1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/fs.h>
7 #include <linux/blkdev.h>
8 #include <linux/radix-tree.h>
9 #include <linux/writeback.h>
10 #include <linux/buffer_head.h>
11 #include <linux/workqueue.h>
12 #include <linux/kthread.h>
13 #include <linux/slab.h>
14 #include <linux/migrate.h>
15 #include <linux/ratelimit.h>
16 #include <linux/uuid.h>
17 #include <linux/semaphore.h>
18 #include <linux/error-injection.h>
19 #include <linux/crc32c.h>
20 #include <linux/sched/mm.h>
21 #include <asm/unaligned.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "print-tree.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "free-space-cache.h"
31 #include "free-space-tree.h"
32 #include "inode-map.h"
33 #include "check-integrity.h"
34 #include "rcu-string.h"
35 #include "dev-replace.h"
36 #include "raid56.h"
37 #include "sysfs.h"
38 #include "qgroup.h"
39 #include "compression.h"
40 #include "tree-checker.h"
41 #include "ref-verify.h"
42
43 #ifdef CONFIG_X86
44 #include <asm/cpufeature.h>
45 #endif
46
47 #define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
48 BTRFS_HEADER_FLAG_RELOC |\
49 BTRFS_SUPER_FLAG_ERROR |\
50 BTRFS_SUPER_FLAG_SEEDING |\
51 BTRFS_SUPER_FLAG_METADUMP |\
52 BTRFS_SUPER_FLAG_METADUMP_V2)
53
54 static const struct extent_io_ops btree_extent_io_ops;
55 static void end_workqueue_fn(struct btrfs_work *work);
56 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
57 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
58 struct btrfs_fs_info *fs_info);
59 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
60 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
64 struct extent_io_tree *pinned_extents);
65 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
66 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
67
68 /*
69 * btrfs_end_io_wq structs are used to do processing in task context when an IO
70 * is complete. This is used during reads to verify checksums, and it is used
71 * by writes to insert metadata for new file extents after IO is complete.
72 */
73 struct btrfs_end_io_wq {
74 struct bio *bio;
75 bio_end_io_t *end_io;
76 void *private;
77 struct btrfs_fs_info *info;
78 blk_status_t status;
79 enum btrfs_wq_endio_type metadata;
80 struct btrfs_work work;
81 };
82
83 static struct kmem_cache *btrfs_end_io_wq_cache;
84
btrfs_end_io_wq_init(void)85 int __init btrfs_end_io_wq_init(void)
86 {
87 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
88 sizeof(struct btrfs_end_io_wq),
89 0,
90 SLAB_MEM_SPREAD,
91 NULL);
92 if (!btrfs_end_io_wq_cache)
93 return -ENOMEM;
94 return 0;
95 }
96
btrfs_end_io_wq_exit(void)97 void __cold btrfs_end_io_wq_exit(void)
98 {
99 kmem_cache_destroy(btrfs_end_io_wq_cache);
100 }
101
102 /*
103 * async submit bios are used to offload expensive checksumming
104 * onto the worker threads. They checksum file and metadata bios
105 * just before they are sent down the IO stack.
106 */
107 struct async_submit_bio {
108 void *private_data;
109 struct bio *bio;
110 extent_submit_bio_start_t *submit_bio_start;
111 int mirror_num;
112 /*
113 * bio_offset is optional, can be used if the pages in the bio
114 * can't tell us where in the file the bio should go
115 */
116 u64 bio_offset;
117 struct btrfs_work work;
118 blk_status_t status;
119 };
120
121 /*
122 * Lockdep class keys for extent_buffer->lock's in this root. For a given
123 * eb, the lockdep key is determined by the btrfs_root it belongs to and
124 * the level the eb occupies in the tree.
125 *
126 * Different roots are used for different purposes and may nest inside each
127 * other and they require separate keysets. As lockdep keys should be
128 * static, assign keysets according to the purpose of the root as indicated
129 * by btrfs_root->objectid. This ensures that all special purpose roots
130 * have separate keysets.
131 *
132 * Lock-nesting across peer nodes is always done with the immediate parent
133 * node locked thus preventing deadlock. As lockdep doesn't know this, use
134 * subclass to avoid triggering lockdep warning in such cases.
135 *
136 * The key is set by the readpage_end_io_hook after the buffer has passed
137 * csum validation but before the pages are unlocked. It is also set by
138 * btrfs_init_new_buffer on freshly allocated blocks.
139 *
140 * We also add a check to make sure the highest level of the tree is the
141 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
142 * needs update as well.
143 */
144 #ifdef CONFIG_DEBUG_LOCK_ALLOC
145 # if BTRFS_MAX_LEVEL != 8
146 # error
147 # endif
148
149 static struct btrfs_lockdep_keyset {
150 u64 id; /* root objectid */
151 const char *name_stem; /* lock name stem */
152 char names[BTRFS_MAX_LEVEL + 1][20];
153 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
154 } btrfs_lockdep_keysets[] = {
155 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
156 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
157 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
158 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
159 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
160 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
161 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
162 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
163 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
164 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
165 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
166 { .id = BTRFS_FREE_SPACE_TREE_OBJECTID, .name_stem = "free-space" },
167 { .id = 0, .name_stem = "tree" },
168 };
169
btrfs_init_lockdep(void)170 void __init btrfs_init_lockdep(void)
171 {
172 int i, j;
173
174 /* initialize lockdep class names */
175 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
176 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
177
178 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
179 snprintf(ks->names[j], sizeof(ks->names[j]),
180 "btrfs-%s-%02d", ks->name_stem, j);
181 }
182 }
183
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)184 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
185 int level)
186 {
187 struct btrfs_lockdep_keyset *ks;
188
189 BUG_ON(level >= ARRAY_SIZE(ks->keys));
190
191 /* find the matching keyset, id 0 is the default entry */
192 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
193 if (ks->id == objectid)
194 break;
195
196 lockdep_set_class_and_name(&eb->lock,
197 &ks->keys[level], ks->names[level]);
198 }
199
200 #endif
201
202 /*
203 * extents on the btree inode are pretty simple, there's one extent
204 * that covers the entire device
205 */
btree_get_extent(struct btrfs_inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)206 struct extent_map *btree_get_extent(struct btrfs_inode *inode,
207 struct page *page, size_t pg_offset, u64 start, u64 len,
208 int create)
209 {
210 struct btrfs_fs_info *fs_info = inode->root->fs_info;
211 struct extent_map_tree *em_tree = &inode->extent_tree;
212 struct extent_map *em;
213 int ret;
214
215 read_lock(&em_tree->lock);
216 em = lookup_extent_mapping(em_tree, start, len);
217 if (em) {
218 em->bdev = fs_info->fs_devices->latest_bdev;
219 read_unlock(&em_tree->lock);
220 goto out;
221 }
222 read_unlock(&em_tree->lock);
223
224 em = alloc_extent_map();
225 if (!em) {
226 em = ERR_PTR(-ENOMEM);
227 goto out;
228 }
229 em->start = 0;
230 em->len = (u64)-1;
231 em->block_len = (u64)-1;
232 em->block_start = 0;
233 em->bdev = fs_info->fs_devices->latest_bdev;
234
235 write_lock(&em_tree->lock);
236 ret = add_extent_mapping(em_tree, em, 0);
237 if (ret == -EEXIST) {
238 free_extent_map(em);
239 em = lookup_extent_mapping(em_tree, start, len);
240 if (!em)
241 em = ERR_PTR(-EIO);
242 } else if (ret) {
243 free_extent_map(em);
244 em = ERR_PTR(ret);
245 }
246 write_unlock(&em_tree->lock);
247
248 out:
249 return em;
250 }
251
btrfs_csum_data(const char * data,u32 seed,size_t len)252 u32 btrfs_csum_data(const char *data, u32 seed, size_t len)
253 {
254 return crc32c(seed, data, len);
255 }
256
btrfs_csum_final(u32 crc,u8 * result)257 void btrfs_csum_final(u32 crc, u8 *result)
258 {
259 put_unaligned_le32(~crc, result);
260 }
261
262 /*
263 * compute the csum for a btree block, and either verify it or write it
264 * into the csum field of the block.
265 */
csum_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf,int verify)266 static int csum_tree_block(struct btrfs_fs_info *fs_info,
267 struct extent_buffer *buf,
268 int verify)
269 {
270 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
271 char result[BTRFS_CSUM_SIZE];
272 unsigned long len;
273 unsigned long cur_len;
274 unsigned long offset = BTRFS_CSUM_SIZE;
275 char *kaddr;
276 unsigned long map_start;
277 unsigned long map_len;
278 int err;
279 u32 crc = ~(u32)0;
280
281 len = buf->len - offset;
282 while (len > 0) {
283 err = map_private_extent_buffer(buf, offset, 32,
284 &kaddr, &map_start, &map_len);
285 if (err)
286 return err;
287 cur_len = min(len, map_len - (offset - map_start));
288 crc = btrfs_csum_data(kaddr + offset - map_start,
289 crc, cur_len);
290 len -= cur_len;
291 offset += cur_len;
292 }
293 memset(result, 0, BTRFS_CSUM_SIZE);
294
295 btrfs_csum_final(crc, result);
296
297 if (verify) {
298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
299 u32 val;
300 u32 found = 0;
301 memcpy(&found, result, csum_size);
302
303 read_extent_buffer(buf, &val, 0, csum_size);
304 btrfs_warn_rl(fs_info,
305 "%s checksum verify failed on %llu wanted %X found %X level %d",
306 fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
308 return -EUCLEAN;
309 }
310 } else {
311 write_extent_buffer(buf, result, 0, csum_size);
312 }
313
314 return 0;
315 }
316
317 /*
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
322 */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)323 static int verify_parent_transid(struct extent_io_tree *io_tree,
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
326 {
327 struct extent_state *cached_state = NULL;
328 int ret;
329 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
334 if (atomic)
335 return -EAGAIN;
336
337 if (need_lock) {
338 btrfs_tree_read_lock(eb);
339 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
340 }
341
342 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
343 &cached_state);
344 if (extent_buffer_uptodate(eb) &&
345 btrfs_header_generation(eb) == parent_transid) {
346 ret = 0;
347 goto out;
348 }
349 btrfs_err_rl(eb->fs_info,
350 "parent transid verify failed on %llu wanted %llu found %llu",
351 eb->start,
352 parent_transid, btrfs_header_generation(eb));
353 ret = 1;
354
355 /*
356 * Things reading via commit roots that don't have normal protection,
357 * like send, can have a really old block in cache that may point at a
358 * block that has been freed and re-allocated. So don't clear uptodate
359 * if we find an eb that is under IO (dirty/writeback) because we could
360 * end up reading in the stale data and then writing it back out and
361 * making everybody very sad.
362 */
363 if (!extent_buffer_under_io(eb))
364 clear_extent_buffer_uptodate(eb);
365 out:
366 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
367 &cached_state);
368 if (need_lock)
369 btrfs_tree_read_unlock_blocking(eb);
370 return ret;
371 }
372
373 /*
374 * Return 0 if the superblock checksum type matches the checksum value of that
375 * algorithm. Pass the raw disk superblock data.
376 */
btrfs_check_super_csum(struct btrfs_fs_info * fs_info,char * raw_disk_sb)377 static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
378 char *raw_disk_sb)
379 {
380 struct btrfs_super_block *disk_sb =
381 (struct btrfs_super_block *)raw_disk_sb;
382 u16 csum_type = btrfs_super_csum_type(disk_sb);
383 int ret = 0;
384
385 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
386 u32 crc = ~(u32)0;
387 char result[sizeof(crc)];
388
389 /*
390 * The super_block structure does not span the whole
391 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
392 * is filled with zeros and is included in the checksum.
393 */
394 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
395 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
396 btrfs_csum_final(crc, result);
397
398 if (memcmp(raw_disk_sb, result, sizeof(result)))
399 ret = 1;
400 }
401
402 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
403 btrfs_err(fs_info, "unsupported checksum algorithm %u",
404 csum_type);
405 ret = 1;
406 }
407
408 return ret;
409 }
410
btrfs_verify_level_key(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,int level,struct btrfs_key * first_key,u64 parent_transid)411 int btrfs_verify_level_key(struct btrfs_fs_info *fs_info,
412 struct extent_buffer *eb, int level,
413 struct btrfs_key *first_key, u64 parent_transid)
414 {
415 int found_level;
416 struct btrfs_key found_key;
417 int ret;
418
419 found_level = btrfs_header_level(eb);
420 if (found_level != level) {
421 #ifdef CONFIG_BTRFS_DEBUG
422 WARN_ON(1);
423 btrfs_err(fs_info,
424 "tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
425 eb->start, level, found_level);
426 #endif
427 return -EIO;
428 }
429
430 if (!first_key)
431 return 0;
432
433 /*
434 * For live tree block (new tree blocks in current transaction),
435 * we need proper lock context to avoid race, which is impossible here.
