1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License version 2 as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program. If not, see <http://www.gnu.org/licenses/>.
13  */
14 
15 #include <linux/irqchip/arm-gic-v3.h>
16 #include <linux/kvm.h>
17 #include <linux/kvm_host.h>
18 #include <kvm/arm_vgic.h>
19 #include <asm/kvm_hyp.h>
20 #include <asm/kvm_mmu.h>
21 #include <asm/kvm_asm.h>
22 
23 #include "vgic.h"
24 
25 static bool group0_trap;
26 static bool group1_trap;
27 static bool common_trap;
28 static bool gicv4_enable;
29 
vgic_v3_set_underflow(struct kvm_vcpu * vcpu)30 void vgic_v3_set_underflow(struct kvm_vcpu *vcpu)
31 {
32 	struct vgic_v3_cpu_if *cpuif = &vcpu->arch.vgic_cpu.vgic_v3;
33 
34 	cpuif->vgic_hcr |= ICH_HCR_UIE;
35 }
36 
lr_signals_eoi_mi(u64 lr_val)37 static bool lr_signals_eoi_mi(u64 lr_val)
38 {
39 	return !(lr_val & ICH_LR_STATE) && (lr_val & ICH_LR_EOI) &&
40 	       !(lr_val & ICH_LR_HW);
41 }
42 
vgic_v3_fold_lr_state(struct kvm_vcpu * vcpu)43 void vgic_v3_fold_lr_state(struct kvm_vcpu *vcpu)
44 {
45 	struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
46 	struct vgic_v3_cpu_if *cpuif = &vgic_cpu->vgic_v3;
47 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
48 	int lr;
49 
50 	DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
51 
52 	cpuif->vgic_hcr &= ~ICH_HCR_UIE;
53 
54 	for (lr = 0; lr < vgic_cpu->used_lrs; lr++) {
55 		u64 val = cpuif->vgic_lr[lr];
56 		u32 intid, cpuid;
57 		struct vgic_irq *irq;
58 		bool is_v2_sgi = false;
59 
60 		cpuid = val & GICH_LR_PHYSID_CPUID;
61 		cpuid >>= GICH_LR_PHYSID_CPUID_SHIFT;
62 
63 		if (model == KVM_DEV_TYPE_ARM_VGIC_V3) {
64 			intid = val & ICH_LR_VIRTUAL_ID_MASK;
65 		} else {
66 			intid = val & GICH_LR_VIRTUALID;
67 			is_v2_sgi = vgic_irq_is_sgi(intid);
68 		}
69 
70 		/* Notify fds when the guest EOI'ed a level-triggered IRQ */
71 		if (lr_signals_eoi_mi(val) && vgic_valid_spi(vcpu->kvm, intid))
72 			kvm_notify_acked_irq(vcpu->kvm, 0,
73 					     intid - VGIC_NR_PRIVATE_IRQS);
74 
75 		irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
76 		if (!irq)	/* An LPI could have been unmapped. */
77 			continue;
78 
79 		spin_lock(&irq->irq_lock);
80 
81 		/* Always preserve the active bit */
82 		irq->active = !!(val & ICH_LR_ACTIVE_BIT);
83 
84 		if (irq->active && is_v2_sgi)
85 			irq->active_source = cpuid;
86 
87 		/* Edge is the only case where we preserve the pending bit */
88 		if (irq->config == VGIC_CONFIG_EDGE &&
89 		    (val & ICH_LR_PENDING_BIT)) {
90 			irq->pending_latch = true;
91 
92 			if (is_v2_sgi)
93 				irq->source |= (1 << cpuid);
94 		}
95 
96 		/*
97 		 * Clear soft pending state when level irqs have been acked.
98 		 */
99 		if (irq->config == VGIC_CONFIG_LEVEL && !(val & ICH_LR_STATE))
100 			irq->pending_latch = false;
101 
102 		/*
103 		 * Level-triggered mapped IRQs are special because we only
104 		 * observe rising edges as input to the VGIC.
105 		 *
106 		 * If the guest never acked the interrupt we have to sample
107 		 * the physical line and set the line level, because the
108 		 * device state could have changed or we simply need to
109 		 * process the still pending interrupt later.
110 		 *
111 		 * If this causes us to lower the level, we have to also clear
112 		 * the physical active state, since we will otherwise never be
113 		 * told when the interrupt becomes asserted again.
