1 /*
2  * VMware VMCI Driver
3  *
4  * Copyright (C) 2012 VMware, Inc. All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation version 2 and no later version.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
12  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
13  * for more details.
14  */
15 
16 #include <linux/vmw_vmci_defs.h>
17 #include <linux/vmw_vmci_api.h>
18 #include <linux/highmem.h>
19 #include <linux/kernel.h>
20 #include <linux/mm.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/pagemap.h>
24 #include <linux/pci.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/uio.h>
28 #include <linux/wait.h>
29 #include <linux/vmalloc.h>
30 #include <linux/skbuff.h>
31 
32 #include "vmci_handle_array.h"
33 #include "vmci_queue_pair.h"
34 #include "vmci_datagram.h"
35 #include "vmci_resource.h"
36 #include "vmci_context.h"
37 #include "vmci_driver.h"
38 #include "vmci_event.h"
39 #include "vmci_route.h"
40 
41 /*
42  * In the following, we will distinguish between two kinds of VMX processes -
43  * the ones with versions lower than VMCI_VERSION_NOVMVM that use specialized
44  * VMCI page files in the VMX and supporting VM to VM communication and the
45  * newer ones that use the guest memory directly. We will in the following
46  * refer to the older VMX versions as old-style VMX'en, and the newer ones as
47  * new-style VMX'en.
48  *
49  * The state transition datagram is as follows (the VMCIQPB_ prefix has been
50  * removed for readability) - see below for more details on the transtions:
51  *
52  *            --------------  NEW  -------------
53  *            |                                |
54  *           \_/                              \_/
55  *     CREATED_NO_MEM <-----------------> CREATED_MEM
56  *            |    |                           |
57  *            |    o-----------------------o   |
58  *            |                            |   |
59  *           \_/                          \_/ \_/
60  *     ATTACHED_NO_MEM <----------------> ATTACHED_MEM
61  *            |                            |   |
62  *            |     o----------------------o   |
63  *            |     |                          |
64  *           \_/   \_/                        \_/
65  *     SHUTDOWN_NO_MEM <----------------> SHUTDOWN_MEM
66  *            |                                |
67  *            |                                |
68  *            -------------> gone <-------------
69  *
70  * In more detail. When a VMCI queue pair is first created, it will be in the
71  * VMCIQPB_NEW state. It will then move into one of the following states:
72  *
73  * - VMCIQPB_CREATED_NO_MEM: this state indicates that either:
74  *
75  *     - the created was performed by a host endpoint, in which case there is
76  *       no backing memory yet.
77  *
78  *     - the create was initiated by an old-style VMX, that uses
79  *       vmci_qp_broker_set_page_store to specify the UVAs of the queue pair at
80  *       a later point in time. This state can be distinguished from the one
81  *       above by the context ID of the creator. A host side is not allowed to
82  *       attach until the page store has been set.
83  *
84  * - VMCIQPB_CREATED_MEM: this state is the result when the queue pair
85  *     is created by a VMX using the queue pair device backend that
86  *     sets the UVAs of the queue pair immediately and stores the
87  *     information for later attachers. At this point, it is ready for
88  *     the host side to attach to it.
89  *
90  * Once the queue pair is in one of the created states (with the exception of
91  * the case mentioned for older VMX'en above), it is possible to attach to the
92  * queue pair. Again we have two new states possible:
93  *
94  * - VMCIQPB_ATTACHED_MEM: this state can be reached through the following
95  *   paths:
96  *
97  *     - from VMCIQPB_CREATED_NO_MEM when a new-style VMX allocates a queue
98  *       pair, and attaches to a queue pair previously created by the host side.
99  *
100  *     - from VMCIQPB_CREATED_MEM when the host side attaches to a queue pair
101  *       already created by a guest.
102  *
103  *     - from VMCIQPB_ATTACHED_NO_MEM, when an old-style VMX calls
104  *       vmci_qp_broker_set_page_store (see below).
105  *
106  * - VMCIQPB_ATTACHED_NO_MEM: If the queue pair already was in the
107  *     VMCIQPB_CREATED_NO_MEM due to a host side create, an old-style VMX will
108  *     bring the queue pair into this state. Once vmci_qp_broker_set_page_store
109  *     is called to register the user memory, the VMCIQPB_ATTACH_MEM state
110  *     will be entered.
111  *
112  * From the attached queue pair, the queue pair can enter the shutdown states
113  * when either side of the queue pair detaches. If the guest side detaches
114  * first, the queue pair will enter the VMCIQPB_SHUTDOWN_NO_MEM state, where
115  * the content of the queue pair will no longer be available. If the host
116  * side detaches first, the queue pair will either enter the
117  * VMCIQPB_SHUTDOWN_MEM, if the guest memory is currently mapped, or
118  * VMCIQPB_SHUTDOWN_NO_MEM, if the guest memory is not mapped
119  * (e.g., the host detaches while a guest is stunned).
120  *
121  * New-style VMX'en will also unmap guest memory, if the guest is
122  * quiesced, e.g., during a snapshot operation. In that case, the guest
123  * memory will no longer be available, and the queue pair will transition from
124  * *_MEM state to a *_NO_MEM state. The VMX may later map the memory once more,
125  * in which case the queue pair will transition from the *_NO_MEM state at that
126  * point back to the *_MEM state. Note that the *_NO_MEM state may have changed,
127  * since the peer may have either attached or detached in the meantime. The
128  * values are laid out such that ++ on a state will move from a *_NO_MEM to a
129  * *_MEM state, and vice versa.
130  */
131 
132 /* The Kernel specific component of the struct vmci_queue structure. */
133 struct vmci_queue_kern_if {
134 	struct mutex __mutex;	/* Protects the queue. */
135 	struct mutex *mutex;	/* Shared by producer and consumer queues. */
136 	size_t num_pages;	/* Number of pages incl. header. */
137 	bool host;		/* Host or guest? */
138 	union {
139 		struct {
140 			dma_addr_t *pas;
141 			void **vas;
142 		} g;		/* Used by the guest. */
143 		struct {
144 			struct page **page;
145 			struct page **header_page;
146 		} h;		/* Used by the host. */
147 	} u;
148 };
149 
150 /*
151  * This structure is opaque to the clients.
152  */
153 struct vmci_qp {
154 	struct vmci_handle handle;
155 	struct vmci_queue *produce_q;
156 	struct vmci_queue *consume_q;
157 	u64 produce_q_size;
158 	u64 consume_q_size;
159 	u32 peer;
160 	u32 flags;
161 	u32 priv_flags;
162 	bool guest_endpoint;
163 	unsigned int blocked;
164 	unsigned int generation;
165 	wait_queue_head_t event;
166 };
167 
168 enum qp_broker_state {
169 	VMCIQPB_NEW,
170 	VMCIQPB_CREATED_NO_MEM,
171 	VMCIQPB_CREATED_MEM,
172 	VMCIQPB_ATTACHED_NO_MEM,
173 	VMCIQPB_ATTACHED_MEM,
174 	VMCIQPB_SHUTDOWN_NO_MEM,
175 	VMCIQPB_SHUTDOWN_MEM,
176 	VMCIQPB_GONE
177 };
178 
179 #define QPBROKERSTATE_HAS_MEM(_qpb) (_qpb->state == VMCIQPB_CREATED_MEM || \
180 				     _qpb->state == VMCIQPB_ATTACHED_MEM || \
181 				     _qpb->state == VMCIQPB_SHUTDOWN_MEM)
182 
183 /*
184  * In the queue pair broker, we always use the guest point of view for
185  * the produce and consume queue values and references, e.g., the
186  * produce queue size stored is the guests produce queue size. The
187  * host endpoint will need to swap these around. The only exception is
188  * the local queue pairs on the host, in which case the host endpoint
189  * that creates the queue pair will have the right orientation, and
190  * the attaching host endpoint will need to swap.
191  */
192 struct qp_entry {
193 	struct list_head list_item;
194 	struct vmci_handle handle;
195 	u32 peer;
196 	u32 flags;
197 	u64 produce_size;
198 	u64 consume_size;
199 	u32 ref_count;
200 };
201 
202 struct qp_broker_entry {
203 	struct vmci_resource resource;
204 	struct qp_entry qp;
205 	u32 create_id;
206 	u32 attach_id;
207 	enum qp_broker_state state;
208 	bool require_trusted_attach;
209 	bool created_by_trusted;
210 	bool vmci_page_files;	/* Created by VMX using VMCI page files */
211 	struct vmci_queue *produce_q;
212 	struct vmci_queue *consume_q;
213 	struct vmci_queue_header saved_produce_q;
214 	struct vmci_queue_header saved_consume_q;
215 	vmci_event_release_cb wakeup_cb;
216 	void *client_data;
217 	void *local_mem;	/* Kernel memory for local queue pair */
218 };
219 
220 struct qp_guest_endpoint {
221 	struct vmci_resource resource;
222 	struct qp_entry qp;
223 	u64 num_ppns;
224 	void *produce_q;
225 	void *consume_q;
226 	struct ppn_set ppn_set;
227 };
228 
229 struct qp_list {
230 	struct list_head head;
231 	struct mutex mutex;	/* Protect queue list. */
232 };
233 
234 static struct qp_list qp_broker_list = {
235 	.head = LIST_HEAD_INIT(qp_broker_list.head),
236 	.mutex = __MUTEX_INITIALIZER(qp_broker_list.mutex),
237 };
238 
239 static struct qp_list qp_guest_endpoints = {
240 	.head = LIST_HEAD_INIT(qp_guest_endpoints.head),
241 	.mutex = __MUTEX_INITIALIZER(qp_guest_endpoints.mutex),
242 };
243 
244 #define INVALID_VMCI_GUEST_MEM_ID  0
245 #define QPE_NUM_PAGES(_QPE) ((u32) \
246 			     (DIV_ROUND_UP(_QPE.produce_size, PAGE_SIZE) + \
247 			      DIV_ROUND_UP(_QPE.consume_size, PAGE_SIZE) + 2))
248 
249 
250 /*
251  * Frees kernel VA space for a given queue and its queue header, and
252  * frees physical data pages.
253  */
qp_free_queue(void * q,u64 size)254 static void qp_free_queue(void *q, u64 size)
255 {
256 	struct vmci_queue *queue = q;
257 
258 	if (queue) {
259 		u64 i;
260 
261 		/* Given size does not include header, so add in a page here. */
262 		for (i = 0; i < DIV_ROUND_UP(size, PAGE_SIZE) + 1; i++) {
263 			dma_free_coherent(&vmci_pdev->dev, PAGE_SIZE,
264 					  queue->kernel_if->u.g.vas[i],
265 					  queue->kernel_if->u.g.pas[i]);
266 		}
267 
268 		vfree(queue);
269 	}
270 }
271 
272 /*
273  * Allocates kernel queue pages of specified size with IOMMU mappings,
274  * plus space for the queue structure/kernel interface and the queue
275  * header.
276  */
qp_alloc_queue(u64 size,u32 flags)277 static void *qp_alloc_queue(u64 size, u32 flags)
278 {
279 	u64 i;
280 	struct vmci_queue *queue;
281 	size_t pas_size;
282 	size_t vas_size;
283 	size_t queue_size = sizeof(*queue) + sizeof(*queue->kernel_if);
284 	u64 num_pages;
285 
286 	if (size > SIZE_MAX - PAGE_SIZE)
287 		return NULL;
288 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
289 	if (num_pages >
290 		 (SIZE_MAX - queue_size) /
291 		 (sizeof(*queue->kernel_if->u.g.pas) +
292 		  sizeof(*queue->kernel_if->u.g.vas)))
293 		return NULL;
294 
295 	pas_size = num_pages * sizeof(*queue->kernel_if->u.g.pas);
296 	vas_size = num_pages * sizeof(*queue->kernel_if->u.g.vas);
297 	queue_size += pas_size + vas_size;
298 
299 	queue = vmalloc(queue_size);
300 	if (!queue)
301 		return NULL;
302 
303 	queue->q_header = NULL;
304 	queue->saved_header = NULL;
305 	queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
306 	queue->kernel_if->mutex = NULL;
307 	queue->kernel_if->num_pages = num_pages;
308 	queue->kernel_if->u.g.pas = (dma_addr_t *)(queue->kernel_if + 1);
309 	queue->kernel_if->u.g.vas =
310 		(void **)((u8 *)queue->kernel_if->u.g.pas + pas_size);
311 	queue->kernel_if->host = false;
312 
313 	for (i = 0; i < num_pages; i++) {
314 		queue->kernel_if->u.g.vas[i] =
315 			dma_alloc_coherent(&vmci_pdev->dev, PAGE_SIZE,
316 					   &queue->kernel_if->u.g.pas[i],
317 					   GFP_KERNEL);
318 		if (!queue->kernel_if->u.g.vas[i]) {
319 			/* Size excl. the header. */
320 			qp_free_queue(queue, i * PAGE_SIZE);
321 			return NULL;
322 		}
323 	}
324 
325 	/* Queue header is the first page. */
326 	queue->q_header = queue->kernel_if->u.g.vas[0];
327 
328 	return queue;
329 }
330 
331 /*
332  * Copies from a given buffer or iovector to a VMCI Queue.  Uses
333  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
334  * by traversing the offset -> page translation structure for the queue.
335  * Assumes that offset + size does not wrap around in the queue.
336  */
qp_memcpy_to_queue_iter(struct vmci_queue * queue,u64 queue_offset,struct iov_iter * from,size_t size)337 static int qp_memcpy_to_queue_iter(struct vmci_queue *queue,
338 				  u64 queue_offset,
339 				  struct iov_iter *from,
340 				  size_t size)
341 {
342 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
343 	size_t bytes_copied = 0;
344 
345 	while (bytes_copied < size) {
346 		const u64 page_index =
347 			(queue_offset + bytes_copied) / PAGE_SIZE;
348 		const size_t page_offset =
349 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
350 		void *va;
351 		size_t to_copy;
352 
353 		if (kernel_if->host)
354 			va = kmap(kernel_if->u.h.page[page_index]);
355 		else
356 			va = kernel_if->u.g.vas[page_index + 1];
357 			/* Skip header. */
358 
359 		if (size - bytes_copied > PAGE_SIZE - page_offset)
360 			/* Enough payload to fill up from this page. */
361 			to_copy = PAGE_SIZE - page_offset;
362 		else
363 			to_copy = size - bytes_copied;
364 
365 		if (!copy_from_iter_full((u8 *)va + page_offset, to_copy,
366 					 from)) {
367 			if (kernel_if->host)
368 				kunmap(kernel_if->u.h.page[page_index]);
369 			return VMCI_ERROR_INVALID_ARGS;
370 		}
371 		bytes_copied += to_copy;
372 		if (kernel_if->host)
373 			kunmap(kernel_if->u.h.page[page_index]);
374 	}
375 
376 	return VMCI_SUCCESS;
377 }
378 
379 /*
380  * Copies to a given buffer or iovector from a VMCI Queue.  Uses
381  * kmap()/kunmap() to dynamically map/unmap required portions of the queue
382  * by traversing the offset -> page translation structure for the queue.
383  * Assumes that offset + size does not wrap around in the queue.
384  */
qp_memcpy_from_queue_iter(struct iov_iter * to,const struct vmci_queue * queue,u64 queue_offset,size_t size)385 static int qp_memcpy_from_queue_iter(struct iov_iter *to,
386 				    const struct vmci_queue *queue,
387 				    u64 queue_offset, size_t size)
388 {
389 	struct vmci_queue_kern_if *kernel_if = queue->kernel_if;
390 	size_t bytes_copied = 0;
391 
392 	while (bytes_copied < size) {
393 		const u64 page_index =
394 			(queue_offset + bytes_copied) / PAGE_SIZE;
395 		const size_t page_offset =
396 		    (queue_offset + bytes_copied) & (PAGE_SIZE - 1);
397 		void *va;
398 		size_t to_copy;
399 		int err;
400 
401 		if (kernel_if->host)
402 			va = kmap(kernel_if->u.h.page[page_index]);
403 		else
404 			va = kernel_if->u.g.vas[page_index + 1];
405 			/* Skip header. */
406 
407 		if (size - bytes_copied > PAGE_SIZE - page_offset)
408 			/* Enough payload to fill up this page. */
409 			to_copy = PAGE_SIZE - page_offset;
410 		else
411 			to_copy = size - bytes_copied;
412 
413 		err = copy_to_iter((u8 *)va + page_offset, to_copy, to);
414 		if (err != to_copy) {
415 			if (kernel_if->host)
416 				kunmap(kernel_if->u.h.page[page_index]);
417 			return VMCI_ERROR_INVALID_ARGS;
418 		}
419 		bytes_copied += to_copy;
420 		if (kernel_if->host)
421 			kunmap(kernel_if->u.h.page[page_index]);
422 	}
423 
424 	return VMCI_SUCCESS;
425 }
426 
427 /*
428  * Allocates two list of PPNs --- one for the pages in the produce queue,
429  * and the other for the pages in the consume queue. Intializes the list
430  * of PPNs with the page frame numbers of the KVA for the two queues (and
431  * the queue headers).
