_l1_dte(struct vgic_its *its, u32 id, void *addr,
2217 			 void *opaque)
2218 {
2219 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2220 	int l2_start_id = id * (SZ_64K / abi->dte_esz);
2221 	u64 entry = *(u64 *)addr;
2222 	int dte_esz = abi->dte_esz;
2223 	gpa_t gpa;
2224 	int ret;
2225 
2226 	entry = le64_to_cpu(entry);
2227 
2228 	if (!(entry & KVM_ITS_L1E_VALID_MASK))
2229 		return 1;
2230 
2231 	gpa = entry & KVM_ITS_L1E_ADDR_MASK;
2232 
2233 	ret = scan_its_table(its, gpa, SZ_64K, dte_esz,
2234 			     l2_start_id, vgic_its_restore_dte, NULL);
2235 
2236 	return ret;
2237 }
2238 
2239 /**
2240  * vgic_its_restore_device_tables - Restore the device table and all ITT
2241  * from guest RAM to internal data structs
2242  */
vgic_its_restore_device_tables(struct vgic_its * its)2243 static int vgic_its_restore_device_tables(struct vgic_its *its)
2244 {
2245 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2246 	u64 baser = its->baser_device_table;
2247 	int l1_esz, ret;
2248 	int l1_tbl_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2249 	gpa_t l1_gpa;
2250 
2251 	if (!(baser & GITS_BASER_VALID))
2252 		return 0;
2253 
2254 	l1_gpa = BASER_ADDRESS(baser);
2255 
2256 	if (baser & GITS_BASER_INDIRECT) {
2257 		l1_esz = GITS_LVL1_ENTRY_SIZE;
2258 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2259 				     handle_l1_dte, NULL);
2260 	} else {
2261 		l1_esz = abi->dte_esz;
2262 		ret = scan_its_table(its, l1_gpa, l1_tbl_size, l1_esz, 0,
2263 				     vgic_its_restore_dte, NULL);
2264 	}
2265 
2266 	/* scan_its_table returns +1 if all entries are invalid */
2267 	if (ret > 0)
2268 		ret = 0;
2269 
2270 	return ret;
2271 }
2272 
vgic_its_save_cte(struct vgic_its * its,struct its_collection * collection,gpa_t gpa,int esz)2273 static int vgic_its_save_cte(struct vgic_its *its,
2274 			     struct its_collection *collection,
2275 			     gpa_t gpa, int esz)
2276 {
2277 	u64 val;
2278 
2279 	val = (1ULL << KVM_ITS_CTE_VALID_SHIFT |
2280 	       ((u64)collection->target_addr << KVM_ITS_CTE_RDBASE_SHIFT) |
2281 	       collection->collection_id);
2282 	val = cpu_to_le64(val);
2283 	return kvm_write_guest_lock(its->dev->kvm, gpa, &val, esz);
2284 }
2285 
vgic_its_restore_cte(struct vgic_its * its,gpa_t gpa,int esz)2286 static int vgic_its_restore_cte(struct vgic_its *its, gpa_t gpa, int esz)
2287 {
2288 	struct its_collection *collection;
2289 	struct kvm *kvm = its->dev->kvm;
2290 	u32 target_addr, coll_id;
2291 	u64 val;
2292 	int ret;
2293 
2294 	BUG_ON(esz > sizeof(val));
2295 	ret = kvm_read_guest_lock(kvm, gpa, &val, esz);
2296 	if (ret)
2297 		return ret;
2298 	val = le64_to_cpu(val);
2299 	if (!(val & KVM_ITS_CTE_VALID_MASK))
2300 		return 0;
2301 
2302 	target_addr = (u32)(val >> KVM_ITS_CTE_RDBASE_SHIFT);
2303 	coll_id = val & KVM_ITS_CTE_ICID_MASK;
2304 
2305 	if (target_addr != COLLECTION_NOT_MAPPED &&
2306 	    target_addr >= atomic_read(&kvm->online_vcpus))
2307 		return -EINVAL;
2308 
2309 	collection = find_collection(its, coll_id);
2310 	if (collection)
2311 		return -EEXIST;
2312 	ret = vgic_its_alloc_collection(its, &collection, coll_id);
2313 	if (ret)
2314 		return ret;
2315 	collection->target_addr = target_addr;
2316 	return 1;
2317 }
2318 
2319 /**
2320  * vgic_its_save_collection_table - Save the collection table into
2321  * guest RAM
2322  */
vgic_its_save_collection_table(struct vgic_its * its)2323 static int vgic_its_save_collection_table(struct vgic_its *its)
2324 {
2325 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2326 	u64 baser = its->baser_coll_table;
2327 	gpa_t gpa = BASER_ADDRESS(baser);
2328 	struct its_collection *collection;
2329 	u64 val;
2330 	size_t max_size, filled = 0;
2331 	int ret, cte_esz = abi->cte_esz;
2332 
2333 	if (!(baser & GITS_BASER_VALID))
2334 		return 0;
2335 
2336 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2337 
2338 	list_for_each_entry(collection, &its->collection_list, coll_list) {
2339 		ret = vgic_its_save_cte(its, collection, gpa, cte_esz);
2340 		if (ret)
2341 			return ret;
2342 		gpa += cte_esz;
2343 		filled += cte_esz;
2344 	}
2345 
2346 	if (filled == max_size)
2347 		return 0;
2348 
2349 	/*
2350 	 * table is not fully filled, add a last dummy element
2351 	 * with valid bit unset
2352 	 */
2353 	val = 0;
2354 	BUG_ON(cte_esz > sizeof(val));
2355 	ret = kvm_write_guest_lock(its->dev->kvm, gpa, &val, cte_esz);
2356 	return ret;
2357 }
2358 
2359 /**
2360  * vgic_its_restore_collection_table - reads the collection table
2361  * in guest memory and restores the ITS internal state. Requires the
2362  * BASER registers to be restored before.