114 		 */
115 		if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT)) {
116 			irq->line_level = vgic_get_phys_line_level(irq);
117 
118 			if (!irq->line_level)
119 				vgic_irq_set_phys_active(irq, false);
120 		}
121 
122 		spin_unlock(&irq->irq_lock);
123 		vgic_put_irq(vcpu->kvm, irq);
124 	}
125 
126 	vgic_cpu->used_lrs = 0;
127 }
128 
129 /* Requires the irq to be locked already */
vgic_v3_populate_lr(struct kvm_vcpu * vcpu,struct vgic_irq * irq,int lr)130 void vgic_v3_populate_lr(struct kvm_vcpu *vcpu, struct vgic_irq *irq, int lr)
131 {
132 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
133 	u64 val = irq->intid;
134 	bool allow_pending = true, is_v2_sgi;
135 
136 	is_v2_sgi = (vgic_irq_is_sgi(irq->intid) &&
137 		     model == KVM_DEV_TYPE_ARM_VGIC_V2);
138 
139 	if (irq->active) {
140 		val |= ICH_LR_ACTIVE_BIT;
141 		if (is_v2_sgi)
142 			val |= irq->active_source << GICH_LR_PHYSID_CPUID_SHIFT;
143 		if (vgic_irq_is_multi_sgi(irq)) {
144 			allow_pending = false;
145 			val |= ICH_LR_EOI;
146 		}
147 	}
148 
149 	if (irq->hw) {
150 		val |= ICH_LR_HW;
151 		val |= ((u64)irq->hwintid) << ICH_LR_PHYS_ID_SHIFT;
152 		/*
153 		 * Never set pending+active on a HW interrupt, as the
154 		 * pending state is kept at the physical distributor
155 		 * level.
156 		 */
157 		if (irq->active)
158 			allow_pending = false;
159 	} else {
160 		if (irq->config == VGIC_CONFIG_LEVEL) {
161 			val |= ICH_LR_EOI;
162 
163 			/*
164 			 * Software resampling doesn't work very well
165 			 * if we allow P+A, so let's not do that.
166 			 */
167 			if (irq->active)
168 				allow_pending = false;
169 		}
170 	}
171 
172 	if (allow_pending && irq_is_pending(irq)) {
173 		val |= ICH_LR_PENDING_BIT;
174 
175 		if (irq->config == VGIC_CONFIG_EDGE)
176 			irq->pending_latch = false;
177 
178 		if (vgic_irq_is_sgi(irq->intid) &&
179 		    model == KVM_DEV_TYPE_ARM_VGIC_V2) {
180 			u32 src = ffs(irq->source);
181 
182 			if (WARN_RATELIMIT(!src, "No SGI source for INTID %d\n",
183 					   irq->intid))
184 				return;
185 
186 			val |= (src - 1) << GICH_LR_PHYSID_CPUID_SHIFT;
187 			irq->source &= ~(1 << (src - 1));
188 			if (irq->source) {
189 				irq->pending_latch = true;
190 				val |= ICH_LR_EOI;
191 			}
192 		}
193 	}
194 
195 	/*
196 	 * Level-triggered mapped IRQs are special because we only observe
197 	 * rising edges as input to the VGIC.  We therefore lower the line
198 	 * level here, so that we can take new virtual IRQs.  See
199 	 * vgic_v3_fold_lr_state for more info.
