1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 /*
3 * Copyright (C) 2017-2022 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All rights reserved.
6 *
7 * This driver produces cryptographically secure pseudorandom data. It is divided
8 * into roughly six sections, each with a section header:
9 *
10 * - Initialization and readiness waiting.
11 * - Fast key erasure RNG, the "crng".
12 * - Entropy accumulation and extraction routines.
13 * - Entropy collection routines.
14 * - Userspace reader/writer interfaces.
15 * - Sysctl interface.
16 *
17 * The high level overview is that there is one input pool, into which
18 * various pieces of data are hashed. Prior to initialization, some of that
19 * data is then "credited" as having a certain number of bits of entropy.
20 * When enough bits of entropy are available, the hash is finalized and
21 * handed as a key to a stream cipher that expands it indefinitely for
22 * various consumers. This key is periodically refreshed as the various
23 * entropy collectors, described below, add data to the input pool.
24 */
25
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28 #include <linux/utsname.h>
29 #include <linux/module.h>
30 #include <linux/kernel.h>
31 #include <linux/major.h>
32 #include <linux/string.h>
33 #include <linux/fcntl.h>
34 #include <linux/slab.h>
35 #include <linux/random.h>
36 #include <linux/poll.h>
37 #include <linux/init.h>
38 #include <linux/fs.h>
39 #include <linux/genhd.h>
40 #include <linux/interrupt.h>
41 #include <linux/mm.h>
42 #include <linux/nodemask.h>
43 #include <linux/spinlock.h>
44 #include <linux/kthread.h>
45 #include <linux/percpu.h>
46 #include <linux/ptrace.h>
47 #include <linux/workqueue.h>
48 #include <linux/irq.h>
49 #include <linux/ratelimit.h>
50 #include <linux/syscalls.h>
51 #include <linux/completion.h>
52 #include <linux/uuid.h>
53 #include <linux/uaccess.h>
54 #include <linux/siphash.h>
55 #include <linux/uio.h>
56 #include <crypto/chacha20.h>
57 #include <crypto/blake2s.h>
58 #include <asm/processor.h>
59 #include <asm/irq.h>
60 #include <asm/irq_regs.h>
61 #include <asm/io.h>
62
63 /*********************************************************************
64 *
65 * Initialization and readiness waiting.
66 *
67 * Much of the RNG infrastructure is devoted to various dependencies
68 * being able to wait until the RNG has collected enough entropy and
69 * is ready for safe consumption.
70 *
71 *********************************************************************/
72
73 /*
74 * crng_init is protected by base_crng->lock, and only increases
75 * its value (from empty->early->ready).
76 */
77 static enum {
78 CRNG_EMPTY = 0, /* Little to no entropy collected */
79 CRNG_EARLY = 1, /* At least POOL_EARLY_BITS collected */
80 CRNG_READY = 2 /* Fully initialized with POOL_READY_BITS collected */
81 } crng_init __read_mostly = CRNG_EMPTY;
82 #define crng_ready() (likely(crng_init >= CRNG_READY))
83 /* Various types of waiters for crng_init->CRNG_READY transition. */
84 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
85 static struct fasync_struct *fasync;
86 static DEFINE_SPINLOCK(random_ready_chain_lock);
87 static RAW_NOTIFIER_HEAD(random_ready_chain);
88
89 /* Control how we warn userspace. */
90 static struct ratelimit_state urandom_warning =
91 RATELIMIT_STATE_INIT_FLAGS("urandom_warning", HZ, 3, RATELIMIT_MSG_ON_RELEASE);
92 static int ratelimit_disable __read_mostly =
93 IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM);
94 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
95 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
96
97 /*
98 * Returns whether or not the input pool has been seeded and thus guaranteed
99 * to supply cryptographically secure random numbers. This applies to: the
100 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
101 * ,u64,int,long} family of functions.
102 *
103 * Returns: true if the input pool has been seeded.
104 * false if the input pool has not been seeded.
105 */
rng_is_initialized(void)106 bool rng_is_initialized(void)
107 {
108 return crng_ready();
109 }
110 EXPORT_SYMBOL(rng_is_initialized);
111
112 /* Used by wait_for_random_bytes(), and considered an entropy collector, below. */
113 static void try_to_generate_entropy(void);
114
115 /*
116 * Wait for the input pool to be seeded and thus guaranteed to supply
117 * cryptographically secure random numbers. This applies to: the /dev/urandom
118 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
119 * family of functions. Using any of these functions without first calling
120 * this function forfeits the guarantee of security.
121 *
122 * Returns: 0 if the input pool has been seeded.
123 * -ERESTARTSYS if the function was interrupted by a signal.
124 */
wait_for_random_bytes(void)125 int wait_for_random_bytes(void)
126 {
127 while (!crng_ready()) {
128 int ret;
129
130 try_to_generate_entropy();
131 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
132 if (ret)
133 return ret > 0 ? 0 : ret;
134 }
135 return 0;
136 }
137 EXPORT_SYMBOL(wait_for_random_bytes);
138
139 /*
140 * Add a callback function that will be invoked when the input
141 * pool is initialised.
142 *
143 * returns: 0 if callback is successfully added
144 * -EALREADY if pool is already initialised (callback not called)
145 */
register_random_ready_notifier(struct notifier_block * nb)146 int __cold register_random_ready_notifier(struct notifier_block *nb)
147 {
148 unsigned long flags;
149 int ret = -EALREADY;
150
151 if (crng_ready())
152 return ret;
153
154 spin_lock_irqsave(&random_ready_chain_lock, flags);
155 if (!crng_ready())
156 ret = raw_notifier_chain_register(&random_ready_chain, nb);
157 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
158 return ret;
159 }
160
161 /*
162 * Delete a previously registered readiness callback function.
163 */
unregister_random_ready_notifier(struct notifier_block * nb)164 int __cold unregister_random_ready_notifier(struct notifier_block *nb)
165 {
166 unsigned long flags;
167 int ret;
168
169 spin_lock_irqsave(&random_ready_chain_lock, flags);
170 ret = raw_notifier_chain_unregister(&random_ready_chain, nb);
171 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
172 return ret;
173 }
174
process_random_ready_list(void)175 static void __cold process_random_ready_list(void)
176 {
177 unsigned long flags;
178
179 spin_lock_irqsave(&random_ready_chain_lock, flags);
180 raw_notifier_call_chain(&random_ready_chain, 0, NULL);
181 spin_unlock_irqrestore(&random_ready_chain_lock, flags);
182 }
183
184 #define warn_unseeded_randomness() \
185 if (IS_ENABLED(CONFIG_WARN_ALL_UNSEEDED_RANDOM) && !crng_ready()) \
186 printk_deferred(KERN_NOTICE "random: %s called from %pS with crng_init=%d\n", \
187 __func__, (void *)_RET_IP_, crng_init)
188
189
190 /*********************************************************************
191 *
192 * Fast key erasure RNG, the "crng".
193 *
194 * These functions expand entropy from the entropy extractor into
195 * long streams for external consumption using the "fast key erasure"
196 * RNG described at <https://blog.cr.yp.to/20170723-random.html>.
197 *
198 * There are a few exported interfaces for use by other drivers:
199 *
200 * void get_random_bytes(void *buf, size_t len)
201 * u32 get_random_u32()
202 * u64 get_random_u64()
203 * unsigned int get_random_int()
204 * unsigned long get_random_long()
205 *
206 * These interfaces will return the requested number of random bytes
207 * into the given buffer or as a return value. This is equivalent to
208 * a read from /dev/urandom. The u32, u64, int, and long family of
209 * functions may be higher performance for one-off random integers,
210 * because they do a bit of buffering and do not invoke reseeding
211 * until the buffer is emptied.
