1 /*
2  * VGICv2 MMIO handling functions
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  */
13 
14 #include <linux/irqchip/arm-gic.h>
15 #include <linux/kvm.h>
16 #include <linux/kvm_host.h>
17 #include <linux/nospec.h>
18 
19 #include <kvm/iodev.h>
20 #include <kvm/arm_vgic.h>
21 
22 #include "vgic.h"
23 #include "vgic-mmio.h"
24 
25 /*
26  * The Revision field in the IIDR have the following meanings:
27  *
28  * Revision 1: Report GICv2 interrupts as group 0 instead of group 1
29  * Revision 2: Interrupt groups are guest-configurable and signaled using
30  * 	       their configured groups.
31  */
32 
vgic_mmio_read_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)33 static unsigned long vgic_mmio_read_v2_misc(struct kvm_vcpu *vcpu,
34 					    gpa_t addr, unsigned int len)
35 {
36 	struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
37 	u32 value;
38 
39 	switch (addr & 0x0c) {
40 	case GIC_DIST_CTRL:
41 		value = vgic->enabled ? GICD_ENABLE : 0;
42 		break;
43 	case GIC_DIST_CTR:
44 		value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
45 		value = (value >> 5) - 1;
46 		value |= (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5;
47 		break;
48 	case GIC_DIST_IIDR:
49 		value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
50 			(vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
51 			(IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
52 		break;
53 	default:
54 		return 0;
55 	}
56 
57 	return value;
58 }
59 
vgic_mmio_write_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)60 static void vgic_mmio_write_v2_misc(struct kvm_vcpu *vcpu,
61 				    gpa_t addr, unsigned int len,
62 				    unsigned long val)
63 {
64 	struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
65 	bool was_enabled = dist->enabled;
66 
67 	switch (addr & 0x0c) {
68 	case GIC_DIST_CTRL:
69 		dist->enabled = val & GICD_ENABLE;
70 		if (!was_enabled && dist->enabled)
71 			vgic_kick_vcpus(vcpu->kvm);
72 		break;
73 	case GIC_DIST_CTR:
74 	case GIC_DIST_IIDR:
75 		/* Nothing to do */
76 		return;
77 	}
78 }
79 
vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)80 static int vgic_mmio_uaccess_write_v2_misc(struct kvm_vcpu *vcpu,
81 					   gpa_t addr, unsigned int len,
82 					   unsigned long val)
83 {
84 	switch (addr & 0x0c) {
85 	case GIC_DIST_IIDR:
86 		if (val != vgic_mmio_read_v2_misc(vcpu, addr, len))
87 			return -EINVAL;
88 
89 		/*
90 		 * If we observe a write to GICD_IIDR we know that userspace
91 		 * has been updated and has had a chance to cope with older
92 		 * kernels (VGICv2 IIDR.Revision == 0) incorrectly reporting
93 		 * interrupts as group 1, and therefore we now allow groups to
94 		 * be user writable.  Doing this by default would break
95 		 * migration from old kernels to new kernels with legacy
96 		 * userspace.
