1 /* Virtio ring implementation.
2 *
3 * Copyright 2007 Rusty Russell IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 */
19 #include <linux/virtio.h>
20 #include <linux/virtio_ring.h>
21 #include <linux/virtio_config.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/module.h>
25 #include <linux/hrtimer.h>
26 #include <linux/dma-mapping.h>
27 #include <xen/xen.h>
28
29 #ifdef DEBUG
30 /* For development, we want to crash whenever the ring is screwed. */
31 #define BAD_RING(_vq, fmt, args...) \
32 do { \
33 dev_err(&(_vq)->vq.vdev->dev, \
34 "%s:"fmt, (_vq)->vq.name, ##args); \
35 BUG(); \
36 } while (0)
37 /* Caller is supposed to guarantee no reentry. */
38 #define START_USE(_vq) \
39 do { \
40 if ((_vq)->in_use) \
41 panic("%s:in_use = %i\n", \
42 (_vq)->vq.name, (_vq)->in_use); \
43 (_vq)->in_use = __LINE__; \
44 } while (0)
45 #define END_USE(_vq) \
46 do { BUG_ON(!(_vq)->in_use); (_vq)->in_use = 0; } while(0)
47 #else
48 #define BAD_RING(_vq, fmt, args...) \
49 do { \
50 dev_err(&_vq->vq.vdev->dev, \
51 "%s:"fmt, (_vq)->vq.name, ##args); \
52 (_vq)->broken = true; \
53 } while (0)
54 #define START_USE(vq)
55 #define END_USE(vq)
56 #endif
57
58 struct vring_desc_state {
59 void *data; /* Data for callback. */
60 struct vring_desc *indir_desc; /* Indirect descriptor, if any. */
61 };
62
63 struct vring_virtqueue {
64 struct virtqueue vq;
65
66 /* Actual memory layout for this queue */
67 struct vring vring;
68
69 /* Can we use weak barriers? */
70 bool weak_barriers;
71
72 /* Other side has made a mess, don't try any more. */
73 bool broken;
74
75 /* Host supports indirect buffers */
76 bool indirect;
77
78 /* Host publishes avail event idx */
79 bool event;
80
81 /* Head of free buffer list. */
82 unsigned int free_head;
83 /* Number we've added since last sync. */
84 unsigned int num_added;
85
86 /* Last used index we've seen. */
87 u16 last_used_idx;
88
89 /* Last written value to avail->flags */
90 u16 avail_flags_shadow;
91
92 /* Last written value to avail->idx in guest byte order */
93 u16 avail_idx_shadow;
94
95 /* How to notify other side. FIXME: commonalize hcalls! */
96 bool (*notify)(struct virtqueue *vq);
97
98 /* DMA, allocation, and size information */
99 bool we_own_ring;
100 size_t queue_size_in_bytes;
101 dma_addr_t queue_dma_addr;
102
103 #ifdef DEBUG
104 /* They're supposed to lock for us. */
105 unsigned int in_use;
106
107 /* Figure out if their kicks are too delayed. */
108 bool last_add_time_valid;
109 ktime_t last_add_time;
110 #endif
111
112 /* Per-descriptor state. */
113 struct vring_desc_state desc_state[];
114 };
115
116 #define to_vvq(_vq) container_of(_vq, struct vring_virtqueue, vq)
117
118 /*
119 * Modern virtio devices have feature bits to specify whether they need a
120 * quirk and bypass the IOMMU. If not there, just use the DMA API.
121 *
122 * If there, the interaction between virtio and DMA API is messy.
123 *
124 * On most systems with virtio, physical addresses match bus addresses,
125 * and it doesn't particularly matter whether we use the DMA API.
126 *
127 * On some systems, including Xen and any system with a physical device
128 * that speaks virtio behind a physical IOMMU, we must use the DMA API
129 * for virtio DMA to work at all.
130 *
131 * On other systems, including SPARC and PPC64, virtio-pci devices are
132 * enumerated as though they are behind an IOMMU, but the virtio host
133 * ignores the IOMMU, so we must either pretend that the IOMMU isn't
134 * there or somehow map everything as the identity.
135 *
136 * For the time being, we preserve historic behavior and bypass the DMA
137 * API.
138 *
139 * TODO: install a per-device DMA ops structure that does the right thing
140 * taking into account all the above quirks, and use the DMA API
141 * unconditionally on data path.
142 */
143
vring_use_dma_api(struct virtio_device * vdev)144 static bool vring_use_dma_api(struct virtio_device *vdev)
145 {
146 if (!virtio_has_iommu_quirk(vdev))
147 return true;
148
149 /* Otherwise, we are left to guess. */
150 /*
151 * In theory, it's possible to have a buggy QEMU-supposed
152 * emulated Q35 IOMMU and Xen enabled at the same time. On
153 * such a configuration, virtio has never worked and will
154 * not work without an even larger kludge. Instead, enable
155 * the DMA API if we're a Xen guest, which at least allows
156 * all of the sensible Xen configurations to work correctly.
157 */
158 if (xen_domain())
159 return true;
160
161 return false;
162 }
163
164 /*
165 * The DMA ops on various arches are rather gnarly right now, and
166 * making all of the arch DMA ops work on the vring device itself
167 * is a mess. For now, we use the parent device for DMA ops.
168 */
vring_dma_dev(const struct vring_virtqueue * vq)169 static inline struct device *vring_dma_dev(const struct vring_virtqueue *vq)
170 {
171 return vq->vq.vdev->dev.parent;
172 }
173
174 /* Map one sg entry. */
vring_map_one_sg(const struct vring_virtqueue * vq,struct scatterlist * sg,enum dma_data_direction direction)175 static dma_addr_t vring_map_one_sg(const struct vring_virtqueue *vq,
176 struct scatterlist *sg,
177 enum dma_data_direction direction)
178 {
179 if (!vring_use_dma_api(vq->vq.vdev))
180 return (dma_addr_t)sg_phys(sg);
181
182 /*
183 * We can't use dma_map_sg, because we don't use scatterlists in
184 * the way it expects (we don't guarantee that the scatterlist
185 * will exist for the lifetime of the mapping).