2363  */
vgic_its_restore_collection_table(struct vgic_its * its)2364 static int vgic_its_restore_collection_table(struct vgic_its *its)
2365 {
2366 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2367 	u64 baser = its->baser_coll_table;
2368 	int cte_esz = abi->cte_esz;
2369 	size_t max_size, read = 0;
2370 	gpa_t gpa;
2371 	int ret;
2372 
2373 	if (!(baser & GITS_BASER_VALID))
2374 		return 0;
2375 
2376 	gpa = BASER_ADDRESS(baser);
2377 
2378 	max_size = GITS_BASER_NR_PAGES(baser) * SZ_64K;
2379 
2380 	while (read < max_size) {
2381 		ret = vgic_its_restore_cte(its, gpa, cte_esz);
2382 		if (ret <= 0)
2383 			break;
2384 		gpa += cte_esz;
2385 		read += cte_esz;
2386 	}
2387 
2388 	if (ret > 0)
2389 		return 0;
2390 
2391 	return ret;
2392 }
2393 
2394 /**
2395  * vgic_its_save_tables_v0 - Save the ITS tables into guest ARM
2396  * according to v0 ABI
2397  */
vgic_its_save_tables_v0(struct vgic_its * its)2398 static int vgic_its_save_tables_v0(struct vgic_its *its)
2399 {
2400 	int ret;
2401 
2402 	ret = vgic_its_save_device_tables(its);
2403 	if (ret)
2404 		return ret;
2405 
2406 	return vgic_its_save_collection_table(its);
2407 }
2408 
2409 /**
2410  * vgic_its_restore_tables_v0 - Restore the ITS tables from guest RAM
2411  * to internal data structs according to V0 ABI
2412  *
2413  */
vgic_its_restore_tables_v0(struct vgic_its * its)2414 static int vgic_its_restore_tables_v0(struct vgic_its *its)
2415 {
2416 	int ret;
2417 
2418 	ret = vgic_its_restore_collection_table(its);
2419 	if (ret)
2420 		return ret;
2421 
2422 	return vgic_its_restore_device_tables(its);
2423 }
2424 
vgic_its_commit_v0(struct vgic_its * its)2425 static int vgic_its_commit_v0(struct vgic_its *its)
2426 {
2427 	const struct vgic_its_abi *abi;
2428 
2429 	abi = vgic_its_get_abi(its);
2430 	its->baser_coll_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2431 	its->baser_device_table &= ~GITS_BASER_ENTRY_SIZE_MASK;
2432 
2433 	its->baser_coll_table |= (GIC_ENCODE_SZ(abi->cte_esz, 5)
2434 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2435 
2436 	its->baser_device_table |= (GIC_ENCODE_SZ(abi->dte_esz, 5)
2437 					<< GITS_BASER_ENTRY_SIZE_SHIFT);
2438 	return 0;
2439 }
2440 
vgic_its_reset(struct kvm * kvm,struct vgic_its * its)2441 static void vgic_its_reset(struct kvm *kvm, struct vgic_its *its)
2442 {
2443 	/* We need to keep the ABI specific field values */
2444 	its->baser_coll_table &= ~GITS_BASER_VALID;
2445 	its->baser_device_table &= ~GITS_BASER_VALID;
2446 	its->cbaser = 0;
2447 	its->creadr = 0;
2448 	its->cwriter = 0;
2449 	its->enabled = 0;
2450 	vgic_its_free_device_list(kvm, its);
2451 	vgic_its_free_collection_list(kvm, its);
2452 }
2453 
vgic_its_has_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2454 static int vgic_its_has_attr(struct kvm_device *dev,
2455 			     struct kvm_device_attr *attr)
2456 {
2457 	switch (attr->group) {
2458 	case KVM_DEV_ARM_VGIC_GRP_ADDR:
2459 		switch (attr->attr) {
2460 		case KVM_VGIC_ITS_ADDR_TYPE:
2461 			return 0;
2462 		}
2463 		break;
2464 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2465 		switch (attr->attr) {
2466 		case KVM_DEV_ARM_VGIC_CTRL_INIT:
2467 			return 0;
2468 		case KVM_DEV_ARM_ITS_CTRL_RESET:
2469 			return 0;
2470 		case KVM_DEV_ARM_ITS_SAVE_TABLES:
2471 			return 0;
2472 		case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2473 			return 0;
2474 		}
2475 		break;
2476 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS:
2477 		return vgic_its_has_attr_regs(dev, attr);
2478 	}
2479 	return -ENXIO;
2480 }
2481 