200 	 */
201 	if (vgic_irq_is_mapped_level(irq) && (val & ICH_LR_PENDING_BIT))
202 		irq->line_level = false;
203 
204 	if (irq->group)
205 		val |= ICH_LR_GROUP;
206 
207 	val |= (u64)irq->priority << ICH_LR_PRIORITY_SHIFT;
208 
209 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = val;
210 }
211 
vgic_v3_clear_lr(struct kvm_vcpu * vcpu,int lr)212 void vgic_v3_clear_lr(struct kvm_vcpu *vcpu, int lr)
213 {
214 	vcpu->arch.vgic_cpu.vgic_v3.vgic_lr[lr] = 0;
215 }
216 
vgic_v3_set_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)217 void vgic_v3_set_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
218 {
219 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
220 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
221 	u32 vmcr;
222 
223 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
224 		vmcr = (vmcrp->ackctl << ICH_VMCR_ACK_CTL_SHIFT) &
225 			ICH_VMCR_ACK_CTL_MASK;
226 		vmcr |= (vmcrp->fiqen << ICH_VMCR_FIQ_EN_SHIFT) &
227 			ICH_VMCR_FIQ_EN_MASK;
228 	} else {
229 		/*
230 		 * When emulating GICv3 on GICv3 with SRE=1 on the
231 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
232 		 */
233 		vmcr = ICH_VMCR_FIQ_EN_MASK;
234 	}
235 
236 	vmcr |= (vmcrp->cbpr << ICH_VMCR_CBPR_SHIFT) & ICH_VMCR_CBPR_MASK;
237 	vmcr |= (vmcrp->eoim << ICH_VMCR_EOIM_SHIFT) & ICH_VMCR_EOIM_MASK;
238 	vmcr |= (vmcrp->abpr << ICH_VMCR_BPR1_SHIFT) & ICH_VMCR_BPR1_MASK;
239 	vmcr |= (vmcrp->bpr << ICH_VMCR_BPR0_SHIFT) & ICH_VMCR_BPR0_MASK;
240 	vmcr |= (vmcrp->pmr << ICH_VMCR_PMR_SHIFT) & ICH_VMCR_PMR_MASK;
241 	vmcr |= (vmcrp->grpen0 << ICH_VMCR_ENG0_SHIFT) & ICH_VMCR_ENG0_MASK;
242 	vmcr |= (vmcrp->grpen1 << ICH_VMCR_ENG1_SHIFT) & ICH_VMCR_ENG1_MASK;
243 
244 	cpu_if->vgic_vmcr = vmcr;
245 }
246 
vgic_v3_get_vmcr(struct kvm_vcpu * vcpu,struct vgic_vmcr * vmcrp)247 void vgic_v3_get_vmcr(struct kvm_vcpu *vcpu, struct vgic_vmcr *vmcrp)
248 {
249 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
250 	u32 model = vcpu->kvm->arch.vgic.vgic_model;
251 	u32 vmcr;
252 
253 	vmcr = cpu_if->vgic_vmcr;
254 
255 	if (model == KVM_DEV_TYPE_ARM_VGIC_V2) {
256 		vmcrp->ackctl = (vmcr & ICH_VMCR_ACK_CTL_MASK) >>
257 			ICH_VMCR_ACK_CTL_SHIFT;
258 		vmcrp->fiqen = (vmcr & ICH_VMCR_FIQ_EN_MASK) >>
259 			ICH_VMCR_FIQ_EN_SHIFT;
260 	} else {
261 		/*
262 		 * When emulating GICv3 on GICv3 with SRE=1 on the
263 		 * VFIQEn bit is RES1 and the VAckCtl bit is RES0.
264 		 */
265 		vmcrp->fiqen = 1;
266 		vmcrp->ackctl = 0;
267 	}
268 
269 	vmcrp->cbpr = (vmcr & ICH_VMCR_CBPR_MASK) >> ICH_VMCR_CBPR_SHIFT;
270 	vmcrp->eoim = (vmcr & ICH_VMCR_EOIM_MASK) >> ICH_VMCR_EOIM_SHIFT;
271 	vmcrp->abpr = (vmcr & ICH_VMCR_BPR1_MASK) >> ICH_VMCR_BPR1_SHIFT;
272 	vmcrp->bpr  = (vmcr & ICH_VMCR_BPR0_MASK) >> ICH_VMCR_BPR0_SHIFT;
273 	vmcrp->pmr  = (vmcr & ICH_VMCR_PMR_MASK) >> ICH_VMCR_PMR_SHIFT;
274 	vmcrp->grpen0 = (vmcr & ICH_VMCR_ENG0_MASK) >> ICH_VMCR_ENG0_SHIFT;
275 	vmcrp->grpen1 = (vmcr & ICH_VMCR_ENG1_MASK) >> ICH_VMCR_ENG1_SHIFT;
276 }
277 
278 #define INITIAL_PENDBASER_VALUE						  \
279 	(GIC_BASER_CACHEABILITY(GICR_PENDBASER, INNER, RaWb)		| \
280 	GIC_BASER_CACHEABILITY(GICR_PENDBASER, OUTER, SameAsInner)	| \
281 	GIC_BASER_SHAREABILITY(GICR_PENDBASER, InnerShareable))
282 
vgic_v3_enable(struct kvm_vcpu * vcpu)283 void vgic_v3_enable(struct kvm_vcpu *vcpu)
284 {
285 	struct vgic_v3_cpu_if *vgic_v3 = &vcpu->arch.vgic_cpu.vgic_v3;
286 
287 	/*
288 	 * By forcing VMCR to zero, the GIC will restore the binary
289 	 * points to their reset values. Anything else resets to zero
290 	 * anyway.