186 */
187 return dma_map_page(vring_dma_dev(vq),
188 sg_page(sg), sg->offset, sg->length,
189 direction);
190 }
191
vring_map_single(const struct vring_virtqueue * vq,void * cpu_addr,size_t size,enum dma_data_direction direction)192 static dma_addr_t vring_map_single(const struct vring_virtqueue *vq,
193 void *cpu_addr, size_t size,
194 enum dma_data_direction direction)
195 {
196 if (!vring_use_dma_api(vq->vq.vdev))
197 return (dma_addr_t)virt_to_phys(cpu_addr);
198
199 return dma_map_single(vring_dma_dev(vq),
200 cpu_addr, size, direction);
201 }
202
vring_unmap_one(const struct vring_virtqueue * vq,struct vring_desc * desc)203 static void vring_unmap_one(const struct vring_virtqueue *vq,
204 struct vring_desc *desc)
205 {
206 u16 flags;
207
208 if (!vring_use_dma_api(vq->vq.vdev))
209 return;
210
211 flags = virtio16_to_cpu(vq->vq.vdev, desc->flags);
212
213 if (flags & VRING_DESC_F_INDIRECT) {
214 dma_unmap_single(vring_dma_dev(vq),
215 virtio64_to_cpu(vq->vq.vdev, desc->addr),
216 virtio32_to_cpu(vq->vq.vdev, desc->len),
217 (flags & VRING_DESC_F_WRITE) ?
218 DMA_FROM_DEVICE : DMA_TO_DEVICE);
219 } else {
220 dma_unmap_page(vring_dma_dev(vq),
221 virtio64_to_cpu(vq->vq.vdev, desc->addr),
222 virtio32_to_cpu(vq->vq.vdev, desc->len),
223 (flags & VRING_DESC_F_WRITE) ?
224 DMA_FROM_DEVICE : DMA_TO_DEVICE);
225 }
226 }
227
vring_mapping_error(const struct vring_virtqueue * vq,dma_addr_t addr)228 static int vring_mapping_error(const struct vring_virtqueue *vq,
229 dma_addr_t addr)
230 {
231 if (!vring_use_dma_api(vq->vq.vdev))
232 return 0;
233
234 return dma_mapping_error(vring_dma_dev(vq), addr);
235 }
236
alloc_indirect(struct virtqueue * _vq,unsigned int total_sg,gfp_t gfp)237 static struct vring_desc *alloc_indirect(struct virtqueue *_vq,
238 unsigned int total_sg, gfp_t gfp)
239 {
240 struct vring_desc *desc;
241 unsigned int i;
242
243 /*
244 * We require lowmem mappings for the descriptors because
245 * otherwise virt_to_phys will give us bogus addresses in the
246 * virtqueue.
247 */
248 gfp &= ~__GFP_HIGHMEM;
249
250 desc = kmalloc_array(total_sg, sizeof(struct vring_desc), gfp);
251 if (!desc)
252 return NULL;
253
254 for (i = 0; i < total_sg; i++)
255 desc[i].next = cpu_to_virtio16(_vq->vdev, i + 1);
256 return desc;
257 }
258
virtqueue_add(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int total_sg,unsigned int out_sgs,unsigned int in_sgs,void * data,void * ctx,gfp_t gfp)259 static inline int virtqueue_add(struct virtqueue *_vq,
260 struct scatterlist *sgs[],
261 unsigned int total_sg,
262 unsigned int out_sgs,
263 unsigned int in_sgs,
264 void *data,
265 void *ctx,
266 gfp_t gfp)
267 {
268 struct vring_virtqueue *vq = to_vvq(_vq);
269 struct scatterlist *sg;
270 struct vring_desc *desc;
271 unsigned int i, n, avail, descs_used, prev, err_idx;
272 int head;
273 bool indirect;
274
275 START_USE(vq);
276
277 BUG_ON(data == NULL);
278 BUG_ON(ctx && vq->indirect);
279
280 if (unlikely(vq->broken)) {
281 END_USE(vq);
282 return -EIO;
283 }
284
285 #ifdef DEBUG
286 {
287 ktime_t now = ktime_get();
288
289 /* No kick or get, with .1 second between? Warn. */
290 if (vq->last_add_time_valid)
291 WARN_ON(ktime_to_ms(ktime_sub(now, vq->last_add_time))
292 > 100);
293 vq->last_add_time = now;
294 vq->last_add_time_valid = true;
295 }
296 #endif
297
298 BUG_ON(total_sg == 0);
299
300 head = vq->free_head;
301
302 /* If the host supports indirect descriptor tables, and we have multiple
303 * buffers, then go indirect. FIXME: tune this threshold */
304 if (vq->indirect && total_sg > 1 && vq->vq.num_free)
305 desc = alloc_indirect(_vq, total_sg, gfp);
306 else {
307 desc = NULL;
308 WARN_ON_ONCE(total_sg > vq->vring.num && !vq->indirect);
309 }
310
311 if (desc) {
312 /* Use a single buffer which doesn't continue */
313 indirect = true;
314 /* Set up rest to use this indirect table. */
315 i = 0;
316 descs_used = 1;
317 } else {
318 indirect = false;
319 desc = vq->vring.desc;
320 i = head;
321 descs_used = total_sg;
322 }
323
324 if (vq->vq.num_free < descs_used) {
325 pr_debug("Can't add buf len %i - avail = %i\n",
326 descs_used, vq->vq.num_free);
327 /* FIXME: for historical reasons, we force a notify here if
328 * there are outgoing parts to the buffer. Presumably the
329 * host should service the ring ASAP. */
330 if (out_sgs)
331 vq->notify(&vq->vq);
332 if (indirect)
333 kfree(desc);
334 END_USE(vq);
335 return -ENOSPC;
336 }
337
338 for (n = 0; n < out_sgs; n++) {
339 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
340 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_TO_DEVICE);
341 if (vring_mapping_error(vq, addr))
342 goto unmap_release;
343
344 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT);
345 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
346 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
347 prev = i;
348 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
349 }
350 }
351 for (; n < (out_sgs + in_sgs); n++) {
352 for (sg = sgs[n]; sg; sg = sg_next(sg)) {
353 dma_addr_t addr = vring_map_one_sg(vq, sg, DMA_FROM_DEVICE);