212 *
213 *********************************************************************/
214
215 enum {
216 CRNG_RESEED_START_INTERVAL = HZ,
217 CRNG_RESEED_INTERVAL = 60 * HZ
218 };
219
220 static struct {
221 u8 key[CHACHA20_KEY_SIZE] __aligned(__alignof__(long));
222 unsigned long birth;
223 unsigned long generation;
224 spinlock_t lock;
225 } base_crng = {
226 .lock = __SPIN_LOCK_UNLOCKED(base_crng.lock)
227 };
228
229 struct crng {
230 u8 key[CHACHA20_KEY_SIZE];
231 unsigned long generation;
232 };
233
234 static DEFINE_PER_CPU(struct crng, crngs) = {
235 .generation = ULONG_MAX
236 };
237
238 /* Used by crng_reseed() and crng_make_state() to extract a new seed from the input pool. */
239 static void extract_entropy(void *buf, size_t len);
240
241 /* This extracts a new crng key from the input pool. */
crng_reseed(void)242 static void crng_reseed(void)
243 {
244 unsigned long flags;
245 unsigned long next_gen;
246 u8 key[CHACHA20_KEY_SIZE];
247
248 extract_entropy(key, sizeof(key));
249
250 /*
251 * We copy the new key into the base_crng, overwriting the old one,
252 * and update the generation counter. We avoid hitting ULONG_MAX,
253 * because the per-cpu crngs are initialized to ULONG_MAX, so this
254 * forces new CPUs that come online to always initialize.
255 */
256 spin_lock_irqsave(&base_crng.lock, flags);
257 memcpy(base_crng.key, key, sizeof(base_crng.key));
258 next_gen = base_crng.generation + 1;
259 if (next_gen == ULONG_MAX)
260 ++next_gen;
261 WRITE_ONCE(base_crng.generation, next_gen);
262 WRITE_ONCE(base_crng.birth, jiffies);
263 if (!crng_ready())
264 crng_init = CRNG_READY;
265 spin_unlock_irqrestore(&base_crng.lock, flags);
266 memzero_explicit(key, sizeof(key));
267 }
268
269 /*
270 * This generates a ChaCha block using the provided key, and then
271 * immediately overwites that key with half the block. It returns
272 * the resultant ChaCha state to the user, along with the second
273 * half of the block containing 32 bytes of random data that may
274 * be used; random_data_len may not be greater than 32.
275 *
276 * The returned ChaCha state contains within it a copy of the old
277 * key value, at index 4, so the state should always be zeroed out
278 * immediately after using in order to maintain forward secrecy.
279 * If the state cannot be erased in a timely manner, then it is
280 * safer to set the random_data parameter to &chacha_state[4] so
281 * that this function overwrites it before returning.
282 */
crng_fast_key_erasure(u8 key[CHACHA20_KEY_SIZE],u32 chacha_state[CHACHA20_BLOCK_SIZE/sizeof (u32)],u8 * random_data,size_t random_data_len)283 static void crng_fast_key_erasure(u8 key[CHACHA20_KEY_SIZE],
284 u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)],
285 u8 *random_data, size_t random_data_len)
286 {
287 u8 first_block[CHACHA20_BLOCK_SIZE];
288
289 BUG_ON(random_data_len > 32);
290
291 chacha_init_consts(chacha_state);
292 memcpy(&chacha_state[4], key, CHACHA20_KEY_SIZE);
293 memset(&chacha_state[12], 0, sizeof(u32) * 4);
294 chacha20_block(chacha_state, first_block);
295
296 memcpy(key, first_block, CHACHA20_KEY_SIZE);
297 memcpy(random_data, first_block + CHACHA20_KEY_SIZE, random_data_len);
298 memzero_explicit(first_block, sizeof(first_block));
299 }
300
301 /*
302 * Return whether the crng seed is considered to be sufficiently old
303 * that a reseeding is needed. This happens if the last reseeding
304 * was CRNG_RESEED_INTERVAL ago, or during early boot, at an interval
305 * proportional to the uptime.
306 */
crng_has_old_seed(void)307 static bool crng_has_old_seed(void)
308 {
309 static bool early_boot = true;
310 unsigned long interval = CRNG_RESEED_INTERVAL;
311
312 if (unlikely(READ_ONCE(early_boot))) {
313 time64_t uptime = ktime_get_seconds();
314 if (uptime >= CRNG_RESEED_INTERVAL / HZ * 2)
315 WRITE_ONCE(early_boot, false);
316 else
317 interval = max_t(unsigned int, CRNG_RESEED_START_INTERVAL,
318 (unsigned int)uptime / 2 * HZ);
319 }
320 return time_is_before_jiffies(READ_ONCE(base_crng.birth) + interval);
321 }
322
323 /*
324 * This function returns a ChaCha state that you may use for generating
325 * random data. It also returns up to 32 bytes on its own of random data
326 * that may be used; random_data_len may not be greater than 32.
327 */
crng_make_state(u32 chacha_state[CHACHA20_BLOCK_SIZE/sizeof (u32)],u8 * random_data,size_t random_data_len)328 static void crng_make_state(u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)],
329 u8 *random_data, size_t random_data_len)
330 {
331 unsigned long flags;
332 struct crng *crng;
333
334 BUG_ON(random_data_len > 32);
335
336 /*
337 * For the fast path, we check whether we're ready, unlocked first, and
338 * then re-check once locked later. In the case where we're really not
339 * ready, we do fast key erasure with the base_crng directly, extracting
340 * when crng_init is CRNG_EMPTY.
341 */
342 if (!crng_ready()) {
343 bool ready;
344
345 spin_lock_irqsave(&base_crng.lock, flags);
346 ready = crng_ready();
347 if (!ready) {
348 if (crng_init == CRNG_EMPTY)
349 extract_entropy(base_crng.key, sizeof(base_crng.key));
350 crng_fast_key_erasure(base_crng.key, chacha_state,
351 random_data, random_data_len);
352 }
353 spin_unlock_irqrestore(&base_crng.lock, flags);
354 if (!ready)
355 return;
356 }
357
358 /*
359 * If the base_crng is old enough, we reseed, which in turn bumps the
360 * generation counter that we check below.
361 */
362 if (unlikely(crng_has_old_seed()))
363 crng_reseed();
364
365 local_irq_save(flags);
366 crng = raw_cpu_ptr(&crngs);
367
368 /*
369 * If our per-cpu crng is older than the base_crng, then it means
370 * somebody reseeded the base_crng. In that case, we do fast key
371 * erasure on the base_crng, and use its output as the new key
372 * for our per-cpu crng. This brings us up to date with base_crng.
373 */
374 if (unlikely(crng->generation != READ_ONCE(base_crng.generation))) {
375 spin_lock(&base_crng.lock);
376 crng_fast_key_erasure(base_crng.key, chacha_state,
377 crng->key, sizeof(crng->key));
378 crng->generation = base_crng.generation;
379 spin_unlock(&base_crng.lock);
380 }
381
382 /*
383 * Finally, when we've made it this far, our per-cpu crng has an up
384 * to date key, and we can do fast key erasure with it to produce
385 * some random data and a ChaCha state for the caller. All other
386 * branches of this function are "unlikely", so most of the time we
387 * should wind up here immediately.