291 	 */
292 	vgic_v3->vgic_vmcr = 0;
293 
294 	/*
295 	 * If we are emulating a GICv3, we do it in an non-GICv2-compatible
296 	 * way, so we force SRE to 1 to demonstrate this to the guest.
297 	 * Also, we don't support any form of IRQ/FIQ bypass.
298 	 * This goes with the spec allowing the value to be RAO/WI.
299 	 */
300 	if (vcpu->kvm->arch.vgic.vgic_model == KVM_DEV_TYPE_ARM_VGIC_V3) {
301 		vgic_v3->vgic_sre = (ICC_SRE_EL1_DIB |
302 				     ICC_SRE_EL1_DFB |
303 				     ICC_SRE_EL1_SRE);
304 		vcpu->arch.vgic_cpu.pendbaser = INITIAL_PENDBASER_VALUE;
305 	} else {
306 		vgic_v3->vgic_sre = 0;
307 	}
308 
309 	vcpu->arch.vgic_cpu.num_id_bits = (kvm_vgic_global_state.ich_vtr_el2 &
310 					   ICH_VTR_ID_BITS_MASK) >>
311 					   ICH_VTR_ID_BITS_SHIFT;
312 	vcpu->arch.vgic_cpu.num_pri_bits = ((kvm_vgic_global_state.ich_vtr_el2 &
313 					    ICH_VTR_PRI_BITS_MASK) >>
314 					    ICH_VTR_PRI_BITS_SHIFT) + 1;
315 
316 	/* Get the show on the road... */
317 	vgic_v3->vgic_hcr = ICH_HCR_EN;
318 	if (group0_trap)
319 		vgic_v3->vgic_hcr |= ICH_HCR_TALL0;
320 	if (group1_trap)
321 		vgic_v3->vgic_hcr |= ICH_HCR_TALL1;
322 	if (common_trap)
323 		vgic_v3->vgic_hcr |= ICH_HCR_TC;
324 }
325 
vgic_v3_lpi_sync_pending_status(struct kvm * kvm,struct vgic_irq * irq)326 int vgic_v3_lpi_sync_pending_status(struct kvm *kvm, struct vgic_irq *irq)
327 {
328 	struct kvm_vcpu *vcpu;
329 	int byte_offset, bit_nr;
330 	gpa_t pendbase, ptr;
331 	bool status;
332 	u8 val;
333 	int ret;
334 	unsigned long flags;
335 
336 retry:
337 	vcpu = irq->target_vcpu;
338 	if (!vcpu)
339 		return 0;
340 
341 	pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
342 
343 	byte_offset = irq->intid / BITS_PER_BYTE;
344 	bit_nr = irq->intid % BITS_PER_BYTE;
345 	ptr = pendbase + byte_offset;
346 
347 	ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
348 	if (ret)
349 		return ret;
350 
351 	status = val & (1 << bit_nr);
352 
353 	spin_lock_irqsave(&irq->irq_lock, flags);
354 	if (irq->target_vcpu != vcpu) {
355 		spin_unlock_irqrestore(&irq->irq_lock, flags);
356 		goto retry;
357 	}
358 	irq->pending_latch = status;
359 	vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
360 
361 	if (status) {
362 		/* clear consumed data */
363 		val &= ~(1 << bit_nr);
364 		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
365 		if (ret)
366 			return ret;
367 	}
368 	return 0;
369 }
370 
371 /**
372  * vgic_its_save_pending_tables - Save the pending tables into guest RAM
373  * kvm lock and all vcpu lock must be held
374  */
vgic_v3_save_pending_tables(struct kvm * kvm)375 int vgic_v3_save_pending_tables(struct kvm *kvm)
376 {
377 	struct vgic_dist *dist = &kvm->arch.vgic;
378 	struct vgic_irq *irq;
379 	gpa_t last_ptr = ~(gpa_t)0;
380 	int ret;
381 	u8 val;
382 
383 	list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
384 		int byte_offset, bit_nr;