354 if (vring_mapping_error(vq, addr))
355 goto unmap_release;
356
357 desc[i].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_NEXT | VRING_DESC_F_WRITE);
358 desc[i].addr = cpu_to_virtio64(_vq->vdev, addr);
359 desc[i].len = cpu_to_virtio32(_vq->vdev, sg->length);
360 prev = i;
361 i = virtio16_to_cpu(_vq->vdev, desc[i].next);
362 }
363 }
364 /* Last one doesn't continue. */
365 desc[prev].flags &= cpu_to_virtio16(_vq->vdev, ~VRING_DESC_F_NEXT);
366
367 if (indirect) {
368 /* Now that the indirect table is filled in, map it. */
369 dma_addr_t addr = vring_map_single(
370 vq, desc, total_sg * sizeof(struct vring_desc),
371 DMA_TO_DEVICE);
372 if (vring_mapping_error(vq, addr))
373 goto unmap_release;
374
375 vq->vring.desc[head].flags = cpu_to_virtio16(_vq->vdev, VRING_DESC_F_INDIRECT);
376 vq->vring.desc[head].addr = cpu_to_virtio64(_vq->vdev, addr);
377
378 vq->vring.desc[head].len = cpu_to_virtio32(_vq->vdev, total_sg * sizeof(struct vring_desc));
379 }
380
381 /* We're using some buffers from the free list. */
382 vq->vq.num_free -= descs_used;
383
384 /* Update free pointer */
385 if (indirect)
386 vq->free_head = virtio16_to_cpu(_vq->vdev, vq->vring.desc[head].next);
387 else
388 vq->free_head = i;
389
390 /* Store token and indirect buffer state. */
391 vq->desc_state[head].data = data;
392 if (indirect)
393 vq->desc_state[head].indir_desc = desc;
394 else
395 vq->desc_state[head].indir_desc = ctx;
396
397 /* Put entry in available array (but don't update avail->idx until they
398 * do sync). */
399 avail = vq->avail_idx_shadow & (vq->vring.num - 1);
400 vq->vring.avail->ring[avail] = cpu_to_virtio16(_vq->vdev, head);
401
402 /* Descriptors and available array need to be set before we expose the
403 * new available array entries. */
404 virtio_wmb(vq->weak_barriers);
405 vq->avail_idx_shadow++;
406 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
407 vq->num_added++;
408
409 pr_debug("Added buffer head %i to %p\n", head, vq);
410 END_USE(vq);
411
412 /* This is very unlikely, but theoretically possible. Kick
413 * just in case. */
414 if (unlikely(vq->num_added == (1 << 16) - 1))
415 virtqueue_kick(_vq);
416
417 return 0;
418
419 unmap_release:
420 err_idx = i;
421 i = head;
422
423 for (n = 0; n < total_sg; n++) {
424 if (i == err_idx)
425 break;
426 vring_unmap_one(vq, &desc[i]);
427 i = virtio16_to_cpu(_vq->vdev, vq->vring.desc[i].next);
428 }
429
430 if (indirect)
431 kfree(desc);
432
433 END_USE(vq);
434 return -ENOMEM;
435 }
436
437 /**
438 * virtqueue_add_sgs - expose buffers to other end
439 * @vq: the struct virtqueue we're talking about.
440 * @sgs: array of terminated scatterlists.
441 * @out_num: the number of scatterlists readable by other side
442 * @in_num: the number of scatterlists which are writable (after readable ones)
443 * @data: the token identifying the buffer.
444 * @gfp: how to do memory allocations (if necessary).
445 *
446 * Caller must ensure we don't call this with other virtqueue operations
447 * at the same time (except where noted).
448 *
449 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
450 */
virtqueue_add_sgs(struct virtqueue * _vq,struct scatterlist * sgs[],unsigned int out_sgs,unsigned int in_sgs,void * data,gfp_t gfp)451 int virtqueue_add_sgs(struct virtqueue *_vq,
452 struct scatterlist *sgs[],
453 unsigned int out_sgs,
454 unsigned int in_sgs,
455 void *data,
456 gfp_t gfp)
457 {
458 unsigned int i, total_sg = 0;
459
460 /* Count them first. */
461 for (i = 0; i < out_sgs + in_sgs; i++) {
462 struct scatterlist *sg;
463 for (sg = sgs[i]; sg; sg = sg_next(sg))
464 total_sg++;
465 }
466 return virtqueue_add(_vq, sgs, total_sg, out_sgs, in_sgs,
467 data, NULL, gfp);
468 }
469 EXPORT_SYMBOL_GPL(virtqueue_add_sgs);
470
471 /**
472 * virtqueue_add_outbuf - expose output buffers to other end
473 * @vq: the struct virtqueue we're talking about.
474 * @sg: scatterlist (must be well-formed and terminated!)
475 * @num: the number of entries in @sg readable by other side
476 * @data: the token identifying the buffer.
477 * @gfp: how to do memory allocations (if necessary).
478 *
479 * Caller must ensure we don't call this with other virtqueue operations
480 * at the same time (except where noted).
481 *
482 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
483 */
virtqueue_add_outbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)484 int virtqueue_add_outbuf(struct virtqueue *vq,
485 struct scatterlist *sg, unsigned int num,
486 void *data,
487 gfp_t gfp)
488 {
489 return virtqueue_add(vq, &sg, num, 1, 0, data, NULL, gfp);
490 }
491 EXPORT_SYMBOL_GPL(virtqueue_add_outbuf);
492
493 /**
494 * virtqueue_add_inbuf - expose input buffers to other end
495 * @vq: the struct virtqueue we're talking about.
496 * @sg: scatterlist (must be well-formed and terminated!)
497 * @num: the number of entries in @sg writable by other side
498 * @data: the token identifying the buffer.
499 * @gfp: how to do memory allocations (if necessary).
500 *
501 * Caller must ensure we don't call this with other virtqueue operations
502 * at the same time (except where noted).