388 */
389 crng_fast_key_erasure(crng->key, chacha_state, random_data, random_data_len);
390 local_irq_restore(flags);
391 }
392
_get_random_bytes(void * buf,size_t len)393 static void _get_random_bytes(void *buf, size_t len)
394 {
395 u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)];
396 u8 tmp[CHACHA20_BLOCK_SIZE];
397 size_t first_block_len;
398
399 if (!len)
400 return;
401
402 first_block_len = min_t(size_t, 32, len);
403 crng_make_state(chacha_state, buf, first_block_len);
404 len -= first_block_len;
405 buf += first_block_len;
406
407 while (len) {
408 if (len < CHACHA20_BLOCK_SIZE) {
409 chacha20_block(chacha_state, tmp);
410 memcpy(buf, tmp, len);
411 memzero_explicit(tmp, sizeof(tmp));
412 break;
413 }
414
415 chacha20_block(chacha_state, buf);
416 if (unlikely(chacha_state[12] == 0))
417 ++chacha_state[13];
418 len -= CHACHA20_BLOCK_SIZE;
419 buf += CHACHA20_BLOCK_SIZE;
420 }
421
422 memzero_explicit(chacha_state, sizeof(chacha_state));
423 }
424
425 /*
426 * This function is the exported kernel interface. It returns some
427 * number of good random numbers, suitable for key generation, seeding
428 * TCP sequence numbers, etc. It does not rely on the hardware random
429 * number generator. For random bytes direct from the hardware RNG
430 * (when available), use get_random_bytes_arch(). In order to ensure
431 * that the randomness provided by this function is okay, the function
432 * wait_for_random_bytes() should be called and return 0 at least once
433 * at any point prior.
434 */
get_random_bytes(void * buf,size_t len)435 void get_random_bytes(void *buf, size_t len)
436 {
437 warn_unseeded_randomness();
438 _get_random_bytes(buf, len);
439 }
440 EXPORT_SYMBOL(get_random_bytes);
441
get_random_bytes_user(struct iov_iter * iter)442 static ssize_t get_random_bytes_user(struct iov_iter *iter)
443 {
444 u32 chacha_state[CHACHA20_BLOCK_SIZE / sizeof(u32)];
445 u8 block[CHACHA20_BLOCK_SIZE];
446 size_t ret = 0, copied;
447
448 if (unlikely(!iov_iter_count(iter)))
449 return 0;
450
451 /*
452 * Immediately overwrite the ChaCha key at index 4 with random
453 * bytes, in case userspace causes copy_to_user() below to sleep
454 * forever, so that we still retain forward secrecy in that case.
455 */
456 crng_make_state(chacha_state, (u8 *)&chacha_state[4], CHACHA20_KEY_SIZE);
457 /*
458 * However, if we're doing a read of len <= 32, we don't need to
459 * use chacha_state after, so we can simply return those bytes to
460 * the user directly.
461 */
462 if (iov_iter_count(iter) <= CHACHA20_KEY_SIZE) {
463 ret = copy_to_iter(&chacha_state[4], CHACHA20_KEY_SIZE, iter);
464 goto out_zero_chacha;
465 }
466
467 for (;;) {
468 chacha20_block(chacha_state, block);
469 if (unlikely(chacha_state[12] == 0))
470 ++chacha_state[13];
471
472 copied = copy_to_iter(block, sizeof(block), iter);
473 ret += copied;
474 if (!iov_iter_count(iter) || copied != sizeof(block))
475 break;
476
477 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
478 if (ret % PAGE_SIZE == 0) {
479 if (signal_pending(current))
480 break;
481 cond_resched();
482 }
483 }
484
485 memzero_explicit(block, sizeof(block));
486 out_zero_chacha:
487 memzero_explicit(chacha_state, sizeof(chacha_state));
488 return ret ? ret : -EFAULT;
489 }
490
491 /*
492 * Batched entropy returns random integers. The quality of the random
493 * number is good as /dev/urandom. In order to ensure that the randomness
494 * provided by this function is okay, the function wait_for_random_bytes()
495 * should be called and return 0 at least once at any point prior.
496 */
497
498 #define DEFINE_BATCHED_ENTROPY(type) \
499 struct batch_ ##type { \
500 /* \
501 * We make this 1.5x a ChaCha block, so that we get the \
502 * remaining 32 bytes from fast key erasure, plus one full \
503 * block from the detached ChaCha state. We can increase \
504 * the size of this later if needed so long as we keep the \
505 * formula of (integer_blocks + 0.5) * CHACHA20_BLOCK_SIZE. \
506 */ \
507 type entropy[CHACHA20_BLOCK_SIZE * 3 / (2 * sizeof(type))]; \
508 unsigned long generation; \
509 unsigned int position; \
510 }; \
511 \
512 static DEFINE_PER_CPU(struct batch_ ##type, batched_entropy_ ##type) = { \
513 .position = UINT_MAX \
514 }; \
515 \
516 type get_random_ ##type(void) \
517 { \
518 type ret; \
519 unsigned long flags; \
520 struct batch_ ##type *batch; \
521 unsigned long next_gen; \
522 \
523 warn_unseeded_randomness(); \
524 \
525 if (!crng_ready()) { \
526 _get_random_bytes(&ret, sizeof(ret)); \
527 return ret; \
528 } \
529 \
530 local_irq_save(flags); \
531 batch = raw_cpu_ptr(&batched_entropy_##type); \
532 \
533 next_gen = READ_ONCE(base_crng.generation); \
534 if (batch->position >= ARRAY_SIZE(batch->entropy) || \
535 next_gen != batch->generation) { \
536 _get_random_bytes(batch->entropy, sizeof(batch->entropy)); \
537 batch->position = 0; \
538 batch->generation = next_gen; \
539 } \
540 \
541 ret = batch->entropy[batch->position]; \
542 batch->entropy[batch->position] = 0; \
543 ++batch->position; \
544 local_irq_restore(flags); \
545 return ret; \
546 } \
547 EXPORT_SYMBOL(get_random_ ##type);
548
549 DEFINE_BATCHED_ENTROPY(u64)
DEFINE_BATCHED_ENTROPY(u32)550 DEFINE_BATCHED_ENTROPY(u32)
551
552 #ifdef CONFIG_SMP
553 /*
554 * This function is called when the CPU is coming up, with entry
555 * CPUHP_RANDOM_PREPARE, which comes before CPUHP_WORKQUEUE_PREP.
556 */
557 int __cold random_prepare_cpu(unsigned int cpu)
558 {
559 /*
560 * When the cpu comes back online, immediately invalidate both
561 * the per-cpu crng and all batches, so that we serve fresh
562 * randomness.
563 */
564 per_cpu_ptr(&crngs, cpu)->generation = ULONG_MAX;
565 per_cpu_ptr(&batched_entropy_u32, cpu)->position = UINT_MAX;
566 per_cpu_ptr(&batched_entropy_u64, cpu)->position = UINT_MAX;
567 return 0;
568 }
569 #endif
570
571 /*
572 * This function will use the architecture-specific hardware random
573 * number generator if it is available. It is not recommended for
574 * use. Use get_random_bytes() instead. It returns the number of
575 * bytes filled in.