436 * So we only checks tree blocks which is read from disk, whose
437 * generation <= fs_info->last_trans_committed.
438 */
439 if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
440 return 0;
441
442 /* We have @first_key, so this @eb must have at least one item */
443 if (btrfs_header_nritems(eb) == 0) {
444 btrfs_err(fs_info,
445 "invalid tree nritems, bytenr=%llu nritems=0 expect >0",
446 eb->start);
447 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
448 return -EUCLEAN;
449 }
450
451 if (found_level)
452 btrfs_node_key_to_cpu(eb, &found_key, 0);
453 else
454 btrfs_item_key_to_cpu(eb, &found_key, 0);
455 ret = btrfs_comp_cpu_keys(first_key, &found_key);
456
457 #ifdef CONFIG_BTRFS_DEBUG
458 if (ret) {
459 WARN_ON(1);
460 btrfs_err(fs_info,
461 "tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
462 eb->start, parent_transid, first_key->objectid,
463 first_key->type, first_key->offset,
464 found_key.objectid, found_key.type,
465 found_key.offset);
466 }
467 #endif
468 return ret;
469 }
470
471 /*
472 * helper to read a given tree block, doing retries as required when
473 * the checksums don't match and we have alternate mirrors to try.
474 *
475 * @parent_transid: expected transid, skip check if 0
476 * @level: expected level, mandatory check
477 * @first_key: expected key of first slot, skip check if NULL
478 */
btree_read_extent_buffer_pages(struct btrfs_fs_info * fs_info,struct extent_buffer * eb,u64 parent_transid,int level,struct btrfs_key * first_key)479 static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
480 struct extent_buffer *eb,
481 u64 parent_transid, int level,
482 struct btrfs_key *first_key)
483 {
484 struct extent_io_tree *io_tree;
485 int failed = 0;
486 int ret;
487 int num_copies = 0;
488 int mirror_num = 0;
489 int failed_mirror = 0;
490
491 io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
492 while (1) {
493 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
494 ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
495 mirror_num);
496 if (!ret) {
497 if (verify_parent_transid(io_tree, eb,
498 parent_transid, 0))
499 ret = -EIO;
500 else if (btrfs_verify_level_key(fs_info, eb, level,
501 first_key, parent_transid))
502 ret = -EUCLEAN;
503 else
504 break;
505 }
506
507 num_copies = btrfs_num_copies(fs_info,
508 eb->start, eb->len);
509 if (num_copies == 1)
510 break;
511
512 if (!failed_mirror) {
513 failed = 1;
514 failed_mirror = eb->read_mirror;
515 }
516
517 mirror_num++;
518 if (mirror_num == failed_mirror)
519 mirror_num++;
520
521 if (mirror_num > num_copies)
522 break;
523 }
524
525 if (failed && !ret && failed_mirror)
526 repair_eb_io_failure(fs_info, eb, failed_mirror);
527
528 return ret;
529 }
530
531 /*
532 * checksum a dirty tree block before IO. This has extra checks to make sure
533 * we only fill in the checksum field in the first page of a multi-page block
534 */
535
csum_dirty_buffer(struct btrfs_fs_info * fs_info,struct page * page)536 static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
537 {
538 u64 start = page_offset(page);
539 u64 found_start;
540 struct extent_buffer *eb;
541
542 eb = (struct extent_buffer *)page->private;
543 if (page != eb->pages[0])
544 return 0;
545
546 found_start = btrfs_header_bytenr(eb);
547 /*
548 * Please do not consolidate these warnings into a single if.
549 * It is useful to know what went wrong.
550 */
551 if (WARN_ON(found_start != start))
552 return -EUCLEAN;
553 if (WARN_ON(!PageUptodate(page)))
554 return -EUCLEAN;
555
556 ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
557 btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
558
559 return csum_tree_block(fs_info, eb, 0);
560 }
561
check_tree_block_fsid(struct btrfs_fs_info * fs_info,struct extent_buffer * eb)562 static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
563 struct extent_buffer *eb)
564 {
565 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
566 u8 fsid[BTRFS_FSID_SIZE];
567 int ret = 1;
568
569 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
570 while (fs_devices) {
571 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
572 ret = 0;
573 break;
574 }
575 fs_devices = fs_devices->seed;
576 }
577 return ret;
578 }
579
btree_readpage_end_io_hook(struct btrfs_io_bio * io_bio,u64 phy_offset,struct page * page,u64 start,u64 end,int mirror)580 static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
581 u64 phy_offset, struct page *page,
582 u64 start, u64 end, int mirror)
583 {
584 u64 found_start;
585 int found_level;
586 struct extent_buffer *eb;
587 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
588 struct btrfs_fs_info *fs_info = root->fs_info;
589 int ret = 0;
590 int reads_done;
591
592 if (!page->private)
593 goto out;
594
595 eb = (struct extent_buffer *)page->private;
596
597 /* the pending IO might have been the only thing that kept this buffer
598 * in memory. Make sure we have a ref for all this other checks
599 */
600 extent_buffer_get(eb);
601
602 reads_done = atomic_dec_and_test(&eb->io_pages);
603 if (!reads_done)
604 goto err;
605
606 eb->read_mirror = mirror;
607 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
608 ret = -EIO;
609 goto err;
610 }
611
612 found_start = btrfs_header_bytenr(eb);
613 if (found_start != eb->start) {
614 btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
615 eb->start, found_start);
616 ret = -EIO;
617 goto err;
618 }
619 if (check_tree_block_fsid(fs_info, eb)) {
620 btrfs_err_rl(fs_info, "bad fsid on block %llu",
621 eb->start);
622 ret = -EIO;
623 goto err;
624 }
625 found_level = btrfs_header_level(eb);
626 if (found_level >= BTRFS_MAX_LEVEL) {
627 btrfs_err(fs_info, "bad tree block level %d on %llu",
628 (int)btrfs_header_level(eb), eb->start);
629 ret = -EIO;
630 goto err;
631 }
632
633 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
634 eb, found_level);
635
636 ret = csum_tree_block(fs_info, eb, 1);
637 if (ret)
638 goto err;
639
640 /*
641 * If this is a leaf block and it is corrupt, set the corrupt bit so
642 * that we don't try and read the other copies of this block, just
643 * return -EIO.
644 */
645 if (found_level == 0 && btrfs_check_leaf_full(fs_info, eb)) {
646 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
647 ret = -EIO;
648 }
649
650 if (found_level > 0 && btrfs_check_node(fs_info, eb))
651 ret = -EIO;
652
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
655 err:
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
658 btree_readahead_hook(eb, ret);
659
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
667 clear_extent_buffer_uptodate(eb);
668 }
669 free_extent_buffer(eb);
670 out:
671 return ret;
672 }
673
btree_io_failed_hook(struct page * page,int failed_mirror)674 static int btree_io_failed_hook(struct page *page, int failed_mirror)
675 {
676 struct extent_buffer *eb;
677
678 eb = (struct extent_buffer *)page->private;
679 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
680 eb->read_mirror = failed_mirror;
681 atomic_dec(&eb->io_pages);
682 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
683 btree_readahead_hook(eb, -EIO);
684 return -EIO; /* we fixed nothing */
685 }
686
end_workqueue_bio(struct bio * bio)687 static void end_workqueue_bio(struct bio *bio)
688 {
689 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
690 struct btrfs_fs_info *fs_info;
691 struct btrfs_workqueue *wq;
692 btrfs_work_func_t func;
693
694 fs_info = end_io_wq->info;
695 end_io_wq->status = bio->bi_status;
696
697 if (bio_op(bio) == REQ_OP_WRITE) {
698 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
699 wq = fs_info->endio_meta_write_workers;
700 func = btrfs_endio_meta_write_helper;
701 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
702 wq = fs_info->endio_freespace_worker;
703 func = btrfs_freespace_write_helper;
704 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
705 wq = fs_info->endio_raid56_workers;
706 func = btrfs_endio_raid56_helper;
707 } else {
708 wq = fs_info->endio_write_workers;
709 func = btrfs_endio_write_helper;
710 }
711 } else {
712 if (unlikely(end_io_wq->metadata ==
713 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
714 wq = fs_info->endio_repair_workers;
715 func = btrfs_endio_repair_helper;
716 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
717 wq = fs_info->endio_raid56_workers;
718 func = btrfs_endio_raid56_helper;
719 } else if (end_io_wq->metadata) {
720 wq = fs_info->endio_meta_workers;
721 func = btrfs_endio_meta_helper;
722 } else {
723 wq = fs_info->endio_workers;
724 func = btrfs_endio_helper;
725 }
726 }
727
728 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
729 btrfs_queue_work(wq, &end_io_wq->work);
730 }
731
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,enum btrfs_wq_endio_type metadata)732 blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 enum btrfs_wq_endio_type metadata)
734 {
735 struct btrfs_end_io_wq *end_io_wq;
736
737 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
738 if (!end_io_wq)
739 return BLK_STS_RESOURCE;
740
741 end_io_wq->private = bio->bi_private;
742 end_io_wq->end_io = bio->bi_end_io;
743 end_io_wq->info = info;
744 end_io_wq->status = 0;
745 end_io_wq->bio = bio;
746 end_io_wq->metadata = metadata;
747
748 bio->bi_private = end_io_wq;
749 bio->bi_end_io = end_workqueue_bio;
750 return 0;
751 }
752
run_one_async_start(struct btrfs_work * work)753 static void run_one_async_start(struct btrfs_work *work)
754 {
755 struct async_submit_bio *async;
756 blk_status_t ret;
757
758 async = container_of(work, struct async_submit_bio, work);
759 ret = async->submit_bio_start(async->private_data, async->bio,
760 async->bio_offset);
761 if (ret)
762 async->status = ret;
763 }
764
run_one_async_done(struct btrfs_work * work)765 static void run_one_async_done(struct btrfs_work *work)
766 {
767 struct async_submit_bio *async;
768
769 async = container_of(work, struct async_submit_bio, work);
770
771 /* If an error occurred we just want to clean up the bio and move on */
772 if (async->status) {
773 async->bio->bi_status = async->status;
774 bio_endio(async->bio);
775 return;
776 }
777
778 btrfs_submit_bio_done(async->private_data, async->bio, async->mirror_num);
779 }
780
run_one_async_free(struct btrfs_work * work)781 static void run_one_async_free(struct btrfs_work *work)
782 {
783 struct async_submit_bio *async;
784
785 async = container_of(work, struct async_submit_bio, work);
786 kfree(async);
787 }
788
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,void * private_data,extent_submit_bio_start_t * submit_bio_start)789 blk_status_t btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
790 int mirror_num, unsigned long bio_flags,
791 u64 bio_offset, void *private_data,
792 extent_submit_bio_start_t *submit_bio_start)
793 {
794 struct async_submit_bio *async;
795
796 async = kmalloc(sizeof(*async), GFP_NOFS);
797 if (!async)
798 return BLK_STS_RESOURCE;
799
800 async->private_data = private_data;
801 async->bio = bio;
802 async->mirror_num = mirror_num;
803 async->submit_bio_start = submit_bio_start;
804
805 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
806 run_one_async_done, run_one_async_free);
807
808 async->bio_offset = bio_offset;
809
810 async->status = 0;
811
812 if (op_is_sync(bio->bi_opf))
813 btrfs_set_work_high_priority(&async->work);
814
815 btrfs_queue_work(fs_info->workers, &async->work);
816 return 0;
817 }
818
btree_csum_one_bio(struct bio * bio)819 static blk_status_t btree_csum_one_bio(struct bio *bio)
820 {
821 struct bio_vec *bvec;
822 struct btrfs_root *root;
823 int i, ret = 0;
824
825 ASSERT(!bio_flagged(bio, BIO_CLONED));
826 bio_for_each_segment_all(bvec, bio, i) {
827 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
828 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
829 if (ret)
830 break;
831 }
832
833 return errno_to_blk_status(ret);
834 }
835
btree_submit_bio_start(void * private_data,struct bio * bio,u64 bio_offset)836 static blk_status_t btree_submit_bio_start(void *private_data, struct bio *bio,
837 u64 bio_offset)
838 {
839 /*
840 * when we're called for a write, we're already in the async
841 * submission context. Just jump into btrfs_map_bio
842 */
843 return btree_csum_one_bio(bio);
844 }
845
check_async_write(struct btrfs_inode * bi)846 static int check_async_write(struct btrfs_inode *bi)
847 {
848 if (atomic_read(&bi->sync_writers))
849 return 0;
850 #ifdef CONFIG_X86
851 if (static_cpu_has(X86_FEATURE_XMM4_2))
852 return 0;
853 #endif
854 return 1;
855 }
856
btree_submit_bio_hook(void * private_data,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)857 static blk_status_t btree_submit_bio_hook(void *private_data, struct bio *bio,