503 *
504 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
505 */
virtqueue_add_inbuf(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,gfp_t gfp)506 int virtqueue_add_inbuf(struct virtqueue *vq,
507 struct scatterlist *sg, unsigned int num,
508 void *data,
509 gfp_t gfp)
510 {
511 return virtqueue_add(vq, &sg, num, 0, 1, data, NULL, gfp);
512 }
513 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf);
514
515 /**
516 * virtqueue_add_inbuf_ctx - expose input buffers to other end
517 * @vq: the struct virtqueue we're talking about.
518 * @sg: scatterlist (must be well-formed and terminated!)
519 * @num: the number of entries in @sg writable by other side
520 * @data: the token identifying the buffer.
521 * @ctx: extra context for the token
522 * @gfp: how to do memory allocations (if necessary).
523 *
524 * Caller must ensure we don't call this with other virtqueue operations
525 * at the same time (except where noted).
526 *
527 * Returns zero or a negative error (ie. ENOSPC, ENOMEM, EIO).
528 */
virtqueue_add_inbuf_ctx(struct virtqueue * vq,struct scatterlist * sg,unsigned int num,void * data,void * ctx,gfp_t gfp)529 int virtqueue_add_inbuf_ctx(struct virtqueue *vq,
530 struct scatterlist *sg, unsigned int num,
531 void *data,
532 void *ctx,
533 gfp_t gfp)
534 {
535 return virtqueue_add(vq, &sg, num, 0, 1, data, ctx, gfp);
536 }
537 EXPORT_SYMBOL_GPL(virtqueue_add_inbuf_ctx);
538
539 /**
540 * virtqueue_kick_prepare - first half of split virtqueue_kick call.
541 * @vq: the struct virtqueue
542 *
543 * Instead of virtqueue_kick(), you can do:
544 * if (virtqueue_kick_prepare(vq))
545 * virtqueue_notify(vq);
546 *
547 * This is sometimes useful because the virtqueue_kick_prepare() needs
548 * to be serialized, but the actual virtqueue_notify() call does not.
549 */
virtqueue_kick_prepare(struct virtqueue * _vq)550 bool virtqueue_kick_prepare(struct virtqueue *_vq)
551 {
552 struct vring_virtqueue *vq = to_vvq(_vq);
553 u16 new, old;
554 bool needs_kick;
555
556 START_USE(vq);
557 /* We need to expose available array entries before checking avail
558 * event. */
559 virtio_mb(vq->weak_barriers);
560
561 old = vq->avail_idx_shadow - vq->num_added;
562 new = vq->avail_idx_shadow;
563 vq->num_added = 0;
564
565 #ifdef DEBUG
566 if (vq->last_add_time_valid) {
567 WARN_ON(ktime_to_ms(ktime_sub(ktime_get(),
568 vq->last_add_time)) > 100);
569 }
570 vq->last_add_time_valid = false;
571 #endif
572
573 if (vq->event) {
574 needs_kick = vring_need_event(virtio16_to_cpu(_vq->vdev, vring_avail_event(&vq->vring)),
575 new, old);
576 } else {
577 needs_kick = !(vq->vring.used->flags & cpu_to_virtio16(_vq->vdev, VRING_USED_F_NO_NOTIFY));
578 }
579 END_USE(vq);
580 return needs_kick;
581 }
582 EXPORT_SYMBOL_GPL(virtqueue_kick_prepare);
583
584 /**
585 * virtqueue_notify - second half of split virtqueue_kick call.
586 * @vq: the struct virtqueue
587 *
588 * This does not need to be serialized.
589 *
590 * Returns false if host notify failed or queue is broken, otherwise true.
591 */
virtqueue_notify(struct virtqueue * _vq)592 bool virtqueue_notify(struct virtqueue *_vq)
593 {
594 struct vring_virtqueue *vq = to_vvq(_vq);
595
596 if (unlikely(vq->broken))
597 return false;
598
599 /* Prod other side to tell it about changes. */
600 if (!vq->notify(_vq)) {
601 vq->broken = true;
602 return false;
603 }
604 return true;
605 }
606 EXPORT_SYMBOL_GPL(virtqueue_notify);
607
608 /**
609 * virtqueue_kick - update after add_buf
610 * @vq: the struct virtqueue
611 *
612 * After one or more virtqueue_add_* calls, invoke this to kick
613 * the other side.
614 *
615 * Caller must ensure we don't call this with other virtqueue
616 * operations at the same time (except where noted).
617 *
618 * Returns false if kick failed, otherwise true.
619 */
virtqueue_kick(struct virtqueue * vq)620 bool virtqueue_kick(struct virtqueue *vq)
621 {
622 if (virtqueue_kick_prepare(vq))
623 return virtqueue_notify(vq);
624 return true;
625 }
626 EXPORT_SYMBOL_GPL(virtqueue_kick);
627
detach_buf(struct vring_virtqueue * vq,unsigned int head,void ** ctx)628 static void detach_buf(struct vring_virtqueue *vq, unsigned int head,
629 void **ctx)
630 {
631 unsigned int i, j;
632 __virtio16 nextflag = cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_NEXT);
633
634 /* Clear data ptr. */
635 vq->desc_state[head].data = NULL;
636
637 /* Put back on free list: unmap first-level descriptors and find end */
638 i = head;
639
640 while (vq->vring.desc[i].flags & nextflag) {
641 vring_unmap_one(vq, &vq->vring.desc[i]);
642 i = virtio16_to_cpu(vq->vq.vdev, vq->vring.desc[i].next);
643 vq->vq.num_free++;
644 }
645
646 vring_unmap_one(vq, &vq->vring.desc[i]);
647 vq->vring.desc[i].next = cpu_to_virtio16(vq->vq.vdev, vq->free_head);
648 vq->free_head = head;
649
650 /* Plus final descriptor */
651 vq->vq.num_free++;
652
653 if (vq->indirect) {
654 struct vring_desc *indir_desc = vq->desc_state[head].indir_desc;
655 u32 len;
656
657 /* Free the indirect table, if any, now that it's unmapped. */
658 if (!indir_desc)
659 return;
660
661 len = virtio32_to_cpu(vq->vq.vdev, vq->vring.desc[head].len);
662
663 BUG_ON(!(vq->vring.desc[head].flags &
664 cpu_to_virtio16(vq->vq.vdev, VRING_DESC_F_INDIRECT)));
665 BUG_ON(len == 0 || len % sizeof(struct vring_desc));
666
667 for (j = 0; j < len / sizeof(struct vring_desc); j++)
668 vring_unmap_one(vq, &indir_desc[j]);
669
670 kfree(indir_desc);
671 vq->desc_state[head].indir_desc = NULL;
672 } else if (ctx) {
673 *ctx = vq->desc_state[head].indir_desc;
674 }
675 }
676
more_used(const struct vring_virtqueue * vq)677 static inline bool more_used(const struct vring_virtqueue *vq)
678 {
679 return vq->last_used_idx != virtio16_to_cpu(vq->vq.vdev, vq->vring.used->idx);
680 }
681
682 /**
683 * virtqueue_get_buf - get the next used buffer
684 * @vq: the struct virtqueue we're talking about.