385 		struct kvm_vcpu *vcpu;
386 		gpa_t pendbase, ptr;
387 		bool stored;
388 
389 		vcpu = irq->target_vcpu;
390 		if (!vcpu)
391 			continue;
392 
393 		pendbase = GICR_PENDBASER_ADDRESS(vcpu->arch.vgic_cpu.pendbaser);
394 
395 		byte_offset = irq->intid / BITS_PER_BYTE;
396 		bit_nr = irq->intid % BITS_PER_BYTE;
397 		ptr = pendbase + byte_offset;
398 
399 		if (ptr != last_ptr) {
400 			ret = kvm_read_guest_lock(kvm, ptr, &val, 1);
401 			if (ret)
402 				return ret;
403 			last_ptr = ptr;
404 		}
405 
406 		stored = val & (1U << bit_nr);
407 		if (stored == irq->pending_latch)
408 			continue;
409 
410 		if (irq->pending_latch)
411 			val |= 1 << bit_nr;
412 		else
413 			val &= ~(1 << bit_nr);
414 
415 		ret = kvm_write_guest_lock(kvm, ptr, &val, 1);
416 		if (ret)
417 			return ret;
418 	}
419 	return 0;
420 }
421 
422 /**
423  * vgic_v3_rdist_overlap - check if a region overlaps with any
424  * existing redistributor region
425  *
426  * @kvm: kvm handle
427  * @base: base of the region
428  * @size: size of region
429  *
430  * Return: true if there is an overlap
431  */
vgic_v3_rdist_overlap(struct kvm * kvm,gpa_t base,size_t size)432 bool vgic_v3_rdist_overlap(struct kvm *kvm, gpa_t base, size_t size)
433 {
434 	struct vgic_dist *d = &kvm->arch.vgic;
435 	struct vgic_redist_region *rdreg;
436 
437 	list_for_each_entry(rdreg, &d->rd_regions, list) {
438 		if ((base + size > rdreg->base) &&
439 			(base < rdreg->base + vgic_v3_rd_region_size(kvm, rdreg)))
440 			return true;
441 	}
442 	return false;
443 }
444 
445 /*
446  * Check for overlapping regions and for regions crossing the end of memory
447  * for base addresses which have already been set.
448  */
vgic_v3_check_base(struct kvm * kvm)449 bool vgic_v3_check_base(struct kvm *kvm)
450 {
451 	struct vgic_dist *d = &kvm->arch.vgic;
452 	struct vgic_redist_region *rdreg;
453 
454 	if (!IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
455 	    d->vgic_dist_base + KVM_VGIC_V3_DIST_SIZE < d->vgic_dist_base)
456 		return false;
457 
458 	list_for_each_entry(rdreg, &d->rd_regions, list) {
459 		if (rdreg->base + vgic_v3_rd_region_size(kvm, rdreg) <
460 			rdreg->base)
461 			return false;
462 	}
463 
464 	if (IS_VGIC_ADDR_UNDEF(d->vgic_dist_base))
465 		return true;
466 
467 	return !vgic_v3_rdist_overlap(kvm, d->vgic_dist_base,
468 				      KVM_VGIC_V3_DIST_SIZE);
469 }
470 
471 /**
472  * vgic_v3_rdist_free_slot - Look up registered rdist regions and identify one
473  * which has free space to put a new rdist region.
474  *
475  * @rd_regions: redistributor region list head
476  *
477  * A redistributor regions maps n redistributors, n = region size / (2 x 64kB).
478  * Stride between redistributors is 0 and regions are filled in the index order.
479  *
480  * Return: the redist region handle, if any, that has space to map a new rdist
481  * region.