858 int mirror_num, unsigned long bio_flags,
859 u64 bio_offset)
860 {
861 struct inode *inode = private_data;
862 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
863 int async = check_async_write(BTRFS_I(inode));
864 blk_status_t ret;
865
866 if (bio_op(bio) != REQ_OP_WRITE) {
867 /*
868 * called for a read, do the setup so that checksum validation
869 * can happen in the async kernel threads
870 */
871 ret = btrfs_bio_wq_end_io(fs_info, bio,
872 BTRFS_WQ_ENDIO_METADATA);
873 if (ret)
874 goto out_w_error;
875 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
876 } else if (!async) {
877 ret = btree_csum_one_bio(bio);
878 if (ret)
879 goto out_w_error;
880 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
881 } else {
882 /*
883 * kthread helpers are used to submit writes so that
884 * checksumming can happen in parallel across all CPUs
885 */
886 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, 0,
887 bio_offset, private_data,
888 btree_submit_bio_start);
889 }
890
891 if (ret)
892 goto out_w_error;
893 return 0;
894
895 out_w_error:
896 bio->bi_status = ret;
897 bio_endio(bio);
898 return ret;
899 }
900
901 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)902 static int btree_migratepage(struct address_space *mapping,
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
905 {
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
919 return migrate_page(mapping, newpage, page, mode);
920 }
921 #endif
922
923
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)924 static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926 {
927 struct btrfs_fs_info *fs_info;
928 int ret;
929
930 if (wbc->sync_mode == WB_SYNC_NONE) {
931
932 if (wbc->for_kupdate)
933 return 0;
934
935 fs_info = BTRFS_I(mapping->host)->root->fs_info;
936 /* this is a bit racy, but that's ok */
937 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
938 BTRFS_DIRTY_METADATA_THRESH,
939 fs_info->dirty_metadata_batch);
940 if (ret < 0)
941 return 0;
942 }
943 return btree_write_cache_pages(mapping, wbc);
944 }
945
btree_readpage(struct file * file,struct page * page)946 static int btree_readpage(struct file *file, struct page *page)
947 {
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(page->mapping->host)->io_tree;
950 return extent_read_full_page(tree, page, btree_get_extent, 0);
951 }
952
btree_releasepage(struct page * page,gfp_t gfp_flags)953 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
954 {
955 if (PageWriteback(page) || PageDirty(page))
956 return 0;
957
958 return try_release_extent_buffer(page);
959 }
960
btree_invalidatepage(struct page * page,unsigned int offset,unsigned int length)961 static void btree_invalidatepage(struct page *page, unsigned int offset,
962 unsigned int length)
963 {
964 struct extent_io_tree *tree;
965 tree = &BTRFS_I(page->mapping->host)->io_tree;
966 extent_invalidatepage(tree, page, offset);
967 btree_releasepage(page, GFP_NOFS);
968 if (PagePrivate(page)) {
969 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
970 "page private not zero on page %llu",
971 (unsigned long long)page_offset(page));
972 ClearPagePrivate(page);
973 set_page_private(page, 0);
974 put_page(page);
975 }
976 }
977
btree_set_page_dirty(struct page * page)978 static int btree_set_page_dirty(struct page *page)
979 {
980 #ifdef DEBUG
981 struct extent_buffer *eb;
982
983 BUG_ON(!PagePrivate(page));
984 eb = (struct extent_buffer *)page->private;
985 BUG_ON(!eb);
986 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
987 BUG_ON(!atomic_read(&eb->refs));
988 btrfs_assert_tree_locked(eb);
989 #endif
990 return __set_page_dirty_nobuffers(page);
991 }
992
993 static const struct address_space_operations btree_aops = {
994 .readpage = btree_readpage,
995 .writepages = btree_writepages,
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 .migratepage = btree_migratepage,
1000 #endif
1001 .set_page_dirty = btree_set_page_dirty,
1002 };
1003
readahead_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1004 void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1005 {
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = fs_info->btree_inode;
1008 int ret;
1009
1010 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1011 if (IS_ERR(buf))
1012 return;
1013
1014 ret = read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree, buf,
1015 WAIT_NONE, 0);
1016 if (ret < 0)
1017 free_extent_buffer_stale(buf);
1018 else
1019 free_extent_buffer(buf);
1020 }
1021
reada_tree_block_flagged(struct btrfs_fs_info * fs_info,u64 bytenr,int mirror_num,struct extent_buffer ** eb)1022 int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1023 int mirror_num, struct extent_buffer **eb)
1024 {
1025 struct extent_buffer *buf = NULL;
1026 struct inode *btree_inode = fs_info->btree_inode;
1027 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1028 int ret;
1029
1030 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1031 if (IS_ERR(buf))
1032 return 0;
1033
1034 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1035
1036 ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1037 mirror_num);
1038 if (ret) {
1039 free_extent_buffer_stale(buf);
1040 return ret;
1041 }
1042
1043 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1044 free_extent_buffer_stale(buf);
1045 return -EIO;
1046 } else if (extent_buffer_uptodate(buf)) {
1047 *eb = buf;
1048 } else {
1049 free_extent_buffer(buf);
1050 }
1051 return 0;
1052 }
1053
btrfs_find_create_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr)1054 struct extent_buffer *btrfs_find_create_tree_block(
1055 struct btrfs_fs_info *fs_info,
1056 u64 bytenr)
1057 {
1058 if (btrfs_is_testing(fs_info))
1059 return alloc_test_extent_buffer(fs_info, bytenr);
1060 return alloc_extent_buffer(fs_info, bytenr);
1061 }
1062
1063
btrfs_write_tree_block(struct extent_buffer * buf)1064 int btrfs_write_tree_block(struct extent_buffer *buf)
1065 {
1066 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1067 buf->start + buf->len - 1);
1068 }
1069
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1070 void btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1071 {
1072 filemap_fdatawait_range(buf->pages[0]->mapping,
1073 buf->start, buf->start + buf->len - 1);
1074 }
1075
1076 /*
1077 * Read tree block at logical address @bytenr and do variant basic but critical
1078 * verification.
1079 *
1080 * @parent_transid: expected transid of this tree block, skip check if 0
1081 * @level: expected level, mandatory check
1082 * @first_key: expected key in slot 0, skip check if NULL
1083 */
read_tree_block(struct btrfs_fs_info * fs_info,u64 bytenr,u64 parent_transid,int level,struct btrfs_key * first_key)1084 struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1085 u64 parent_transid, int level,
1086 struct btrfs_key *first_key)
1087 {
1088 struct extent_buffer *buf = NULL;
1089 int ret;
1090
1091 buf = btrfs_find_create_tree_block(fs_info, bytenr);
1092 if (IS_ERR(buf))
1093 return buf;
1094
1095 ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
1096 level, first_key);
1097 if (ret) {
1098 free_extent_buffer_stale(buf);
1099 return ERR_PTR(ret);
1100 }
1101 return buf;
1102
1103 }
1104
clean_tree_block(struct btrfs_fs_info * fs_info,struct extent_buffer * buf)1105 void clean_tree_block(struct btrfs_fs_info *fs_info,
1106 struct extent_buffer *buf)
1107 {
1108 if (btrfs_header_generation(buf) ==
1109 fs_info->running_transaction->transid) {
1110 btrfs_assert_tree_locked(buf);
1111
1112 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1113 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1114 -buf->len,
1115 fs_info->dirty_metadata_batch);
1116 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1117 btrfs_set_lock_blocking(buf);
1118 clear_extent_buffer_dirty(buf);
1119 }
1120 }
1121 }
1122
btrfs_alloc_subvolume_writers(void)1123 static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1124 {
1125 struct btrfs_subvolume_writers *writers;
1126 int ret;
1127
1128 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1129 if (!writers)
1130 return ERR_PTR(-ENOMEM);
1131
1132 ret = percpu_counter_init(&writers->counter, 0, GFP_NOFS);
1133 if (ret < 0) {
1134 kfree(writers);
1135 return ERR_PTR(ret);
1136 }
1137
1138 init_waitqueue_head(&writers->wait);
1139 return writers;
1140 }
1141
1142 static void
btrfs_free_subvolume_writers(struct btrfs_subvolume_writers * writers)1143 btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1144 {
1145 percpu_counter_destroy(&writers->counter);
1146 kfree(writers);
1147 }
1148
__setup_root(struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1149 static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1150 u64 objectid)
1151 {
1152 bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1153 root->node = NULL;
1154 root->commit_root = NULL;
1155 root->state = 0;
1156 root->orphan_cleanup_state = 0;
1157
1158 root->objectid = objectid;
1159 root->last_trans = 0;
1160 root->highest_objectid = 0;
1161 root->nr_delalloc_inodes = 0;
1162 root->nr_ordered_extents = 0;
1163 root->inode_tree = RB_ROOT;
1164 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1165 root->block_rsv = NULL;
1166
1167 INIT_LIST_HEAD(&root->dirty_list);
1168 INIT_LIST_HEAD(&root->root_list);
1169 INIT_LIST_HEAD(&root->delalloc_inodes);
1170 INIT_LIST_HEAD(&root->delalloc_root);
1171 INIT_LIST_HEAD(&root->ordered_extents);
1172 INIT_LIST_HEAD(&root->ordered_root);
1173 INIT_LIST_HEAD(&root->logged_list[0]);
1174 INIT_LIST_HEAD(&root->logged_list[1]);
1175 spin_lock_init(&root->inode_lock);
1176 spin_lock_init(&root->delalloc_lock);
1177 spin_lock_init(&root->ordered_extent_lock);
1178 spin_lock_init(&root->accounting_lock);
1179 spin_lock_init(&root->log_extents_lock[0]);
1180 spin_lock_init(&root->log_extents_lock[1]);
1181 spin_lock_init(&root->qgroup_meta_rsv_lock);
1182 mutex_init(&root->objectid_mutex);
1183 mutex_init(&root->log_mutex);
1184 mutex_init(&root->ordered_extent_mutex);
1185 mutex_init(&root->delalloc_mutex);
1186 init_waitqueue_head(&root->log_writer_wait);
1187 init_waitqueue_head(&root->log_commit_wait[0]);
1188 init_waitqueue_head(&root->log_commit_wait[1]);
1189 INIT_LIST_HEAD(&root->log_ctxs[0]);
1190 INIT_LIST_HEAD(&root->log_ctxs[1]);
1191 atomic_set(&root->log_commit[0], 0);
1192 atomic_set(&root->log_commit[1], 0);
1193 atomic_set(&root->log_writers, 0);
1194 atomic_set(&root->log_batch, 0);
1195 refcount_set(&root->refs, 1);
1196 atomic_set(&root->will_be_snapshotted, 0);
1197 atomic_set(&root->snapshot_force_cow, 0);
1198 root->log_transid = 0;
1199 root->log_transid_committed = -1;
1200 root->last_log_commit = 0;
1201 if (!dummy)
1202 extent_io_tree_init(&root->dirty_log_pages, NULL);
1203
1204 memset(&root->root_key, 0, sizeof(root->root_key));
1205 memset(&root->root_item, 0, sizeof(root->root_item));
1206 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1207 if (!dummy)
1208 root->defrag_trans_start = fs_info->generation;
1209 else
1210 root->defrag_trans_start = 0;
1211 root->root_key.objectid = objectid;
1212 root->anon_dev = 0;
1213
1214 spin_lock_init(&root->root_item_lock);
1215 }
1216
btrfs_alloc_root(struct btrfs_fs_info * fs_info,gfp_t flags)1217 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1218 gfp_t flags)
1219 {
1220 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1221 if (root)
1222 root->fs_info = fs_info;
1223 return root;
1224 }
1225
1226 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1227 /* Should only be used by the testing infrastructure */
btrfs_alloc_dummy_root(struct btrfs_fs_info * fs_info)1228 struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1229 {
1230 struct btrfs_root *root;
1231
1232 if (!fs_info)
1233 return ERR_PTR(-EINVAL);
1234
1235 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1236 if (!root)
1237 return ERR_PTR(-ENOMEM);
1238
1239 /* We don't use the stripesize in selftest, set it as sectorsize */
1240 __setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1241 root->alloc_bytenr = 0;
1242
1243 return root;
1244 }
1245 #endif
1246
btrfs_create_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info,u64 objectid)1247 struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1248 struct btrfs_fs_info *fs_info,
1249 u64 objectid)
1250 {
1251 struct extent_buffer *leaf;
1252 struct btrfs_root *tree_root = fs_info->tree_root;
1253 struct btrfs_root *root;
1254 struct btrfs_key key;
1255 unsigned int nofs_flag;
1256 int ret = 0;
1257 uuid_le uuid = NULL_UUID_LE;
1258
1259 /*
1260 * We're holding a transaction handle, so use a NOFS memory allocation
1261 * context to avoid deadlock if reclaim happens.