432  */
qp_alloc_ppn_set(void * prod_q,u64 num_produce_pages,void * cons_q,u64 num_consume_pages,struct ppn_set * ppn_set)433 static int qp_alloc_ppn_set(void *prod_q,
434 			    u64 num_produce_pages,
435 			    void *cons_q,
436 			    u64 num_consume_pages, struct ppn_set *ppn_set)
437 {
438 	u32 *produce_ppns;
439 	u32 *consume_ppns;
440 	struct vmci_queue *produce_q = prod_q;
441 	struct vmci_queue *consume_q = cons_q;
442 	u64 i;
443 
444 	if (!produce_q || !num_produce_pages || !consume_q ||
445 	    !num_consume_pages || !ppn_set)
446 		return VMCI_ERROR_INVALID_ARGS;
447 
448 	if (ppn_set->initialized)
449 		return VMCI_ERROR_ALREADY_EXISTS;
450 
451 	produce_ppns =
452 	    kmalloc_array(num_produce_pages, sizeof(*produce_ppns),
453 			  GFP_KERNEL);
454 	if (!produce_ppns)
455 		return VMCI_ERROR_NO_MEM;
456 
457 	consume_ppns =
458 	    kmalloc_array(num_consume_pages, sizeof(*consume_ppns),
459 			  GFP_KERNEL);
460 	if (!consume_ppns) {
461 		kfree(produce_ppns);
462 		return VMCI_ERROR_NO_MEM;
463 	}
464 
465 	for (i = 0; i < num_produce_pages; i++) {
466 		unsigned long pfn;
467 
468 		produce_ppns[i] =
469 			produce_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
470 		pfn = produce_ppns[i];
471 
472 		/* Fail allocation if PFN isn't supported by hypervisor. */
473 		if (sizeof(pfn) > sizeof(*produce_ppns)
474 		    && pfn != produce_ppns[i])
475 			goto ppn_error;
476 	}
477 
478 	for (i = 0; i < num_consume_pages; i++) {
479 		unsigned long pfn;
480 
481 		consume_ppns[i] =
482 			consume_q->kernel_if->u.g.pas[i] >> PAGE_SHIFT;
483 		pfn = consume_ppns[i];
484 
485 		/* Fail allocation if PFN isn't supported by hypervisor. */
486 		if (sizeof(pfn) > sizeof(*consume_ppns)
487 		    && pfn != consume_ppns[i])
488 			goto ppn_error;
489 	}
490 
491 	ppn_set->num_produce_pages = num_produce_pages;
492 	ppn_set->num_consume_pages = num_consume_pages;
493 	ppn_set->produce_ppns = produce_ppns;
494 	ppn_set->consume_ppns = consume_ppns;
495 	ppn_set->initialized = true;
496 	return VMCI_SUCCESS;
497 
498  ppn_error:
499 	kfree(produce_ppns);
500 	kfree(consume_ppns);
501 	return VMCI_ERROR_INVALID_ARGS;
502 }
503 
504 /*
505  * Frees the two list of PPNs for a queue pair.
506  */
qp_free_ppn_set(struct ppn_set * ppn_set)507 static void qp_free_ppn_set(struct ppn_set *ppn_set)
508 {
509 	if (ppn_set->initialized) {
510 		/* Do not call these functions on NULL inputs. */
511 		kfree(ppn_set->produce_ppns);
512 		kfree(ppn_set->consume_ppns);
513 	}
514 	memset(ppn_set, 0, sizeof(*ppn_set));
515 }
516 
517 /*
518  * Populates the list of PPNs in the hypercall structure with the PPNS
519  * of the produce queue and the consume queue.
520  */
qp_populate_ppn_set(u8 * call_buf,const struct ppn_set * ppn_set)521 static int qp_populate_ppn_set(u8 *call_buf, const struct ppn_set *ppn_set)
522 {
523 	memcpy(call_buf, ppn_set->produce_ppns,
524 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns));
525 	memcpy(call_buf +
526 	       ppn_set->num_produce_pages * sizeof(*ppn_set->produce_ppns),
527 	       ppn_set->consume_ppns,
528 	       ppn_set->num_consume_pages * sizeof(*ppn_set->consume_ppns));
529 
530 	return VMCI_SUCCESS;
531 }
532 
533 /*
534  * Allocates kernel VA space of specified size plus space for the queue
535  * and kernel interface.  This is different from the guest queue allocator,
536  * because we do not allocate our own queue header/data pages here but
537  * share those of the guest.
538  */
qp_host_alloc_queue(u64 size)539 static struct vmci_queue *qp_host_alloc_queue(u64 size)
540 {
541 	struct vmci_queue *queue;
542 	size_t queue_page_size;
543 	u64 num_pages;
544 	const size_t queue_size = sizeof(*queue) + sizeof(*(queue->kernel_if));
545 
546 	if (size > SIZE_MAX - PAGE_SIZE)
547 		return NULL;
548 	num_pages = DIV_ROUND_UP(size, PAGE_SIZE) + 1;
549 	if (num_pages > (SIZE_MAX - queue_size) /
550 		 sizeof(*queue->kernel_if->u.h.page))
551 		return NULL;
552 
553 	queue_page_size = num_pages * sizeof(*queue->kernel_if->u.h.page);
554 
555 	if (queue_size + queue_page_size > KMALLOC_MAX_SIZE)
556 		return NULL;
557 
558 	queue = kzalloc(queue_size + queue_page_size, GFP_KERNEL);
559 	if (queue) {
560 		queue->q_header = NULL;
561 		queue->saved_header = NULL;
562 		queue->kernel_if = (struct vmci_queue_kern_if *)(queue + 1);
563 		queue->kernel_if->host = true;
564 		queue->kernel_if->mutex = NULL;
565 		queue->kernel_if->num_pages = num_pages;
566 		queue->kernel_if->u.h.header_page =
567 		    (struct page **)((u8 *)queue + queue_size);
568 		queue->kernel_if->u.h.page =
569 			&queue->kernel_if->u.h.header_page[1];
570 	}
571 
572 	return queue;
573 }
574 
575 /*
576  * Frees kernel memory for a given queue (header plus translation
577  * structure).
578  */
qp_host_free_queue(struct vmci_queue * queue,u64 queue_size)579 static void qp_host_free_queue(struct vmci_queue *queue, u64 queue_size)
580 {
581 	kfree(queue);
582 }
583 
584 /*
585  * Initialize the mutex for the pair of queues.  This mutex is used to
586  * protect the q_header and the buffer from changing out from under any
587  * users of either queue.  Of course, it's only any good if the mutexes
588  * are actually acquired.  Queue structure must lie on non-paged memory
589  * or we cannot guarantee access to the mutex.
590  */
qp_init_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)591 static void qp_init_queue_mutex(struct vmci_queue *produce_q,
592 				struct vmci_queue *consume_q)
593 {
594 	/*
595 	 * Only the host queue has shared state - the guest queues do not
596 	 * need to synchronize access using a queue mutex.
597 	 */
598 
599 	if (produce_q->kernel_if->host) {
600 		produce_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
601 		consume_q->kernel_if->mutex = &produce_q->kernel_if->__mutex;
602 		mutex_init(produce_q->kernel_if->mutex);
603 	}
604 }
605 
606 /*
607  * Cleans up the mutex for the pair of queues.
608  */
qp_cleanup_queue_mutex(struct vmci_queue * produce_q,struct vmci_queue * consume_q)609 static void qp_cleanup_queue_mutex(struct vmci_queue *produce_q,
610 				   struct vmci_queue *consume_q)
611 {
612 	if (produce_q->kernel_if->host) {
613 		produce_q->kernel_if->mutex = NULL;
614 		consume_q->kernel_if->mutex = NULL;
615 	}
616 }
617 
618 /*
619  * Acquire the mutex for the queue.  Note that the produce_q and
620  * the consume_q share a mutex.  So, only one of the two need to
621  * be passed in to this routine.  Either will work just fine.
622  */
qp_acquire_queue_mutex(struct vmci_queue * queue)623 static void qp_acquire_queue_mutex(struct vmci_queue *queue)
624 {
625 	if (queue->kernel_if->host)
626 		mutex_lock(queue->kernel_if->mutex);
627 }
628 
629 /*
630  * Release the mutex for the queue.  Note that the produce_q and
631  * the consume_q share a mutex.  So, only one of the two need to
632  * be passed in to this routine.  Either will work just fine.
633  */
qp_release_queue_mutex(struct vmci_queue * queue)634 static void qp_release_queue_mutex(struct vmci_queue *queue)
635 {
636 	if (queue->kernel_if->host)
637 		mutex_unlock(queue->kernel_if->mutex);
638 }
639 
640 /*
641  * Helper function to release pages in the PageStoreAttachInfo
642  * previously obtained using get_user_pages.
643  */
qp_release_pages(struct page ** pages,u64 num_pages,bool dirty)644 static void qp_release_pages(struct page **pages,
645 			     u64 num_pages, bool dirty)
646 {
647 	int i;
648 
649 	for (i = 0; i < num_pages; i++) {
650 		if (dirty)
651 			set_page_dirty_lock(pages[i]);
652 
653 		put_page(pages[i]);
654 		pages[i] = NULL;
655 	}
656 }
657 
658 /*
659  * Lock the user pages referenced by the {produce,consume}Buffer
660  * struct into memory and populate the {produce,consume}Pages
661  * arrays in the attach structure with them.
662  */
qp_host_get_user_memory(u64 produce_uva,u64 consume_uva,struct vmci_queue * produce_q,struct vmci_queue * consume_q)663 static int qp_host_get_user_memory(u64 produce_uva,
664 				   u64 consume_uva,
665 				   struct vmci_queue *produce_q,
666 				   struct vmci_queue *consume_q)
667 {
668 	int retval;
669 	int err = VMCI_SUCCESS;
670 
671 	retval = get_user_pages_fast((uintptr_t) produce_uva,
672 				     produce_q->kernel_if->num_pages, 1,
673 				     produce_q->kernel_if->u.h.header_page);
674 	if (retval < (int)produce_q->kernel_if->num_pages) {
675 		pr_debug("get_user_pages_fast(produce) failed (retval=%d)",
676 			retval);
677 		if (retval > 0)
678 			qp_release_pages(produce_q->kernel_if->u.h.header_page,
679 					retval, false);
680 		err = VMCI_ERROR_NO_MEM;
681 		goto out;
682 	}
683 
684 	retval = get_user_pages_fast((uintptr_t) consume_uva,
685 				     consume_q->kernel_if->num_pages, 1,
686 				     consume_q->kernel_if->u.h.header_page);
687 	if (retval < (int)consume_q->kernel_if->num_pages) {
688 		pr_debug("get_user_pages_fast(consume) failed (retval=%d)",
689 			retval);
690 		if (retval > 0)
691 			qp_release_pages(consume_q->kernel_if->u.h.header_page,
692 					retval, false);
693 		qp_release_pages(produce_q->kernel_if->u.h.header_page,
694 				 produce_q->kernel_if->num_pages, false);
695 		err = VMCI_ERROR_NO_MEM;
696 	}
697 
698  out:
699 	return err;
700 }
701 
702 /*
703  * Registers the specification of the user pages used for backing a queue
704  * pair. Enough information to map in pages is stored in the OS specific
705  * part of the struct vmci_queue structure.
706  */
qp_host_register_user_memory(struct vmci_qp_page_store * page_store,struct vmci_queue * produce_q,struct vmci_queue * consume_q)707 static int qp_host_register_user_memory(struct vmci_qp_page_store *page_store,
708 					struct vmci_queue *produce_q,
709 					struct vmci_queue *consume_q)
710 {
711 	u64 produce_uva;
712 	u64 consume_uva;
713 
714 	/*
715 	 * The new style and the old style mapping only differs in
716 	 * that we either get a single or two UVAs, so we split the
717 	 * single UVA range at the appropriate spot.
718 	 */
719 	produce_uva = page_store->pages;
720 	consume_uva = page_store->pages +
721 	    produce_q->kernel_if->num_pages * PAGE_SIZE;
722 	return qp_host_get_user_memory(produce_uva, consume_uva, produce_q,
723 				       consume_q);
724 }
725 
726 /*
727  * Releases and removes the references to user pages stored in the attach
728  * struct.  Pages are released from the page cache and may become
729  * swappable again.
730  */
qp_host_unregister_user_memory(struct vmci_queue * produce_q,struct vmci_queue * consume_q)731 static void qp_host_unregister_user_memory(struct vmci_queue *produce_q,
732 					   struct vmci_queue *consume_q)
733 {
734 	qp_release_pages(produce_q->kernel_if->u.h.header_page,
735 			 produce_q->kernel_if->num_pages, true);
736 	memset(produce_q->kernel_if->u.h.header_page, 0,
737 	       sizeof(*produce_q->kernel_if->u.h.header_page) *
738 	       produce_q->kernel_if->num_pages);
739 	qp_release_pages(consume_q->kernel_if->u.h.header_page,
740 			 consume_q->kernel_if->num_pages, true);
741 	memset(consume_q->kernel_if->u.h.header_page, 0,
742 	       sizeof(*consume_q->kernel_if->u.h.header_page) *
743 	       consume_q->kernel_if->num_pages);
744 }
745 
746 /*
747  * Once qp_host_register_user_memory has been performed on a
748  * queue, the queue pair headers can be mapped into the
749  * kernel. Once mapped, they must be unmapped with
750  * qp_host_unmap_queues prior to calling
751  * qp_host_unregister_user_memory.
752  * Pages are pinned.
753  */
qp_host_map_queues(struct vmci_queue * produce_q,struct vmci_queue * consume_q)754 static int qp_host_map_queues(struct vmci_queue *produce_q,
755 			      struct vmci_queue *consume_q)
756 {
757 	int result;
758 
759 	if (!produce_q->q_header || !consume_q->q_header) {
760 		struct page *headers[2];
761 
762 		if (produce_q->q_header != consume_q->q_header)
763 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
764 
765 		if (produce_q->kernel_if->u.h.header_page == NULL ||
766 		    *produce_q->kernel_if->u.h.header_page == NULL)
767 			return VMCI_ERROR_UNAVAILABLE;
768 
769 		headers[0] = *produce_q->kernel_if->u.h.header_page;
770 		headers[1] = *consume_q->kernel_if->u.h.header_page;
771 
772 		produce_q->q_header = vmap(headers, 2, VM_MAP, PAGE_KERNEL);
773 		if (produce_q->q_header != NULL) {
774 			consume_q->q_header =
775 			    (struct vmci_queue_header *)((u8 *)
776 							 produce_q->q_header +
777 							 PAGE_SIZE);
778 			result = VMCI_SUCCESS;
779 		} else {
780 			pr_warn("vmap failed\n");
781 			result = VMCI_ERROR_NO_MEM;
782 		}
783 	} else {
784 		result = VMCI_SUCCESS;
785 	}
786 
787 	return result;
788 }
789 
790 /*
791  * Unmaps previously mapped queue pair headers from the kernel.
792  * Pages are unpinned.
793  */
qp_host_unmap_queues(u32 gid,struct vmci_queue * produce_q,struct vmci_queue * consume_q)794 static int qp_host_unmap_queues(u32 gid,
795 				struct vmci_queue *produce_q,
796 				struct vmci_queue *consume_q)
797 {
798 	if (produce_q->q_header) {
799 		if (produce_q->q_header < consume_q->q_header)
800 			vunmap(produce_q->q_header);
801 		else
802 			vunmap(consume_q->q_header);
803 
804 		produce_q->q_header = NULL;
805 		consume_q->q_header = NULL;
806 	}
807 
808 	return VMCI_SUCCESS;
809 }
810 
811 /*
812  * Finds the entry in the list corresponding to a given handle. Assumes
813  * that the list is locked.
814  */
qp_list_find(struct qp_list * qp_list,struct vmci_handle handle)815 static struct qp_entry *qp_list_find(struct qp_list *qp_list,
816 				     struct vmci_handle handle)
817 {
818 	struct qp_entry *entry;
819 
820 	if (vmci_handle_is_invalid(handle))
821 		return NULL;
822 
823 	list_for_each_entry(entry, &qp_list->head, list_item) {
824 		if (vmci_handle_is_equal(entry->handle, handle))
825 			return entry;
826 	}
827 
828 	return NULL;
829 }
830 
831 /*
832  * Finds the entry in the list corresponding to a given handle.
833  */
834 static struct qp_guest_endpoint *
qp_guest_handle_to_entry(struct vmci_handle handle)835 qp_guest_handle_to_entry(struct vmci_handle handle)
836 {
837 	struct qp_guest_endpoint *entry;
838 	struct qp_entry *qp = qp_list_find(&qp_guest_endpoints, handle);
839 
840 	entry = qp ? container_of(
841 		qp, struct qp_guest_endpoint, qp) : NULL;
842 	return entry;
843 }
844 
845 /*
846  * Finds the entry in the list corresponding to a given handle.