576 */
get_random_bytes_arch(void * buf,size_t len)577 size_t __must_check get_random_bytes_arch(void *buf, size_t len)
578 {
579 size_t left = len;
580 u8 *p = buf;
581
582 while (left) {
583 unsigned long v;
584 size_t block_len = min_t(size_t, left, sizeof(unsigned long));
585
586 if (!arch_get_random_long(&v))
587 break;
588
589 memcpy(p, &v, block_len);
590 p += block_len;
591 left -= block_len;
592 }
593
594 return len - left;
595 }
596 EXPORT_SYMBOL(get_random_bytes_arch);
597
598
599 /**********************************************************************
600 *
601 * Entropy accumulation and extraction routines.
602 *
603 * Callers may add entropy via:
604 *
605 * static void mix_pool_bytes(const void *buf, size_t len)
606 *
607 * After which, if added entropy should be credited:
608 *
609 * static void credit_init_bits(size_t bits)
610 *
611 * Finally, extract entropy via:
612 *
613 * static void extract_entropy(void *buf, size_t len)
614 *
615 **********************************************************************/
616
617 enum {
618 POOL_BITS = BLAKE2S_HASH_SIZE * 8,
619 POOL_READY_BITS = POOL_BITS, /* When crng_init->CRNG_READY */
620 POOL_EARLY_BITS = POOL_READY_BITS / 2 /* When crng_init->CRNG_EARLY */
621 };
622
623 static struct {
624 struct blake2s_state hash;
625 spinlock_t lock;
626 unsigned int init_bits;
627 } input_pool = {
628 .hash.h = { BLAKE2S_IV0 ^ (0x01010000 | BLAKE2S_HASH_SIZE),
629 BLAKE2S_IV1, BLAKE2S_IV2, BLAKE2S_IV3, BLAKE2S_IV4,
630 BLAKE2S_IV5, BLAKE2S_IV6, BLAKE2S_IV7 },
631 .hash.outlen = BLAKE2S_HASH_SIZE,
632 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
633 };
634
_mix_pool_bytes(const void * buf,size_t len)635 static void _mix_pool_bytes(const void *buf, size_t len)
636 {
637 blake2s_update(&input_pool.hash, buf, len);
638 }
639
640 /*
641 * This function adds bytes into the input pool. It does not
642 * update the initialization bit counter; the caller should call
643 * credit_init_bits if this is appropriate.
644 */
mix_pool_bytes(const void * buf,size_t len)645 static void mix_pool_bytes(const void *buf, size_t len)
646 {
647 unsigned long flags;
648
649 spin_lock_irqsave(&input_pool.lock, flags);
650 _mix_pool_bytes(buf, len);
651 spin_unlock_irqrestore(&input_pool.lock, flags);
652 }
653
654 /*
655 * This is an HKDF-like construction for using the hashed collected entropy
656 * as a PRF key, that's then expanded block-by-block.
657 */
extract_entropy(void * buf,size_t len)658 static void extract_entropy(void *buf, size_t len)
659 {
660 unsigned long flags;
661 u8 seed[BLAKE2S_HASH_SIZE], next_key[BLAKE2S_HASH_SIZE];
662 struct {
663 unsigned long rdseed[32 / sizeof(long)];
664 size_t counter;
665 } block;
666 size_t i;
667
668 for (i = 0; i < ARRAY_SIZE(block.rdseed); ++i) {
669 if (!arch_get_random_seed_long(&block.rdseed[i]) &&
670 !arch_get_random_long(&block.rdseed[i]))
671 block.rdseed[i] = random_get_entropy();
672 }
673
674 spin_lock_irqsave(&input_pool.lock, flags);
675
676 /* seed = HASHPRF(last_key, entropy_input) */
677 blake2s_final(&input_pool.hash, seed);
678
679 /* next_key = HASHPRF(seed, RDSEED || 0) */
680 block.counter = 0;
681 blake2s(next_key, (u8 *)&block, seed, sizeof(next_key), sizeof(block), sizeof(seed));
682 blake2s_init_key(&input_pool.hash, BLAKE2S_HASH_SIZE, next_key, sizeof(next_key));
683
684 spin_unlock_irqrestore(&input_pool.lock, flags);
685 memzero_explicit(next_key, sizeof(next_key));
686
687 while (len) {
688 i = min_t(size_t, len, BLAKE2S_HASH_SIZE);
689 /* output = HASHPRF(seed, RDSEED || ++counter) */
690 ++block.counter;
691 blake2s(buf, (u8 *)&block, seed, i, sizeof(block), sizeof(seed));
692 len -= i;
693 buf += i;
694 }
695
696 memzero_explicit(seed, sizeof(seed));
697 memzero_explicit(&block, sizeof(block));
698 }
699
700 #define credit_init_bits(bits) if (!crng_ready()) _credit_init_bits(bits)
701
_credit_init_bits(size_t bits)702 static void __cold _credit_init_bits(size_t bits)
703 {
704 unsigned int new, orig, add;
705 unsigned long flags;
706
707 if (!bits)
708 return;
709
710 add = min_t(size_t, bits, POOL_BITS);
711
712 do {
713 orig = READ_ONCE(input_pool.init_bits);
714 new = min_t(unsigned int, POOL_BITS, orig + add);
715 } while (cmpxchg(&input_pool.init_bits, orig, new) != orig);
716
717 if (orig < POOL_READY_BITS && new >= POOL_READY_BITS) {
718 crng_reseed(); /* Sets crng_init to CRNG_READY under base_crng.lock. */
719 process_random_ready_list();
720 wake_up_interruptible(&crng_init_wait);
721 kill_fasync(&fasync, SIGIO, POLL_IN);
722 pr_notice("crng init done\n");
723 if (urandom_warning.missed)
724 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
725 urandom_warning.missed);
726 } else if (orig < POOL_EARLY_BITS && new >= POOL_EARLY_BITS) {
727 spin_lock_irqsave(&base_crng.lock, flags);
728 /* Check if crng_init is CRNG_EMPTY, to avoid race with crng_reseed(). */
729 if (crng_init == CRNG_EMPTY) {
730 extract_entropy(base_crng.key, sizeof(base_crng.key));
731 crng_init = CRNG_EARLY;
732 }
733 spin_unlock_irqrestore(&base_crng.lock, flags);
734 }
735 }
736
737
738 /**********************************************************************
739 *
740 * Entropy collection routines.
741 *
742 * The following exported functions are used for pushing entropy into
743 * the above entropy accumulation routines:
744 *
745 * void add_device_randomness(const void *buf, size_t len);
746 * void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy);
747 * void add_bootloader_randomness(const void *buf, size_t len);
748 * void add_interrupt_randomness(int irq);
749 * void add_input_randomness(unsigned int type, unsigned int code, unsigned int value);
750 * void add_disk_randomness(struct gendisk *disk);
751 *
752 * add_device_randomness() adds data to the input pool that
753 * is likely to differ between two devices (or possibly even per boot).
754 * This would be things like MAC addresses or serial numbers, or the
755 * read-out of the RTC. This does *not* credit any actual entropy to
756 * the pool, but it initializes the pool to different values for devices
757 * that might otherwise be identical and have very little entropy
758 * available to them (particularly common in the embedded world).
759 *
760 * add_hwgenerator_randomness() is for true hardware RNGs, and will credit
761 * entropy as specified by the caller. If the entropy pool is full it will
762 * block until more entropy is needed.
763 *
764 * add_bootloader_randomness() is called by bootloader drivers, such as EFI
765 * and device tree, and credits its input depending on whether or not the
766 * configuration option CONFIG_RANDOM_TRUST_BOOTLOADER is set.