1262 */
1263 nofs_flag = memalloc_nofs_save();
1264 root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1265 memalloc_nofs_restore(nofs_flag);
1266 if (!root)
1267 return ERR_PTR(-ENOMEM);
1268
1269 __setup_root(root, fs_info, objectid);
1270 root->root_key.objectid = objectid;
1271 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1272 root->root_key.offset = 0;
1273
1274 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1275 if (IS_ERR(leaf)) {
1276 ret = PTR_ERR(leaf);
1277 leaf = NULL;
1278 goto fail;
1279 }
1280
1281 root->node = leaf;
1282 btrfs_mark_buffer_dirty(leaf);
1283
1284 root->commit_root = btrfs_root_node(root);
1285 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1286
1287 root->root_item.flags = 0;
1288 root->root_item.byte_limit = 0;
1289 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1290 btrfs_set_root_generation(&root->root_item, trans->transid);
1291 btrfs_set_root_level(&root->root_item, 0);
1292 btrfs_set_root_refs(&root->root_item, 1);
1293 btrfs_set_root_used(&root->root_item, leaf->len);
1294 btrfs_set_root_last_snapshot(&root->root_item, 0);
1295 btrfs_set_root_dirid(&root->root_item, 0);
1296 if (is_fstree(objectid))
1297 uuid_le_gen(&uuid);
1298 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1299 root->root_item.drop_level = 0;
1300
1301 key.objectid = objectid;
1302 key.type = BTRFS_ROOT_ITEM_KEY;
1303 key.offset = 0;
1304 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1305 if (ret)
1306 goto fail;
1307
1308 btrfs_tree_unlock(leaf);
1309
1310 return root;
1311
1312 fail:
1313 if (leaf) {
1314 btrfs_tree_unlock(leaf);
1315 free_extent_buffer(root->commit_root);
1316 free_extent_buffer(leaf);
1317 }
1318 kfree(root);
1319
1320 return ERR_PTR(ret);
1321 }
1322
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1323 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1324 struct btrfs_fs_info *fs_info)
1325 {
1326 struct btrfs_root *root;
1327 struct extent_buffer *leaf;
1328
1329 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1330 if (!root)
1331 return ERR_PTR(-ENOMEM);
1332
1333 __setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1334
1335 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1336 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1337 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1338
1339 /*
1340 * DON'T set REF_COWS for log trees
1341 *
1342 * log trees do not get reference counted because they go away
1343 * before a real commit is actually done. They do store pointers
1344 * to file data extents, and those reference counts still get
1345 * updated (along with back refs to the log tree).
1346 */
1347
1348 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1349 NULL, 0, 0, 0);
1350 if (IS_ERR(leaf)) {
1351 kfree(root);
1352 return ERR_CAST(leaf);
1353 }
1354
1355 root->node = leaf;
1356
1357 btrfs_mark_buffer_dirty(root->node);
1358 btrfs_tree_unlock(root->node);
1359 return root;
1360 }
1361
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1362 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1363 struct btrfs_fs_info *fs_info)
1364 {
1365 struct btrfs_root *log_root;
1366
1367 log_root = alloc_log_tree(trans, fs_info);
1368 if (IS_ERR(log_root))
1369 return PTR_ERR(log_root);
1370 WARN_ON(fs_info->log_root_tree);
1371 fs_info->log_root_tree = log_root;
1372 return 0;
1373 }
1374
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1375 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1376 struct btrfs_root *root)
1377 {
1378 struct btrfs_fs_info *fs_info = root->fs_info;
1379 struct btrfs_root *log_root;
1380 struct btrfs_inode_item *inode_item;
1381
1382 log_root = alloc_log_tree(trans, fs_info);
1383 if (IS_ERR(log_root))
1384 return PTR_ERR(log_root);
1385
1386 log_root->last_trans = trans->transid;
1387 log_root->root_key.offset = root->root_key.objectid;
1388
1389 inode_item = &log_root->root_item.inode;
1390 btrfs_set_stack_inode_generation(inode_item, 1);
1391 btrfs_set_stack_inode_size(inode_item, 3);
1392 btrfs_set_stack_inode_nlink(inode_item, 1);
1393 btrfs_set_stack_inode_nbytes(inode_item,
1394 fs_info->nodesize);
1395 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1396
1397 btrfs_set_root_node(&log_root->root_item, log_root->node);
1398
1399 WARN_ON(root->log_root);
1400 root->log_root = log_root;
1401 root->log_transid = 0;
1402 root->log_transid_committed = -1;
1403 root->last_log_commit = 0;
1404 return 0;
1405 }
1406
btrfs_read_tree_root(struct btrfs_root * tree_root,struct btrfs_key * key)1407 static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1408 struct btrfs_key *key)
1409 {
1410 struct btrfs_root *root;
1411 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1412 struct btrfs_path *path;
1413 u64 generation;
1414 int ret;
1415 int level;
1416
1417 path = btrfs_alloc_path();
1418 if (!path)
1419 return ERR_PTR(-ENOMEM);
1420
1421 root = btrfs_alloc_root(fs_info, GFP_NOFS);
1422 if (!root) {
1423 ret = -ENOMEM;
1424 goto alloc_fail;
1425 }
1426
1427 __setup_root(root, fs_info, key->objectid);
1428
1429 ret = btrfs_find_root(tree_root, key, path,
1430 &root->root_item, &root->root_key);
1431 if (ret) {
1432 if (ret > 0)
1433 ret = -ENOENT;
1434 goto find_fail;
1435 }
1436
1437 generation = btrfs_root_generation(&root->root_item);
1438 level = btrfs_root_level(&root->root_item);
1439 root->node = read_tree_block(fs_info,
1440 btrfs_root_bytenr(&root->root_item),
1441 generation, level, NULL);
1442 if (IS_ERR(root->node)) {
1443 ret = PTR_ERR(root->node);
1444 goto find_fail;
1445 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1446 ret = -EIO;
1447 free_extent_buffer(root->node);
1448 goto find_fail;
1449 }
1450 root->commit_root = btrfs_root_node(root);
1451 out:
1452 btrfs_free_path(path);
1453 return root;
1454
1455 find_fail:
1456 kfree(root);
1457 alloc_fail:
1458 root = ERR_PTR(ret);
1459 goto out;
1460 }
1461
btrfs_read_fs_root(struct btrfs_root * tree_root,struct btrfs_key * location)1462 struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1463 struct btrfs_key *location)
1464 {
1465 struct btrfs_root *root;
1466
1467 root = btrfs_read_tree_root(tree_root, location);
1468 if (IS_ERR(root))
1469 return root;
1470
1471 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1472 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1473 btrfs_check_and_init_root_item(&root->root_item);
1474 }
1475
1476 return root;
1477 }
1478
btrfs_init_fs_root(struct btrfs_root * root)1479 int btrfs_init_fs_root(struct btrfs_root *root)
1480 {
1481 int ret;
1482 struct btrfs_subvolume_writers *writers;
1483
1484 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1485 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1486 GFP_NOFS);
1487 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1488 ret = -ENOMEM;
1489 goto fail;
1490 }
1491
1492 writers = btrfs_alloc_subvolume_writers();
1493 if (IS_ERR(writers)) {
1494 ret = PTR_ERR(writers);
1495 goto fail;
1496 }
1497 root->subv_writers = writers;
1498
1499 btrfs_init_free_ino_ctl(root);
1500 spin_lock_init(&root->ino_cache_lock);
1501 init_waitqueue_head(&root->ino_cache_wait);
1502
1503 /*
1504 * Don't assign anonymous block device to roots that are not exposed to
1505 * userspace, the id pool is limited to 1M
1506 */
1507 if (is_fstree(root->root_key.objectid) &&
1508 btrfs_root_refs(&root->root_item) > 0) {
1509 ret = get_anon_bdev(&root->anon_dev);
1510 if (ret)
1511 goto fail;
1512 }
1513
1514 mutex_lock(&root->objectid_mutex);
1515 ret = btrfs_find_highest_objectid(root,
1516 &root->highest_objectid);
1517 if (ret) {
1518 mutex_unlock(&root->objectid_mutex);
1519 goto fail;
1520 }
1521
1522 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1523
1524 mutex_unlock(&root->objectid_mutex);
1525
1526 return 0;
1527 fail:
1528 /* The caller is responsible to call btrfs_free_fs_root */
1529 return ret;
1530 }
1531
btrfs_lookup_fs_root(struct btrfs_fs_info * fs_info,u64 root_id)1532 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1533 u64 root_id)
1534 {
1535 struct btrfs_root *root;
1536
1537 spin_lock(&fs_info->fs_roots_radix_lock);
1538 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1539 (unsigned long)root_id);
1540 spin_unlock(&fs_info->fs_roots_radix_lock);
1541 return root;
1542 }
1543
btrfs_insert_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)1544 int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1545 struct btrfs_root *root)
1546 {
1547 int ret;
1548
1549 ret = radix_tree_preload(GFP_NOFS);
1550 if (ret)
1551 return ret;
1552
1553 spin_lock(&fs_info->fs_roots_radix_lock);
1554 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1555 (unsigned long)root->root_key.objectid,
1556 root);
1557 if (ret == 0)
1558 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1559 spin_unlock(&fs_info->fs_roots_radix_lock);
1560 radix_tree_preload_end();
1561
1562 return ret;
1563 }
1564
btrfs_get_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_key * location,bool check_ref)1565 struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1566 struct btrfs_key *location,
1567 bool check_ref)
1568 {
1569 struct btrfs_root *root;
1570 struct btrfs_path *path;
1571 struct btrfs_key key;
1572 int ret;
1573
1574 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1575 return fs_info->tree_root;
1576 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1577 return fs_info->extent_root;
1578 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1579 return fs_info->chunk_root;
1580 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1581 return fs_info->dev_root;
1582 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1583 return fs_info->csum_root;
1584 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1585 return fs_info->quota_root ? fs_info->quota_root :
1586 ERR_PTR(-ENOENT);
1587 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1588 return fs_info->uuid_root ? fs_info->uuid_root :
1589 ERR_PTR(-ENOENT);
1590 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1591 return fs_info->free_space_root ? fs_info->free_space_root :
1592 ERR_PTR(-ENOENT);
1593 again:
1594 root = btrfs_lookup_fs_root(fs_info, location->objectid);
1595 if (root) {
1596 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1597 return ERR_PTR(-ENOENT);
1598 return root;
1599 }
1600
1601 root = btrfs_read_fs_root(fs_info->tree_root, location);
1602 if (IS_ERR(root))
1603 return root;
1604
1605 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1606 ret = -ENOENT;
1607 goto fail;
1608 }
1609
1610 ret = btrfs_init_fs_root(root);
1611 if (ret)
1612 goto fail;
1613
1614 path = btrfs_alloc_path();
1615 if (!path) {
1616 ret = -ENOMEM;
1617 goto fail;
1618 }
1619 key.objectid = BTRFS_ORPHAN_OBJECTID;
1620 key.type = BTRFS_ORPHAN_ITEM_KEY;
1621 key.offset = location->objectid;
1622
1623 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1624 btrfs_free_path(path);
1625 if (ret < 0)
1626 goto fail;
1627 if (ret == 0)
1628 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1629
1630 ret = btrfs_insert_fs_root(fs_info, root);
1631 if (ret) {
1632 if (ret == -EEXIST) {
1633 btrfs_free_fs_root(root);
1634 goto again;
1635 }
1636 goto fail;
1637 }
1638 return root;
1639 fail:
1640 btrfs_free_fs_root(root);
1641 return ERR_PTR(ret);
1642 }
1643
btrfs_congested_fn(void * congested_data,int bdi_bits)1644 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1645 {
1646 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1647 int ret = 0;
1648 struct btrfs_device *device;
1649 struct backing_dev_info *bdi;
1650
1651 rcu_read_lock();
1652 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1653 if (!device->bdev)
1654 continue;
1655 bdi = device->bdev->bd_bdi;
1656 if (bdi_congested(bdi, bdi_bits)) {
1657 ret = 1;
1658 break;
1659 }
1660 }
1661 rcu_read_unlock();
1662 return ret;
1663 }
1664
1665 /*
1666 * called by the kthread helper functions to finally call the bio end_io
1667 * functions. This is where read checksum verification actually happens
1668 */
end_workqueue_fn(struct btrfs_work * work)1669 static void end_workqueue_fn(struct btrfs_work *work)
1670 {
1671 struct bio *bio;
1672 struct btrfs_end_io_wq *end_io_wq;
1673
1674 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1675 bio = end_io_wq->bio;
1676
1677 bio->bi_status = end_io_wq->status;
1678 bio->bi_private = end_io_wq->private;
1679 bio->bi_end_io = end_io_wq->end_io;
1680 bio_endio(bio);
1681 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1682 }
1683
cleaner_kthread(void * arg)1684 static int cleaner_kthread(void *arg)
1685 {
1686 struct btrfs_root *root = arg;
1687 struct btrfs_fs_info *fs_info = root->fs_info;
1688 int again;
1689
1690 while (1) {
1691 again = 0;
1692
1693 /* Make the cleaner go to sleep early. */
1694 if (btrfs_need_cleaner_sleep(fs_info))
1695 goto sleep;
1696
1697 /*
1698 * Do not do anything if we might cause open_ctree() to block
1699 * before we have finished mounting the filesystem.