847  */
848 static struct qp_broker_entry *
qp_broker_handle_to_entry(struct vmci_handle handle)849 qp_broker_handle_to_entry(struct vmci_handle handle)
850 {
851 	struct qp_broker_entry *entry;
852 	struct qp_entry *qp = qp_list_find(&qp_broker_list, handle);
853 
854 	entry = qp ? container_of(
855 		qp, struct qp_broker_entry, qp) : NULL;
856 	return entry;
857 }
858 
859 /*
860  * Dispatches a queue pair event message directly into the local event
861  * queue.
862  */
qp_notify_peer_local(bool attach,struct vmci_handle handle)863 static int qp_notify_peer_local(bool attach, struct vmci_handle handle)
864 {
865 	u32 context_id = vmci_get_context_id();
866 	struct vmci_event_qp ev;
867 
868 	memset(&ev, 0, sizeof(ev));
869 	ev.msg.hdr.dst = vmci_make_handle(context_id, VMCI_EVENT_HANDLER);
870 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
871 					  VMCI_CONTEXT_RESOURCE_ID);
872 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
873 	ev.msg.event_data.event =
874 	    attach ? VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
875 	ev.payload.peer_id = context_id;
876 	ev.payload.handle = handle;
877 
878 	return vmci_event_dispatch(&ev.msg.hdr);
879 }
880 
881 /*
882  * Allocates and initializes a qp_guest_endpoint structure.
883  * Allocates a queue_pair rid (and handle) iff the given entry has
884  * an invalid handle.  0 through VMCI_RESERVED_RESOURCE_ID_MAX
885  * are reserved handles.  Assumes that the QP list mutex is held
886  * by the caller.
887  */
888 static struct qp_guest_endpoint *
qp_guest_endpoint_create(struct vmci_handle handle,u32 peer,u32 flags,u64 produce_size,u64 consume_size,void * produce_q,void * consume_q)889 qp_guest_endpoint_create(struct vmci_handle handle,
890 			 u32 peer,
891 			 u32 flags,
892 			 u64 produce_size,
893 			 u64 consume_size,
894 			 void *produce_q,
895 			 void *consume_q)
896 {
897 	int result;
898 	struct qp_guest_endpoint *entry;
899 	/* One page each for the queue headers. */
900 	const u64 num_ppns = DIV_ROUND_UP(produce_size, PAGE_SIZE) +
901 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 2;
902 
903 	if (vmci_handle_is_invalid(handle)) {
904 		u32 context_id = vmci_get_context_id();
905 
906 		handle = vmci_make_handle(context_id, VMCI_INVALID_ID);
907 	}
908 
909 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
910 	if (entry) {
911 		entry->qp.peer = peer;
912 		entry->qp.flags = flags;
913 		entry->qp.produce_size = produce_size;
914 		entry->qp.consume_size = consume_size;
915 		entry->qp.ref_count = 0;
916 		entry->num_ppns = num_ppns;
917 		entry->produce_q = produce_q;
918 		entry->consume_q = consume_q;
919 		INIT_LIST_HEAD(&entry->qp.list_item);
920 
921 		/* Add resource obj */
922 		result = vmci_resource_add(&entry->resource,
923 					   VMCI_RESOURCE_TYPE_QPAIR_GUEST,
924 					   handle);
925 		entry->qp.handle = vmci_resource_handle(&entry->resource);
926 		if ((result != VMCI_SUCCESS) ||
927 		    qp_list_find(&qp_guest_endpoints, entry->qp.handle)) {
928 			pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
929 				handle.context, handle.resource, result);
930 			kfree(entry);
931 			entry = NULL;
932 		}
933 	}
934 	return entry;
935 }
936 
937 /*
938  * Frees a qp_guest_endpoint structure.
939  */
qp_guest_endpoint_destroy(struct qp_guest_endpoint * entry)940 static void qp_guest_endpoint_destroy(struct qp_guest_endpoint *entry)
941 {
942 	qp_free_ppn_set(&entry->ppn_set);
943 	qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
944 	qp_free_queue(entry->produce_q, entry->qp.produce_size);
945 	qp_free_queue(entry->consume_q, entry->qp.consume_size);
946 	/* Unlink from resource hash table and free callback */
947 	vmci_resource_remove(&entry->resource);
948 
949 	kfree(entry);
950 }
951 
952 /*
953  * Helper to make a queue_pairAlloc hypercall when the driver is
954  * supporting a guest device.
955  */
qp_alloc_hypercall(const struct qp_guest_endpoint * entry)956 static int qp_alloc_hypercall(const struct qp_guest_endpoint *entry)
957 {
958 	struct vmci_qp_alloc_msg *alloc_msg;
959 	size_t msg_size;
960 	int result;
961 
962 	if (!entry || entry->num_ppns <= 2)
963 		return VMCI_ERROR_INVALID_ARGS;
964 
965 	msg_size = sizeof(*alloc_msg) +
966 	    (size_t) entry->num_ppns * sizeof(u32);
967 	alloc_msg = kmalloc(msg_size, GFP_KERNEL);
968 	if (!alloc_msg)
969 		return VMCI_ERROR_NO_MEM;
970 
971 	alloc_msg->hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
972 					      VMCI_QUEUEPAIR_ALLOC);
973 	alloc_msg->hdr.src = VMCI_ANON_SRC_HANDLE;
974 	alloc_msg->hdr.payload_size = msg_size - VMCI_DG_HEADERSIZE;
975 	alloc_msg->handle = entry->qp.handle;
976 	alloc_msg->peer = entry->qp.peer;
977 	alloc_msg->flags = entry->qp.flags;
978 	alloc_msg->produce_size = entry->qp.produce_size;
979 	alloc_msg->consume_size = entry->qp.consume_size;
980 	alloc_msg->num_ppns = entry->num_ppns;
981 
982 	result = qp_populate_ppn_set((u8 *)alloc_msg + sizeof(*alloc_msg),
983 				     &entry->ppn_set);
984 	if (result == VMCI_SUCCESS)
985 		result = vmci_send_datagram(&alloc_msg->hdr);
986 
987 	kfree(alloc_msg);
988 
989 	return result;
990 }
991 
992 /*
993  * Helper to make a queue_pairDetach hypercall when the driver is
994  * supporting a guest device.
995  */
qp_detatch_hypercall(struct vmci_handle handle)996 static int qp_detatch_hypercall(struct vmci_handle handle)
997 {
998 	struct vmci_qp_detach_msg detach_msg;
999 
1000 	detach_msg.hdr.dst = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1001 					      VMCI_QUEUEPAIR_DETACH);
1002 	detach_msg.hdr.src = VMCI_ANON_SRC_HANDLE;
1003 	detach_msg.hdr.payload_size = sizeof(handle);
1004 	detach_msg.handle = handle;
1005 
1006 	return vmci_send_datagram(&detach_msg.hdr);
1007 }
1008 
1009 /*
1010  * Adds the given entry to the list. Assumes that the list is locked.
1011  */
qp_list_add_entry(struct qp_list * qp_list,struct qp_entry * entry)1012 static void qp_list_add_entry(struct qp_list *qp_list, struct qp_entry *entry)
1013 {
1014 	if (entry)
1015 		list_add(&entry->list_item, &qp_list->head);
1016 }
1017 
1018 /*
1019  * Removes the given entry from the list. Assumes that the list is locked.
1020  */
qp_list_remove_entry(struct qp_list * qp_list,struct qp_entry * entry)1021 static void qp_list_remove_entry(struct qp_list *qp_list,
1022 				 struct qp_entry *entry)
1023 {
1024 	if (entry)
1025 		list_del(&entry->list_item);
1026 }
1027 
1028 /*
1029  * Helper for VMCI queue_pair detach interface. Frees the physical
1030  * pages for the queue pair.
1031  */
qp_detatch_guest_work(struct vmci_handle handle)1032 static int qp_detatch_guest_work(struct vmci_handle handle)
1033 {
1034 	int result;
1035 	struct qp_guest_endpoint *entry;
1036 	u32 ref_count = ~0;	/* To avoid compiler warning below */
1037 
1038 	mutex_lock(&qp_guest_endpoints.mutex);
1039 
1040 	entry = qp_guest_handle_to_entry(handle);
1041 	if (!entry) {
1042 		mutex_unlock(&qp_guest_endpoints.mutex);
1043 		return VMCI_ERROR_NOT_FOUND;
1044 	}
1045 
1046 	if (entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1047 		result = VMCI_SUCCESS;
1048 
1049 		if (entry->qp.ref_count > 1) {
1050 			result = qp_notify_peer_local(false, handle);
1051 			/*
1052 			 * We can fail to notify a local queuepair
1053 			 * because we can't allocate.  We still want
1054 			 * to release the entry if that happens, so
1055 			 * don't bail out yet.
1056 			 */
1057 		}
1058 	} else {
1059 		result = qp_detatch_hypercall(handle);
1060 		if (result < VMCI_SUCCESS) {
1061 			/*
1062 			 * We failed to notify a non-local queuepair.
1063 			 * That other queuepair might still be
1064 			 * accessing the shared memory, so don't
1065 			 * release the entry yet.  It will get cleaned
1066 			 * up by VMCIqueue_pair_Exit() if necessary
1067 			 * (assuming we are going away, otherwise why
1068 			 * did this fail?).
1069 			 */
1070 
1071 			mutex_unlock(&qp_guest_endpoints.mutex);
1072 			return result;
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * If we get here then we either failed to notify a local queuepair, or
1078 	 * we succeeded in all cases.  Release the entry if required.
1079 	 */
1080 
1081 	entry->qp.ref_count--;
1082 	if (entry->qp.ref_count == 0)
1083 		qp_list_remove_entry(&qp_guest_endpoints, &entry->qp);
1084 
1085 	/* If we didn't remove the entry, this could change once we unlock. */
1086 	if (entry)
1087 		ref_count = entry->qp.ref_count;
1088 
1089 	mutex_unlock(&qp_guest_endpoints.mutex);
1090 
1091 	if (ref_count == 0)
1092 		qp_guest_endpoint_destroy(entry);
1093 
1094 	return result;
1095 }
1096 
1097 /*
1098  * This functions handles the actual allocation of a VMCI queue
1099  * pair guest endpoint. Allocates physical pages for the queue
1100  * pair. It makes OS dependent calls through generic wrappers.
1101  */
qp_alloc_guest_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags)1102 static int qp_alloc_guest_work(struct vmci_handle *handle,
1103 			       struct vmci_queue **produce_q,
1104 			       u64 produce_size,
1105 			       struct vmci_queue **consume_q,
1106 			       u64 consume_size,
1107 			       u32 peer,
1108 			       u32 flags,
1109 			       u32 priv_flags)
1110 {
1111 	const u64 num_produce_pages =
1112 	    DIV_ROUND_UP(produce_size, PAGE_SIZE) + 1;
1113 	const u64 num_consume_pages =
1114 	    DIV_ROUND_UP(consume_size, PAGE_SIZE) + 1;
1115 	void *my_produce_q = NULL;
1116 	void *my_consume_q = NULL;
1117 	int result;
1118 	struct qp_guest_endpoint *queue_pair_entry = NULL;
1119 
1120 	if (priv_flags != VMCI_NO_PRIVILEGE_FLAGS)
1121 		return VMCI_ERROR_NO_ACCESS;
1122 
1123 	mutex_lock(&qp_guest_endpoints.mutex);
1124 
1125 	queue_pair_entry = qp_guest_handle_to_entry(*handle);
1126 	if (queue_pair_entry) {
1127 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1128 			/* Local attach case. */
1129 			if (queue_pair_entry->qp.ref_count > 1) {
1130 				pr_devel("Error attempting to attach more than once\n");
1131 				result = VMCI_ERROR_UNAVAILABLE;
1132 				goto error_keep_entry;
1133 			}
1134 
1135 			if (queue_pair_entry->qp.produce_size != consume_size ||
1136 			    queue_pair_entry->qp.consume_size !=
1137 			    produce_size ||
1138 			    queue_pair_entry->qp.flags !=
1139 			    (flags & ~VMCI_QPFLAG_ATTACH_ONLY)) {
1140 				pr_devel("Error mismatched queue pair in local attach\n");
1141 				result = VMCI_ERROR_QUEUEPAIR_MISMATCH;
1142 				goto error_keep_entry;
1143 			}
1144 
1145 			/*
1146 			 * Do a local attach.  We swap the consume and
1147 			 * produce queues for the attacher and deliver
1148 			 * an attach event.
1149 			 */
1150 			result = qp_notify_peer_local(true, *handle);
1151 			if (result < VMCI_SUCCESS)
1152 				goto error_keep_entry;
1153 
1154 			my_produce_q = queue_pair_entry->consume_q;
1155 			my_consume_q = queue_pair_entry->produce_q;
1156 			goto out;
1157 		}
1158 
1159 		result = VMCI_ERROR_ALREADY_EXISTS;
1160 		goto error_keep_entry;
1161 	}
1162 
1163 	my_produce_q = qp_alloc_queue(produce_size, flags);
1164 	if (!my_produce_q) {
1165 		pr_warn("Error allocating pages for produce queue\n");
1166 		result = VMCI_ERROR_NO_MEM;
1167 		goto error;
1168 	}
1169 
1170 	my_consume_q = qp_alloc_queue(consume_size, flags);
1171 	if (!my_consume_q) {
1172 		pr_warn("Error allocating pages for consume queue\n");
1173 		result = VMCI_ERROR_NO_MEM;
1174 		goto error;
1175 	}
1176 
1177 	queue_pair_entry = qp_guest_endpoint_create(*handle, peer, flags,
1178 						    produce_size, consume_size,
1179 						    my_produce_q, my_consume_q);
1180 	if (!queue_pair_entry) {
1181 		pr_warn("Error allocating memory in %s\n", __func__);
1182 		result = VMCI_ERROR_NO_MEM;
1183 		goto error;
1184 	}
1185 
1186 	result = qp_alloc_ppn_set(my_produce_q, num_produce_pages, my_consume_q,
1187 				  num_consume_pages,
1188 				  &queue_pair_entry->ppn_set);
1189 	if (result < VMCI_SUCCESS) {
1190 		pr_warn("qp_alloc_ppn_set failed\n");
1191 		goto error;
1192 	}
1193 
1194 	/*
1195 	 * It's only necessary to notify the host if this queue pair will be
1196 	 * attached to from another context.
1197 	 */
1198 	if (queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) {
1199 		/* Local create case. */
1200 		u32 context_id = vmci_get_context_id();
1201 
1202 		/*
1203 		 * Enforce similar checks on local queue pairs as we
1204 		 * do for regular ones.  The handle's context must
1205 		 * match the creator or attacher context id (here they
1206 		 * are both the current context id) and the
1207 		 * attach-only flag cannot exist during create.  We
1208 		 * also ensure specified peer is this context or an
1209 		 * invalid one.
1210 		 */
1211 		if (queue_pair_entry->qp.handle.context != context_id ||
1212 		    (queue_pair_entry->qp.peer != VMCI_INVALID_ID &&
1213 		     queue_pair_entry->qp.peer != context_id)) {
1214 			result = VMCI_ERROR_NO_ACCESS;
1215 			goto error;
1216 		}
1217 
1218 		if (queue_pair_entry->qp.flags & VMCI_QPFLAG_ATTACH_ONLY) {
1219 			result = VMCI_ERROR_NOT_FOUND;
1220 			goto error;
1221 		}
1222 	} else {
1223 		result = qp_alloc_hypercall(queue_pair_entry);
1224 		if (result < VMCI_SUCCESS) {
1225 			pr_warn("qp_alloc_hypercall result = %d\n", result);
1226 			goto error;
1227 		}
1228 	}
1229 
1230 	qp_init_queue_mutex((struct vmci_queue *)my_produce_q,
1231 			    (struct vmci_queue *)my_consume_q);
1232 
1233 	qp_list_add_entry(&qp_guest_endpoints, &queue_pair_entry->qp);
1234 
1235  out:
1236 	queue_pair_entry->qp.ref_count++;
1237 	*handle = queue_pair_entry->qp.handle;
1238 	*produce_q = (struct vmci_queue *)my_produce_q;
1239 	*consume_q = (struct vmci_queue *)my_consume_q;
1240 
1241 	/*
1242 	 * We should initialize the queue pair header pages on a local
1243 	 * queue pair create.  For non-local queue pairs, the
1244 	 * hypervisor initializes the header pages in the create step.