767 *
768 * add_interrupt_randomness() uses the interrupt timing as random
769 * inputs to the entropy pool. Using the cycle counters and the irq source
770 * as inputs, it feeds the input pool roughly once a second or after 64
771 * interrupts, crediting 1 bit of entropy for whichever comes first.
772 *
773 * add_input_randomness() uses the input layer interrupt timing, as well
774 * as the event type information from the hardware.
775 *
776 * add_disk_randomness() uses what amounts to the seek time of block
777 * layer request events, on a per-disk_devt basis, as input to the
778 * entropy pool. Note that high-speed solid state drives with very low
779 * seek times do not make for good sources of entropy, as their seek
780 * times are usually fairly consistent.
781 *
782 * The last two routines try to estimate how many bits of entropy
783 * to credit. They do this by keeping track of the first and second
784 * order deltas of the event timings.
785 *
786 **********************************************************************/
787
788 static bool trust_cpu __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
789 static bool trust_bootloader __initdata = IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER);
parse_trust_cpu(char * arg)790 static int __init parse_trust_cpu(char *arg)
791 {
792 return kstrtobool(arg, &trust_cpu);
793 }
parse_trust_bootloader(char * arg)794 static int __init parse_trust_bootloader(char *arg)
795 {
796 return kstrtobool(arg, &trust_bootloader);
797 }
798 early_param("random.trust_cpu", parse_trust_cpu);
799 early_param("random.trust_bootloader", parse_trust_bootloader);
800
801 /*
802 * The first collection of entropy occurs at system boot while interrupts
803 * are still turned off. Here we push in latent entropy, RDSEED, a timestamp,
804 * utsname(), and the command line. Depending on the above configuration knob,
805 * RDSEED may be considered sufficient for initialization. Note that much
806 * earlier setup may already have pushed entropy into the input pool by the
807 * time we get here.
808 */
random_init(const char * command_line)809 int __init random_init(const char *command_line)
810 {
811 ktime_t now = ktime_get_real();
812 unsigned int i, arch_bits;
813 unsigned long entropy;
814
815 #if defined(LATENT_ENTROPY_PLUGIN)
816 static const u8 compiletime_seed[BLAKE2S_BLOCK_SIZE] __initconst __latent_entropy;
817 _mix_pool_bytes(compiletime_seed, sizeof(compiletime_seed));
818 #endif
819
820 for (i = 0, arch_bits = BLAKE2S_BLOCK_SIZE * 8;
821 i < BLAKE2S_BLOCK_SIZE; i += sizeof(entropy)) {
822 if (!arch_get_random_seed_long_early(&entropy) &&
823 !arch_get_random_long_early(&entropy)) {
824 entropy = random_get_entropy();
825 arch_bits -= sizeof(entropy) * 8;
826 }
827 _mix_pool_bytes(&entropy, sizeof(entropy));
828 }
829 _mix_pool_bytes(&now, sizeof(now));
830 _mix_pool_bytes(utsname(), sizeof(*(utsname())));
831 _mix_pool_bytes(command_line, strlen(command_line));
832 add_latent_entropy();
833
834 if (crng_ready())
835 crng_reseed();
836 else if (trust_cpu)
837 _credit_init_bits(arch_bits);
838
839 return 0;
840 }
841
842 /*
843 * Add device- or boot-specific data to the input pool to help
844 * initialize it.
845 *
846 * None of this adds any entropy; it is meant to avoid the problem of
847 * the entropy pool having similar initial state across largely
848 * identical devices.
849 */
add_device_randomness(const void * buf,size_t len)850 void add_device_randomness(const void *buf, size_t len)
851 {
852 unsigned long entropy = random_get_entropy();
853 unsigned long flags;
854
855 spin_lock_irqsave(&input_pool.lock, flags);
856 _mix_pool_bytes(&entropy, sizeof(entropy));
857 _mix_pool_bytes(buf, len);
858 spin_unlock_irqrestore(&input_pool.lock, flags);
859 }
860 EXPORT_SYMBOL(add_device_randomness);
861
862 /*
863 * Interface for in-kernel drivers of true hardware RNGs.
864 * Those devices may produce endless random bits and will be throttled
865 * when our pool is full.
866 */
add_hwgenerator_randomness(const void * buf,size_t len,size_t entropy)867 void add_hwgenerator_randomness(const void *buf, size_t len, size_t entropy)
868 {
869 mix_pool_bytes(buf, len);
870 credit_init_bits(entropy);
871
872 /*
873 * Throttle writing to once every CRNG_RESEED_INTERVAL, unless
874 * we're not yet initialized.
875 */
876 if (!kthread_should_stop() && crng_ready())
877 schedule_timeout_interruptible(CRNG_RESEED_INTERVAL);
878 }
879 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
880
881 /*
882 * Handle random seed passed by bootloader, and credit it if
883 * CONFIG_RANDOM_TRUST_BOOTLOADER is set.
884 */
add_bootloader_randomness(const void * buf,size_t len)885 void __init add_bootloader_randomness(const void *buf, size_t len)
886 {
887 mix_pool_bytes(buf, len);
888 if (trust_bootloader)
889 credit_init_bits(len * 8);
890 }
891
892 struct fast_pool {
893 unsigned long pool[4];
894 unsigned long last;
895 unsigned int count;
896 struct timer_list mix;
897 };
898
899 static void mix_interrupt_randomness(struct timer_list *work);
900
901 static DEFINE_PER_CPU(struct fast_pool, irq_randomness) = {
902 #ifdef CONFIG_64BIT
903 #define FASTMIX_PERM SIPHASH_PERMUTATION
904 .pool = { SIPHASH_CONST_0, SIPHASH_CONST_1, SIPHASH_CONST_2, SIPHASH_CONST_3 },
905 #else
906 #define FASTMIX_PERM HSIPHASH_PERMUTATION
907 .pool = { HSIPHASH_CONST_0, HSIPHASH_CONST_1, HSIPHASH_CONST_2, HSIPHASH_CONST_3 },
908 #endif
909 .mix = __TIMER_INITIALIZER(mix_interrupt_randomness, 0)
910 };
911
912 /*
913 * This is [Half]SipHash-1-x, starting from an empty key. Because
914 * the key is fixed, it assumes that its inputs are non-malicious,
915 * and therefore this has no security on its own. s represents the
916 * four-word SipHash state, while v represents a two-word input.
917 */
fast_mix(unsigned long s[4],unsigned long v1,unsigned long v2)918 static void fast_mix(unsigned long s[4], unsigned long v1, unsigned long v2)
919 {
920 s[3] ^= v1;
921 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
922 s[0] ^= v1;
923 s[3] ^= v2;
924 FASTMIX_PERM(s[0], s[1], s[2], s[3]);
925 s[0] ^= v2;
926 }
927
928 #ifdef CONFIG_SMP
929 /*
930 * This function is called when the CPU has just come online, with
931 * entry CPUHP_AP_RANDOM_ONLINE, just after CPUHP_AP_WORKQUEUE_ONLINE.
932 */
random_online_cpu(unsigned int cpu)933 int __cold random_online_cpu(unsigned int cpu)
934 {
935 /*
936 * During CPU shutdown and before CPU onlining, add_interrupt_
937 * randomness() may schedule mix_interrupt_randomness(), and
938 * set the MIX_INFLIGHT flag. However, because the worker can
939 * be scheduled on a different CPU during this period, that
940 * flag will never be cleared. For that reason, we zero out
941 * the flag here, which runs just after workqueues are onlined
942 * for the CPU again. This also has the effect of setting the
943 * irq randomness count to zero so that new accumulated irqs
944 * are fresh.