1700 */
1701 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1702 goto sleep;
1703
1704 if (!mutex_trylock(&fs_info->cleaner_mutex))
1705 goto sleep;
1706
1707 /*
1708 * Avoid the problem that we change the status of the fs
1709 * during the above check and trylock.
1710 */
1711 if (btrfs_need_cleaner_sleep(fs_info)) {
1712 mutex_unlock(&fs_info->cleaner_mutex);
1713 goto sleep;
1714 }
1715
1716 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1717 btrfs_run_delayed_iputs(fs_info);
1718 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1719
1720 again = btrfs_clean_one_deleted_snapshot(root);
1721 mutex_unlock(&fs_info->cleaner_mutex);
1722
1723 /*
1724 * The defragger has dealt with the R/O remount and umount,
1725 * needn't do anything special here.
1726 */
1727 btrfs_run_defrag_inodes(fs_info);
1728
1729 /*
1730 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1731 * with relocation (btrfs_relocate_chunk) and relocation
1732 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1733 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1734 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1735 * unused block groups.
1736 */
1737 btrfs_delete_unused_bgs(fs_info);
1738 sleep:
1739 if (kthread_should_park())
1740 kthread_parkme();
1741 if (kthread_should_stop())
1742 return 0;
1743 if (!again) {
1744 set_current_state(TASK_INTERRUPTIBLE);
1745 schedule();
1746 __set_current_state(TASK_RUNNING);
1747 }
1748 }
1749 }
1750
transaction_kthread(void * arg)1751 static int transaction_kthread(void *arg)
1752 {
1753 struct btrfs_root *root = arg;
1754 struct btrfs_fs_info *fs_info = root->fs_info;
1755 struct btrfs_trans_handle *trans;
1756 struct btrfs_transaction *cur;
1757 u64 transid;
1758 time64_t now;
1759 unsigned long delay;
1760 bool cannot_commit;
1761
1762 do {
1763 cannot_commit = false;
1764 delay = HZ * fs_info->commit_interval;
1765 mutex_lock(&fs_info->transaction_kthread_mutex);
1766
1767 spin_lock(&fs_info->trans_lock);
1768 cur = fs_info->running_transaction;
1769 if (!cur) {
1770 spin_unlock(&fs_info->trans_lock);
1771 goto sleep;
1772 }
1773
1774 now = ktime_get_seconds();
1775 if (cur->state < TRANS_STATE_BLOCKED &&
1776 !test_bit(BTRFS_FS_NEED_ASYNC_COMMIT, &fs_info->flags) &&
1777 (now < cur->start_time ||
1778 now - cur->start_time < fs_info->commit_interval)) {
1779 spin_unlock(&fs_info->trans_lock);
1780 delay = HZ * 5;
1781 goto sleep;
1782 }
1783 transid = cur->transid;
1784 spin_unlock(&fs_info->trans_lock);
1785
1786 /* If the file system is aborted, this will always fail. */
1787 trans = btrfs_attach_transaction(root);
1788 if (IS_ERR(trans)) {
1789 if (PTR_ERR(trans) != -ENOENT)
1790 cannot_commit = true;
1791 goto sleep;
1792 }
1793 if (transid == trans->transid) {
1794 btrfs_commit_transaction(trans);
1795 } else {
1796 btrfs_end_transaction(trans);
1797 }
1798 sleep:
1799 wake_up_process(fs_info->cleaner_kthread);
1800 mutex_unlock(&fs_info->transaction_kthread_mutex);
1801
1802 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1803 &fs_info->fs_state)))
1804 btrfs_cleanup_transaction(fs_info);
1805 if (!kthread_should_stop() &&
1806 (!btrfs_transaction_blocked(fs_info) ||
1807 cannot_commit))
1808 schedule_timeout_interruptible(delay);
1809 } while (!kthread_should_stop());
1810 return 0;
1811 }
1812
1813 /*
1814 * this will find the highest generation in the array of
1815 * root backups. The index of the highest array is returned,
1816 * or -1 if we can't find anything.
1817 *
1818 * We check to make sure the array is valid by comparing the
1819 * generation of the latest root in the array with the generation
1820 * in the super block. If they don't match we pitch it.
1821 */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1822 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1823 {
1824 u64 cur;
1825 int newest_index = -1;
1826 struct btrfs_root_backup *root_backup;
1827 int i;
1828
1829 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1830 root_backup = info->super_copy->super_roots + i;
1831 cur = btrfs_backup_tree_root_gen(root_backup);
1832 if (cur == newest_gen)
1833 newest_index = i;
1834 }
1835
1836 /* check to see if we actually wrapped around */
1837 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1838 root_backup = info->super_copy->super_roots;
1839 cur = btrfs_backup_tree_root_gen(root_backup);
1840 if (cur == newest_gen)
1841 newest_index = 0;
1842 }
1843 return newest_index;
1844 }
1845
1846
1847 /*
1848 * find the oldest backup so we know where to store new entries
1849 * in the backup array. This will set the backup_root_index
1850 * field in the fs_info struct
1851 */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1852 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1853 u64 newest_gen)
1854 {
1855 int newest_index = -1;
1856
1857 newest_index = find_newest_super_backup(info, newest_gen);
1858 /* if there was garbage in there, just move along */
1859 if (newest_index == -1) {
1860 info->backup_root_index = 0;
1861 } else {
1862 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1863 }
1864 }
1865
1866 /*
1867 * copy all the root pointers into the super backup array.
1868 * this will bump the backup pointer by one when it is
1869 * done
1870 */
backup_super_roots(struct btrfs_fs_info * info)1871 static void backup_super_roots(struct btrfs_fs_info *info)
1872 {
1873 int next_backup;
1874 struct btrfs_root_backup *root_backup;
1875 int last_backup;
1876
1877 next_backup = info->backup_root_index;
1878 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1879 BTRFS_NUM_BACKUP_ROOTS;
1880
1881 /*
1882 * just overwrite the last backup if we're at the same generation
1883 * this happens only at umount
1884 */
1885 root_backup = info->super_for_commit->super_roots + last_backup;
1886 if (btrfs_backup_tree_root_gen(root_backup) ==
1887 btrfs_header_generation(info->tree_root->node))
1888 next_backup = last_backup;
1889
1890 root_backup = info->super_for_commit->super_roots + next_backup;
1891
1892 /*
1893 * make sure all of our padding and empty slots get zero filled
1894 * regardless of which ones we use today
1895 */
1896 memset(root_backup, 0, sizeof(*root_backup));
1897
1898 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1899
1900 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1901 btrfs_set_backup_tree_root_gen(root_backup,
1902 btrfs_header_generation(info->tree_root->node));
1903
1904 btrfs_set_backup_tree_root_level(root_backup,
1905 btrfs_header_level(info->tree_root->node));
1906
1907 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1908 btrfs_set_backup_chunk_root_gen(root_backup,
1909 btrfs_header_generation(info->chunk_root->node));
1910 btrfs_set_backup_chunk_root_level(root_backup,
1911 btrfs_header_level(info->chunk_root->node));
1912
1913 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1914 btrfs_set_backup_extent_root_gen(root_backup,
1915 btrfs_header_generation(info->extent_root->node));
1916 btrfs_set_backup_extent_root_level(root_backup,
1917 btrfs_header_level(info->extent_root->node));
1918
1919 /*
1920 * we might commit during log recovery, which happens before we set
1921 * the fs_root. Make sure it is valid before we fill it in.
1922 */
1923 if (info->fs_root && info->fs_root->node) {
1924 btrfs_set_backup_fs_root(root_backup,
1925 info->fs_root->node->start);
1926 btrfs_set_backup_fs_root_gen(root_backup,
1927 btrfs_header_generation(info->fs_root->node));
1928 btrfs_set_backup_fs_root_level(root_backup,
1929 btrfs_header_level(info->fs_root->node));
1930 }
1931
1932 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1933 btrfs_set_backup_dev_root_gen(root_backup,
1934 btrfs_header_generation(info->dev_root->node));
1935 btrfs_set_backup_dev_root_level(root_backup,
1936 btrfs_header_level(info->dev_root->node));
1937
1938 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1939 btrfs_set_backup_csum_root_gen(root_backup,
1940 btrfs_header_generation(info->csum_root->node));
1941 btrfs_set_backup_csum_root_level(root_backup,
1942 btrfs_header_level(info->csum_root->node));
1943
1944 btrfs_set_backup_total_bytes(root_backup,
1945 btrfs_super_total_bytes(info->super_copy));
1946 btrfs_set_backup_bytes_used(root_backup,
1947 btrfs_super_bytes_used(info->super_copy));
1948 btrfs_set_backup_num_devices(root_backup,
1949 btrfs_super_num_devices(info->super_copy));
1950
1951 /*
1952 * if we don't copy this out to the super_copy, it won't get remembered
1953 * for the next commit
1954 */
1955 memcpy(&info->super_copy->super_roots,
1956 &info->super_for_commit->super_roots,
1957 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1958 }
1959
1960 /*
1961 * this copies info out of the root backup array and back into
1962 * the in-memory super block. It is meant to help iterate through
1963 * the array, so you send it the number of backups you've already
1964 * tried and the last backup index you used.
1965 *
1966 * this returns -1 when it has tried all the backups
1967 */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1968 static noinline int next_root_backup(struct btrfs_fs_info *info,
1969 struct btrfs_super_block *super,
1970 int *num_backups_tried, int *backup_index)
1971 {
1972 struct btrfs_root_backup *root_backup;
1973 int newest = *backup_index;
1974
1975 if (*num_backups_tried == 0) {
1976 u64 gen = btrfs_super_generation(super);
1977
1978 newest = find_newest_super_backup(info, gen);
1979 if (newest == -1)
1980 return -1;
1981
1982 *backup_index = newest;
1983 *num_backups_tried = 1;
1984 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1985 /* we've tried all the backups, all done */
1986 return -1;
1987 } else {
1988 /* jump to the next oldest backup */
1989 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1990 BTRFS_NUM_BACKUP_ROOTS;
1991 *backup_index = newest;
1992 *num_backups_tried += 1;
1993 }
1994 root_backup = super->super_roots + newest;
1995
1996 btrfs_set_super_generation(super,
1997 btrfs_backup_tree_root_gen(root_backup));
1998 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1999 btrfs_set_super_root_level(super,
2000 btrfs_backup_tree_root_level(root_backup));
2001 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2002
2003 /*
2004 * fixme: the total bytes and num_devices need to match or we should
2005 * need a fsck
2006 */
2007 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2008 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2009 return 0;
2010 }
2011
2012 /* helper to cleanup workers */
btrfs_stop_all_workers(struct btrfs_fs_info * fs_info)2013 static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2014 {
2015 btrfs_destroy_workqueue(fs_info->fixup_workers);
2016 btrfs_destroy_workqueue(fs_info->delalloc_workers);
2017 btrfs_destroy_workqueue(fs_info->workers);
2018 btrfs_destroy_workqueue(fs_info->endio_workers);
2019 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2020 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2021 btrfs_destroy_workqueue(fs_info->rmw_workers);
2022 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2023 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2024 btrfs_destroy_workqueue(fs_info->submit_workers);
2025 btrfs_destroy_workqueue(fs_info->delayed_workers);
2026 btrfs_destroy_workqueue(fs_info->caching_workers);
2027 btrfs_destroy_workqueue(fs_info->readahead_workers);
2028 btrfs_destroy_workqueue(fs_info->flush_workers);
2029 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2030 btrfs_destroy_workqueue(fs_info->extent_workers);
2031 /*
2032 * Now that all other work queues are destroyed, we can safely destroy
2033 * the queues used for metadata I/O, since tasks from those other work
2034 * queues can do metadata I/O operations.