1245 	 */
1246 	if ((queue_pair_entry->qp.flags & VMCI_QPFLAG_LOCAL) &&
1247 	    queue_pair_entry->qp.ref_count == 1) {
1248 		vmci_q_header_init((*produce_q)->q_header, *handle);
1249 		vmci_q_header_init((*consume_q)->q_header, *handle);
1250 	}
1251 
1252 	mutex_unlock(&qp_guest_endpoints.mutex);
1253 
1254 	return VMCI_SUCCESS;
1255 
1256  error:
1257 	mutex_unlock(&qp_guest_endpoints.mutex);
1258 	if (queue_pair_entry) {
1259 		/* The queues will be freed inside the destroy routine. */
1260 		qp_guest_endpoint_destroy(queue_pair_entry);
1261 	} else {
1262 		qp_free_queue(my_produce_q, produce_size);
1263 		qp_free_queue(my_consume_q, consume_size);
1264 	}
1265 	return result;
1266 
1267  error_keep_entry:
1268 	/* This path should only be used when an existing entry was found. */
1269 	mutex_unlock(&qp_guest_endpoints.mutex);
1270 	return result;
1271 }
1272 
1273 /*
1274  * The first endpoint issuing a queue pair allocation will create the state
1275  * of the queue pair in the queue pair broker.
1276  *
1277  * If the creator is a guest, it will associate a VMX virtual address range
1278  * with the queue pair as specified by the page_store. For compatibility with
1279  * older VMX'en, that would use a separate step to set the VMX virtual
1280  * address range, the virtual address range can be registered later using
1281  * vmci_qp_broker_set_page_store. In that case, a page_store of NULL should be
1282  * used.
1283  *
1284  * If the creator is the host, a page_store of NULL should be used as well,
1285  * since the host is not able to supply a page store for the queue pair.
1286  *
1287  * For older VMX and host callers, the queue pair will be created in the
1288  * VMCIQPB_CREATED_NO_MEM state, and for current VMX callers, it will be
1289  * created in VMCOQPB_CREATED_MEM state.
1290  */
qp_broker_create(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1291 static int qp_broker_create(struct vmci_handle handle,
1292 			    u32 peer,
1293 			    u32 flags,
1294 			    u32 priv_flags,
1295 			    u64 produce_size,
1296 			    u64 consume_size,
1297 			    struct vmci_qp_page_store *page_store,
1298 			    struct vmci_ctx *context,
1299 			    vmci_event_release_cb wakeup_cb,
1300 			    void *client_data, struct qp_broker_entry **ent)
1301 {
1302 	struct qp_broker_entry *entry = NULL;
1303 	const u32 context_id = vmci_ctx_get_id(context);
1304 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1305 	int result;
1306 	u64 guest_produce_size;
1307 	u64 guest_consume_size;
1308 
1309 	/* Do not create if the caller asked not to. */
1310 	if (flags & VMCI_QPFLAG_ATTACH_ONLY)
1311 		return VMCI_ERROR_NOT_FOUND;
1312 
1313 	/*
1314 	 * Creator's context ID should match handle's context ID or the creator
1315 	 * must allow the context in handle's context ID as the "peer".
1316 	 */
1317 	if (handle.context != context_id && handle.context != peer)
1318 		return VMCI_ERROR_NO_ACCESS;
1319 
1320 	if (VMCI_CONTEXT_IS_VM(context_id) && VMCI_CONTEXT_IS_VM(peer))
1321 		return VMCI_ERROR_DST_UNREACHABLE;
1322 
1323 	/*
1324 	 * Creator's context ID for local queue pairs should match the
1325 	 * peer, if a peer is specified.
1326 	 */
1327 	if (is_local && peer != VMCI_INVALID_ID && context_id != peer)
1328 		return VMCI_ERROR_NO_ACCESS;
1329 
1330 	entry = kzalloc(sizeof(*entry), GFP_ATOMIC);
1331 	if (!entry)
1332 		return VMCI_ERROR_NO_MEM;
1333 
1334 	if (vmci_ctx_get_id(context) == VMCI_HOST_CONTEXT_ID && !is_local) {
1335 		/*
1336 		 * The queue pair broker entry stores values from the guest
1337 		 * point of view, so a creating host side endpoint should swap
1338 		 * produce and consume values -- unless it is a local queue
1339 		 * pair, in which case no swapping is necessary, since the local
1340 		 * attacher will swap queues.
1341 		 */
1342 
1343 		guest_produce_size = consume_size;
1344 		guest_consume_size = produce_size;
1345 	} else {
1346 		guest_produce_size = produce_size;
1347 		guest_consume_size = consume_size;
1348 	}
1349 
1350 	entry->qp.handle = handle;
1351 	entry->qp.peer = peer;
1352 	entry->qp.flags = flags;
1353 	entry->qp.produce_size = guest_produce_size;
1354 	entry->qp.consume_size = guest_consume_size;
1355 	entry->qp.ref_count = 1;
1356 	entry->create_id = context_id;
1357 	entry->attach_id = VMCI_INVALID_ID;
1358 	entry->state = VMCIQPB_NEW;
1359 	entry->require_trusted_attach =
1360 	    !!(context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED);
1361 	entry->created_by_trusted =
1362 	    !!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED);
1363 	entry->vmci_page_files = false;
1364 	entry->wakeup_cb = wakeup_cb;
1365 	entry->client_data = client_data;
1366 	entry->produce_q = qp_host_alloc_queue(guest_produce_size);
1367 	if (entry->produce_q == NULL) {
1368 		result = VMCI_ERROR_NO_MEM;
1369 		goto error;
1370 	}
1371 	entry->consume_q = qp_host_alloc_queue(guest_consume_size);
1372 	if (entry->consume_q == NULL) {
1373 		result = VMCI_ERROR_NO_MEM;
1374 		goto error;
1375 	}
1376 
1377 	qp_init_queue_mutex(entry->produce_q, entry->consume_q);
1378 
1379 	INIT_LIST_HEAD(&entry->qp.list_item);
1380 
1381 	if (is_local) {
1382 		u8 *tmp;
1383 
1384 		entry->local_mem = kcalloc(QPE_NUM_PAGES(entry->qp),
1385 					   PAGE_SIZE, GFP_KERNEL);
1386 		if (entry->local_mem == NULL) {
1387 			result = VMCI_ERROR_NO_MEM;
1388 			goto error;
1389 		}
1390 		entry->state = VMCIQPB_CREATED_MEM;
1391 		entry->produce_q->q_header = entry->local_mem;
1392 		tmp = (u8 *)entry->local_mem + PAGE_SIZE *
1393 		    (DIV_ROUND_UP(entry->qp.produce_size, PAGE_SIZE) + 1);
1394 		entry->consume_q->q_header = (struct vmci_queue_header *)tmp;
1395 	} else if (page_store) {
1396 		/*
1397 		 * The VMX already initialized the queue pair headers, so no
1398 		 * need for the kernel side to do that.
1399 		 */
1400 		result = qp_host_register_user_memory(page_store,
1401 						      entry->produce_q,
1402 						      entry->consume_q);
1403 		if (result < VMCI_SUCCESS)
1404 			goto error;
1405 
1406 		entry->state = VMCIQPB_CREATED_MEM;
1407 	} else {
1408 		/*
1409 		 * A create without a page_store may be either a host
1410 		 * side create (in which case we are waiting for the
1411 		 * guest side to supply the memory) or an old style
1412 		 * queue pair create (in which case we will expect a
1413 		 * set page store call as the next step).
1414 		 */
1415 		entry->state = VMCIQPB_CREATED_NO_MEM;
1416 	}
1417 
1418 	qp_list_add_entry(&qp_broker_list, &entry->qp);
1419 	if (ent != NULL)
1420 		*ent = entry;
1421 
1422 	/* Add to resource obj */
1423 	result = vmci_resource_add(&entry->resource,
1424 				   VMCI_RESOURCE_TYPE_QPAIR_HOST,
1425 				   handle);
1426 	if (result != VMCI_SUCCESS) {
1427 		pr_warn("Failed to add new resource (handle=0x%x:0x%x), error: %d",
1428 			handle.context, handle.resource, result);
1429 		goto error;
1430 	}
1431 
1432 	entry->qp.handle = vmci_resource_handle(&entry->resource);
1433 	if (is_local) {
1434 		vmci_q_header_init(entry->produce_q->q_header,
1435 				   entry->qp.handle);
1436 		vmci_q_header_init(entry->consume_q->q_header,
1437 				   entry->qp.handle);
1438 	}
1439 
1440 	vmci_ctx_qp_create(context, entry->qp.handle);
1441 
1442 	return VMCI_SUCCESS;
1443 
1444  error:
1445 	if (entry != NULL) {
1446 		qp_host_free_queue(entry->produce_q, guest_produce_size);
1447 		qp_host_free_queue(entry->consume_q, guest_consume_size);
1448 		kfree(entry);
1449 	}
1450 
1451 	return result;
1452 }
1453 
1454 /*
1455  * Enqueues an event datagram to notify the peer VM attached to
1456  * the given queue pair handle about attach/detach event by the
1457  * given VM.  Returns Payload size of datagram enqueued on
1458  * success, error code otherwise.
1459  */
qp_notify_peer(bool attach,struct vmci_handle handle,u32 my_id,u32 peer_id)1460 static int qp_notify_peer(bool attach,
1461 			  struct vmci_handle handle,
1462 			  u32 my_id,
1463 			  u32 peer_id)
1464 {
1465 	int rv;
1466 	struct vmci_event_qp ev;
1467 
1468 	if (vmci_handle_is_invalid(handle) || my_id == VMCI_INVALID_ID ||
1469 	    peer_id == VMCI_INVALID_ID)
1470 		return VMCI_ERROR_INVALID_ARGS;
1471 
1472 	/*
1473 	 * In vmci_ctx_enqueue_datagram() we enforce the upper limit on
1474 	 * number of pending events from the hypervisor to a given VM
1475 	 * otherwise a rogue VM could do an arbitrary number of attach
1476 	 * and detach operations causing memory pressure in the host
1477 	 * kernel.
1478 	 */
1479 
1480 	memset(&ev, 0, sizeof(ev));
1481 	ev.msg.hdr.dst = vmci_make_handle(peer_id, VMCI_EVENT_HANDLER);
1482 	ev.msg.hdr.src = vmci_make_handle(VMCI_HYPERVISOR_CONTEXT_ID,
1483 					  VMCI_CONTEXT_RESOURCE_ID);
1484 	ev.msg.hdr.payload_size = sizeof(ev) - sizeof(ev.msg.hdr);
1485 	ev.msg.event_data.event = attach ?
1486 	    VMCI_EVENT_QP_PEER_ATTACH : VMCI_EVENT_QP_PEER_DETACH;
1487 	ev.payload.handle = handle;
1488 	ev.payload.peer_id = my_id;
1489 
1490 	rv = vmci_datagram_dispatch(VMCI_HYPERVISOR_CONTEXT_ID,
1491 				    &ev.msg.hdr, false);
1492 	if (rv < VMCI_SUCCESS)
1493 		pr_warn("Failed to enqueue queue_pair %s event datagram for context (ID=0x%x)\n",
1494 			attach ? "ATTACH" : "DETACH", peer_id);
1495 
1496 	return rv;
1497 }
1498 
1499 /*
1500  * The second endpoint issuing a queue pair allocation will attach to
1501  * the queue pair registered with the queue pair broker.
1502  *
1503  * If the attacher is a guest, it will associate a VMX virtual address
1504  * range with the queue pair as specified by the page_store. At this
1505  * point, the already attach host endpoint may start using the queue
1506  * pair, and an attach event is sent to it. For compatibility with
1507  * older VMX'en, that used a separate step to set the VMX virtual
1508  * address range, the virtual address range can be registered later
1509  * using vmci_qp_broker_set_page_store. In that case, a page_store of
1510  * NULL should be used, and the attach event will be generated once
1511  * the actual page store has been set.
1512  *
1513  * If the attacher is the host, a page_store of NULL should be used as
1514  * well, since the page store information is already set by the guest.
1515  *
1516  * For new VMX and host callers, the queue pair will be moved to the
1517  * VMCIQPB_ATTACHED_MEM state, and for older VMX callers, it will be
1518  * moved to the VMCOQPB_ATTACHED_NO_MEM state.
1519  */
qp_broker_attach(struct qp_broker_entry * entry,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent)1520 static int qp_broker_attach(struct qp_broker_entry *entry,
1521 			    u32 peer,
1522 			    u32 flags,
1523 			    u32 priv_flags,
1524 			    u64 produce_size,
1525 			    u64 consume_size,
1526 			    struct vmci_qp_page_store *page_store,
1527 			    struct vmci_ctx *context,
1528 			    vmci_event_release_cb wakeup_cb,
1529 			    void *client_data,
1530 			    struct qp_broker_entry **ent)
1531 {
1532 	const u32 context_id = vmci_ctx_get_id(context);
1533 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1534 	int result;
1535 
1536 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
1537 	    entry->state != VMCIQPB_CREATED_MEM)
1538 		return VMCI_ERROR_UNAVAILABLE;
1539 
1540 	if (is_local) {
1541 		if (!(entry->qp.flags & VMCI_QPFLAG_LOCAL) ||
1542 		    context_id != entry->create_id) {
1543 			return VMCI_ERROR_INVALID_ARGS;
1544 		}
1545 	} else if (context_id == entry->create_id ||
1546 		   context_id == entry->attach_id) {
1547 		return VMCI_ERROR_ALREADY_EXISTS;
1548 	}
1549 
1550 	if (VMCI_CONTEXT_IS_VM(context_id) &&
1551 	    VMCI_CONTEXT_IS_VM(entry->create_id))
1552 		return VMCI_ERROR_DST_UNREACHABLE;
1553 
1554 	/*
1555 	 * If we are attaching from a restricted context then the queuepair
1556 	 * must have been created by a trusted endpoint.
1557 	 */
1558 	if ((context->priv_flags & VMCI_PRIVILEGE_FLAG_RESTRICTED) &&
1559 	    !entry->created_by_trusted)
1560 		return VMCI_ERROR_NO_ACCESS;
1561 
1562 	/*
1563 	 * If we are attaching to a queuepair that was created by a restricted
1564 	 * context then we must be trusted.
1565 	 */
1566 	if (entry->require_trusted_attach &&
1567 	    (!(priv_flags & VMCI_PRIVILEGE_FLAG_TRUSTED)))
1568 		return VMCI_ERROR_NO_ACCESS;
1569 
1570 	/*
1571 	 * If the creator specifies VMCI_INVALID_ID in "peer" field, access
1572 	 * control check is not performed.
1573 	 */
1574 	if (entry->qp.peer != VMCI_INVALID_ID && entry->qp.peer != context_id)
1575 		return VMCI_ERROR_NO_ACCESS;
1576 
1577 	if (entry->create_id == VMCI_HOST_CONTEXT_ID) {
1578 		/*
1579 		 * Do not attach if the caller doesn't support Host Queue Pairs
1580 		 * and a host created this queue pair.
1581 		 */
1582 
1583 		if (!vmci_ctx_supports_host_qp(context))
1584 			return VMCI_ERROR_INVALID_RESOURCE;
1585 
1586 	} else if (context_id == VMCI_HOST_CONTEXT_ID) {
1587 		struct vmci_ctx *create_context;
1588 		bool supports_host_qp;
1589 
1590 		/*
1591 		 * Do not attach a host to a user created queue pair if that
1592 		 * user doesn't support host queue pair end points.
1593 		 */
1594 
1595 		create_context = vmci_ctx_get(entry->create_id);
1596 		supports_host_qp = vmci_ctx_supports_host_qp(create_context);
1597 		vmci_ctx_put(create_context);
1598 
1599 		if (!supports_host_qp)
1600 			return VMCI_ERROR_INVALID_RESOURCE;
1601 	}
1602 
1603 	if ((entry->qp.flags & ~VMCI_QP_ASYMM) != (flags & ~VMCI_QP_ASYMM_PEER))
1604 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1605 
1606 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1607 		/*
1608 		 * The queue pair broker entry stores values from the guest
1609 		 * point of view, so an attaching guest should match the values
1610 		 * stored in the entry.
1611 		 */
1612 
1613 		if (entry->qp.produce_size != produce_size ||
1614 		    entry->qp.consume_size != consume_size) {
1615 			return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1616 		}
1617 	} else if (entry->qp.produce_size != consume_size ||
1618 		   entry->qp.consume_size != produce_size) {
1619 		return VMCI_ERROR_QUEUEPAIR_MISMATCH;
1620 	}
1621 
1622 	if (context_id != VMCI_HOST_CONTEXT_ID) {
1623 		/*
1624 		 * If a guest attached to a queue pair, it will supply
1625 		 * the backing memory.  If this is a pre NOVMVM vmx,
1626 		 * the backing memory will be supplied by calling
1627 		 * vmci_qp_broker_set_page_store() following the
1628 		 * return of the vmci_qp_broker_alloc() call. If it is
1629 		 * a vmx of version NOVMVM or later, the page store
1630 		 * must be supplied as part of the
1631 		 * vmci_qp_broker_alloc call.  Under all circumstances
1632 		 * must the initially created queue pair not have any
1633 		 * memory associated with it already.