685 * @len: the length written into the buffer
686 *
687 * If the device wrote data into the buffer, @len will be set to the
688 * amount written. This means you don't need to clear the buffer
689 * beforehand to ensure there's no data leakage in the case of short
690 * writes.
691 *
692 * Caller must ensure we don't call this with other virtqueue
693 * operations at the same time (except where noted).
694 *
695 * Returns NULL if there are no used buffers, or the "data" token
696 * handed to virtqueue_add_*().
697 */
virtqueue_get_buf_ctx(struct virtqueue * _vq,unsigned int * len,void ** ctx)698 void *virtqueue_get_buf_ctx(struct virtqueue *_vq, unsigned int *len,
699 void **ctx)
700 {
701 struct vring_virtqueue *vq = to_vvq(_vq);
702 void *ret;
703 unsigned int i;
704 u16 last_used;
705
706 START_USE(vq);
707
708 if (unlikely(vq->broken)) {
709 END_USE(vq);
710 return NULL;
711 }
712
713 if (!more_used(vq)) {
714 pr_debug("No more buffers in queue\n");
715 END_USE(vq);
716 return NULL;
717 }
718
719 /* Only get used array entries after they have been exposed by host. */
720 virtio_rmb(vq->weak_barriers);
721
722 last_used = (vq->last_used_idx & (vq->vring.num - 1));
723 i = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].id);
724 *len = virtio32_to_cpu(_vq->vdev, vq->vring.used->ring[last_used].len);
725
726 if (unlikely(i >= vq->vring.num)) {
727 BAD_RING(vq, "id %u out of range\n", i);
728 return NULL;
729 }
730 if (unlikely(!vq->desc_state[i].data)) {
731 BAD_RING(vq, "id %u is not a head!\n", i);
732 return NULL;
733 }
734
735 /* detach_buf clears data, so grab it now. */
736 ret = vq->desc_state[i].data;
737 detach_buf(vq, i, ctx);
738 vq->last_used_idx++;
739 /* If we expect an interrupt for the next entry, tell host
740 * by writing event index and flush out the write before
741 * the read in the next get_buf call. */
742 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT))
743 virtio_store_mb(vq->weak_barriers,
744 &vring_used_event(&vq->vring),
745 cpu_to_virtio16(_vq->vdev, vq->last_used_idx));
746
747 #ifdef DEBUG
748 vq->last_add_time_valid = false;
749 #endif
750
751 END_USE(vq);
752 return ret;
753 }
754 EXPORT_SYMBOL_GPL(virtqueue_get_buf_ctx);
755
virtqueue_get_buf(struct virtqueue * _vq,unsigned int * len)756 void *virtqueue_get_buf(struct virtqueue *_vq, unsigned int *len)
757 {
758 return virtqueue_get_buf_ctx(_vq, len, NULL);
759 }
760 EXPORT_SYMBOL_GPL(virtqueue_get_buf);
761 /**
762 * virtqueue_disable_cb - disable callbacks
763 * @vq: the struct virtqueue we're talking about.
764 *
765 * Note that this is not necessarily synchronous, hence unreliable and only
766 * useful as an optimization.
767 *
768 * Unlike other operations, this need not be serialized.
769 */
virtqueue_disable_cb(struct virtqueue * _vq)770 void virtqueue_disable_cb(struct virtqueue *_vq)
771 {
772 struct vring_virtqueue *vq = to_vvq(_vq);
773
774 if (!(vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT)) {
775 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
776 if (!vq->event)
777 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
778 }
779
780 }
781 EXPORT_SYMBOL_GPL(virtqueue_disable_cb);
782
783 /**
784 * virtqueue_enable_cb_prepare - restart callbacks after disable_cb
785 * @vq: the struct virtqueue we're talking about.
786 *
787 * This re-enables callbacks; it returns current queue state
788 * in an opaque unsigned value. This value should be later tested by
789 * virtqueue_poll, to detect a possible race between the driver checking for
790 * more work, and enabling callbacks.
791 *
792 * Caller must ensure we don't call this with other virtqueue
793 * operations at the same time (except where noted).
794 */
virtqueue_enable_cb_prepare(struct virtqueue * _vq)795 unsigned virtqueue_enable_cb_prepare(struct virtqueue *_vq)
796 {
797 struct vring_virtqueue *vq = to_vvq(_vq);
798 u16 last_used_idx;
799
800 START_USE(vq);
801
802 /* We optimistically turn back on interrupts, then check if there was
803 * more to do. */
804 /* Depending on the VIRTIO_RING_F_EVENT_IDX feature, we need to
805 * either clear the flags bit or point the event index at the next
806 * entry. Always do both to keep code simple. */
807 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
808 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
809 if (!vq->event)
810 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
811 }
812 vring_used_event(&vq->vring) = cpu_to_virtio16(_vq->vdev, last_used_idx = vq->last_used_idx);
813 END_USE(vq);
814 return last_used_idx;
815 }
816 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_prepare);
817
818 /**
819 * virtqueue_poll - query pending used buffers
820 * @vq: the struct virtqueue we're talking about.
821 * @last_used_idx: virtqueue state (from call to virtqueue_enable_cb_prepare).
822 *
823 * Returns "true" if there are pending used buffers in the queue.
824 *
825 * This does not need to be serialized.