482  */
vgic_v3_rdist_free_slot(struct list_head * rd_regions)483 struct vgic_redist_region *vgic_v3_rdist_free_slot(struct list_head *rd_regions)
484 {
485 	struct vgic_redist_region *rdreg;
486 
487 	list_for_each_entry(rdreg, rd_regions, list) {
488 		if (!vgic_v3_redist_region_full(rdreg))
489 			return rdreg;
490 	}
491 	return NULL;
492 }
493 
vgic_v3_rdist_region_from_index(struct kvm * kvm,u32 index)494 struct vgic_redist_region *vgic_v3_rdist_region_from_index(struct kvm *kvm,
495 							   u32 index)
496 {
497 	struct list_head *rd_regions = &kvm->arch.vgic.rd_regions;
498 	struct vgic_redist_region *rdreg;
499 
500 	list_for_each_entry(rdreg, rd_regions, list) {
501 		if (rdreg->index == index)
502 			return rdreg;
503 	}
504 	return NULL;
505 }
506 
507 
vgic_v3_map_resources(struct kvm * kvm)508 int vgic_v3_map_resources(struct kvm *kvm)
509 {
510 	struct vgic_dist *dist = &kvm->arch.vgic;
511 	struct kvm_vcpu *vcpu;
512 	int ret = 0;
513 	int c;
514 
515 	if (vgic_ready(kvm))
516 		goto out;
517 
518 	kvm_for_each_vcpu(c, vcpu, kvm) {
519 		struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
520 
521 		if (IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr)) {
522 			kvm_debug("vcpu %d redistributor base not set\n", c);
523 			ret = -ENXIO;
524 			goto out;
525 		}
526 	}
527 
528 	if (IS_VGIC_ADDR_UNDEF(dist->vgic_dist_base)) {
529 		kvm_err("Need to set vgic distributor addresses first\n");
530 		ret = -ENXIO;
531 		goto out;
532 	}
533 
534 	if (!vgic_v3_check_base(kvm)) {
535 		kvm_err("VGIC redist and dist frames overlap\n");
536 		ret = -EINVAL;
537 		goto out;
538 	}
539 
540 	/*
541 	 * For a VGICv3 we require the userland to explicitly initialize
542 	 * the VGIC before we need to use it.
543 	 */
544 	if (!vgic_initialized(kvm)) {
545 		ret = -EBUSY;
546 		goto out;
547 	}
548 
549 	ret = vgic_register_dist_iodev(kvm, dist->vgic_dist_base, VGIC_V3);
550 	if (ret) {
551 		kvm_err("Unable to register VGICv3 dist MMIO regions\n");
552 		goto out;
553 	}
554 
555 	dist->ready = true;
556 
557 out:
558 	return ret;
559 }
560 
561 DEFINE_STATIC_KEY_FALSE(vgic_v3_cpuif_trap);
562 
early_group0_trap_cfg(char * buf)563 static int __init early_group0_trap_cfg(char *buf)
564 {
565 	return strtobool(buf, &group0_trap);
566 }
567 early_param("kvm-arm.vgic_v3_group0_trap", early_group0_trap_cfg);
568 
early_group1_trap_cfg(char * buf)569 static int __init early_group1_trap_cfg(char *buf)
570 {
571 	return strtobool(buf, &group1_trap);
572 }
573 early_param("kvm-arm.vgic_v3_group1_trap", early_group1_trap_cfg);
574 
early_common_trap_cfg(char * buf)575 static int __init early_common_trap_cfg(char *buf)
576 {
577 	return strtobool(buf, &common_trap);
578 }
579 early_param("kvm-arm.vgic_v3_common_trap", early_common_trap_cfg);
580 
early_gicv4_enable(char * buf)581 static int __init early_gicv4_enable(char *buf)
582 {
583 	return strtobool(buf, &gicv4_enable);
584 }
585 early_param("kvm-arm.vgic_v4_enable", early_gicv4_enable);
586 
587 /**
588  * vgic_v3_probe - probe for a GICv3 compatible interrupt controller in DT
589  * @node:	pointer to the DT node
590  *
591  * Returns 0 if a GICv3 has been found, returns an error code otherwise
592  */
vgic_v3_probe(const struct gic_kvm_info * info)593 int vgic_v3_probe(const struct gic_kvm_info *info)
594 {
595 	u32 ich_vtr_el2 = kvm_call_hyp(__vgic_v3_get_ich_vtr_el2);
596 	int ret;
597 
598 	/*
599 	 * The ListRegs field is 5 bits, but there is a architectural
600 	 * maximum of 16 list registers. Just ignore bit 4...