945 */
946 per_cpu_ptr(&irq_randomness, cpu)->count = 0;
947 return 0;
948 }
949 #endif
950
mix_interrupt_randomness(struct timer_list * work)951 static void mix_interrupt_randomness(struct timer_list *work)
952 {
953 struct fast_pool *fast_pool = container_of(work, struct fast_pool, mix);
954 /*
955 * The size of the copied stack pool is explicitly 2 longs so that we
956 * only ever ingest half of the siphash output each time, retaining
957 * the other half as the next "key" that carries over. The entropy is
958 * supposed to be sufficiently dispersed between bits so on average
959 * we don't wind up "losing" some.
960 */
961 unsigned long pool[2];
962 unsigned int count;
963
964 /* Check to see if we're running on the wrong CPU due to hotplug. */
965 local_irq_disable();
966 if (fast_pool != this_cpu_ptr(&irq_randomness)) {
967 local_irq_enable();
968 return;
969 }
970
971 /*
972 * Copy the pool to the stack so that the mixer always has a
973 * consistent view, before we reenable irqs again.
974 */
975 memcpy(pool, fast_pool->pool, sizeof(pool));
976 count = fast_pool->count;
977 fast_pool->count = 0;
978 fast_pool->last = jiffies;
979 local_irq_enable();
980
981 mix_pool_bytes(pool, sizeof(pool));
982 credit_init_bits(clamp_t(unsigned int, (count & U16_MAX) / 64, 1, sizeof(pool) * 8));
983
984 memzero_explicit(pool, sizeof(pool));
985 }
986
add_interrupt_randomness(int irq)987 void add_interrupt_randomness(int irq)
988 {
989 enum { MIX_INFLIGHT = 1U << 31 };
990 unsigned long entropy = random_get_entropy();
991 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
992 struct pt_regs *regs = get_irq_regs();
993 unsigned int new_count;
994
995 fast_mix(fast_pool->pool, entropy,
996 (regs ? instruction_pointer(regs) : _RET_IP_) ^ swab(irq));
997 new_count = ++fast_pool->count;
998
999 if (new_count & MIX_INFLIGHT)
1000 return;
1001
1002 if (new_count < 1024 && !time_is_before_jiffies(fast_pool->last + HZ))
1003 return;
1004
1005 fast_pool->count |= MIX_INFLIGHT;
1006 if (!timer_pending(&fast_pool->mix)) {
1007 fast_pool->mix.expires = jiffies;
1008 add_timer_on(&fast_pool->mix, raw_smp_processor_id());
1009 }
1010 }
1011 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1012
1013 /* There is one of these per entropy source */
1014 struct timer_rand_state {
1015 unsigned long last_time;
1016 long last_delta, last_delta2;
1017 };
1018
1019 /*
1020 * This function adds entropy to the entropy "pool" by using timing
1021 * delays. It uses the timer_rand_state structure to make an estimate
1022 * of how many bits of entropy this call has added to the pool. The
1023 * value "num" is also added to the pool; it should somehow describe
1024 * the type of event that just happened.
1025 */
add_timer_randomness(struct timer_rand_state * state,unsigned int num)1026 static void add_timer_randomness(struct timer_rand_state *state, unsigned int num)
1027 {
1028 unsigned long entropy = random_get_entropy(), now = jiffies, flags;
1029 long delta, delta2, delta3;
1030 unsigned int bits;
1031
1032 /*
1033 * If we're in a hard IRQ, add_interrupt_randomness() will be called
1034 * sometime after, so mix into the fast pool.
1035 */
1036 if (in_irq()) {
1037 fast_mix(this_cpu_ptr(&irq_randomness)->pool, entropy, num);
1038 } else {
1039 spin_lock_irqsave(&input_pool.lock, flags);
1040 _mix_pool_bytes(&entropy, sizeof(entropy));
1041 _mix_pool_bytes(&num, sizeof(num));
1042 spin_unlock_irqrestore(&input_pool.lock, flags);
1043 }
1044
1045 if (crng_ready())
1046 return;
1047
1048 /*
1049 * Calculate number of bits of randomness we probably added.
1050 * We take into account the first, second and third-order deltas
1051 * in order to make our estimate.
1052 */
1053 delta = now - READ_ONCE(state->last_time);
1054 WRITE_ONCE(state->last_time, now);
1055
1056 delta2 = delta - READ_ONCE(state->last_delta);
1057 WRITE_ONCE(state->last_delta, delta);
1058
1059 delta3 = delta2 - READ_ONCE(state->last_delta2);
1060 WRITE_ONCE(state->last_delta2, delta2);
1061
1062 if (delta < 0)
1063 delta = -delta;
1064 if (delta2 < 0)
1065 delta2 = -delta2;
1066 if (delta3 < 0)
1067 delta3 = -delta3;
1068 if (delta > delta2)
1069 delta = delta2;
1070 if (delta > delta3)
1071 delta = delta3;
1072
1073 /*
1074 * delta is now minimum absolute delta. Round down by 1 bit
1075 * on general principles, and limit entropy estimate to 11 bits.
1076 */
1077 bits = min(fls(delta >> 1), 11);
1078
1079 /*
1080 * As mentioned above, if we're in a hard IRQ, add_interrupt_randomness()
1081 * will run after this, which uses a different crediting scheme of 1 bit
1082 * per every 64 interrupts. In order to let that function do accounting
1083 * close to the one in this function, we credit a full 64/64 bit per bit,
1084 * and then subtract one to account for the extra one added.
1085 */
1086 if (in_irq())
1087 this_cpu_ptr(&irq_randomness)->count += max(1u, bits * 64) - 1;
1088 else
1089 _credit_init_bits(bits);
1090 }
1091
add_input_randomness(unsigned int type,unsigned int code,unsigned int value)1092 void add_input_randomness(unsigned int type, unsigned int code, unsigned int value)
1093 {
1094 static unsigned char last_value;
1095 static struct timer_rand_state input_timer_state = { INITIAL_JIFFIES };
1096
1097 /* Ignore autorepeat and the like. */
1098 if (value == last_value)
1099 return;
1100
1101 last_value = value;
1102 add_timer_randomness(&input_timer_state,
1103 (type << 4) ^ code ^ (code >> 4) ^ value);
1104 }
1105 EXPORT_SYMBOL_GPL(add_input_randomness);
1106
1107 #ifdef CONFIG_BLOCK
add_disk_randomness(struct gendisk * disk)1108 void add_disk_randomness(struct gendisk *disk)
1109 {
1110 if (!disk || !disk->random)
1111 return;
1112 /* First major is 1, so we get >= 0x200 here. */
1113 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1114 }
1115 EXPORT_SYMBOL_GPL(add_disk_randomness);
1116
rand_initialize_disk(struct gendisk * disk)1117 void __cold rand_initialize_disk(struct gendisk *disk)
1118 {
1119 struct timer_rand_state *state;
1120
1121 /*
1122 * If kzalloc returns null, we just won't use that entropy
1123 * source.
1124 */
1125 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1126 if (state) {
1127 state->last_time = INITIAL_JIFFIES;
1128 disk->random = state;
1129 }
1130 }
1131 #endif
1132
1133 /*
1134 * Each time the timer fires, we expect that we got an unpredictable
1135 * jump in the cycle counter. Even if the timer is running on another
1136 * CPU, the timer activity will be touching the stack of the CPU that is
1137 * generating entropy..