1634 		 */
1635 
1636 		if (entry->state != VMCIQPB_CREATED_NO_MEM)
1637 			return VMCI_ERROR_INVALID_ARGS;
1638 
1639 		if (page_store != NULL) {
1640 			/*
1641 			 * Patch up host state to point to guest
1642 			 * supplied memory. The VMX already
1643 			 * initialized the queue pair headers, so no
1644 			 * need for the kernel side to do that.
1645 			 */
1646 
1647 			result = qp_host_register_user_memory(page_store,
1648 							      entry->produce_q,
1649 							      entry->consume_q);
1650 			if (result < VMCI_SUCCESS)
1651 				return result;
1652 
1653 			entry->state = VMCIQPB_ATTACHED_MEM;
1654 		} else {
1655 			entry->state = VMCIQPB_ATTACHED_NO_MEM;
1656 		}
1657 	} else if (entry->state == VMCIQPB_CREATED_NO_MEM) {
1658 		/*
1659 		 * The host side is attempting to attach to a queue
1660 		 * pair that doesn't have any memory associated with
1661 		 * it. This must be a pre NOVMVM vmx that hasn't set
1662 		 * the page store information yet, or a quiesced VM.
1663 		 */
1664 
1665 		return VMCI_ERROR_UNAVAILABLE;
1666 	} else {
1667 		/* The host side has successfully attached to a queue pair. */
1668 		entry->state = VMCIQPB_ATTACHED_MEM;
1669 	}
1670 
1671 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
1672 		result =
1673 		    qp_notify_peer(true, entry->qp.handle, context_id,
1674 				   entry->create_id);
1675 		if (result < VMCI_SUCCESS)
1676 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
1677 				entry->create_id, entry->qp.handle.context,
1678 				entry->qp.handle.resource);
1679 	}
1680 
1681 	entry->attach_id = context_id;
1682 	entry->qp.ref_count++;
1683 	if (wakeup_cb) {
1684 		entry->wakeup_cb = wakeup_cb;
1685 		entry->client_data = client_data;
1686 	}
1687 
1688 	/*
1689 	 * When attaching to local queue pairs, the context already has
1690 	 * an entry tracking the queue pair, so don't add another one.
1691 	 */
1692 	if (!is_local)
1693 		vmci_ctx_qp_create(context, entry->qp.handle);
1694 
1695 	if (ent != NULL)
1696 		*ent = entry;
1697 
1698 	return VMCI_SUCCESS;
1699 }
1700 
1701 /*
1702  * queue_pair_Alloc for use when setting up queue pair endpoints
1703  * on the host.
1704  */
qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context,vmci_event_release_cb wakeup_cb,void * client_data,struct qp_broker_entry ** ent,bool * swap)1705 static int qp_broker_alloc(struct vmci_handle handle,
1706 			   u32 peer,
1707 			   u32 flags,
1708 			   u32 priv_flags,
1709 			   u64 produce_size,
1710 			   u64 consume_size,
1711 			   struct vmci_qp_page_store *page_store,
1712 			   struct vmci_ctx *context,
1713 			   vmci_event_release_cb wakeup_cb,
1714 			   void *client_data,
1715 			   struct qp_broker_entry **ent,
1716 			   bool *swap)
1717 {
1718 	const u32 context_id = vmci_ctx_get_id(context);
1719 	bool create;
1720 	struct qp_broker_entry *entry = NULL;
1721 	bool is_local = flags & VMCI_QPFLAG_LOCAL;
1722 	int result;
1723 
1724 	if (vmci_handle_is_invalid(handle) ||
1725 	    (flags & ~VMCI_QP_ALL_FLAGS) || is_local ||
1726 	    !(produce_size || consume_size) ||
1727 	    !context || context_id == VMCI_INVALID_ID ||
1728 	    handle.context == VMCI_INVALID_ID) {
1729 		return VMCI_ERROR_INVALID_ARGS;
1730 	}
1731 
1732 	if (page_store && !VMCI_QP_PAGESTORE_IS_WELLFORMED(page_store))
1733 		return VMCI_ERROR_INVALID_ARGS;
1734 
1735 	/*
1736 	 * In the initial argument check, we ensure that non-vmkernel hosts
1737 	 * are not allowed to create local queue pairs.
1738 	 */
1739 
1740 	mutex_lock(&qp_broker_list.mutex);
1741 
1742 	if (!is_local && vmci_ctx_qp_exists(context, handle)) {
1743 		pr_devel("Context (ID=0x%x) already attached to queue pair (handle=0x%x:0x%x)\n",
1744 			 context_id, handle.context, handle.resource);
1745 		mutex_unlock(&qp_broker_list.mutex);
1746 		return VMCI_ERROR_ALREADY_EXISTS;
1747 	}
1748 
1749 	if (handle.resource != VMCI_INVALID_ID)
1750 		entry = qp_broker_handle_to_entry(handle);
1751 
1752 	if (!entry) {
1753 		create = true;
1754 		result =
1755 		    qp_broker_create(handle, peer, flags, priv_flags,
1756 				     produce_size, consume_size, page_store,
1757 				     context, wakeup_cb, client_data, ent);
1758 	} else {
1759 		create = false;
1760 		result =
1761 		    qp_broker_attach(entry, peer, flags, priv_flags,
1762 				     produce_size, consume_size, page_store,
1763 				     context, wakeup_cb, client_data, ent);
1764 	}
1765 
1766 	mutex_unlock(&qp_broker_list.mutex);
1767 
1768 	if (swap)
1769 		*swap = (context_id == VMCI_HOST_CONTEXT_ID) &&
1770 		    !(create && is_local);
1771 
1772 	return result;
1773 }
1774 
1775 /*
1776  * This function implements the kernel API for allocating a queue
1777  * pair.
1778  */
qp_alloc_host_work(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,vmci_event_release_cb wakeup_cb,void * client_data)1779 static int qp_alloc_host_work(struct vmci_handle *handle,
1780 			      struct vmci_queue **produce_q,
1781 			      u64 produce_size,
1782 			      struct vmci_queue **consume_q,
1783 			      u64 consume_size,
1784 			      u32 peer,
1785 			      u32 flags,
1786 			      u32 priv_flags,
1787 			      vmci_event_release_cb wakeup_cb,
1788 			      void *client_data)
1789 {
1790 	struct vmci_handle new_handle;
1791 	struct vmci_ctx *context;
1792 	struct qp_broker_entry *entry;
1793 	int result;
1794 	bool swap;
1795 
1796 	if (vmci_handle_is_invalid(*handle)) {
1797 		new_handle = vmci_make_handle(
1798 			VMCI_HOST_CONTEXT_ID, VMCI_INVALID_ID);
1799 	} else
1800 		new_handle = *handle;
1801 
1802 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1803 	entry = NULL;
1804 	result =
1805 	    qp_broker_alloc(new_handle, peer, flags, priv_flags,
1806 			    produce_size, consume_size, NULL, context,
1807 			    wakeup_cb, client_data, &entry, &swap);
1808 	if (result == VMCI_SUCCESS) {
1809 		if (swap) {
1810 			/*
1811 			 * If this is a local queue pair, the attacher
1812 			 * will swap around produce and consume
1813 			 * queues.
1814 			 */
1815 
1816 			*produce_q = entry->consume_q;
1817 			*consume_q = entry->produce_q;
1818 		} else {
1819 			*produce_q = entry->produce_q;
1820 			*consume_q = entry->consume_q;
1821 		}
1822 
1823 		*handle = vmci_resource_handle(&entry->resource);
1824 	} else {
1825 		*handle = VMCI_INVALID_HANDLE;
1826 		pr_devel("queue pair broker failed to alloc (result=%d)\n",
1827 			 result);
1828 	}
1829 	vmci_ctx_put(context);
1830 	return result;
1831 }
1832 
1833 /*
1834  * Allocates a VMCI queue_pair. Only checks validity of input
1835  * arguments. The real work is done in the host or guest
1836  * specific function.
1837  */
vmci_qp_alloc(struct vmci_handle * handle,struct vmci_queue ** produce_q,u64 produce_size,struct vmci_queue ** consume_q,u64 consume_size,u32 peer,u32 flags,u32 priv_flags,bool guest_endpoint,vmci_event_release_cb wakeup_cb,void * client_data)1838 int vmci_qp_alloc(struct vmci_handle *handle,
1839 		  struct vmci_queue **produce_q,
1840 		  u64 produce_size,
1841 		  struct vmci_queue **consume_q,
1842 		  u64 consume_size,
1843 		  u32 peer,
1844 		  u32 flags,
1845 		  u32 priv_flags,
1846 		  bool guest_endpoint,
1847 		  vmci_event_release_cb wakeup_cb,
1848 		  void *client_data)
1849 {
1850 	if (!handle || !produce_q || !consume_q ||
1851 	    (!produce_size && !consume_size) || (flags & ~VMCI_QP_ALL_FLAGS))
1852 		return VMCI_ERROR_INVALID_ARGS;
1853 
1854 	if (guest_endpoint) {
1855 		return qp_alloc_guest_work(handle, produce_q,
1856 					   produce_size, consume_q,
1857 					   consume_size, peer,
1858 					   flags, priv_flags);
1859 	} else {
1860 		return qp_alloc_host_work(handle, produce_q,
1861 					  produce_size, consume_q,
1862 					  consume_size, peer, flags,
1863 					  priv_flags, wakeup_cb, client_data);
1864 	}
1865 }
1866 
1867 /*
1868  * This function implements the host kernel API for detaching from
1869  * a queue pair.
1870  */
qp_detatch_host_work(struct vmci_handle handle)1871 static int qp_detatch_host_work(struct vmci_handle handle)
1872 {
1873 	int result;
1874 	struct vmci_ctx *context;
1875 
1876 	context = vmci_ctx_get(VMCI_HOST_CONTEXT_ID);
1877 
1878 	result = vmci_qp_broker_detach(handle, context);
1879 
1880 	vmci_ctx_put(context);
1881 	return result;
1882 }
1883 
1884 /*
1885  * Detaches from a VMCI queue_pair. Only checks validity of input argument.
1886  * Real work is done in the host or guest specific function.
1887  */
qp_detatch(struct vmci_handle handle,bool guest_endpoint)1888 static int qp_detatch(struct vmci_handle handle, bool guest_endpoint)
1889 {
1890 	if (vmci_handle_is_invalid(handle))
1891 		return VMCI_ERROR_INVALID_ARGS;
1892 
1893 	if (guest_endpoint)
1894 		return qp_detatch_guest_work(handle);
1895 	else
1896 		return qp_detatch_host_work(handle);
1897 }
1898 
1899 /*
1900  * Returns the entry from the head of the list. Assumes that the list is
1901  * locked.
1902  */
qp_list_get_head(struct qp_list * qp_list)1903 static struct qp_entry *qp_list_get_head(struct qp_list *qp_list)
1904 {
1905 	if (!list_empty(&qp_list->head)) {
1906 		struct qp_entry *entry =
1907 		    list_first_entry(&qp_list->head, struct qp_entry,
1908 				     list_item);
1909 		return entry;
1910 	}
1911 
1912 	return NULL;
1913 }
1914 
vmci_qp_broker_exit(void)1915 void vmci_qp_broker_exit(void)
1916 {
1917 	struct qp_entry *entry;
1918 	struct qp_broker_entry *be;
1919 
1920 	mutex_lock(&qp_broker_list.mutex);
1921 
1922 	while ((entry = qp_list_get_head(&qp_broker_list))) {
1923 		be = (struct qp_broker_entry *)entry;
1924 
1925 		qp_list_remove_entry(&qp_broker_list, entry);
1926 		kfree(be);
1927 	}
1928 
1929 	mutex_unlock(&qp_broker_list.mutex);
1930 }
1931 
1932 /*
1933  * Requests that a queue pair be allocated with the VMCI queue
1934  * pair broker. Allocates a queue pair entry if one does not
1935  * exist. Attaches to one if it exists, and retrieves the page
1936  * files backing that queue_pair.  Assumes that the queue pair
1937  * broker lock is held.
1938  */
vmci_qp_broker_alloc(struct vmci_handle handle,u32 peer,u32 flags,u32 priv_flags,u64 produce_size,u64 consume_size,struct vmci_qp_page_store * page_store,struct vmci_ctx * context)1939 int vmci_qp_broker_alloc(struct vmci_handle handle,
1940 			 u32 peer,
1941 			 u32 flags,
1942 			 u32 priv_flags,
1943 			 u64 produce_size,
1944 			 u64 consume_size,
1945 			 struct vmci_qp_page_store *page_store,
1946 			 struct vmci_ctx *context)
1947 {
1948 	return qp_broker_alloc(handle, peer, flags, priv_flags,
1949 			       produce_size, consume_size,
1950 			       page_store, context, NULL, NULL, NULL, NULL);
1951 }
1952 
1953 /*
1954  * VMX'en with versions lower than VMCI_VERSION_NOVMVM use a separate
1955  * step to add the UVAs of the VMX mapping of the queue pair. This function
1956  * provides backwards compatibility with such VMX'en, and takes care of
1957  * registering the page store for a queue pair previously allocated by the
1958  * VMX during create or attach. This function will move the queue pair state
1959  * to either from VMCIQBP_CREATED_NO_MEM to VMCIQBP_CREATED_MEM or
1960  * VMCIQBP_ATTACHED_NO_MEM to VMCIQBP_ATTACHED_MEM. If moving to the
1961  * attached state with memory, the queue pair is ready to be used by the
1962  * host peer, and an attached event will be generated.
1963  *
1964  * Assumes that the queue pair broker lock is held.
1965  *
1966  * This function is only used by the hosted platform, since there is no
1967  * issue with backwards compatibility for vmkernel.
1968  */
vmci_qp_broker_set_page_store(struct vmci_handle handle,u64 produce_uva,u64 consume_uva,struct vmci_ctx * context)1969 int vmci_qp_broker_set_page_store(struct vmci_handle handle,
1970 				  u64 produce_uva,
1971 				  u64 consume_uva,
1972 				  struct vmci_ctx *context)
1973 {
1974 	struct qp_broker_entry *entry;
1975 	int result;
1976 	const u32 context_id = vmci_ctx_get_id(context);
1977 
1978 	if (vmci_handle_is_invalid(handle) || !context ||
1979 	    context_id == VMCI_INVALID_ID)
1980 		return VMCI_ERROR_INVALID_ARGS;
1981 
1982 	/*
1983 	 * We only support guest to host queue pairs, so the VMX must
1984 	 * supply UVAs for the mapped page files.
1985 	 */
1986 
1987 	if (produce_uva == 0 || consume_uva == 0)
1988 		return VMCI_ERROR_INVALID_ARGS;
1989 
1990 	mutex_lock(&qp_broker_list.mutex);
1991 
1992 	if (!vmci_ctx_qp_exists(context, handle)) {
1993 		pr_warn("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
1994 			context_id, handle.context, handle.resource);
1995 		result = VMCI_ERROR_NOT_FOUND;
1996 		goto out;
1997 	}
1998 
1999 	entry = qp_broker_handle_to_entry(handle);
2000 	if (!entry) {
2001 		result = VMCI_ERROR_NOT_FOUND;
2002 		goto out;
2003 	}
2004 
2005 	/*
2006 	 * If I'm the owner then I can set the page store.
2007 	 *
2008 	 * Or, if a host created the queue_pair and I'm the attached peer
2009 	 * then I can set the page store.
2010 	 */
2011 	if (entry->create_id != context_id &&
2012 	    (entry->create_id != VMCI_HOST_CONTEXT_ID ||
2013 	     entry->attach_id != context_id)) {
2014 		result = VMCI_ERROR_QUEUEPAIR_NOTOWNER;
2015 		goto out;
2016 	}
2017 
2018 	if (entry->state != VMCIQPB_CREATED_NO_MEM &&
2019 	    entry->state != VMCIQPB_ATTACHED_NO_MEM) {
2020 		result = VMCI_ERROR_UNAVAILABLE;
2021 		goto out;
2022 	}
2023 
2024 	result = qp_host_get_user_memory(produce_uva, consume_uva,
2025 					 entry->produce_q, entry->consume_q);
2026 	if (result < VMCI_SUCCESS)
2027 		goto out;
2028 
2029 	result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2030 	if (result < VMCI_SUCCESS) {
2031 		qp_host_unregister_user_memory(entry->produce_q,
2032 					       entry->consume_q);
2033 		goto out;
2034 	}
2035 
2036 	if (entry->state == VMCIQPB_CREATED_NO_MEM)
2037 		entry->state = VMCIQPB_CREATED_MEM;
2038 	else
2039 		entry->state = VMCIQPB_ATTACHED_MEM;
2040 
2041 	entry->vmci_page_files = true;
2042 
2043 	if (entry->state == VMCIQPB_ATTACHED_MEM) {
2044 		result =
2045 		    qp_notify_peer(true, handle, context_id, entry->create_id);
2046 		if (result < VMCI_SUCCESS) {
2047 			pr_warn("Failed to notify peer (ID=0x%x) of attach to queue pair (handle=0x%x:0x%x)\n",
2048 				entry->create_id, entry->qp.handle.context,
2049 				entry->qp.handle.resource);
2050 		}
2051 	}
2052 
2053 	result = VMCI_SUCCESS;
2054  out:
2055 	mutex_unlock(&qp_broker_list.mutex);
2056 	return result;
2057 }
2058 
2059 /*
2060  * Resets saved queue headers for the given QP broker
2061  * entry. Should be used when guest memory becomes available
2062  * again, or the guest detaches.