97 		 */
98 		vcpu->kvm->arch.vgic.v2_groups_user_writable = true;
99 		return 0;
100 	}
101 
102 	vgic_mmio_write_v2_misc(vcpu, addr, len, val);
103 	return 0;
104 }
105 
vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)106 static int vgic_mmio_uaccess_write_v2_group(struct kvm_vcpu *vcpu,
107 					    gpa_t addr, unsigned int len,
108 					    unsigned long val)
109 {
110 	if (vcpu->kvm->arch.vgic.v2_groups_user_writable)
111 		vgic_mmio_write_group(vcpu, addr, len, val);
112 
113 	return 0;
114 }
115 
vgic_mmio_write_sgir(struct kvm_vcpu * source_vcpu,gpa_t addr,unsigned int len,unsigned long val)116 static void vgic_mmio_write_sgir(struct kvm_vcpu *source_vcpu,
117 				 gpa_t addr, unsigned int len,
118 				 unsigned long val)
119 {
120 	int nr_vcpus = atomic_read(&source_vcpu->kvm->online_vcpus);
121 	int intid = val & 0xf;
122 	int targets = (val >> 16) & 0xff;
123 	int mode = (val >> 24) & 0x03;
124 	int c;
125 	struct kvm_vcpu *vcpu;
126 	unsigned long flags;
127 
128 	switch (mode) {
129 	case 0x0:		/* as specified by targets */
130 		break;
131 	case 0x1:
132 		targets = (1U << nr_vcpus) - 1;			/* all, ... */
133 		targets &= ~(1U << source_vcpu->vcpu_id);	/* but self */
134 		break;
135 	case 0x2:		/* this very vCPU only */
136 		targets = (1U << source_vcpu->vcpu_id);
137 		break;
138 	case 0x3:		/* reserved */
139 		return;
140 	}
141 
142 	kvm_for_each_vcpu(c, vcpu, source_vcpu->kvm) {
143 		struct vgic_irq *irq;
144 
145 		if (!(targets & (1U << c)))
146 			continue;
147 
148 		irq = vgic_get_irq(source_vcpu->kvm, vcpu, intid);
149 
150 		spin_lock_irqsave(&irq->irq_lock, flags);
151 		irq->pending_latch = true;
152 		irq->source |= 1U << source_vcpu->vcpu_id;
153 
154 		vgic_queue_irq_unlock(source_vcpu->kvm, irq, flags);
155 		vgic_put_irq(source_vcpu->kvm, irq);
156 	}
157 }
158 
vgic_mmio_read_target(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)159 static unsigned long vgic_mmio_read_target(struct kvm_vcpu *vcpu,
160 					   gpa_t addr, unsigned int len)
161 {
162 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
163 	int i;
164 	u64 val = 0;
165 
166 	for (i = 0; i < len; i++) {
167 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
168 
169 		val |= (u64)irq->targets << (i * 8);
170 
171 		vgic_put_irq(vcpu->kvm, irq);
172 	}
173 
174 	return val;
175 }
176 
vgic_mmio_write_target(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)177 static void vgic_mmio_write_target(struct kvm_vcpu *vcpu,
178 				   gpa_t addr, unsigned int len,
179 				   unsigned long val)
180 {
181 	u32 intid = VGIC_ADDR_TO_INTID(addr, 8);
182 	u8 cpu_mask = GENMASK(atomic_read(&vcpu->kvm->online_vcpus) - 1, 0);
183 	int i;
184 	unsigned long flags;
185 
186 	/* GICD_ITARGETSR[0-7] are read-only */
187 	if (intid < VGIC_NR_PRIVATE_IRQS)
188 		return;
189 
190 	for (i = 0; i < len; i++) {
191 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid + i);
192 		int target;
193 
194 		spin_lock_irqsave(&irq->irq_lock, flags);
195 
196 		irq->targets = (val >> (i * 8)) & cpu_mask;
197 		target = irq->targets ? __ffs(irq->targets) : 0;
198 		irq->target_vcpu = kvm_get_vcpu(vcpu->kvm, target);
199 
200 		spin_unlock_irqrestore(&irq->irq_lock, flags);
201 		vgic_put_irq(vcpu->kvm, irq);
202 	}
203 }
204 
vgic_mmio_read_sgipend(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)205 static unsigned long vgic_mmio_read_sgipend(struct kvm_vcpu *vcpu,
206 					    gpa_t addr, unsigned int len)
207 {
208 	u32 intid = addr & 0x0f;
209 	int i;
210 	u64 val = 0;
211 
212 	for (i = 0; i < len; i++) {
213 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
214 
215 		val |= (u64)irq->source << (i * 8);
216 
217 		vgic_put_irq(vcpu->kvm, irq);
218 	}
219 	return val;
220 }
221 
vgic_mmio_write_sgipendc(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)222 static void vgic_mmio_write_sgipendc(struct kvm_vcpu *vcpu,