1138 *
1139 * Note that we don't re-arm the timer in the timer itself - we are
1140 * happy to be scheduled away, since that just makes the load more
1141 * complex, but we do not want the timer to keep ticking unless the
1142 * entropy loop is running.
1143 *
1144 * So the re-arming always happens in the entropy loop itself.
1145 */
entropy_timer(struct timer_list * t)1146 static void __cold entropy_timer(struct timer_list *t)
1147 {
1148 credit_init_bits(1);
1149 }
1150
1151 /*
1152 * If we have an actual cycle counter, see if we can
1153 * generate enough entropy with timing noise
1154 */
try_to_generate_entropy(void)1155 static void __cold try_to_generate_entropy(void)
1156 {
1157 struct {
1158 unsigned long entropy;
1159 struct timer_list timer;
1160 } stack;
1161
1162 stack.entropy = random_get_entropy();
1163
1164 /* Slow counter - or none. Don't even bother */
1165 if (stack.entropy == random_get_entropy())
1166 return;
1167
1168 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1169 while (!crng_ready() && !signal_pending(current)) {
1170 if (!timer_pending(&stack.timer))
1171 mod_timer(&stack.timer, jiffies + 1);
1172 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1173 schedule();
1174 stack.entropy = random_get_entropy();
1175 }
1176
1177 del_timer_sync(&stack.timer);
1178 destroy_timer_on_stack(&stack.timer);
1179 mix_pool_bytes(&stack.entropy, sizeof(stack.entropy));
1180 }
1181
1182
1183 /**********************************************************************
1184 *
1185 * Userspace reader/writer interfaces.
1186 *
1187 * getrandom(2) is the primary modern interface into the RNG and should
1188 * be used in preference to anything else.
1189 *
1190 * Reading from /dev/random has the same functionality as calling
1191 * getrandom(2) with flags=0. In earlier versions, however, it had
1192 * vastly different semantics and should therefore be avoided, to
1193 * prevent backwards compatibility issues.
1194 *
1195 * Reading from /dev/urandom has the same functionality as calling
1196 * getrandom(2) with flags=GRND_INSECURE. Because it does not block
1197 * waiting for the RNG to be ready, it should not be used.
1198 *
1199 * Writing to either /dev/random or /dev/urandom adds entropy to
1200 * the input pool but does not credit it.
1201 *
1202 * Polling on /dev/random indicates when the RNG is initialized, on
1203 * the read side, and when it wants new entropy, on the write side.
1204 *
1205 * Both /dev/random and /dev/urandom have the same set of ioctls for
1206 * adding entropy, getting the entropy count, zeroing the count, and
1207 * reseeding the crng.
1208 *
1209 **********************************************************************/
1210
SYSCALL_DEFINE3(getrandom,char __user *,ubuf,size_t,len,unsigned int,flags)1211 SYSCALL_DEFINE3(getrandom, char __user *, ubuf, size_t, len, unsigned int, flags)
1212 {
1213 struct iov_iter iter;
1214 struct iovec iov;
1215 int ret;
1216
1217 if (flags & ~(GRND_NONBLOCK | GRND_RANDOM | GRND_INSECURE))
1218 return -EINVAL;
1219
1220 /*
1221 * Requesting insecure and blocking randomness at the same time makes
1222 * no sense.
1223 */
1224 if ((flags & (GRND_INSECURE | GRND_RANDOM)) == (GRND_INSECURE | GRND_RANDOM))
1225 return -EINVAL;
1226
1227 if (!crng_ready() && !(flags & GRND_INSECURE)) {
1228 if (flags & GRND_NONBLOCK)
1229 return -EAGAIN;
1230 ret = wait_for_random_bytes();
1231 if (unlikely(ret))
1232 return ret;
1233 }
1234
1235 ret = import_single_range(READ, ubuf, len, &iov, &iter);
1236 if (unlikely(ret))
1237 return ret;
1238 return get_random_bytes_user(&iter);
1239 }
1240
random_poll(struct file * file,poll_table * wait)1241 static __poll_t random_poll(struct file *file, poll_table *wait)
1242 {
1243 poll_wait(file, &crng_init_wait, wait);
1244 return crng_ready() ? EPOLLIN | EPOLLRDNORM : EPOLLOUT | EPOLLWRNORM;
1245 }
1246
write_pool_user(struct iov_iter * iter)1247 static ssize_t write_pool_user(struct iov_iter *iter)
1248 {
1249 u8 block[BLAKE2S_BLOCK_SIZE];
1250 ssize_t ret = 0;
1251 size_t copied;
1252
1253 if (unlikely(!iov_iter_count(iter)))
1254 return 0;
1255
1256 for (;;) {
1257 copied = copy_from_iter(block, sizeof(block), iter);
1258 ret += copied;
1259 mix_pool_bytes(block, copied);
1260 if (!iov_iter_count(iter) || copied != sizeof(block))
1261 break;
1262
1263 BUILD_BUG_ON(PAGE_SIZE % sizeof(block) != 0);
1264 if (ret % PAGE_SIZE == 0) {
1265 if (signal_pending(current))
1266 break;
1267 cond_resched();
1268 }
1269 }
1270
1271 memzero_explicit(block, sizeof(block));
1272 return ret ? ret : -EFAULT;
1273 }
1274
random_write_iter(struct kiocb * kiocb,struct iov_iter * iter)1275 static ssize_t random_write_iter(struct kiocb *kiocb, struct iov_iter *iter)
1276 {
1277 return write_pool_user(iter);
1278 }
1279
urandom_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1280 static ssize_t urandom_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1281 {
1282 static int maxwarn = 10;
1283
1284 if (!crng_ready()) {
1285 if (!ratelimit_disable && maxwarn <= 0)
1286 ++urandom_warning.missed;
1287 else if (ratelimit_disable || __ratelimit(&urandom_warning)) {
1288 --maxwarn;
1289 pr_notice("%s: uninitialized urandom read (%zu bytes read)\n",
1290 current->comm, iov_iter_count(iter));
1291 }
1292 }
1293
1294 return get_random_bytes_user(iter);
1295 }
1296
random_read_iter(struct kiocb * kiocb,struct iov_iter * iter)1297 static ssize_t random_read_iter(struct kiocb *kiocb, struct iov_iter *iter)
1298 {
1299 int ret;
1300
1301 if (!crng_ready() &&
1302 ((kiocb->ki_flags & IOCB_NOWAIT) ||
1303 (kiocb->ki_filp->f_flags & O_NONBLOCK)))
1304 return -EAGAIN;
1305
1306 ret = wait_for_random_bytes();
1307 if (ret != 0)
1308 return ret;
1309 return get_random_bytes_user(iter);
1310 }
1311
random_ioctl(struct file * f,unsigned int cmd,unsigned long arg)1312 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1313 {
1314 int __user *p = (int __user *)arg;
1315 int ent_count;
1316
1317 switch (cmd) {
1318 case RNDGETENTCNT:
1319 /* Inherently racy, no point locking. */
1320 if (put_user(input_pool.init_bits, p))
1321 return -EFAULT;
1322 return 0;
1323 case RNDADDTOENTCNT:
1324 if (!capable(CAP_SYS_ADMIN))
1325 return -EPERM;