2063  */
qp_reset_saved_headers(struct qp_broker_entry * entry)2064 static void qp_reset_saved_headers(struct qp_broker_entry *entry)
2065 {
2066 	entry->produce_q->saved_header = NULL;
2067 	entry->consume_q->saved_header = NULL;
2068 }
2069 
2070 /*
2071  * The main entry point for detaching from a queue pair registered with the
2072  * queue pair broker. If more than one endpoint is attached to the queue
2073  * pair, the first endpoint will mainly decrement a reference count and
2074  * generate a notification to its peer. The last endpoint will clean up
2075  * the queue pair state registered with the broker.
2076  *
2077  * When a guest endpoint detaches, it will unmap and unregister the guest
2078  * memory backing the queue pair. If the host is still attached, it will
2079  * no longer be able to access the queue pair content.
2080  *
2081  * If the queue pair is already in a state where there is no memory
2082  * registered for the queue pair (any *_NO_MEM state), it will transition to
2083  * the VMCIQPB_SHUTDOWN_NO_MEM state. This will also happen, if a guest
2084  * endpoint is the first of two endpoints to detach. If the host endpoint is
2085  * the first out of two to detach, the queue pair will move to the
2086  * VMCIQPB_SHUTDOWN_MEM state.
2087  */
vmci_qp_broker_detach(struct vmci_handle handle,struct vmci_ctx * context)2088 int vmci_qp_broker_detach(struct vmci_handle handle, struct vmci_ctx *context)
2089 {
2090 	struct qp_broker_entry *entry;
2091 	const u32 context_id = vmci_ctx_get_id(context);
2092 	u32 peer_id;
2093 	bool is_local = false;
2094 	int result;
2095 
2096 	if (vmci_handle_is_invalid(handle) || !context ||
2097 	    context_id == VMCI_INVALID_ID) {
2098 		return VMCI_ERROR_INVALID_ARGS;
2099 	}
2100 
2101 	mutex_lock(&qp_broker_list.mutex);
2102 
2103 	if (!vmci_ctx_qp_exists(context, handle)) {
2104 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2105 			 context_id, handle.context, handle.resource);
2106 		result = VMCI_ERROR_NOT_FOUND;
2107 		goto out;
2108 	}
2109 
2110 	entry = qp_broker_handle_to_entry(handle);
2111 	if (!entry) {
2112 		pr_devel("Context (ID=0x%x) reports being attached to queue pair(handle=0x%x:0x%x) that isn't present in broker\n",
2113 			 context_id, handle.context, handle.resource);
2114 		result = VMCI_ERROR_NOT_FOUND;
2115 		goto out;
2116 	}
2117 
2118 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2119 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2120 		goto out;
2121 	}
2122 
2123 	if (context_id == entry->create_id) {
2124 		peer_id = entry->attach_id;
2125 		entry->create_id = VMCI_INVALID_ID;
2126 	} else {
2127 		peer_id = entry->create_id;
2128 		entry->attach_id = VMCI_INVALID_ID;
2129 	}
2130 	entry->qp.ref_count--;
2131 
2132 	is_local = entry->qp.flags & VMCI_QPFLAG_LOCAL;
2133 
2134 	if (context_id != VMCI_HOST_CONTEXT_ID) {
2135 		bool headers_mapped;
2136 
2137 		/*
2138 		 * Pre NOVMVM vmx'en may detach from a queue pair
2139 		 * before setting the page store, and in that case
2140 		 * there is no user memory to detach from. Also, more
2141 		 * recent VMX'en may detach from a queue pair in the
2142 		 * quiesced state.
2143 		 */
2144 
2145 		qp_acquire_queue_mutex(entry->produce_q);
2146 		headers_mapped = entry->produce_q->q_header ||
2147 		    entry->consume_q->q_header;
2148 		if (QPBROKERSTATE_HAS_MEM(entry)) {
2149 			result =
2150 			    qp_host_unmap_queues(INVALID_VMCI_GUEST_MEM_ID,
2151 						 entry->produce_q,
2152 						 entry->consume_q);
2153 			if (result < VMCI_SUCCESS)
2154 				pr_warn("Failed to unmap queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2155 					handle.context, handle.resource,
2156 					result);
2157 
2158 			qp_host_unregister_user_memory(entry->produce_q,
2159 						       entry->consume_q);
2160 
2161 		}
2162 
2163 		if (!headers_mapped)
2164 			qp_reset_saved_headers(entry);
2165 
2166 		qp_release_queue_mutex(entry->produce_q);
2167 
2168 		if (!headers_mapped && entry->wakeup_cb)
2169 			entry->wakeup_cb(entry->client_data);
2170 
2171 	} else {
2172 		if (entry->wakeup_cb) {
2173 			entry->wakeup_cb = NULL;
2174 			entry->client_data = NULL;
2175 		}
2176 	}
2177 
2178 	if (entry->qp.ref_count == 0) {
2179 		qp_list_remove_entry(&qp_broker_list, &entry->qp);
2180 
2181 		if (is_local)
2182 			kfree(entry->local_mem);
2183 
2184 		qp_cleanup_queue_mutex(entry->produce_q, entry->consume_q);
2185 		qp_host_free_queue(entry->produce_q, entry->qp.produce_size);
2186 		qp_host_free_queue(entry->consume_q, entry->qp.consume_size);
2187 		/* Unlink from resource hash table and free callback */
2188 		vmci_resource_remove(&entry->resource);
2189 
2190 		kfree(entry);
2191 
2192 		vmci_ctx_qp_destroy(context, handle);
2193 	} else {
2194 		qp_notify_peer(false, handle, context_id, peer_id);
2195 		if (context_id == VMCI_HOST_CONTEXT_ID &&
2196 		    QPBROKERSTATE_HAS_MEM(entry)) {
2197 			entry->state = VMCIQPB_SHUTDOWN_MEM;
2198 		} else {
2199 			entry->state = VMCIQPB_SHUTDOWN_NO_MEM;
2200 		}
2201 
2202 		if (!is_local)
2203 			vmci_ctx_qp_destroy(context, handle);
2204 
2205 	}
2206 	result = VMCI_SUCCESS;
2207  out:
2208 	mutex_unlock(&qp_broker_list.mutex);
2209 	return result;
2210 }
2211 
2212 /*
2213  * Establishes the necessary mappings for a queue pair given a
2214  * reference to the queue pair guest memory. This is usually
2215  * called when a guest is unquiesced and the VMX is allowed to
2216  * map guest memory once again.
2217  */
vmci_qp_broker_map(struct vmci_handle handle,struct vmci_ctx * context,u64 guest_mem)2218 int vmci_qp_broker_map(struct vmci_handle handle,
2219 		       struct vmci_ctx *context,
2220 		       u64 guest_mem)
2221 {
2222 	struct qp_broker_entry *entry;
2223 	const u32 context_id = vmci_ctx_get_id(context);
2224 	int result;
2225 
2226 	if (vmci_handle_is_invalid(handle) || !context ||
2227 	    context_id == VMCI_INVALID_ID)
2228 		return VMCI_ERROR_INVALID_ARGS;
2229 
2230 	mutex_lock(&qp_broker_list.mutex);
2231 
2232 	if (!vmci_ctx_qp_exists(context, handle)) {
2233 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2234 			 context_id, handle.context, handle.resource);
2235 		result = VMCI_ERROR_NOT_FOUND;
2236 		goto out;
2237 	}
2238 
2239 	entry = qp_broker_handle_to_entry(handle);
2240 	if (!entry) {
2241 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2242 			 context_id, handle.context, handle.resource);
2243 		result = VMCI_ERROR_NOT_FOUND;
2244 		goto out;
2245 	}
2246 
2247 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2248 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2249 		goto out;
2250 	}
2251 
2252 	result = VMCI_SUCCESS;
2253 
2254 	if (context_id != VMCI_HOST_CONTEXT_ID &&
2255 	    !QPBROKERSTATE_HAS_MEM(entry)) {
2256 		struct vmci_qp_page_store page_store;
2257 
2258 		page_store.pages = guest_mem;
2259 		page_store.len = QPE_NUM_PAGES(entry->qp);
2260 
2261 		qp_acquire_queue_mutex(entry->produce_q);
2262 		qp_reset_saved_headers(entry);
2263 		result =
2264 		    qp_host_register_user_memory(&page_store,
2265 						 entry->produce_q,
2266 						 entry->consume_q);
2267 		qp_release_queue_mutex(entry->produce_q);
2268 		if (result == VMCI_SUCCESS) {
2269 			/* Move state from *_NO_MEM to *_MEM */
2270 
2271 			entry->state++;
2272 
2273 			if (entry->wakeup_cb)
2274 				entry->wakeup_cb(entry->client_data);
2275 		}
2276 	}
2277 
2278  out:
2279 	mutex_unlock(&qp_broker_list.mutex);
2280 	return result;
2281 }
2282 
2283 /*
2284  * Saves a snapshot of the queue headers for the given QP broker
2285  * entry. Should be used when guest memory is unmapped.
2286  * Results:
2287  * VMCI_SUCCESS on success, appropriate error code if guest memory
2288  * can't be accessed..
2289  */
qp_save_headers(struct qp_broker_entry * entry)2290 static int qp_save_headers(struct qp_broker_entry *entry)
2291 {
2292 	int result;
2293 
2294 	if (entry->produce_q->saved_header != NULL &&
2295 	    entry->consume_q->saved_header != NULL) {
2296 		/*
2297 		 *  If the headers have already been saved, we don't need to do
2298 		 *  it again, and we don't want to map in the headers
2299 		 *  unnecessarily.
2300 		 */
2301 
2302 		return VMCI_SUCCESS;
2303 	}
2304 
2305 	if (NULL == entry->produce_q->q_header ||
2306 	    NULL == entry->consume_q->q_header) {
2307 		result = qp_host_map_queues(entry->produce_q, entry->consume_q);
2308 		if (result < VMCI_SUCCESS)
2309 			return result;
2310 	}
2311 
2312 	memcpy(&entry->saved_produce_q, entry->produce_q->q_header,
2313 	       sizeof(entry->saved_produce_q));
2314 	entry->produce_q->saved_header = &entry->saved_produce_q;
2315 	memcpy(&entry->saved_consume_q, entry->consume_q->q_header,
2316 	       sizeof(entry->saved_consume_q));
2317 	entry->consume_q->saved_header = &entry->saved_consume_q;
2318 
2319 	return VMCI_SUCCESS;
2320 }
2321 
2322 /*
2323  * Removes all references to the guest memory of a given queue pair, and
2324  * will move the queue pair from state *_MEM to *_NO_MEM. It is usually
2325  * called when a VM is being quiesced where access to guest memory should
2326  * avoided.
2327  */
vmci_qp_broker_unmap(struct vmci_handle handle,struct vmci_ctx * context,u32 gid)2328 int vmci_qp_broker_unmap(struct vmci_handle handle,
2329 			 struct vmci_ctx *context,
2330 			 u32 gid)
2331 {
2332 	struct qp_broker_entry *entry;
2333 	const u32 context_id = vmci_ctx_get_id(context);
2334 	int result;
2335 
2336 	if (vmci_handle_is_invalid(handle) || !context ||
2337 	    context_id == VMCI_INVALID_ID)
2338 		return VMCI_ERROR_INVALID_ARGS;
2339 
2340 	mutex_lock(&qp_broker_list.mutex);
2341 
2342 	if (!vmci_ctx_qp_exists(context, handle)) {
2343 		pr_devel("Context (ID=0x%x) not attached to queue pair (handle=0x%x:0x%x)\n",
2344 			 context_id, handle.context, handle.resource);
2345 		result = VMCI_ERROR_NOT_FOUND;
2346 		goto out;
2347 	}
2348 
2349 	entry = qp_broker_handle_to_entry(handle);
2350 	if (!entry) {
2351 		pr_devel("Context (ID=0x%x) reports being attached to queue pair (handle=0x%x:0x%x) that isn't present in broker\n",
2352 			 context_id, handle.context, handle.resource);
2353 		result = VMCI_ERROR_NOT_FOUND;
2354 		goto out;
2355 	}
2356 
2357 	if (context_id != entry->create_id && context_id != entry->attach_id) {
2358 		result = VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2359 		goto out;
2360 	}
2361 
2362 	if (context_id != VMCI_HOST_CONTEXT_ID &&
2363 	    QPBROKERSTATE_HAS_MEM(entry)) {
2364 		qp_acquire_queue_mutex(entry->produce_q);
2365 		result = qp_save_headers(entry);
2366 		if (result < VMCI_SUCCESS)
2367 			pr_warn("Failed to save queue headers for queue pair (handle=0x%x:0x%x,result=%d)\n",
2368 				handle.context, handle.resource, result);
2369 
2370 		qp_host_unmap_queues(gid, entry->produce_q, entry->consume_q);
2371 
2372 		/*
2373 		 * On hosted, when we unmap queue pairs, the VMX will also
2374 		 * unmap the guest memory, so we invalidate the previously
2375 		 * registered memory. If the queue pair is mapped again at a
2376 		 * later point in time, we will need to reregister the user
2377 		 * memory with a possibly new user VA.
2378 		 */
2379 		qp_host_unregister_user_memory(entry->produce_q,
2380 					       entry->consume_q);
2381 
2382 		/*
2383 		 * Move state from *_MEM to *_NO_MEM.
2384 		 */
2385 		entry->state--;
2386 
2387 		qp_release_queue_mutex(entry->produce_q);
2388 	}
2389 
2390 	result = VMCI_SUCCESS;
2391 
2392  out:
2393 	mutex_unlock(&qp_broker_list.mutex);
2394 	return result;
2395 }
2396 
2397 /*
2398  * Destroys all guest queue pair endpoints. If active guest queue
2399  * pairs still exist, hypercalls to attempt detach from these
2400  * queue pairs will be made. Any failure to detach is silently
2401  * ignored.
2402  */
vmci_qp_guest_endpoints_exit(void)2403 void vmci_qp_guest_endpoints_exit(void)
2404 {
2405 	struct qp_entry *entry;
2406 	struct qp_guest_endpoint *ep;
2407 
2408 	mutex_lock(&qp_guest_endpoints.mutex);
2409 
2410 	while ((entry = qp_list_get_head(&qp_guest_endpoints))) {
2411 		ep = (struct qp_guest_endpoint *)entry;
2412 
2413 		/* Don't make a hypercall for local queue_pairs. */
2414 		if (!(entry->flags & VMCI_QPFLAG_LOCAL))
2415 			qp_detatch_hypercall(entry->handle);
2416 
2417 		/* We cannot fail the exit, so let's reset ref_count. */
2418 		entry->ref_count = 0;
2419 		qp_list_remove_entry(&qp_guest_endpoints, entry);
2420 
2421 		qp_guest_endpoint_destroy(ep);
2422 	}
2423 
2424 	mutex_unlock(&qp_guest_endpoints.mutex);
2425 }
2426 
2427 /*
2428  * Helper routine that will lock the queue pair before subsequent
2429  * operations.
2430  * Note: Non-blocking on the host side is currently only implemented in ESX.
2431  * Since non-blocking isn't yet implemented on the host personality we
2432  * have no reason to acquire a spin lock.  So to avoid the use of an
2433  * unnecessary lock only acquire the mutex if we can block.
2434  */
qp_lock(const struct vmci_qp * qpair)2435 static void qp_lock(const struct vmci_qp *qpair)
2436 {
2437 	qp_acquire_queue_mutex(qpair->produce_q);
2438 }
2439 
2440 /*
2441  * Helper routine that unlocks the queue pair after calling
2442  * qp_lock.
2443  */
qp_unlock(const struct vmci_qp * qpair)2444 static void qp_unlock(const struct vmci_qp *qpair)
2445 {
2446 	qp_release_queue_mutex(qpair->produce_q);
2447 }
2448 
2449 /*
2450  * The queue headers may not be mapped at all times. If a queue is
2451  * currently not mapped, it will be attempted to do so.
2452  */
qp_map_queue_headers(struct vmci_queue * produce_q,struct vmci_queue * consume_q)2453 static int qp_map_queue_headers(struct vmci_queue *produce_q,
2454 				struct vmci_queue *consume_q)
2455 {
2456 	int result;
2457 
2458 	if (NULL == produce_q->q_header || NULL == consume_q->q_header) {
2459 		result = qp_host_map_queues(produce_q, consume_q);
2460 		if (result < VMCI_SUCCESS)
2461 			return (produce_q->saved_header &&
2462 				consume_q->saved_header) ?