601 	 */
602 	kvm_vgic_global_state.nr_lr = (ich_vtr_el2 & 0xf) + 1;
603 	kvm_vgic_global_state.can_emulate_gicv2 = false;
604 	kvm_vgic_global_state.ich_vtr_el2 = ich_vtr_el2;
605 
606 	/* GICv4 support? */
607 	if (info->has_v4) {
608 		kvm_vgic_global_state.has_gicv4 = gicv4_enable;
609 		kvm_info("GICv4 support %sabled\n",
610 			 gicv4_enable ? "en" : "dis");
611 	}
612 
613 	if (!info->vcpu.start) {
614 		kvm_info("GICv3: no GICV resource entry\n");
615 		kvm_vgic_global_state.vcpu_base = 0;
616 	} else if (!PAGE_ALIGNED(info->vcpu.start)) {
617 		pr_warn("GICV physical address 0x%llx not page aligned\n",
618 			(unsigned long long)info->vcpu.start);
619 		kvm_vgic_global_state.vcpu_base = 0;
620 	} else {
621 		kvm_vgic_global_state.vcpu_base = info->vcpu.start;
622 		kvm_vgic_global_state.can_emulate_gicv2 = true;
623 		ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V2);
624 		if (ret) {
625 			kvm_err("Cannot register GICv2 KVM device.\n");
626 			return ret;
627 		}
628 		kvm_info("vgic-v2@%llx\n", info->vcpu.start);
629 	}
630 	ret = kvm_register_vgic_device(KVM_DEV_TYPE_ARM_VGIC_V3);
631 	if (ret) {
632 		kvm_err("Cannot register GICv3 KVM device.\n");
633 		kvm_unregister_device_ops(KVM_DEV_TYPE_ARM_VGIC_V2);
634 		return ret;
635 	}
636 
637 	if (kvm_vgic_global_state.vcpu_base == 0)
638 		kvm_info("disabling GICv2 emulation\n");
639 
640 #ifdef CONFIG_ARM64
641 	if (cpus_have_const_cap(ARM64_WORKAROUND_CAVIUM_30115)) {
642 		group0_trap = true;
643 		group1_trap = true;
644 	}
645 #endif
646 
647 	if (group0_trap || group1_trap || common_trap) {
648 		kvm_info("GICv3 sysreg trapping enabled ([%s%s%s], reduced performance)\n",
649 			 group0_trap ? "G0" : "",
650 			 group1_trap ? "G1" : "",
651 			 common_trap ? "C"  : "");
652 		static_branch_enable(&vgic_v3_cpuif_trap);
653 	}
654 
655 	kvm_vgic_global_state.vctrl_base = NULL;
656 	kvm_vgic_global_state.type = VGIC_V3;
657 	kvm_vgic_global_state.max_gic_vcpus = VGIC_V3_MAX_CPUS;
658 
659 	return 0;
660 }
661 
vgic_v3_load(struct kvm_vcpu * vcpu)662 void vgic_v3_load(struct kvm_vcpu *vcpu)
663 {
664 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
665 
666 	/*
667 	 * If dealing with a GICv2 emulation on GICv3, VMCR_EL2.VFIQen
668 	 * is dependent on ICC_SRE_EL1.SRE, and we have to perform the
669 	 * VMCR_EL2 save/restore in the world switch.
670 	 */
671 	if (likely(cpu_if->vgic_sre))
672 		kvm_call_hyp(__vgic_v3_write_vmcr, cpu_if->vgic_vmcr);
673 
674 	kvm_call_hyp(__vgic_v3_restore_aprs, vcpu);
675 
676 	if (has_vhe())
677 		__vgic_v3_activate_traps(vcpu);
678 }
679 
vgic_v3_vmcr_sync(struct kvm_vcpu * vcpu)680 void vgic_v3_vmcr_sync(struct kvm_vcpu *vcpu)
681 {
682 	struct vgic_v3_cpu_if *cpu_if = &vcpu->arch.vgic_cpu.vgic_v3;
683 
684 	if (likely(cpu_if->vgic_sre))
685 		cpu_if->vgic_vmcr = kvm_call_hyp(__vgic_v3_read_vmcr);
686 }
687 
vgic_v3_put(struct kvm_vcpu * vcpu)688 void vgic_v3_put(struct kvm_vcpu *vcpu)
689 {
690 	vgic_v3_vmcr_sync(vcpu);
691 
692 	kvm_call_hyp(__vgic_v3_save_aprs, vcpu);
693 
694 	if (has_vhe())
695 		__vgic_v3_deactivate_traps(vcpu);
696 }
697