826 */
virtqueue_poll(struct virtqueue * _vq,unsigned last_used_idx)827 bool virtqueue_poll(struct virtqueue *_vq, unsigned last_used_idx)
828 {
829 struct vring_virtqueue *vq = to_vvq(_vq);
830
831 if (unlikely(vq->broken))
832 return false;
833
834 virtio_mb(vq->weak_barriers);
835 return (u16)last_used_idx != virtio16_to_cpu(_vq->vdev, vq->vring.used->idx);
836 }
837 EXPORT_SYMBOL_GPL(virtqueue_poll);
838
839 /**
840 * virtqueue_enable_cb - restart callbacks after disable_cb.
841 * @vq: the struct virtqueue we're talking about.
842 *
843 * This re-enables callbacks; it returns "false" if there are pending
844 * buffers in the queue, to detect a possible race between the driver
845 * checking for more work, and enabling callbacks.
846 *
847 * Caller must ensure we don't call this with other virtqueue
848 * operations at the same time (except where noted).
849 */
virtqueue_enable_cb(struct virtqueue * _vq)850 bool virtqueue_enable_cb(struct virtqueue *_vq)
851 {
852 unsigned last_used_idx = virtqueue_enable_cb_prepare(_vq);
853 return !virtqueue_poll(_vq, last_used_idx);
854 }
855 EXPORT_SYMBOL_GPL(virtqueue_enable_cb);
856
857 /**
858 * virtqueue_enable_cb_delayed - restart callbacks after disable_cb.
859 * @vq: the struct virtqueue we're talking about.
860 *
861 * This re-enables callbacks but hints to the other side to delay
862 * interrupts until most of the available buffers have been processed;
863 * it returns "false" if there are many pending buffers in the queue,
864 * to detect a possible race between the driver checking for more work,
865 * and enabling callbacks.
866 *
867 * Caller must ensure we don't call this with other virtqueue
868 * operations at the same time (except where noted).
869 */
virtqueue_enable_cb_delayed(struct virtqueue * _vq)870 bool virtqueue_enable_cb_delayed(struct virtqueue *_vq)
871 {
872 struct vring_virtqueue *vq = to_vvq(_vq);
873 u16 bufs;
874
875 START_USE(vq);
876
877 /* We optimistically turn back on interrupts, then check if there was
878 * more to do. */
879 /* Depending on the VIRTIO_RING_F_USED_EVENT_IDX feature, we need to
880 * either clear the flags bit or point the event index at the next
881 * entry. Always update the event index to keep code simple. */
882 if (vq->avail_flags_shadow & VRING_AVAIL_F_NO_INTERRUPT) {
883 vq->avail_flags_shadow &= ~VRING_AVAIL_F_NO_INTERRUPT;
884 if (!vq->event)
885 vq->vring.avail->flags = cpu_to_virtio16(_vq->vdev, vq->avail_flags_shadow);
886 }
887 /* TODO: tune this threshold */
888 bufs = (u16)(vq->avail_idx_shadow - vq->last_used_idx) * 3 / 4;
889
890 virtio_store_mb(vq->weak_barriers,
891 &vring_used_event(&vq->vring),
892 cpu_to_virtio16(_vq->vdev, vq->last_used_idx + bufs));
893
894 if (unlikely((u16)(virtio16_to_cpu(_vq->vdev, vq->vring.used->idx) - vq->last_used_idx) > bufs)) {
895 END_USE(vq);
896 return false;
897 }
898
899 END_USE(vq);
900 return true;
901 }
902 EXPORT_SYMBOL_GPL(virtqueue_enable_cb_delayed);
903
904 /**
905 * virtqueue_detach_unused_buf - detach first unused buffer
906 * @vq: the struct virtqueue we're talking about.
907 *
908 * Returns NULL or the "data" token handed to virtqueue_add_*().
909 * This is not valid on an active queue; it is useful only for device
910 * shutdown.
911 */
virtqueue_detach_unused_buf(struct virtqueue * _vq)912 void *virtqueue_detach_unused_buf(struct virtqueue *_vq)
913 {
914 struct vring_virtqueue *vq = to_vvq(_vq);
915 unsigned int i;
916 void *buf;
917
918 START_USE(vq);
919
920 for (i = 0; i < vq->vring.num; i++) {
921 if (!vq->desc_state[i].data)
922 continue;
923 /* detach_buf clears data, so grab it now. */
924 buf = vq->desc_state[i].data;
925 detach_buf(vq, i, NULL);
926 vq->avail_idx_shadow--;
927 vq->vring.avail->idx = cpu_to_virtio16(_vq->vdev, vq->avail_idx_shadow);
928 END_USE(vq);
929 return buf;
930 }
931 /* That should have freed everything. */
932 BUG_ON(vq->vq.num_free != vq->vring.num);
933
934 END_USE(vq);
935 return NULL;
936 }
937 EXPORT_SYMBOL_GPL(virtqueue_detach_unused_buf);
938
vring_interrupt(int irq,void * _vq)939 irqreturn_t vring_interrupt(int irq, void *_vq)
940 {
941 struct vring_virtqueue *vq = to_vvq(_vq);
942
943 if (!more_used(vq)) {
944 pr_debug("virtqueue interrupt with no work for %p\n", vq);
945 return IRQ_NONE;
946 }
947
948 if (unlikely(vq->broken))
949 return IRQ_HANDLED;
950
951 pr_debug("virtqueue callback for %p (%p)\n", vq, vq->vq.callback);
952 if (vq->vq.callback)
953 vq->vq.callback(&vq->vq);
954
955 return IRQ_HANDLED;
956 }
957 EXPORT_SYMBOL_GPL(vring_interrupt);
958
__vring_new_virtqueue(unsigned int index,struct vring vring,struct virtio_device * vdev,bool weak_barriers,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)959 struct virtqueue *__vring_new_virtqueue(unsigned int index,
960 struct vring vring,
961 struct virtio_device *vdev,