2463 			    VMCI_ERROR_QUEUEPAIR_NOT_READY :
2464 			    VMCI_ERROR_QUEUEPAIR_NOTATTACHED;
2465 	}
2466 
2467 	return VMCI_SUCCESS;
2468 }
2469 
2470 /*
2471  * Helper routine that will retrieve the produce and consume
2472  * headers of a given queue pair. If the guest memory of the
2473  * queue pair is currently not available, the saved queue headers
2474  * will be returned, if these are available.
2475  */
qp_get_queue_headers(const struct vmci_qp * qpair,struct vmci_queue_header ** produce_q_header,struct vmci_queue_header ** consume_q_header)2476 static int qp_get_queue_headers(const struct vmci_qp *qpair,
2477 				struct vmci_queue_header **produce_q_header,
2478 				struct vmci_queue_header **consume_q_header)
2479 {
2480 	int result;
2481 
2482 	result = qp_map_queue_headers(qpair->produce_q, qpair->consume_q);
2483 	if (result == VMCI_SUCCESS) {
2484 		*produce_q_header = qpair->produce_q->q_header;
2485 		*consume_q_header = qpair->consume_q->q_header;
2486 	} else if (qpair->produce_q->saved_header &&
2487 		   qpair->consume_q->saved_header) {
2488 		*produce_q_header = qpair->produce_q->saved_header;
2489 		*consume_q_header = qpair->consume_q->saved_header;
2490 		result = VMCI_SUCCESS;
2491 	}
2492 
2493 	return result;
2494 }
2495 
2496 /*
2497  * Callback from VMCI queue pair broker indicating that a queue
2498  * pair that was previously not ready, now either is ready or
2499  * gone forever.
2500  */
qp_wakeup_cb(void * client_data)2501 static int qp_wakeup_cb(void *client_data)
2502 {
2503 	struct vmci_qp *qpair = (struct vmci_qp *)client_data;
2504 
2505 	qp_lock(qpair);
2506 	while (qpair->blocked > 0) {
2507 		qpair->blocked--;
2508 		qpair->generation++;
2509 		wake_up(&qpair->event);
2510 	}
2511 	qp_unlock(qpair);
2512 
2513 	return VMCI_SUCCESS;
2514 }
2515 
2516 /*
2517  * Makes the calling thread wait for the queue pair to become
2518  * ready for host side access.  Returns true when thread is
2519  * woken up after queue pair state change, false otherwise.
2520  */
qp_wait_for_ready_queue(struct vmci_qp * qpair)2521 static bool qp_wait_for_ready_queue(struct vmci_qp *qpair)
2522 {
2523 	unsigned int generation;
2524 
2525 	qpair->blocked++;
2526 	generation = qpair->generation;
2527 	qp_unlock(qpair);
2528 	wait_event(qpair->event, generation != qpair->generation);
2529 	qp_lock(qpair);
2530 
2531 	return true;
2532 }
2533 
2534 /*
2535  * Enqueues a given buffer to the produce queue using the provided
2536  * function. As many bytes as possible (space available in the queue)
2537  * are enqueued.  Assumes the queue->mutex has been acquired.  Returns
2538  * VMCI_ERROR_QUEUEPAIR_NOSPACE if no space was available to enqueue
2539  * data, VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the
2540  * queue (as defined by the queue size), VMCI_ERROR_INVALID_ARGS, if
2541  * an error occured when accessing the buffer,
2542  * VMCI_ERROR_QUEUEPAIR_NOTATTACHED, if the queue pair pages aren't
2543  * available.  Otherwise, the number of bytes written to the queue is
2544  * returned.  Updates the tail pointer of the produce queue.
2545  */
qp_enqueue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 produce_q_size,struct iov_iter * from)2546 static ssize_t qp_enqueue_locked(struct vmci_queue *produce_q,
2547 				 struct vmci_queue *consume_q,
2548 				 const u64 produce_q_size,
2549 				 struct iov_iter *from)
2550 {
2551 	s64 free_space;
2552 	u64 tail;
2553 	size_t buf_size = iov_iter_count(from);
2554 	size_t written;
2555 	ssize_t result;
2556 
2557 	result = qp_map_queue_headers(produce_q, consume_q);
2558 	if (unlikely(result != VMCI_SUCCESS))
2559 		return result;
2560 
2561 	free_space = vmci_q_header_free_space(produce_q->q_header,
2562 					      consume_q->q_header,
2563 					      produce_q_size);
2564 	if (free_space == 0)
2565 		return VMCI_ERROR_QUEUEPAIR_NOSPACE;
2566 
2567 	if (free_space < VMCI_SUCCESS)
2568 		return (ssize_t) free_space;
2569 
2570 	written = (size_t) (free_space > buf_size ? buf_size : free_space);
2571 	tail = vmci_q_header_producer_tail(produce_q->q_header);
2572 	if (likely(tail + written < produce_q_size)) {
2573 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, written);
2574 	} else {
2575 		/* Tail pointer wraps around. */
2576 
2577 		const size_t tmp = (size_t) (produce_q_size - tail);
2578 
2579 		result = qp_memcpy_to_queue_iter(produce_q, tail, from, tmp);
2580 		if (result >= VMCI_SUCCESS)
2581 			result = qp_memcpy_to_queue_iter(produce_q, 0, from,
2582 						 written - tmp);
2583 	}
2584 
2585 	if (result < VMCI_SUCCESS)
2586 		return result;
2587 
2588 	vmci_q_header_add_producer_tail(produce_q->q_header, written,
2589 					produce_q_size);
2590 	return written;
2591 }
2592 
2593 /*
2594  * Dequeues data (if available) from the given consume queue. Writes data
2595  * to the user provided buffer using the provided function.
2596  * Assumes the queue->mutex has been acquired.
2597  * Results:
2598  * VMCI_ERROR_QUEUEPAIR_NODATA if no data was available to dequeue.
2599  * VMCI_ERROR_INVALID_SIZE, if any queue pointer is outside the queue
2600  * (as defined by the queue size).
2601  * VMCI_ERROR_INVALID_ARGS, if an error occured when accessing the buffer.
2602  * Otherwise the number of bytes dequeued is returned.
2603  * Side effects:
2604  * Updates the head pointer of the consume queue.
2605  */
qp_dequeue_locked(struct vmci_queue * produce_q,struct vmci_queue * consume_q,const u64 consume_q_size,struct iov_iter * to,bool update_consumer)2606 static ssize_t qp_dequeue_locked(struct vmci_queue *produce_q,
2607 				 struct vmci_queue *consume_q,
2608 				 const u64 consume_q_size,
2609 				 struct iov_iter *to,
2610 				 bool update_consumer)
2611 {
2612 	size_t buf_size = iov_iter_count(to);
2613 	s64 buf_ready;
2614 	u64 head;
2615 	size_t read;
2616 	ssize_t result;
2617 
2618 	result = qp_map_queue_headers(produce_q, consume_q);
2619 	if (unlikely(result != VMCI_SUCCESS))
2620 		return result;
2621 
2622 	buf_ready = vmci_q_header_buf_ready(consume_q->q_header,
2623 					    produce_q->q_header,
2624 					    consume_q_size);
2625 	if (buf_ready == 0)
2626 		return VMCI_ERROR_QUEUEPAIR_NODATA;
2627 
2628 	if (buf_ready < VMCI_SUCCESS)
2629 		return (ssize_t) buf_ready;
2630 
2631 	read = (size_t) (buf_ready > buf_size ? buf_size : buf_ready);
2632 	head = vmci_q_header_consumer_head(produce_q->q_header);
2633 	if (likely(head + read < consume_q_size)) {
2634 		result = qp_memcpy_from_queue_iter(to, consume_q, head, read);
2635 	} else {
2636 		/* Head pointer wraps around. */
2637 
2638 		const size_t tmp = (size_t) (consume_q_size - head);
2639 
2640 		result = qp_memcpy_from_queue_iter(to, consume_q, head, tmp);
2641 		if (result >= VMCI_SUCCESS)
2642 			result = qp_memcpy_from_queue_iter(to, consume_q, 0,
2643 						   read - tmp);
2644 
2645 	}
2646 
2647 	if (result < VMCI_SUCCESS)
2648 		return result;
2649 
2650 	if (update_consumer)
2651 		vmci_q_header_add_consumer_head(produce_q->q_header,
2652 						read, consume_q_size);
2653 
2654 	return read;
2655 }
2656 
2657 /*
2658  * vmci_qpair_alloc() - Allocates a queue pair.
2659  * @qpair:      Pointer for the new vmci_qp struct.
2660  * @handle:     Handle to track the resource.
2661  * @produce_qsize:      Desired size of the producer queue.
2662  * @consume_qsize:      Desired size of the consumer queue.
2663  * @peer:       ContextID of the peer.
2664  * @flags:      VMCI flags.
2665  * @priv_flags: VMCI priviledge flags.
2666  *
2667  * This is the client interface for allocating the memory for a
2668  * vmci_qp structure and then attaching to the underlying
2669  * queue.  If an error occurs allocating the memory for the
2670  * vmci_qp structure no attempt is made to attach.  If an
2671  * error occurs attaching, then the structure is freed.
2672  */
vmci_qpair_alloc(struct vmci_qp ** qpair,struct vmci_handle * handle,u64 produce_qsize,u64 consume_qsize,u32 peer,u32 flags,u32 priv_flags)2673 int vmci_qpair_alloc(struct vmci_qp **qpair,
2674 		     struct vmci_handle *handle,
2675 		     u64 produce_qsize,
2676 		     u64 consume_qsize,
2677 		     u32 peer,
2678 		     u32 flags,
2679 		     u32 priv_flags)
2680 {
2681 	struct vmci_qp *my_qpair;
2682 	int retval;
2683 	struct vmci_handle src = VMCI_INVALID_HANDLE;
2684 	struct vmci_handle dst = vmci_make_handle(peer, VMCI_INVALID_ID);
2685 	enum vmci_route route;
2686 	vmci_event_release_cb wakeup_cb;
2687 	void *client_data;
2688 
2689 	/*
2690 	 * Restrict the size of a queuepair.  The device already
2691 	 * enforces a limit on the total amount of memory that can be
2692 	 * allocated to queuepairs for a guest.  However, we try to
2693 	 * allocate this memory before we make the queuepair
2694 	 * allocation hypercall.  On Linux, we allocate each page
2695 	 * separately, which means rather than fail, the guest will
2696 	 * thrash while it tries to allocate, and will become
2697 	 * increasingly unresponsive to the point where it appears to
2698 	 * be hung.  So we place a limit on the size of an individual
2699 	 * queuepair here, and leave the device to enforce the
2700 	 * restriction on total queuepair memory.  (Note that this
2701 	 * doesn't prevent all cases; a user with only this much
2702 	 * physical memory could still get into trouble.)  The error
2703 	 * used by the device is NO_RESOURCES, so use that here too.
2704 	 */
2705 
2706 	if (produce_qsize + consume_qsize < max(produce_qsize, consume_qsize) ||
2707 	    produce_qsize + consume_qsize > VMCI_MAX_GUEST_QP_MEMORY)
2708 		return VMCI_ERROR_NO_RESOURCES;
2709 
2710 	retval = vmci_route(&src, &dst, false, &route);
2711 	if (retval < VMCI_SUCCESS)
2712 		route = vmci_guest_code_active() ?
2713 		    VMCI_ROUTE_AS_GUEST : VMCI_ROUTE_AS_HOST;
2714 
2715 	if (flags & (VMCI_QPFLAG_NONBLOCK | VMCI_QPFLAG_PINNED)) {
2716 		pr_devel("NONBLOCK OR PINNED set");
2717 		return VMCI_ERROR_INVALID_ARGS;
2718 	}
2719 
2720 	my_qpair = kzalloc(sizeof(*my_qpair), GFP_KERNEL);
2721 	if (!my_qpair)
2722 		return VMCI_ERROR_NO_MEM;
2723 
2724 	my_qpair->produce_q_size = produce_qsize;
2725 	my_qpair->consume_q_size = consume_qsize;
2726 	my_qpair->peer = peer;
2727 	my_qpair->flags = flags;
2728 	my_qpair->priv_flags = priv_flags;
2729 
2730 	wakeup_cb = NULL;
2731 	client_data = NULL;
2732 
2733 	if (VMCI_ROUTE_AS_HOST == route) {
2734 		my_qpair->guest_endpoint = false;
2735 		if (!(flags & VMCI_QPFLAG_LOCAL)) {
2736 			my_qpair->blocked = 0;
2737 			my_qpair->generation = 0;
2738 			init_waitqueue_head(&my_qpair->event);
2739 			wakeup_cb = qp_wakeup_cb;
2740 			client_data = (void *)my_qpair;
2741 		}
2742 	} else {
2743 		my_qpair->guest_endpoint = true;
2744 	}
2745 
2746 	retval = vmci_qp_alloc(handle,
2747 			       &my_qpair->produce_q,
2748 			       my_qpair->produce_q_size,
2749 			       &my_qpair->consume_q,
2750 			       my_qpair->consume_q_size,
2751 			       my_qpair->peer,
2752 			       my_qpair->flags,
2753 			       my_qpair->priv_flags,
2754 			       my_qpair->guest_endpoint,
2755 			       wakeup_cb, client_data);
2756 
2757 	if (retval < VMCI_SUCCESS) {
2758 		kfree(my_qpair);
2759 		return retval;
2760 	}
2761 
2762 	*qpair = my_qpair;
2763 	my_qpair->handle = *handle;
2764 
2765 	return retval;
2766 }
2767 EXPORT_SYMBOL_GPL(vmci_qpair_alloc);
2768 
2769 /*
2770  * vmci_qpair_detach() - Detatches the client from a queue pair.
2771  * @qpair:      Reference of a pointer to the qpair struct.
2772  *
2773  * This is the client interface for detaching from a VMCIQPair.
2774  * Note that this routine will free the memory allocated for the
2775  * vmci_qp structure too.
2776  */
vmci_qpair_detach(struct vmci_qp ** qpair)2777 int vmci_qpair_detach(struct vmci_qp **qpair)
2778 {
2779 	int result;
2780 	struct vmci_qp *old_qpair;
2781 
2782 	if (!qpair || !(*qpair))
2783 		return VMCI_ERROR_INVALID_ARGS;
2784 
2785 	old_qpair = *qpair;
2786 	result = qp_detatch(old_qpair->handle, old_qpair->guest_endpoint);
2787 
2788 	/*
2789 	 * The guest can fail to detach for a number of reasons, and
2790 	 * if it does so, it will cleanup the entry (if there is one).
2791 	 * The host can fail too, but it won't cleanup the entry
2792 	 * immediately, it will do that later when the context is
2793 	 * freed.  Either way, we need to release the qpair struct
2794 	 * here; there isn't much the caller can do, and we don't want
2795 	 * to leak.
2796 	 */
2797 
2798 	memset(old_qpair, 0, sizeof(*old_qpair));
2799 	old_qpair->handle = VMCI_INVALID_HANDLE;
2800 	old_qpair->peer = VMCI_INVALID_ID;
2801 	kfree(old_qpair);
2802 	*qpair = NULL;
2803 
2804 	return result;
2805 }
2806 EXPORT_SYMBOL_GPL(vmci_qpair_detach);
2807 
2808 /*
2809  * vmci_qpair_get_produce_indexes() - Retrieves the indexes of the producer.
2810  * @qpair:      Pointer to the queue pair struct.
2811  * @producer_tail:      Reference used for storing producer tail index.
2812  * @consumer_head:      Reference used for storing the consumer head index.
2813  *
2814  * This is the client interface for getting the current indexes of the
2815  * QPair from the point of the view of the caller as the producer.
2816  */
vmci_qpair_get_produce_indexes(const struct vmci_qp * qpair,u64 * producer_tail,u64 * consumer_head)2817 int vmci_qpair_get_produce_indexes(const struct vmci_qp *qpair,
2818 				   u64 *producer_tail,
2819 				   u64 *consumer_head)
2820 {
2821 	struct vmci_queue_header *produce_q_header;
2822 	struct vmci_queue_header *consume_q_header;
2823 	int result;
2824 
2825 	if (!qpair)
2826 		return VMCI_ERROR_INVALID_ARGS;
2827 
2828 	qp_lock(qpair);
2829 	result =
2830 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2831 	if (result == VMCI_SUCCESS)
2832 		vmci_q_header_get_pointers(produce_q_header, consume_q_header,
2833 					   producer_tail, consumer_head);
2834 	qp_unlock(qpair);
2835 
2836 	if (result == VMCI_SUCCESS &&
2837 	    ((producer_tail && *producer_tail >= qpair->produce_q_size) ||
2838 	     (consumer_head && *consumer_head >= qpair->produce_q_size)))
2839 		return VMCI_ERROR_INVALID_SIZE;
2840 
2841 	return result;
2842 }
2843 EXPORT_SYMBOL_GPL(vmci_qpair_get_produce_indexes);
2844 
2845 /*
2846  * vmci_qpair_get_consume_indexes() - Retrieves the indexes of the consumer.