vgic_its_ctrl(struct kvm * kvm,struct vgic_its * its,u64 attr)2482 static int vgic_its_ctrl(struct kvm *kvm, struct vgic_its *its, u64 attr)
2483 {
2484 	const struct vgic_its_abi *abi = vgic_its_get_abi(its);
2485 	int ret = 0;
2486 
2487 	if (attr == KVM_DEV_ARM_VGIC_CTRL_INIT) /* Nothing to do */
2488 		return 0;
2489 
2490 	mutex_lock(&kvm->lock);
2491 	mutex_lock(&its->its_lock);
2492 
2493 	if (!lock_all_vcpus(kvm)) {
2494 		mutex_unlock(&its->its_lock);
2495 		mutex_unlock(&kvm->lock);
2496 		return -EBUSY;
2497 	}
2498 
2499 	switch (attr) {
2500 	case KVM_DEV_ARM_ITS_CTRL_RESET:
2501 		vgic_its_reset(kvm, its);
2502 		break;
2503 	case KVM_DEV_ARM_ITS_SAVE_TABLES:
2504 		ret = abi->save_tables(its);
2505 		break;
2506 	case KVM_DEV_ARM_ITS_RESTORE_TABLES:
2507 		ret = abi->restore_tables(its);
2508 		break;
2509 	}
2510 
2511 	unlock_all_vcpus(kvm);
2512 	mutex_unlock(&its->its_lock);
2513 	mutex_unlock(&kvm->lock);
2514 	return ret;
2515 }
2516 
vgic_its_set_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2517 static int vgic_its_set_attr(struct kvm_device *dev,
2518 			     struct kvm_device_attr *attr)
2519 {
2520 	struct vgic_its *its = dev->private;
2521 	int ret;
2522 
2523 	switch (attr->group) {
2524 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2525 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2526 		unsigned long type = (unsigned long)attr->attr;
2527 		u64 addr;
2528 
2529 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2530 			return -ENODEV;
2531 
2532 		if (copy_from_user(&addr, uaddr, sizeof(addr)))
2533 			return -EFAULT;
2534 
2535 		ret = vgic_check_ioaddr(dev->kvm, &its->vgic_its_base,
2536 					addr, SZ_64K);
2537 		if (ret)
2538 			return ret;
2539 
2540 		return vgic_register_its_iodev(dev->kvm, its, addr);
2541 	}
2542 	case KVM_DEV_ARM_VGIC_GRP_CTRL:
2543 		return vgic_its_ctrl(dev->kvm, its, attr->attr);
2544 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2545 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2546 		u64 reg;
2547 
2548 		if (get_user(reg, uaddr))
2549 			return -EFAULT;
2550 
2551 		return vgic_its_attr_regs_access(dev, attr, &reg, true);
2552 	}
2553 	}
2554 	return -ENXIO;
2555 }
2556 
vgic_its_get_attr(struct kvm_device * dev,struct kvm_device_attr * attr)2557 static int vgic_its_get_attr(struct kvm_device *dev,
2558 			     struct kvm_device_attr *attr)
2559 {
2560 	switch (attr->group) {
2561 	case KVM_DEV_ARM_VGIC_GRP_ADDR: {
2562 		struct vgic_its *its = dev->private;
2563 		u64 addr = its->vgic_its_base;
2564 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2565 		unsigned long type = (unsigned long)attr->attr;
2566 
2567 		if (type != KVM_VGIC_ITS_ADDR_TYPE)
2568 			return -ENODEV;
2569 
2570 		if (copy_to_user(uaddr, &addr, sizeof(addr)))
2571 			return -EFAULT;
2572 		break;
2573 	}
2574 	case KVM_DEV_ARM_VGIC_GRP_ITS_REGS: {
2575 		u64 __user *uaddr = (u64 __user *)(long)attr->addr;
2576 		u64 reg;
2577 		int ret;
2578 
2579 		ret = vgic_its_attr_regs_access(dev, attr, &reg, false);
2580 		if (ret)
2581 			return ret;
2582 		return put_user(reg, uaddr);
2583 	}
2584 	default:
2585 		return -ENXIO;
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static struct kvm_device_ops kvm_arm_vgic_its_ops = {
2592 	.name = "kvm-arm-vgic-its",
2593 	.create = vgic_its_create,
2594 	.destroy = vgic_its_destroy,
2595 	.set_attr = vgic_its_set_attr,
2596 	.get_attr = vgic_its_get_attr,
2597 	.has_attr = vgic_its_has_attr,
2598 };
2599 
kvm_vgic_register_its_device(void)2600 int kvm_vgic_register_its_device(void)
2601 {
2602 	return kvm_register_device_ops(&kvm_arm_vgic_its_ops,
2603 				       KVM_DEV_TYPE_ARM_VGIC_ITS);
2604 }
2605