223 				     gpa_t addr, unsigned int len,
224 				     unsigned long val)
225 {
226 	u32 intid = addr & 0x0f;
227 	int i;
228 	unsigned long flags;
229 
230 	for (i = 0; i < len; i++) {
231 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
232 
233 		spin_lock_irqsave(&irq->irq_lock, flags);
234 
235 		irq->source &= ~((val >> (i * 8)) & 0xff);
236 		if (!irq->source)
237 			irq->pending_latch = false;
238 
239 		spin_unlock_irqrestore(&irq->irq_lock, flags);
240 		vgic_put_irq(vcpu->kvm, irq);
241 	}
242 }
243 
vgic_mmio_write_sgipends(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)244 static void vgic_mmio_write_sgipends(struct kvm_vcpu *vcpu,
245 				     gpa_t addr, unsigned int len,
246 				     unsigned long val)
247 {
248 	u32 intid = addr & 0x0f;
249 	int i;
250 	unsigned long flags;
251 
252 	for (i = 0; i < len; i++) {
253 		struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
254 
255 		spin_lock_irqsave(&irq->irq_lock, flags);
256 
257 		irq->source |= (val >> (i * 8)) & 0xff;
258 
259 		if (irq->source) {
260 			irq->pending_latch = true;
261 			vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
262 		} else {
263 			spin_unlock_irqrestore(&irq->irq_lock, flags);
264 		}
265 		vgic_put_irq(vcpu->kvm, irq);
266 	}
267 }
268 
269 #define GICC_ARCH_VERSION_V2	0x2
270 
271 /* These are for userland accesses only, there is no guest-facing emulation. */
vgic_mmio_read_vcpuif(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)272 static unsigned long vgic_mmio_read_vcpuif(struct kvm_vcpu *vcpu,
273 					   gpa_t addr, unsigned int len)
274 {
275 	struct vgic_vmcr vmcr;
276 	u32 val;
277 
278 	vgic_get_vmcr(vcpu, &vmcr);
279 
280 	switch (addr & 0xff) {
281 	case GIC_CPU_CTRL:
282 		val = vmcr.grpen0 << GIC_CPU_CTRL_EnableGrp0_SHIFT;
283 		val |= vmcr.grpen1 << GIC_CPU_CTRL_EnableGrp1_SHIFT;
284 		val |= vmcr.ackctl << GIC_CPU_CTRL_AckCtl_SHIFT;
285 		val |= vmcr.fiqen << GIC_CPU_CTRL_FIQEn_SHIFT;
286 		val |= vmcr.cbpr << GIC_CPU_CTRL_CBPR_SHIFT;
287 		val |= vmcr.eoim << GIC_CPU_CTRL_EOImodeNS_SHIFT;
288 
289 		break;
290 	case GIC_CPU_PRIMASK:
291 		/*
292 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
293 		 * the PMR field as GICH_VMCR.VMPriMask rather than
294 		 * GICC_PMR.Priority, so we expose the upper five bits of
295 		 * priority mask to userspace using the lower bits in the
296 		 * unsigned long.
297 		 */
298 		val = (vmcr.pmr & GICV_PMR_PRIORITY_MASK) >>
299 			GICV_PMR_PRIORITY_SHIFT;
300 		break;
301 	case GIC_CPU_BINPOINT:
302 		val = vmcr.bpr;
303 		break;
304 	case GIC_CPU_ALIAS_BINPOINT:
305 		val = vmcr.abpr;
306 		break;
307 	case GIC_CPU_IDENT:
308 		val = ((PRODUCT_ID_KVM << 20) |
309 		       (GICC_ARCH_VERSION_V2 << 16) |
310 		       IMPLEMENTER_ARM);
311 		break;
312 	default:
313 		return 0;
314 	}
315 
316 	return val;
317 }
318 
vgic_mmio_write_vcpuif(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)319 static void vgic_mmio_write_vcpuif(struct kvm_vcpu *vcpu,
320 				   gpa_t addr, unsigned int len,
321 				   unsigned long val)
322 {
323 	struct vgic_vmcr vmcr;
324 
325 	vgic_get_vmcr(vcpu, &vmcr);
326 
327 	switch (addr & 0xff) {
328 	case GIC_CPU_CTRL:
329 		vmcr.grpen0 = !!(val & GIC_CPU_CTRL_EnableGrp0);
330 		vmcr.grpen1 = !!(val & GIC_CPU_CTRL_EnableGrp1);
331 		vmcr.ackctl = !!(val & GIC_CPU_CTRL_AckCtl);
332 		vmcr.fiqen = !!(val & GIC_CPU_CTRL_FIQEn);
333 		vmcr.cbpr = !!(val & GIC_CPU_CTRL_CBPR);
334 		vmcr.eoim = !!(val & GIC_CPU_CTRL_EOImodeNS);
335 
336 		break;
337 	case GIC_CPU_PRIMASK:
338 		/*
339 		 * Our KVM_DEV_TYPE_ARM_VGIC_V2 device ABI exports the
340 		 * the PMR field as GICH_VMCR.VMPriMask rather than
341 		 * GICC_PMR.Priority, so we expose the upper five bits of
342 		 * priority mask to userspace using the lower bits in the
343 		 * unsigned long.