2035 */
2036 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2037 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2038 }
2039
free_root_extent_buffers(struct btrfs_root * root)2040 static void free_root_extent_buffers(struct btrfs_root *root)
2041 {
2042 if (root) {
2043 free_extent_buffer(root->node);
2044 free_extent_buffer(root->commit_root);
2045 root->node = NULL;
2046 root->commit_root = NULL;
2047 }
2048 }
2049
2050 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,bool free_chunk_root)2051 static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2052 {
2053 free_root_extent_buffers(info->tree_root);
2054
2055 free_root_extent_buffers(info->dev_root);
2056 free_root_extent_buffers(info->extent_root);
2057 free_root_extent_buffers(info->csum_root);
2058 free_root_extent_buffers(info->quota_root);
2059 free_root_extent_buffers(info->uuid_root);
2060 if (free_chunk_root)
2061 free_root_extent_buffers(info->chunk_root);
2062 free_root_extent_buffers(info->free_space_root);
2063 }
2064
btrfs_free_fs_roots(struct btrfs_fs_info * fs_info)2065 void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2066 {
2067 int ret;
2068 struct btrfs_root *gang[8];
2069 int i;
2070
2071 while (!list_empty(&fs_info->dead_roots)) {
2072 gang[0] = list_entry(fs_info->dead_roots.next,
2073 struct btrfs_root, root_list);
2074 list_del(&gang[0]->root_list);
2075
2076 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2077 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2078 } else {
2079 free_extent_buffer(gang[0]->node);
2080 free_extent_buffer(gang[0]->commit_root);
2081 btrfs_put_fs_root(gang[0]);
2082 }
2083 }
2084
2085 while (1) {
2086 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2087 (void **)gang, 0,
2088 ARRAY_SIZE(gang));
2089 if (!ret)
2090 break;
2091 for (i = 0; i < ret; i++)
2092 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2093 }
2094
2095 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2096 btrfs_free_log_root_tree(NULL, fs_info);
2097 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2098 }
2099 }
2100
btrfs_init_scrub(struct btrfs_fs_info * fs_info)2101 static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2102 {
2103 mutex_init(&fs_info->scrub_lock);
2104 atomic_set(&fs_info->scrubs_running, 0);
2105 atomic_set(&fs_info->scrub_pause_req, 0);
2106 atomic_set(&fs_info->scrubs_paused, 0);
2107 atomic_set(&fs_info->scrub_cancel_req, 0);
2108 init_waitqueue_head(&fs_info->scrub_pause_wait);
2109 fs_info->scrub_workers_refcnt = 0;
2110 }
2111
btrfs_init_balance(struct btrfs_fs_info * fs_info)2112 static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2113 {
2114 spin_lock_init(&fs_info->balance_lock);
2115 mutex_init(&fs_info->balance_mutex);
2116 atomic_set(&fs_info->balance_pause_req, 0);
2117 atomic_set(&fs_info->balance_cancel_req, 0);
2118 fs_info->balance_ctl = NULL;
2119 init_waitqueue_head(&fs_info->balance_wait_q);
2120 }
2121
btrfs_init_btree_inode(struct btrfs_fs_info * fs_info)2122 static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2123 {
2124 struct inode *inode = fs_info->btree_inode;
2125
2126 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2127 set_nlink(inode, 1);
2128 /*
2129 * we set the i_size on the btree inode to the max possible int.
2130 * the real end of the address space is determined by all of
2131 * the devices in the system
2132 */
2133 inode->i_size = OFFSET_MAX;
2134 inode->i_mapping->a_ops = &btree_aops;
2135
2136 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2137 extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode);
2138 BTRFS_I(inode)->io_tree.track_uptodate = 0;
2139 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2140
2141 BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2142
2143 BTRFS_I(inode)->root = fs_info->tree_root;
2144 memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2145 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2146 btrfs_insert_inode_hash(inode);
2147 }
2148
btrfs_init_dev_replace_locks(struct btrfs_fs_info * fs_info)2149 static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2150 {
2151 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2152 rwlock_init(&fs_info->dev_replace.lock);
2153 atomic_set(&fs_info->dev_replace.read_locks, 0);
2154 atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2155 init_waitqueue_head(&fs_info->replace_wait);
2156 init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2157 }
2158
btrfs_init_qgroup(struct btrfs_fs_info * fs_info)2159 static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2160 {
2161 spin_lock_init(&fs_info->qgroup_lock);
2162 mutex_init(&fs_info->qgroup_ioctl_lock);
2163 fs_info->qgroup_tree = RB_ROOT;
2164 fs_info->qgroup_op_tree = RB_ROOT;
2165 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2166 fs_info->qgroup_seq = 1;
2167 fs_info->qgroup_ulist = NULL;
2168 fs_info->qgroup_rescan_running = false;
2169 mutex_init(&fs_info->qgroup_rescan_lock);
2170 }
2171
btrfs_init_workqueues(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2172 static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2173 struct btrfs_fs_devices *fs_devices)
2174 {
2175 u32 max_active = fs_info->thread_pool_size;
2176 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2177
2178 fs_info->workers =
2179 btrfs_alloc_workqueue(fs_info, "worker",
2180 flags | WQ_HIGHPRI, max_active, 16);
2181
2182 fs_info->delalloc_workers =
2183 btrfs_alloc_workqueue(fs_info, "delalloc",
2184 flags, max_active, 2);
2185
2186 fs_info->flush_workers =
2187 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2188 flags, max_active, 0);
2189
2190 fs_info->caching_workers =
2191 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2192
2193 /*
2194 * a higher idle thresh on the submit workers makes it much more
2195 * likely that bios will be send down in a sane order to the
2196 * devices
2197 */
2198 fs_info->submit_workers =
2199 btrfs_alloc_workqueue(fs_info, "submit", flags,
2200 min_t(u64, fs_devices->num_devices,
2201 max_active), 64);
2202
2203 fs_info->fixup_workers =
2204 btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2205
2206 /*
2207 * endios are largely parallel and should have a very
2208 * low idle thresh
2209 */
2210 fs_info->endio_workers =
2211 btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2212 fs_info->endio_meta_workers =
2213 btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2214 max_active, 4);
2215 fs_info->endio_meta_write_workers =
2216 btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2217 max_active, 2);
2218 fs_info->endio_raid56_workers =
2219 btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2220 max_active, 4);
2221 fs_info->endio_repair_workers =
2222 btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2223 fs_info->rmw_workers =
2224 btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2225 fs_info->endio_write_workers =
2226 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2227 max_active, 2);
2228 fs_info->endio_freespace_worker =
2229 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2230 max_active, 0);
2231 fs_info->delayed_workers =
2232 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2233 max_active, 0);
2234 fs_info->readahead_workers =
2235 btrfs_alloc_workqueue(fs_info, "readahead", flags,
2236 max_active, 2);
2237 fs_info->qgroup_rescan_workers =
2238 btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2239 fs_info->extent_workers =
2240 btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2241 min_t(u64, fs_devices->num_devices,
2242 max_active), 8);
2243
2244 if (!(fs_info->workers && fs_info->delalloc_workers &&
2245 fs_info->submit_workers && fs_info->flush_workers &&
2246 fs_info->endio_workers && fs_info->endio_meta_workers &&
2247 fs_info->endio_meta_write_workers &&
2248 fs_info->endio_repair_workers &&
2249 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2250 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2251 fs_info->caching_workers && fs_info->readahead_workers &&
2252 fs_info->fixup_workers && fs_info->delayed_workers &&
2253 fs_info->extent_workers &&
2254 fs_info->qgroup_rescan_workers)) {
2255 return -ENOMEM;
2256 }
2257
2258 return 0;
2259 }
2260
btrfs_replay_log(struct btrfs_fs_info * fs_info,struct btrfs_fs_devices * fs_devices)2261 static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2262 struct btrfs_fs_devices *fs_devices)
2263 {
2264 int ret;
2265 struct btrfs_root *log_tree_root;
2266 struct btrfs_super_block *disk_super = fs_info->super_copy;
2267 u64 bytenr = btrfs_super_log_root(disk_super);
2268 int level = btrfs_super_log_root_level(disk_super);
2269
2270 if (fs_devices->rw_devices == 0) {
2271 btrfs_warn(fs_info, "log replay required on RO media");
2272 return -EIO;
2273 }
2274
2275 log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2276 if (!log_tree_root)
2277 return -ENOMEM;
2278
2279 __setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2280
2281 log_tree_root->node = read_tree_block(fs_info, bytenr,
2282 fs_info->generation + 1,
2283 level, NULL);
2284 if (IS_ERR(log_tree_root->node)) {
2285 btrfs_warn(fs_info, "failed to read log tree");
2286 ret = PTR_ERR(log_tree_root->node);
2287 kfree(log_tree_root);
2288 return ret;
2289 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
2290 btrfs_err(fs_info, "failed to read log tree");
2291 free_extent_buffer(log_tree_root->node);
2292 kfree(log_tree_root);
2293 return -EIO;
2294 }
2295 /* returns with log_tree_root freed on success */
2296 ret = btrfs_recover_log_trees(log_tree_root);
2297 if (ret) {
2298 btrfs_handle_fs_error(fs_info, ret,
2299 "Failed to recover log tree");
2300 free_extent_buffer(log_tree_root->node);
2301 kfree(log_tree_root);
2302 return ret;
2303 }
2304
2305 if (sb_rdonly(fs_info->sb)) {
2306 ret = btrfs_commit_super(fs_info);
2307 if (ret)
2308 return ret;
2309 }
2310
2311 return 0;
2312 }
2313
btrfs_read_roots(struct btrfs_fs_info * fs_info)2314 static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2315 {
2316 struct btrfs_root *tree_root = fs_info->tree_root;
2317 struct btrfs_root *root;
2318 struct btrfs_key location;
2319 int ret;
2320
2321 BUG_ON(!fs_info->tree_root);
2322
2323 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2324 location.type = BTRFS_ROOT_ITEM_KEY;
2325 location.offset = 0;
2326
2327 root = btrfs_read_tree_root(tree_root, &location);
2328 if (IS_ERR(root)) {
2329 ret = PTR_ERR(root);
2330 goto out;
2331 }
2332 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2333 fs_info->extent_root = root;
2334
2335 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2336 root = btrfs_read_tree_root(tree_root, &location);
2337 if (IS_ERR(root)) {
2338 ret = PTR_ERR(root);
2339 goto out;
2340 }
2341 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2342 fs_info->dev_root = root;
2343 btrfs_init_devices_late(fs_info);
2344
2345 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2346 root = btrfs_read_tree_root(tree_root, &location);
2347 if (IS_ERR(root)) {
2348 ret = PTR_ERR(root);
2349 goto out;
2350 }
2351 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2352 fs_info->csum_root = root;
2353
2354 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2355 root = btrfs_read_tree_root(tree_root, &location);
2356 if (!IS_ERR(root)) {
2357 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2358 set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2359 fs_info->quota_root = root;
2360 }
2361
2362 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2363 root = btrfs_read_tree_root(tree_root, &location);
2364 if (IS_ERR(root)) {
2365 ret = PTR_ERR(root);
2366 if (ret != -ENOENT)
2367 goto out;
2368 } else {
2369 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2370 fs_info->uuid_root = root;
2371 }
2372
2373 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2374 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2375 root = btrfs_read_tree_root(tree_root, &location);
2376 if (IS_ERR(root)) {
2377 ret = PTR_ERR(root);
2378 goto out;
2379 }
2380 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2381 fs_info->free_space_root = root;
2382 }
2383
2384 return 0;
2385 out:
2386 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2387 location.objectid, ret);
2388 return ret;
2389 }
2390
2391 /*
2392 * Real super block validation
2393 * NOTE: super csum type and incompat features will not be checked here.