962 bool weak_barriers,
963 bool context,
964 bool (*notify)(struct virtqueue *),
965 void (*callback)(struct virtqueue *),
966 const char *name)
967 {
968 unsigned int i;
969 struct vring_virtqueue *vq;
970
971 vq = kmalloc(sizeof(*vq) + vring.num * sizeof(struct vring_desc_state),
972 GFP_KERNEL);
973 if (!vq)
974 return NULL;
975
976 vq->vring = vring;
977 vq->vq.callback = callback;
978 vq->vq.vdev = vdev;
979 vq->vq.name = name;
980 vq->vq.num_free = vring.num;
981 vq->vq.index = index;
982 vq->we_own_ring = false;
983 vq->queue_dma_addr = 0;
984 vq->queue_size_in_bytes = 0;
985 vq->notify = notify;
986 vq->weak_barriers = weak_barriers;
987 vq->broken = false;
988 vq->last_used_idx = 0;
989 vq->avail_flags_shadow = 0;
990 vq->avail_idx_shadow = 0;
991 vq->num_added = 0;
992 list_add_tail(&vq->vq.list, &vdev->vqs);
993 #ifdef DEBUG
994 vq->in_use = false;
995 vq->last_add_time_valid = false;
996 #endif
997
998 vq->indirect = virtio_has_feature(vdev, VIRTIO_RING_F_INDIRECT_DESC) &&
999 !context;
1000 vq->event = virtio_has_feature(vdev, VIRTIO_RING_F_EVENT_IDX);
1001
1002 /* No callback? Tell other side not to bother us. */
1003 if (!callback) {
1004 vq->avail_flags_shadow |= VRING_AVAIL_F_NO_INTERRUPT;
1005 if (!vq->event)
1006 vq->vring.avail->flags = cpu_to_virtio16(vdev, vq->avail_flags_shadow);
1007 }
1008
1009 /* Put everything in free lists. */
1010 vq->free_head = 0;
1011 for (i = 0; i < vring.num-1; i++)
1012 vq->vring.desc[i].next = cpu_to_virtio16(vdev, i + 1);
1013 memset(vq->desc_state, 0, vring.num * sizeof(struct vring_desc_state));
1014
1015 return &vq->vq;
1016 }
1017 EXPORT_SYMBOL_GPL(__vring_new_virtqueue);
1018
vring_alloc_queue(struct virtio_device * vdev,size_t size,dma_addr_t * dma_handle,gfp_t flag)1019 static void *vring_alloc_queue(struct virtio_device *vdev, size_t size,
1020 dma_addr_t *dma_handle, gfp_t flag)
1021 {
1022 if (vring_use_dma_api(vdev)) {
1023 return dma_alloc_coherent(vdev->dev.parent, size,
1024 dma_handle, flag);
1025 } else {
1026 void *queue = alloc_pages_exact(PAGE_ALIGN(size), flag);
1027 if (queue) {
1028 phys_addr_t phys_addr = virt_to_phys(queue);
1029 *dma_handle = (dma_addr_t)phys_addr;
1030
1031 /*
1032 * Sanity check: make sure we dind't truncate
1033 * the address. The only arches I can find that
1034 * have 64-bit phys_addr_t but 32-bit dma_addr_t
1035 * are certain non-highmem MIPS and x86
1036 * configurations, but these configurations
1037 * should never allocate physical pages above 32
1038 * bits, so this is fine. Just in case, throw a
1039 * warning and abort if we end up with an
1040 * unrepresentable address.
1041 */
1042 if (WARN_ON_ONCE(*dma_handle != phys_addr)) {
1043 free_pages_exact(queue, PAGE_ALIGN(size));
1044 return NULL;
1045 }
1046 }
1047 return queue;
1048 }
1049 }
1050
vring_free_queue(struct virtio_device * vdev,size_t size,void * queue,dma_addr_t dma_handle)1051 static void vring_free_queue(struct virtio_device *vdev, size_t size,
1052 void *queue, dma_addr_t dma_handle)
1053 {
1054 if (vring_use_dma_api(vdev)) {
1055 dma_free_coherent(vdev->dev.parent, size, queue, dma_handle);
1056 } else {
1057 free_pages_exact(queue, PAGE_ALIGN(size));
1058 }
1059 }
1060
vring_create_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool may_reduce_num,bool context,bool (* notify)(struct virtqueue *),void (* callback)(struct virtqueue *),const char * name)1061 struct virtqueue *vring_create_virtqueue(
1062 unsigned int index,
1063 unsigned int num,
1064 unsigned int vring_align,
1065 struct virtio_device *vdev,
1066 bool weak_barriers,
1067 bool may_reduce_num,
1068 bool context,
1069 bool (*notify)(struct virtqueue *),
1070 void (*callback)(struct virtqueue *),
1071 const char *name)
1072 {
1073 struct virtqueue *vq;
1074 void *queue = NULL;
1075 dma_addr_t dma_addr;
1076 size_t queue_size_in_bytes;
1077 struct vring vring;
1078
1079 /* We assume num is a power of 2. */
1080 if (num & (num - 1)) {
1081 dev_warn(&vdev->dev, "Bad virtqueue length %u\n", num);
1082 return NULL;
1083 }
1084
1085 /* TODO: allocate each queue chunk individually */
1086 for (; num && vring_size(num, vring_align) > PAGE_SIZE; num /= 2) {
1087 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1088 &dma_addr,
1089 GFP_KERNEL|__GFP_NOWARN|__GFP_ZERO);
1090 if (queue)
1091 break;
1092 if (!may_reduce_num)
1093 return NULL;
1094 }
1095
1096 if (!num)
1097 return NULL;
1098
1099 if (!queue) {
1100 /* Try to get a single page. You are my only hope! */
1101 queue = vring_alloc_queue(vdev, vring_size(num, vring_align),
1102 &dma_addr, GFP_KERNEL|__GFP_ZERO);
1103 }
1104 if (!queue)
1105 return NULL;
1106
1107 queue_size_in_bytes = vring_size(num, vring_align);
1108 vring_init(&vring, num, queue, vring_align);
1109
1110 vq = __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1111 notify, callback, name);