1326 if (get_user(ent_count, p))
1327 return -EFAULT;
1328 if (ent_count < 0)
1329 return -EINVAL;
1330 credit_init_bits(ent_count);
1331 return 0;
1332 case RNDADDENTROPY: {
1333 struct iov_iter iter;
1334 struct iovec iov;
1335 ssize_t ret;
1336 int len;
1337
1338 if (!capable(CAP_SYS_ADMIN))
1339 return -EPERM;
1340 if (get_user(ent_count, p++))
1341 return -EFAULT;
1342 if (ent_count < 0)
1343 return -EINVAL;
1344 if (get_user(len, p++))
1345 return -EFAULT;
1346 ret = import_single_range(WRITE, p, len, &iov, &iter);
1347 if (unlikely(ret))
1348 return ret;
1349 ret = write_pool_user(&iter);
1350 if (unlikely(ret < 0))
1351 return ret;
1352 /* Since we're crediting, enforce that it was all written into the pool. */
1353 if (unlikely(ret != len))
1354 return -EFAULT;
1355 credit_init_bits(ent_count);
1356 return 0;
1357 }
1358 case RNDZAPENTCNT:
1359 case RNDCLEARPOOL:
1360 /* No longer has any effect. */
1361 if (!capable(CAP_SYS_ADMIN))
1362 return -EPERM;
1363 return 0;
1364 case RNDRESEEDCRNG:
1365 if (!capable(CAP_SYS_ADMIN))
1366 return -EPERM;
1367 if (!crng_ready())
1368 return -ENODATA;
1369 crng_reseed();
1370 return 0;
1371 default:
1372 return -EINVAL;
1373 }
1374 }
1375
random_fasync(int fd,struct file * filp,int on)1376 static int random_fasync(int fd, struct file *filp, int on)
1377 {
1378 return fasync_helper(fd, filp, on, &fasync);
1379 }
1380
1381 const struct file_operations random_fops = {
1382 .read_iter = random_read_iter,
1383 .write_iter = random_write_iter,
1384 .poll = random_poll,
1385 .unlocked_ioctl = random_ioctl,
1386 .fasync = random_fasync,
1387 .llseek = noop_llseek,
1388 .splice_read = generic_file_splice_read,
1389 .splice_write = iter_file_splice_write,
1390 };
1391
1392 const struct file_operations urandom_fops = {
1393 .read_iter = urandom_read_iter,
1394 .write_iter = random_write_iter,
1395 .unlocked_ioctl = random_ioctl,
1396 .fasync = random_fasync,
1397 .llseek = noop_llseek,
1398 .splice_read = generic_file_splice_read,
1399 .splice_write = iter_file_splice_write,
1400 };
1401
1402
1403 /********************************************************************
1404 *
1405 * Sysctl interface.
1406 *
1407 * These are partly unused legacy knobs with dummy values to not break
1408 * userspace and partly still useful things. They are usually accessible
1409 * in /proc/sys/kernel/random/ and are as follows:
1410 *
1411 * - boot_id - a UUID representing the current boot.
1412 *
1413 * - uuid - a random UUID, different each time the file is read.
1414 *
1415 * - poolsize - the number of bits of entropy that the input pool can
1416 * hold, tied to the POOL_BITS constant.
1417 *
1418 * - entropy_avail - the number of bits of entropy currently in the
1419 * input pool. Always <= poolsize.
1420 *
1421 * - write_wakeup_threshold - the amount of entropy in the input pool
1422 * below which write polls to /dev/random will unblock, requesting
1423 * more entropy, tied to the POOL_READY_BITS constant. It is writable
1424 * to avoid breaking old userspaces, but writing to it does not
1425 * change any behavior of the RNG.
1426 *
1427 * - urandom_min_reseed_secs - fixed to the value CRNG_RESEED_INTERVAL.
1428 * It is writable to avoid breaking old userspaces, but writing
1429 * to it does not change any behavior of the RNG.
1430 *
1431 ********************************************************************/
1432
1433 #ifdef CONFIG_SYSCTL
1434
1435 #include <linux/sysctl.h>
1436
1437 static int sysctl_random_min_urandom_seed = CRNG_RESEED_INTERVAL / HZ;
1438 static int sysctl_random_write_wakeup_bits = POOL_READY_BITS;
1439 static int sysctl_poolsize = POOL_BITS;
1440 static u8 sysctl_bootid[UUID_SIZE];
1441
1442 /*
1443 * This function is used to return both the bootid UUID, and random
1444 * UUID. The difference is in whether table->data is NULL; if it is,
1445 * then a new UUID is generated and returned to the user.
1446 */
proc_do_uuid(struct ctl_table * table,int write,void __user * buf,size_t * lenp,loff_t * ppos)1447 static int proc_do_uuid(struct ctl_table *table, int write, void __user *buf,
1448 size_t *lenp, loff_t *ppos)
1449 {
1450 u8 tmp_uuid[UUID_SIZE], *uuid;
1451 char uuid_string[UUID_STRING_LEN + 1];
1452 struct ctl_table fake_table = {
1453 .data = uuid_string,
1454 .maxlen = UUID_STRING_LEN
1455 };
1456
1457 if (write)
1458 return -EPERM;
1459
1460 uuid = table->data;
1461 if (!uuid) {
1462 uuid = tmp_uuid;
1463 generate_random_uuid(uuid);
1464 } else {
1465 static DEFINE_SPINLOCK(bootid_spinlock);
1466
1467 spin_lock(&bootid_spinlock);
1468 if (!uuid[8])
1469 generate_random_uuid(uuid);
1470 spin_unlock(&bootid_spinlock);
1471 }
1472
1473 snprintf(uuid_string, sizeof(uuid_string), "%pU", uuid);
1474 return proc_dostring(&fake_table, 0, buf, lenp, ppos);
1475 }
1476
1477 /* The same as proc_dointvec, but writes don't change anything. */
proc_do_rointvec(struct ctl_table * table,int write,void __user * buf,size_t * lenp,loff_t * ppos)1478 static int proc_do_rointvec(struct ctl_table *table, int write, void __user *buf,
1479 size_t *lenp, loff_t *ppos)
1480 {
1481 return write ? 0 : proc_dointvec(table, 0, buf, lenp, ppos);
1482 }
1483
1484 extern struct ctl_table random_table[];
1485 struct ctl_table random_table[] = {
1486 {
1487 .procname = "poolsize",
1488 .data = &sysctl_poolsize,
1489 .maxlen = sizeof(int),
1490 .mode = 0444,
1491 .proc_handler = proc_dointvec,
1492 },
1493 {
1494 .procname = "entropy_avail",
1495 .data = &input_pool.init_bits,
1496 .maxlen = sizeof(int),
1497 .mode = 0444,
1498 .proc_handler = proc_dointvec,
1499 },
1500 {
1501 .procname = "write_wakeup_threshold",
1502 .data = &sysctl_random_write_wakeup_bits,
1503 .maxlen = sizeof(int),
1504 .mode = 0644,
1505 .proc_handler = proc_do_rointvec,
1506 },
1507 {
1508 .procname = "urandom_min_reseed_secs",
1509 .data = &sysctl_random_min_urandom_seed,
1510 .maxlen = sizeof(int),
1511 .mode = 0644,
1512 .proc_handler = proc_do_rointvec,
1513 },
1514 {
1515 .procname = "boot_id",
1516 .data = &sysctl_bootid,
1517 .mode = 0444,
1518 .proc_handler = proc_do_uuid,
1519 },
1520 {
1521 .procname = "uuid",
1522 .mode = 0444,
1523 .proc_handler = proc_do_uuid,
1524 },
1525 { }
1526 };
1527 #endif /* CONFIG_SYSCTL */
1528