2394 *
2395 * @sb: super block to check
2396 * @mirror_num: the super block number to check its bytenr:
2397 * 0 the primary (1st) sb
2398 * 1, 2 2nd and 3rd backup copy
2399 * -1 skip bytenr check
2400 */
validate_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb,int mirror_num)2401 static int validate_super(struct btrfs_fs_info *fs_info,
2402 struct btrfs_super_block *sb, int mirror_num)
2403 {
2404 u64 nodesize = btrfs_super_nodesize(sb);
2405 u64 sectorsize = btrfs_super_sectorsize(sb);
2406 int ret = 0;
2407
2408 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2409 btrfs_err(fs_info, "no valid FS found");
2410 ret = -EINVAL;
2411 }
2412 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2413 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2414 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2415 ret = -EINVAL;
2416 }
2417 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2418 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2419 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2420 ret = -EINVAL;
2421 }
2422 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2423 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2424 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2425 ret = -EINVAL;
2426 }
2427 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2428 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2429 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2430 ret = -EINVAL;
2431 }
2432
2433 /*
2434 * Check sectorsize and nodesize first, other check will need it.
2435 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2436 */
2437 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2438 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2439 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2440 ret = -EINVAL;
2441 }
2442 /* Only PAGE SIZE is supported yet */
2443 if (sectorsize != PAGE_SIZE) {
2444 btrfs_err(fs_info,
2445 "sectorsize %llu not supported yet, only support %lu",
2446 sectorsize, PAGE_SIZE);
2447 ret = -EINVAL;
2448 }
2449 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2450 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2451 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2452 ret = -EINVAL;
2453 }
2454 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2455 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2456 le32_to_cpu(sb->__unused_leafsize), nodesize);
2457 ret = -EINVAL;
2458 }
2459
2460 /* Root alignment check */
2461 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2462 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2463 btrfs_super_root(sb));
2464 ret = -EINVAL;
2465 }
2466 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2467 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2468 btrfs_super_chunk_root(sb));
2469 ret = -EINVAL;
2470 }
2471 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2472 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2473 btrfs_super_log_root(sb));
2474 ret = -EINVAL;
2475 }
2476
2477 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_FSID_SIZE) != 0) {
2478 btrfs_err(fs_info,
2479 "dev_item UUID does not match fsid: %pU != %pU",
2480 fs_info->fsid, sb->dev_item.fsid);
2481 ret = -EINVAL;
2482 }
2483
2484 /*
2485 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2486 * done later
2487 */
2488 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2489 btrfs_err(fs_info, "bytes_used is too small %llu",
2490 btrfs_super_bytes_used(sb));
2491 ret = -EINVAL;
2492 }
2493 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2494 btrfs_err(fs_info, "invalid stripesize %u",
2495 btrfs_super_stripesize(sb));
2496 ret = -EINVAL;
2497 }
2498 if (btrfs_super_num_devices(sb) > (1UL << 31))
2499 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2500 btrfs_super_num_devices(sb));
2501 if (btrfs_super_num_devices(sb) == 0) {
2502 btrfs_err(fs_info, "number of devices is 0");
2503 ret = -EINVAL;
2504 }
2505
2506 if (mirror_num >= 0 &&
2507 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2508 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2509 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2510 ret = -EINVAL;
2511 }
2512
2513 /*
2514 * Obvious sys_chunk_array corruptions, it must hold at least one key
2515 * and one chunk
2516 */
2517 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2518 btrfs_err(fs_info, "system chunk array too big %u > %u",
2519 btrfs_super_sys_array_size(sb),
2520 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2521 ret = -EINVAL;
2522 }
2523 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2524 + sizeof(struct btrfs_chunk)) {
2525 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2526 btrfs_super_sys_array_size(sb),
2527 sizeof(struct btrfs_disk_key)
2528 + sizeof(struct btrfs_chunk));
2529 ret = -EINVAL;
2530 }
2531
2532 /*
2533 * The generation is a global counter, we'll trust it more than the others
2534 * but it's still possible that it's the one that's wrong.
2535 */
2536 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2537 btrfs_warn(fs_info,
2538 "suspicious: generation < chunk_root_generation: %llu < %llu",
2539 btrfs_super_generation(sb),
2540 btrfs_super_chunk_root_generation(sb));
2541 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2542 && btrfs_super_cache_generation(sb) != (u64)-1)
2543 btrfs_warn(fs_info,
2544 "suspicious: generation < cache_generation: %llu < %llu",
2545 btrfs_super_generation(sb),
2546 btrfs_super_cache_generation(sb));
2547
2548 return ret;
2549 }
2550
2551 /*
2552 * Validation of super block at mount time.
2553 * Some checks already done early at mount time, like csum type and incompat
2554 * flags will be skipped.
2555 */
btrfs_validate_mount_super(struct btrfs_fs_info * fs_info)2556 static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2557 {
2558 return validate_super(fs_info, fs_info->super_copy, 0);
2559 }
2560
2561 /*
2562 * Validation of super block at write time.
2563 * Some checks like bytenr check will be skipped as their values will be
2564 * overwritten soon.
2565 * Extra checks like csum type and incompat flags will be done here.
2566 */
btrfs_validate_write_super(struct btrfs_fs_info * fs_info,struct btrfs_super_block * sb)2567 static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2568 struct btrfs_super_block *sb)
2569 {
2570 int ret;
2571
2572 ret = validate_super(fs_info, sb, -1);
2573 if (ret < 0)
2574 goto out;
2575 if (btrfs_super_csum_type(sb) != BTRFS_CSUM_TYPE_CRC32) {
2576 ret = -EUCLEAN;
2577 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2578 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2579 goto out;
2580 }
2581 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2582 ret = -EUCLEAN;
2583 btrfs_err(fs_info,
2584 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2585 btrfs_super_incompat_flags(sb),
2586 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2587 goto out;
2588 }
2589 out:
2590 if (ret < 0)
2591 btrfs_err(fs_info,
2592 "super block corruption detected before writing it to disk");
2593 return ret;
2594 }
2595
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)2596 int open_ctree(struct super_block *sb,
2597 struct btrfs_fs_devices *fs_devices,
2598 char *options)
2599 {
2600 u32 sectorsize;
2601 u32 nodesize;
2602 u32 stripesize;
2603 u64 generation;
2604 u64 features;
2605 struct btrfs_key location;
2606 struct buffer_head *bh;
2607 struct btrfs_super_block *disk_super;
2608 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2609 struct btrfs_root *tree_root;
2610 struct btrfs_root *chunk_root;
2611 int ret;
2612 int err = -EINVAL;
2613 int num_backups_tried = 0;
2614 int backup_index = 0;
2615 int clear_free_space_tree = 0;
2616 int level;
2617
2618 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2619 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2620 if (!tree_root || !chunk_root) {
2621 err = -ENOMEM;
2622 goto fail;
2623 }
2624
2625 ret = init_srcu_struct(&fs_info->subvol_srcu);
2626 if (ret) {
2627 err = ret;
2628 goto fail;
2629 }
2630
2631 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2632 if (ret) {
2633 err = ret;
2634 goto fail_srcu;
2635 }
2636 fs_info->dirty_metadata_batch = PAGE_SIZE *
2637 (1 + ilog2(nr_cpu_ids));
2638
2639 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2640 if (ret) {
2641 err = ret;
2642 goto fail_dirty_metadata_bytes;
2643 }
2644
2645 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2646 if (ret) {
2647 err = ret;
2648 goto fail_delalloc_bytes;
2649 }
2650
2651 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2652 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2653 INIT_LIST_HEAD(&fs_info->trans_list);
2654 INIT_LIST_HEAD(&fs_info->dead_roots);
2655 INIT_LIST_HEAD(&fs_info->delayed_iputs);
2656 INIT_LIST_HEAD(&fs_info->delalloc_roots);
2657 INIT_LIST_HEAD(&fs_info->caching_block_groups);
2658 INIT_LIST_HEAD(&fs_info->pending_raid_kobjs);
2659 spin_lock_init(&fs_info->pending_raid_kobjs_lock);
2660 spin_lock_init(&fs_info->delalloc_root_lock);
2661 spin_lock_init(&fs_info->trans_lock);
2662 spin_lock_init(&fs_info->fs_roots_radix_lock);
2663 spin_lock_init(&fs_info->delayed_iput_lock);
2664 spin_lock_init(&fs_info->defrag_inodes_lock);
2665 spin_lock_init(&fs_info->super_lock);
2666 spin_lock_init(&fs_info->qgroup_op_lock);
2667 spin_lock_init(&fs_info->buffer_lock);
2668 spin_lock_init(&fs_info->unused_bgs_lock);
2669 rwlock_init(&fs_info->tree_mod_log_lock);
2670 mutex_init(&fs_info->unused_bg_unpin_mutex);
2671 mutex_init(&fs_info->delete_unused_bgs_mutex);
2672 mutex_init(&fs_info->reloc_mutex);
2673 mutex_init(&fs_info->delalloc_root_mutex);
2674 mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2675 seqlock_init(&fs_info->profiles_lock);
2676
2677 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2678 INIT_LIST_HEAD(&fs_info->space_info);
2679 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2680 INIT_LIST_HEAD(&fs_info->unused_bgs);
2681 btrfs_mapping_init(&fs_info->mapping_tree);
2682 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2683 BTRFS_BLOCK_RSV_GLOBAL);
2684 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2685 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2686 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2687 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2688 BTRFS_BLOCK_RSV_DELOPS);
2689 atomic_set(&fs_info->async_delalloc_pages, 0);
2690 atomic_set(&fs_info->defrag_running, 0);
2691 atomic_set(&fs_info->qgroup_op_seq, 0);
2692 atomic_set(&fs_info->reada_works_cnt, 0);
2693 atomic64_set(&fs_info->tree_mod_seq, 0);
2694 fs_info->sb = sb;
2695 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2696 fs_info->metadata_ratio = 0;
2697 fs_info->defrag_inodes = RB_ROOT;
2698 atomic64_set(&fs_info->free_chunk_space, 0);
2699 fs_info->tree_mod_log = RB_ROOT;
2700 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2701 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2702 /* readahead state */
2703 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2704 spin_lock_init(&fs_info->reada_lock);
2705 btrfs_init_ref_verify(fs_info);
2706
2707 fs_info->thread_pool_size = min_t(unsigned long,
2708 num_online_cpus() + 2, 8);
2709
2710 INIT_LIST_HEAD(&fs_info->ordered_roots);
2711 spin_lock_init(&fs_info->ordered_root_lock);
2712
2713 fs_info->btree_inode = new_inode(sb);
2714 if (!fs_info->btree_inode) {
2715 err = -ENOMEM;
2716 goto fail_bio_counter;
2717 }
2718 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2719
2720 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2721 GFP_KERNEL);
2722 if (!fs_info->delayed_root) {
2723 err = -ENOMEM;
2724 goto fail_iput;
2725 }
2726 btrfs_init_delayed_root(fs_info->delayed_root);
2727
2728 btrfs_init_scrub(fs_info);
2729 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2730 fs_info->check_integrity_print_mask = 0;
2731 #endif
2732 btrfs_init_balance(fs_info);
2733 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2734
2735 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2736 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
2737
2738 btrfs_init_btree_inode(fs_info);
2739
2740 spin_lock_init(&fs_info->block_group_cache_lock);
2741 fs_info->block_group_cache_tree = RB_ROOT;
2742 fs_info->first_logical_byte = (u64)-1;
2743
2744 extent_io_tree_init(&fs_info->freed_extents[0], NULL);
2745 extent_io_tree_init(&fs_info->freed_extents[1], NULL);
2746 fs_info->pinned_extents = &fs_info->freed_extents[0];
2747 set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2748
2749 mutex_init(&fs_info->ordered_operations_mutex);
2750 mutex_init(&fs_info->tree_log_mutex);
2751 mutex_init(&fs_info->chunk_mutex);
2752 mutex_init(&fs_info->transaction_kthread_mutex);
2753 mutex_init(&fs_info->cleaner_mutex);
2754 mutex_init(&fs_info->ro_block_group_mutex);
2755 init_rwsem(&fs_info->commit_root_sem);
2756 init_rwsem(&fs_info->cleanup_work_sem);
2757 init_rwsem(&fs_info->subvol_sem);
2758 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2759
2760 btrfs_init_dev_replace_locks(fs_info);
2761 btrfs_init_qgroup(fs_info);
2762
2763 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2764 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2765
2766 init_waitqueue_head(&fs_info->transaction_throttle);
2767 init_waitqueue_head(&fs_info->transaction_wait);
2768 init_waitqueue_head(&fs_info->transaction_blocked_wait);
2769 init_waitqueue_head(&fs_info->async_submit_wait);
2770
2771 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2772
2773 /* Usable values until the real ones are cached from the superblock */
2774 fs_info->nodesize = 4096;
2775 fs_info->sectorsize = 4096;
2776 fs_info->stripesize = 4096;
2777
2778 ret = btrfs_alloc_stripe_hash_table(fs_info);
2779 if (ret) {
2780 err = ret;
2781 goto fail_alloc;
2782 }
2783
2784 __setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
2785
2786 invalidate_bdev(fs_devices->latest_bdev);
2787
2788 /*
2789 * Read super block and check the signature bytes only
2790 */
2791 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2792 if (IS_ERR(bh)) {
2793 err = PTR_ERR(bh);
2794 goto fail_alloc;
2795 }
2796
2797 /*
2798 * We want to check superblock checksum, the type is stored inside.