344 		 */
345 		vmcr.pmr = (val << GICV_PMR_PRIORITY_SHIFT) &
346 			GICV_PMR_PRIORITY_MASK;
347 		break;
348 	case GIC_CPU_BINPOINT:
349 		vmcr.bpr = val;
350 		break;
351 	case GIC_CPU_ALIAS_BINPOINT:
352 		vmcr.abpr = val;
353 		break;
354 	}
355 
356 	vgic_set_vmcr(vcpu, &vmcr);
357 }
358 
vgic_mmio_read_apr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len)359 static unsigned long vgic_mmio_read_apr(struct kvm_vcpu *vcpu,
360 					gpa_t addr, unsigned int len)
361 {
362 	int n; /* which APRn is this */
363 
364 	n = (addr >> 2) & 0x3;
365 
366 	if (kvm_vgic_global_state.type == VGIC_V2) {
367 		/* GICv2 hardware systems support max. 32 groups */
368 		if (n != 0)
369 			return 0;
370 		return vcpu->arch.vgic_cpu.vgic_v2.vgic_apr;
371 	} else {
372 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
373 
374 		if (n > vgic_v3_max_apr_idx(vcpu))
375 			return 0;
376 
377 		n = array_index_nospec(n, 4);
378 
379 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
380 		return vgicv3->vgic_ap1r[n];
381 	}
382 }
383 
vgic_mmio_write_apr(struct kvm_vcpu * vcpu,gpa_t addr,unsigned int len,unsigned long val)384 static void vgic_mmio_write_apr(struct kvm_vcpu *vcpu,
385 				gpa_t addr, unsigned int len,
386 				unsigned long val)
387 {
388 	int n; /* which APRn is this */
389 
390 	n = (addr >> 2) & 0x3;
391 
392 	if (kvm_vgic_global_state.type == VGIC_V2) {
393 		/* GICv2 hardware systems support max. 32 groups */
394 		if (n != 0)
395 			return;
396 		vcpu->arch.vgic_cpu.vgic_v2.vgic_apr = val;
397 	} else {
398 		struct vgic_v3_cpu_if *vgicv3 = &vcpu->arch.vgic_cpu.vgic_v3;
399 
400 		if (n > vgic_v3_max_apr_idx(vcpu))
401 			return;
402 
403 		n = array_index_nospec(n, 4);
404 
405 		/* GICv3 only uses ICH_AP1Rn for memory mapped (GICv2) guests */
406 		vgicv3->vgic_ap1r[n] = val;
407 	}
408 }
409 
410 static const struct vgic_register_region vgic_v2_dist_registers[] = {
411 	REGISTER_DESC_WITH_LENGTH_UACCESS(GIC_DIST_CTRL,
412 		vgic_mmio_read_v2_misc, vgic_mmio_write_v2_misc,
413 		NULL, vgic_mmio_uaccess_write_v2_misc,
414 		12, VGIC_ACCESS_32bit),
415 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_IGROUP,
416 		vgic_mmio_read_group, vgic_mmio_write_group,
417 		NULL, vgic_mmio_uaccess_write_v2_group, 1,
418 		VGIC_ACCESS_32bit),
419 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_SET,
420 		vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
421 		VGIC_ACCESS_32bit),
422 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ENABLE_CLEAR,
423 		vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
424 		VGIC_ACCESS_32bit),
425 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_SET,
426 		vgic_mmio_read_pending, vgic_mmio_write_spending, NULL, NULL, 1,
427 		VGIC_ACCESS_32bit),
428 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PENDING_CLEAR,
429 		vgic_mmio_read_pending, vgic_mmio_write_cpending, NULL, NULL, 1,
430 		VGIC_ACCESS_32bit),
431 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_SET,
432 		vgic_mmio_read_active, vgic_mmio_write_sactive,
433 		NULL, vgic_mmio_uaccess_write_sactive, 1,
434 		VGIC_ACCESS_32bit),
435 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_ACTIVE_CLEAR,
436 		vgic_mmio_read_active, vgic_mmio_write_cactive,
437 		NULL, vgic_mmio_uaccess_write_cactive, 1,
438 		VGIC_ACCESS_32bit),
439 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_PRI,
440 		vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
441 		8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
442 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_TARGET,
443 		vgic_mmio_read_target, vgic_mmio_write_target, NULL, NULL, 8,
444 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
445 	REGISTER_DESC_WITH_BITS_PER_IRQ(GIC_DIST_CONFIG,
446 		vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
447 		VGIC_ACCESS_32bit),