1112 if (!vq) {
1113 vring_free_queue(vdev, queue_size_in_bytes, queue,
1114 dma_addr);
1115 return NULL;
1116 }
1117
1118 to_vvq(vq)->queue_dma_addr = dma_addr;
1119 to_vvq(vq)->queue_size_in_bytes = queue_size_in_bytes;
1120 to_vvq(vq)->we_own_ring = true;
1121
1122 return vq;
1123 }
1124 EXPORT_SYMBOL_GPL(vring_create_virtqueue);
1125
vring_new_virtqueue(unsigned int index,unsigned int num,unsigned int vring_align,struct virtio_device * vdev,bool weak_barriers,bool context,void * pages,bool (* notify)(struct virtqueue * vq),void (* callback)(struct virtqueue * vq),const char * name)1126 struct virtqueue *vring_new_virtqueue(unsigned int index,
1127 unsigned int num,
1128 unsigned int vring_align,
1129 struct virtio_device *vdev,
1130 bool weak_barriers,
1131 bool context,
1132 void *pages,
1133 bool (*notify)(struct virtqueue *vq),
1134 void (*callback)(struct virtqueue *vq),
1135 const char *name)
1136 {
1137 struct vring vring;
1138 vring_init(&vring, num, pages, vring_align);
1139 return __vring_new_virtqueue(index, vring, vdev, weak_barriers, context,
1140 notify, callback, name);
1141 }
1142 EXPORT_SYMBOL_GPL(vring_new_virtqueue);
1143
vring_del_virtqueue(struct virtqueue * _vq)1144 void vring_del_virtqueue(struct virtqueue *_vq)
1145 {
1146 struct vring_virtqueue *vq = to_vvq(_vq);
1147
1148 if (vq->we_own_ring) {
1149 vring_free_queue(vq->vq.vdev, vq->queue_size_in_bytes,
1150 vq->vring.desc, vq->queue_dma_addr);
1151 }
1152 list_del(&_vq->list);
1153 kfree(vq);
1154 }
1155 EXPORT_SYMBOL_GPL(vring_del_virtqueue);
1156
1157 /* Manipulates transport-specific feature bits. */
vring_transport_features(struct virtio_device * vdev)1158 void vring_transport_features(struct virtio_device *vdev)
1159 {
1160 unsigned int i;
1161
1162 for (i = VIRTIO_TRANSPORT_F_START; i < VIRTIO_TRANSPORT_F_END; i++) {
1163 switch (i) {
1164 case VIRTIO_RING_F_INDIRECT_DESC:
1165 break;
1166 case VIRTIO_RING_F_EVENT_IDX:
1167 break;
1168 case VIRTIO_F_VERSION_1:
1169 break;
1170 case VIRTIO_F_IOMMU_PLATFORM:
1171 break;
1172 default:
1173 /* We don't understand this bit. */
1174 __virtio_clear_bit(vdev, i);
1175 }
1176 }
1177 }
1178 EXPORT_SYMBOL_GPL(vring_transport_features);
1179
1180 /**
1181 * virtqueue_get_vring_size - return the size of the virtqueue's vring
1182 * @vq: the struct virtqueue containing the vring of interest.
1183 *
1184 * Returns the size of the vring. This is mainly used for boasting to
1185 * userspace. Unlike other operations, this need not be serialized.
1186 */
virtqueue_get_vring_size(struct virtqueue * _vq)1187 unsigned int virtqueue_get_vring_size(struct virtqueue *_vq)
1188 {
1189
1190 struct vring_virtqueue *vq = to_vvq(_vq);
1191
1192 return vq->vring.num;
1193 }
1194 EXPORT_SYMBOL_GPL(virtqueue_get_vring_size);
1195
virtqueue_is_broken(struct virtqueue * _vq)1196 bool virtqueue_is_broken(struct virtqueue *_vq)
1197 {
1198 struct vring_virtqueue *vq = to_vvq(_vq);
1199
1200 return READ_ONCE(vq->broken);
1201 }
1202 EXPORT_SYMBOL_GPL(virtqueue_is_broken);
1203
1204 /*
1205 * This should prevent the device from being used, allowing drivers to
1206 * recover. You may need to grab appropriate locks to flush.
1207 */
virtio_break_device(struct virtio_device * dev)1208 void virtio_break_device(struct virtio_device *dev)
1209 {
1210 struct virtqueue *_vq;
1211
1212 list_for_each_entry(_vq, &dev->vqs, list) {
1213 struct vring_virtqueue *vq = to_vvq(_vq);
1214
1215 /* Pairs with READ_ONCE() in virtqueue_is_broken(). */
1216 WRITE_ONCE(vq->broken, true);
1217 }
1218 }
1219 EXPORT_SYMBOL_GPL(virtio_break_device);
1220
virtqueue_get_desc_addr(struct virtqueue * _vq)1221 dma_addr_t virtqueue_get_desc_addr(struct virtqueue *_vq)
1222 {
1223 struct vring_virtqueue *vq = to_vvq(_vq);
1224
1225 BUG_ON(!vq->we_own_ring);
1226
1227 return vq->queue_dma_addr;
1228 }
1229 EXPORT_SYMBOL_GPL(virtqueue_get_desc_addr);
1230
virtqueue_get_avail_addr(struct virtqueue * _vq)1231 dma_addr_t virtqueue_get_avail_addr(struct virtqueue *_vq)
1232 {
1233 struct vring_virtqueue *vq = to_vvq(_vq);
1234
1235 BUG_ON(!vq->we_own_ring);
1236
1237 return vq->queue_dma_addr +
1238 ((char *)vq->vring.avail - (char *)vq->vring.desc);
1239 }
1240 EXPORT_SYMBOL_GPL(virtqueue_get_avail_addr);
1241
virtqueue_get_used_addr(struct virtqueue * _vq)1242 dma_addr_t virtqueue_get_used_addr(struct virtqueue *_vq)
1243 {
1244 struct vring_virtqueue *vq = to_vvq(_vq);
1245
1246 BUG_ON(!vq->we_own_ring);
1247
1248 return vq->queue_dma_addr +
1249 ((char *)vq->vring.used - (char *)vq->vring.desc);
1250 }
1251 EXPORT_SYMBOL_GPL(virtqueue_get_used_addr);
1252
virtqueue_get_vring(struct virtqueue * vq)1253 const struct vring *virtqueue_get_vring(struct virtqueue *vq)
1254 {
1255 return &to_vvq(vq)->vring;
1256 }
1257 EXPORT_SYMBOL_GPL(virtqueue_get_vring);
1258
1259 MODULE_LICENSE("GPL");
1260