2847  * @qpair:      Pointer to the queue pair struct.
2848  * @consumer_tail:      Reference used for storing consumer tail index.
2849  * @producer_head:      Reference used for storing the producer head index.
2850  *
2851  * This is the client interface for getting the current indexes of the
2852  * QPair from the point of the view of the caller as the consumer.
2853  */
vmci_qpair_get_consume_indexes(const struct vmci_qp * qpair,u64 * consumer_tail,u64 * producer_head)2854 int vmci_qpair_get_consume_indexes(const struct vmci_qp *qpair,
2855 				   u64 *consumer_tail,
2856 				   u64 *producer_head)
2857 {
2858 	struct vmci_queue_header *produce_q_header;
2859 	struct vmci_queue_header *consume_q_header;
2860 	int result;
2861 
2862 	if (!qpair)
2863 		return VMCI_ERROR_INVALID_ARGS;
2864 
2865 	qp_lock(qpair);
2866 	result =
2867 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2868 	if (result == VMCI_SUCCESS)
2869 		vmci_q_header_get_pointers(consume_q_header, produce_q_header,
2870 					   consumer_tail, producer_head);
2871 	qp_unlock(qpair);
2872 
2873 	if (result == VMCI_SUCCESS &&
2874 	    ((consumer_tail && *consumer_tail >= qpair->consume_q_size) ||
2875 	     (producer_head && *producer_head >= qpair->consume_q_size)))
2876 		return VMCI_ERROR_INVALID_SIZE;
2877 
2878 	return result;
2879 }
2880 EXPORT_SYMBOL_GPL(vmci_qpair_get_consume_indexes);
2881 
2882 /*
2883  * vmci_qpair_produce_free_space() - Retrieves free space in producer queue.
2884  * @qpair:      Pointer to the queue pair struct.
2885  *
2886  * This is the client interface for getting the amount of free
2887  * space in the QPair from the point of the view of the caller as
2888  * the producer which is the common case.  Returns < 0 if err, else
2889  * available bytes into which data can be enqueued if > 0.
2890  */
vmci_qpair_produce_free_space(const struct vmci_qp * qpair)2891 s64 vmci_qpair_produce_free_space(const struct vmci_qp *qpair)
2892 {
2893 	struct vmci_queue_header *produce_q_header;
2894 	struct vmci_queue_header *consume_q_header;
2895 	s64 result;
2896 
2897 	if (!qpair)
2898 		return VMCI_ERROR_INVALID_ARGS;
2899 
2900 	qp_lock(qpair);
2901 	result =
2902 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2903 	if (result == VMCI_SUCCESS)
2904 		result = vmci_q_header_free_space(produce_q_header,
2905 						  consume_q_header,
2906 						  qpair->produce_q_size);
2907 	else
2908 		result = 0;
2909 
2910 	qp_unlock(qpair);
2911 
2912 	return result;
2913 }
2914 EXPORT_SYMBOL_GPL(vmci_qpair_produce_free_space);
2915 
2916 /*
2917  * vmci_qpair_consume_free_space() - Retrieves free space in consumer queue.
2918  * @qpair:      Pointer to the queue pair struct.
2919  *
2920  * This is the client interface for getting the amount of free
2921  * space in the QPair from the point of the view of the caller as
2922  * the consumer which is not the common case.  Returns < 0 if err, else
2923  * available bytes into which data can be enqueued if > 0.
2924  */
vmci_qpair_consume_free_space(const struct vmci_qp * qpair)2925 s64 vmci_qpair_consume_free_space(const struct vmci_qp *qpair)
2926 {
2927 	struct vmci_queue_header *produce_q_header;
2928 	struct vmci_queue_header *consume_q_header;
2929 	s64 result;
2930 
2931 	if (!qpair)
2932 		return VMCI_ERROR_INVALID_ARGS;
2933 
2934 	qp_lock(qpair);
2935 	result =
2936 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2937 	if (result == VMCI_SUCCESS)
2938 		result = vmci_q_header_free_space(consume_q_header,
2939 						  produce_q_header,
2940 						  qpair->consume_q_size);
2941 	else
2942 		result = 0;
2943 
2944 	qp_unlock(qpair);
2945 
2946 	return result;
2947 }
2948 EXPORT_SYMBOL_GPL(vmci_qpair_consume_free_space);
2949 
2950 /*
2951  * vmci_qpair_produce_buf_ready() - Gets bytes ready to read from
2952  * producer queue.
2953  * @qpair:      Pointer to the queue pair struct.
2954  *
2955  * This is the client interface for getting the amount of
2956  * enqueued data in the QPair from the point of the view of the
2957  * caller as the producer which is not the common case.  Returns < 0 if err,
2958  * else available bytes that may be read.
2959  */
vmci_qpair_produce_buf_ready(const struct vmci_qp * qpair)2960 s64 vmci_qpair_produce_buf_ready(const struct vmci_qp *qpair)
2961 {
2962 	struct vmci_queue_header *produce_q_header;
2963 	struct vmci_queue_header *consume_q_header;
2964 	s64 result;
2965 
2966 	if (!qpair)
2967 		return VMCI_ERROR_INVALID_ARGS;
2968 
2969 	qp_lock(qpair);
2970 	result =
2971 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
2972 	if (result == VMCI_SUCCESS)
2973 		result = vmci_q_header_buf_ready(produce_q_header,
2974 						 consume_q_header,
2975 						 qpair->produce_q_size);
2976 	else
2977 		result = 0;
2978 
2979 	qp_unlock(qpair);
2980 
2981 	return result;
2982 }
2983 EXPORT_SYMBOL_GPL(vmci_qpair_produce_buf_ready);
2984 
2985 /*
2986  * vmci_qpair_consume_buf_ready() - Gets bytes ready to read from
2987  * consumer queue.
2988  * @qpair:      Pointer to the queue pair struct.
2989  *
2990  * This is the client interface for getting the amount of
2991  * enqueued data in the QPair from the point of the view of the
2992  * caller as the consumer which is the normal case.  Returns < 0 if err,
2993  * else available bytes that may be read.
2994  */
vmci_qpair_consume_buf_ready(const struct vmci_qp * qpair)2995 s64 vmci_qpair_consume_buf_ready(const struct vmci_qp *qpair)
2996 {
2997 	struct vmci_queue_header *produce_q_header;
2998 	struct vmci_queue_header *consume_q_header;
2999 	s64 result;
3000 
3001 	if (!qpair)
3002 		return VMCI_ERROR_INVALID_ARGS;
3003 
3004 	qp_lock(qpair);
3005 	result =
3006 	    qp_get_queue_headers(qpair, &produce_q_header, &consume_q_header);
3007 	if (result == VMCI_SUCCESS)
3008 		result = vmci_q_header_buf_ready(consume_q_header,
3009 						 produce_q_header,
3010 						 qpair->consume_q_size);
3011 	else
3012 		result = 0;
3013 
3014 	qp_unlock(qpair);
3015 
3016 	return result;
3017 }
3018 EXPORT_SYMBOL_GPL(vmci_qpair_consume_buf_ready);
3019 
3020 /*
3021  * vmci_qpair_enqueue() - Throw data on the queue.
3022  * @qpair:      Pointer to the queue pair struct.
3023  * @buf:        Pointer to buffer containing data
3024  * @buf_size:   Length of buffer.
3025  * @buf_type:   Buffer type (Unused).
3026  *
3027  * This is the client interface for enqueueing data into the queue.
3028  * Returns number of bytes enqueued or < 0 on error.
3029  */
vmci_qpair_enqueue(struct vmci_qp * qpair,const void * buf,size_t buf_size,int buf_type)3030 ssize_t vmci_qpair_enqueue(struct vmci_qp *qpair,
3031 			   const void *buf,
3032 			   size_t buf_size,
3033 			   int buf_type)
3034 {
3035 	ssize_t result;
3036 	struct iov_iter from;
3037 	struct kvec v = {.iov_base = (void *)buf, .iov_len = buf_size};
3038 
3039 	if (!qpair || !buf)
3040 		return VMCI_ERROR_INVALID_ARGS;
3041 
3042 	iov_iter_kvec(&from, WRITE | ITER_KVEC, &v, 1, buf_size);
3043 
3044 	qp_lock(qpair);
3045 
3046 	do {
3047 		result = qp_enqueue_locked(qpair->produce_q,
3048 					   qpair->consume_q,
3049 					   qpair->produce_q_size,
3050 					   &from);
3051 
3052 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3053 		    !qp_wait_for_ready_queue(qpair))
3054 			result = VMCI_ERROR_WOULD_BLOCK;
3055 
3056 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3057 
3058 	qp_unlock(qpair);
3059 
3060 	return result;
3061 }
3062 EXPORT_SYMBOL_GPL(vmci_qpair_enqueue);
3063 
3064 /*
3065  * vmci_qpair_dequeue() - Get data from the queue.
3066  * @qpair:      Pointer to the queue pair struct.
3067  * @buf:        Pointer to buffer for the data
3068  * @buf_size:   Length of buffer.
3069  * @buf_type:   Buffer type (Unused).
3070  *
3071  * This is the client interface for dequeueing data from the queue.
3072  * Returns number of bytes dequeued or < 0 on error.
3073  */
vmci_qpair_dequeue(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3074 ssize_t vmci_qpair_dequeue(struct vmci_qp *qpair,
3075 			   void *buf,
3076 			   size_t buf_size,
3077 			   int buf_type)
3078 {
3079 	ssize_t result;
3080 	struct iov_iter to;
3081 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3082 
3083 	if (!qpair || !buf)
3084 		return VMCI_ERROR_INVALID_ARGS;
3085 
3086 	iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3087 
3088 	qp_lock(qpair);
3089 
3090 	do {
3091 		result = qp_dequeue_locked(qpair->produce_q,
3092 					   qpair->consume_q,
3093 					   qpair->consume_q_size,
3094 					   &to, true);
3095 
3096 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3097 		    !qp_wait_for_ready_queue(qpair))
3098 			result = VMCI_ERROR_WOULD_BLOCK;
3099 
3100 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3101 
3102 	qp_unlock(qpair);
3103 
3104 	return result;
3105 }
3106 EXPORT_SYMBOL_GPL(vmci_qpair_dequeue);
3107 
3108 /*
3109  * vmci_qpair_peek() - Peek at the data in the queue.
3110  * @qpair:      Pointer to the queue pair struct.
3111  * @buf:        Pointer to buffer for the data
3112  * @buf_size:   Length of buffer.
3113  * @buf_type:   Buffer type (Unused on Linux).
3114  *
3115  * This is the client interface for peeking into a queue.  (I.e.,
3116  * copy data from the queue without updating the head pointer.)
3117  * Returns number of bytes dequeued or < 0 on error.
3118  */
vmci_qpair_peek(struct vmci_qp * qpair,void * buf,size_t buf_size,int buf_type)3119 ssize_t vmci_qpair_peek(struct vmci_qp *qpair,
3120 			void *buf,
3121 			size_t buf_size,
3122 			int buf_type)
3123 {
3124 	struct iov_iter to;
3125 	struct kvec v = {.iov_base = buf, .iov_len = buf_size};
3126 	ssize_t result;
3127 
3128 	if (!qpair || !buf)
3129 		return VMCI_ERROR_INVALID_ARGS;
3130 
3131 	iov_iter_kvec(&to, READ | ITER_KVEC, &v, 1, buf_size);
3132 
3133 	qp_lock(qpair);
3134 
3135 	do {
3136 		result = qp_dequeue_locked(qpair->produce_q,
3137 					   qpair->consume_q,
3138 					   qpair->consume_q_size,
3139 					   &to, false);
3140 
3141 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3142 		    !qp_wait_for_ready_queue(qpair))
3143 			result = VMCI_ERROR_WOULD_BLOCK;
3144 
3145 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3146 
3147 	qp_unlock(qpair);
3148 
3149 	return result;
3150 }
3151 EXPORT_SYMBOL_GPL(vmci_qpair_peek);
3152 
3153 /*
3154  * vmci_qpair_enquev() - Throw data on the queue using iov.
3155  * @qpair:      Pointer to the queue pair struct.
3156  * @iov:        Pointer to buffer containing data
3157  * @iov_size:   Length of buffer.
3158  * @buf_type:   Buffer type (Unused).
3159  *
3160  * This is the client interface for enqueueing data into the queue.
3161  * This function uses IO vectors to handle the work. Returns number
3162  * of bytes enqueued or < 0 on error.
3163  */
vmci_qpair_enquev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3164 ssize_t vmci_qpair_enquev(struct vmci_qp *qpair,
3165 			  struct msghdr *msg,
3166 			  size_t iov_size,
3167 			  int buf_type)
3168 {
3169 	ssize_t result;
3170 
3171 	if (!qpair)
3172 		return VMCI_ERROR_INVALID_ARGS;
3173 
3174 	qp_lock(qpair);
3175 
3176 	do {
3177 		result = qp_enqueue_locked(qpair->produce_q,
3178 					   qpair->consume_q,
3179 					   qpair->produce_q_size,
3180 					   &msg->msg_iter);
3181 
3182 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3183 		    !qp_wait_for_ready_queue(qpair))
3184 			result = VMCI_ERROR_WOULD_BLOCK;
3185 
3186 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3187 
3188 	qp_unlock(qpair);
3189 
3190 	return result;
3191 }
3192 EXPORT_SYMBOL_GPL(vmci_qpair_enquev);
3193 
3194 /*
3195  * vmci_qpair_dequev() - Get data from the queue using iov.
3196  * @qpair:      Pointer to the queue pair struct.
3197  * @iov:        Pointer to buffer for the data
3198  * @iov_size:   Length of buffer.
3199  * @buf_type:   Buffer type (Unused).
3200  *
3201  * This is the client interface for dequeueing data from the queue.
3202  * This function uses IO vectors to handle the work. Returns number
3203  * of bytes dequeued or < 0 on error.
3204  */
vmci_qpair_dequev(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3205 ssize_t vmci_qpair_dequev(struct vmci_qp *qpair,
3206 			  struct msghdr *msg,
3207 			  size_t iov_size,
3208 			  int buf_type)
3209 {
3210 	ssize_t result;
3211 
3212 	if (!qpair)
3213 		return VMCI_ERROR_INVALID_ARGS;
3214 
3215 	qp_lock(qpair);
3216 
3217 	do {
3218 		result = qp_dequeue_locked(qpair->produce_q,
3219 					   qpair->consume_q,
3220 					   qpair->consume_q_size,
3221 					   &msg->msg_iter, true);
3222 
3223 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3224 		    !qp_wait_for_ready_queue(qpair))
3225 			result = VMCI_ERROR_WOULD_BLOCK;
3226 
3227 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3228 
3229 	qp_unlock(qpair);
3230 
3231 	return result;
3232 }
3233 EXPORT_SYMBOL_GPL(vmci_qpair_dequev);
3234 
3235 /*
3236  * vmci_qpair_peekv() - Peek at the data in the queue using iov.
3237  * @qpair:      Pointer to the queue pair struct.
3238  * @iov:        Pointer to buffer for the data
3239  * @iov_size:   Length of buffer.
3240  * @buf_type:   Buffer type (Unused on Linux).
3241  *
3242  * This is the client interface for peeking into a queue.  (I.e.,
3243  * copy data from the queue without updating the head pointer.)
3244  * This function uses IO vectors to handle the work. Returns number
3245  * of bytes peeked or < 0 on error.
3246  */
vmci_qpair_peekv(struct vmci_qp * qpair,struct msghdr * msg,size_t iov_size,int buf_type)3247 ssize_t vmci_qpair_peekv(struct vmci_qp *qpair,
3248 			 struct msghdr *msg,
3249 			 size_t iov_size,
3250 			 int buf_type)
3251 {
3252 	ssize_t result;
3253 
3254 	if (!qpair)
3255 		return VMCI_ERROR_INVALID_ARGS;
3256 
3257 	qp_lock(qpair);
3258 
3259 	do {
3260 		result = qp_dequeue_locked(qpair->produce_q,
3261 					   qpair->consume_q,
3262 					   qpair->consume_q_size,
3263 					   &msg->msg_iter, false);
3264 
3265 		if (result == VMCI_ERROR_QUEUEPAIR_NOT_READY &&
3266 		    !qp_wait_for_ready_queue(qpair))
3267 			result = VMCI_ERROR_WOULD_BLOCK;
3268 
3269 	} while (result == VMCI_ERROR_QUEUEPAIR_NOT_READY);
3270 
3271 	qp_unlock(qpair);
3272 	return result;
3273 }
3274 EXPORT_SYMBOL_GPL(vmci_qpair_peekv);
3275