448 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SOFTINT,
449 		vgic_mmio_read_raz, vgic_mmio_write_sgir, 4,
450 		VGIC_ACCESS_32bit),
451 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_CLEAR,
452 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipendc, 16,
453 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
454 	REGISTER_DESC_WITH_LENGTH(GIC_DIST_SGI_PENDING_SET,
455 		vgic_mmio_read_sgipend, vgic_mmio_write_sgipends, 16,
456 		VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
457 };
458 
459 static const struct vgic_register_region vgic_v2_cpu_registers[] = {
460 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_CTRL,
461 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
462 		VGIC_ACCESS_32bit),
463 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_PRIMASK,
464 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
465 		VGIC_ACCESS_32bit),
466 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_BINPOINT,
467 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
468 		VGIC_ACCESS_32bit),
469 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ALIAS_BINPOINT,
470 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
471 		VGIC_ACCESS_32bit),
472 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_ACTIVEPRIO,
473 		vgic_mmio_read_apr, vgic_mmio_write_apr, 16,
474 		VGIC_ACCESS_32bit),
475 	REGISTER_DESC_WITH_LENGTH(GIC_CPU_IDENT,
476 		vgic_mmio_read_vcpuif, vgic_mmio_write_vcpuif, 4,
477 		VGIC_ACCESS_32bit),
478 };
479 
vgic_v2_init_dist_iodev(struct vgic_io_device * dev)480 unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev)
481 {
482 	dev->regions = vgic_v2_dist_registers;
483 	dev->nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
484 
485 	kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
486 
487 	return SZ_4K;
488 }
489 
vgic_v2_has_attr_regs(struct kvm_device * dev,struct kvm_device_attr * attr)490 int vgic_v2_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
491 {
492 	const struct vgic_register_region *region;
493 	struct vgic_io_device iodev;
494 	struct vgic_reg_attr reg_attr;
495 	struct kvm_vcpu *vcpu;
496 	gpa_t addr;
497 	int ret;
498 
499 	ret = vgic_v2_parse_attr(dev, attr, &reg_attr);
500 	if (ret)
501 		return ret;
502 
503 	vcpu = reg_attr.vcpu;
504 	addr = reg_attr.addr;
505 
506 	switch (attr->group) {
507 	case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
508 		iodev.regions = vgic_v2_dist_registers;
509 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers);
510 		iodev.base_addr = 0;
511 		break;
512 	case KVM_DEV_ARM_VGIC_GRP_CPU_REGS:
513 		iodev.regions = vgic_v2_cpu_registers;
514 		iodev.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers);
515 		iodev.base_addr = 0;
516 		break;
517 	default:
518 		return -ENXIO;
519 	}
520 
521 	/* We only support aligned 32-bit accesses. */
522 	if (addr & 3)
523 		return -ENXIO;
524 
525 	region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
526 	if (!region)
527 		return -ENXIO;
528 
529 	return 0;
530 }
531 
vgic_v2_cpuif_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)532 int vgic_v2_cpuif_uaccess(struct kvm_vcpu *vcpu, bool is_write,
533 			  int offset, u32 *val)
534 {
535 	struct vgic_io_device dev = {
536 		.regions = vgic_v2_cpu_registers,
537 		.nr_regions = ARRAY_SIZE(vgic_v2_cpu_registers),
538 		.iodev_type = IODEV_CPUIF,
539 	};
540 
541 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
542 }
543 
vgic_v2_dist_uaccess(struct kvm_vcpu * vcpu,bool is_write,int offset,u32 * val)544 int vgic_v2_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
545 			 int offset, u32 *val)
546 {
547 	struct vgic_io_device dev = {
548 		.regions = vgic_v2_dist_registers,
549 		.nr_regions = ARRAY_SIZE(vgic_v2_dist_registers),
550 		.iodev_type = IODEV_DIST,
551 	};
552 
553 	return vgic_uaccess(vcpu, &dev, is_write, offset, val);
554 }
555