2799 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2800 */
2801 if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2802 btrfs_err(fs_info, "superblock checksum mismatch");
2803 err = -EINVAL;
2804 brelse(bh);
2805 goto fail_alloc;
2806 }
2807
2808 /*
2809 * super_copy is zeroed at allocation time and we never touch the
2810 * following bytes up to INFO_SIZE, the checksum is calculated from
2811 * the whole block of INFO_SIZE
2812 */
2813 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2814 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2815 sizeof(*fs_info->super_for_commit));
2816 brelse(bh);
2817
2818 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2819
2820 ret = btrfs_validate_mount_super(fs_info);
2821 if (ret) {
2822 btrfs_err(fs_info, "superblock contains fatal errors");
2823 err = -EINVAL;
2824 goto fail_alloc;
2825 }
2826
2827 disk_super = fs_info->super_copy;
2828 if (!btrfs_super_root(disk_super))
2829 goto fail_alloc;
2830
2831 /* check FS state, whether FS is broken. */
2832 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2833 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2834
2835 /*
2836 * run through our array of backup supers and setup
2837 * our ring pointer to the oldest one
2838 */
2839 generation = btrfs_super_generation(disk_super);
2840 find_oldest_super_backup(fs_info, generation);
2841
2842 /*
2843 * In the long term, we'll store the compression type in the super
2844 * block, and it'll be used for per file compression control.
2845 */
2846 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2847
2848 ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2849 if (ret) {
2850 err = ret;
2851 goto fail_alloc;
2852 }
2853
2854 features = btrfs_super_incompat_flags(disk_super) &
2855 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2856 if (features) {
2857 btrfs_err(fs_info,
2858 "cannot mount because of unsupported optional features (0x%llx)",
2859 features);
2860 err = -EINVAL;
2861 goto fail_alloc;
2862 }
2863
2864 features = btrfs_super_incompat_flags(disk_super);
2865 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2866 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2867 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2868 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
2869 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
2870
2871 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2872 btrfs_info(fs_info, "has skinny extents");
2873
2874 /*
2875 * flag our filesystem as having big metadata blocks if
2876 * they are bigger than the page size
2877 */
2878 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2879 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2880 btrfs_info(fs_info,
2881 "flagging fs with big metadata feature");
2882 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2883 }
2884
2885 nodesize = btrfs_super_nodesize(disk_super);
2886 sectorsize = btrfs_super_sectorsize(disk_super);
2887 stripesize = sectorsize;
2888 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2889 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2890
2891 /* Cache block sizes */
2892 fs_info->nodesize = nodesize;
2893 fs_info->sectorsize = sectorsize;
2894 fs_info->stripesize = stripesize;
2895
2896 /*
2897 * mixed block groups end up with duplicate but slightly offset
2898 * extent buffers for the same range. It leads to corruptions
2899 */
2900 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2901 (sectorsize != nodesize)) {
2902 btrfs_err(fs_info,
2903 "unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2904 nodesize, sectorsize);
2905 goto fail_alloc;
2906 }
2907
2908 /*
2909 * Needn't use the lock because there is no other task which will
2910 * update the flag.
2911 */
2912 btrfs_set_super_incompat_flags(disk_super, features);
2913
2914 features = btrfs_super_compat_ro_flags(disk_super) &
2915 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2916 if (!sb_rdonly(sb) && features) {
2917 btrfs_err(fs_info,
2918 "cannot mount read-write because of unsupported optional features (0x%llx)",
2919 features);
2920 err = -EINVAL;
2921 goto fail_alloc;
2922 }
2923 /*
2924 * We have unsupported RO compat features, although RO mounted, we
2925 * should not cause any metadata write, including log replay.
2926 * Or we could screw up whatever the new feature requires.
2927 */
2928 if (unlikely(features && btrfs_super_log_root(disk_super) &&
2929 !btrfs_test_opt(fs_info, NOLOGREPLAY))) {
2930 btrfs_err(fs_info,
2931 "cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
2932 features);
2933 err = -EINVAL;
2934 goto fail_alloc;
2935 }
2936
2937
2938 ret = btrfs_init_workqueues(fs_info, fs_devices);
2939 if (ret) {
2940 err = ret;
2941 goto fail_sb_buffer;
2942 }
2943
2944 sb->s_bdi->congested_fn = btrfs_congested_fn;
2945 sb->s_bdi->congested_data = fs_info;
2946 sb->s_bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
2947 sb->s_bdi->ra_pages = VM_MAX_READAHEAD * SZ_1K / PAGE_SIZE;
2948 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
2949 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
2950
2951 sb->s_blocksize = sectorsize;
2952 sb->s_blocksize_bits = blksize_bits(sectorsize);
2953 memcpy(&sb->s_uuid, fs_info->fsid, BTRFS_FSID_SIZE);
2954
2955 mutex_lock(&fs_info->chunk_mutex);
2956 ret = btrfs_read_sys_array(fs_info);
2957 mutex_unlock(&fs_info->chunk_mutex);
2958 if (ret) {
2959 btrfs_err(fs_info, "failed to read the system array: %d", ret);
2960 goto fail_sb_buffer;
2961 }
2962
2963 generation = btrfs_super_chunk_root_generation(disk_super);
2964 level = btrfs_super_chunk_root_level(disk_super);
2965
2966 __setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2967
2968 chunk_root->node = read_tree_block(fs_info,
2969 btrfs_super_chunk_root(disk_super),
2970 generation, level, NULL);
2971 if (IS_ERR(chunk_root->node) ||
2972 !extent_buffer_uptodate(chunk_root->node)) {
2973 btrfs_err(fs_info, "failed to read chunk root");
2974 if (!IS_ERR(chunk_root->node))
2975 free_extent_buffer(chunk_root->node);
2976 chunk_root->node = NULL;
2977 goto fail_tree_roots;
2978 }
2979 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2980 chunk_root->commit_root = btrfs_root_node(chunk_root);
2981
2982 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2983 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2984
2985 ret = btrfs_read_chunk_tree(fs_info);
2986 if (ret) {
2987 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2988 goto fail_tree_roots;
2989 }
2990
2991 /*
2992 * Keep the devid that is marked to be the target device for the
2993 * device replace procedure
2994 */
2995 btrfs_free_extra_devids(fs_devices, 0);
2996
2997 if (!fs_devices->latest_bdev) {
2998 btrfs_err(fs_info, "failed to read devices");
2999 goto fail_tree_roots;
3000 }
3001
3002 retry_root_backup:
3003 generation = btrfs_super_generation(disk_super);
3004 level = btrfs_super_root_level(disk_super);
3005
3006 tree_root->node = read_tree_block(fs_info,
3007 btrfs_super_root(disk_super),
3008 generation, level, NULL);
3009 if (IS_ERR(tree_root->node) ||
3010 !extent_buffer_uptodate(tree_root->node)) {
3011 btrfs_warn(fs_info, "failed to read tree root");
3012 if (!IS_ERR(tree_root->node))
3013 free_extent_buffer(tree_root->node);
3014 tree_root->node = NULL;
3015 goto recovery_tree_root;
3016 }
3017
3018 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
3019 tree_root->commit_root = btrfs_root_node(tree_root);
3020 btrfs_set_root_refs(&tree_root->root_item, 1);
3021
3022 mutex_lock(&tree_root->objectid_mutex);
3023 ret = btrfs_find_highest_objectid(tree_root,
3024 &tree_root->highest_objectid);
3025 if (ret) {
3026 mutex_unlock(&tree_root->objectid_mutex);
3027 goto recovery_tree_root;
3028 }
3029
3030 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
3031
3032 mutex_unlock(&tree_root->objectid_mutex);
3033
3034 ret = btrfs_read_roots(fs_info);
3035 if (ret)
3036 goto recovery_tree_root;
3037
3038 fs_info->generation = generation;
3039 fs_info->last_trans_committed = generation;
3040
3041 /*
3042 * If we have a uuid root and we're not being told to rescan we need to
3043 * check the generation here so we can set the
3044 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3045 * transaction during a balance or the log replay without updating the
3046 * uuid generation, and then if we crash we would rescan the uuid tree,
3047 * even though it was perfectly fine.
3048 */
3049 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3050 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3051 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3052
3053 ret = btrfs_verify_dev_extents(fs_info);
3054 if (ret) {
3055 btrfs_err(fs_info,
3056 "failed to verify dev extents against chunks: %d",
3057 ret);
3058 goto fail_block_groups;
3059 }
3060 ret = btrfs_recover_balance(fs_info);
3061 if (ret) {
3062 btrfs_err(fs_info, "failed to recover balance: %d", ret);
3063 goto fail_block_groups;
3064 }
3065
3066 ret = btrfs_init_dev_stats(fs_info);
3067 if (ret) {
3068 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3069 goto fail_block_groups;
3070 }
3071
3072 ret = btrfs_init_dev_replace(fs_info);
3073 if (ret) {
3074 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3075 goto fail_block_groups;
3076 }
3077
3078 btrfs_free_extra_devids(fs_devices, 1);
3079
3080 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3081 if (ret) {
3082 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3083 ret);
3084 goto fail_block_groups;
3085 }
3086
3087 ret = btrfs_sysfs_add_device(fs_devices);
3088 if (ret) {
3089 btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3090 ret);
3091 goto fail_fsdev_sysfs;
3092 }
3093
3094 ret = btrfs_sysfs_add_mounted(fs_info);
3095 if (ret) {
3096 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3097 goto fail_fsdev_sysfs;
3098 }
3099
3100 ret = btrfs_init_space_info(fs_info);
3101 if (ret) {
3102 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3103 goto fail_sysfs;
3104 }
3105
3106 ret = btrfs_read_block_groups(fs_info);
3107 if (ret) {
3108 btrfs_err(fs_info, "failed to read block groups: %d", ret);
3109 goto fail_sysfs;
3110 }
3111
3112 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3113 !btrfs_check_rw_degradable(fs_info, NULL)) {
3114 btrfs_warn(fs_info,
3115 "writeable mount is not allowed due to too many missing devices");
3116 goto fail_sysfs;
3117 }
3118
3119 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3120 "btrfs-cleaner");
3121 if (IS_ERR(fs_info->cleaner_kthread))
3122 goto fail_sysfs;
3123
3124 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3125 tree_root,
3126 "btrfs-transaction");
3127 if (IS_ERR(fs_info->transaction_kthread))
3128 goto fail_cleaner;
3129
3130 if (!btrfs_test_opt(fs_info, NOSSD) &&
3131 !fs_info->fs_devices->rotating) {
3132 btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3133 }
3134
3135 /*
3136 * Mount does not set all options immediately, we can do it now and do
3137 * not have to wait for transaction commit
3138 */
3139 btrfs_apply_pending_changes(fs_info);
3140
3141 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3142 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3143 ret = btrfsic_mount(fs_info, fs_devices,
3144 btrfs_test_opt(fs_info,
3145 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3146 1 : 0,
3147 fs_info->check_integrity_print_mask);
3148 if (ret)
3149 btrfs_warn(fs_info,
3150 "failed to initialize integrity check module: %d",
3151 ret);
3152 }
3153 #endif
3154 ret = btrfs_read_qgroup_config(fs_info);
3155 if (ret)
3156 goto fail_trans_kthread;
3157
3158 if (btrfs_build_ref_tree(fs_info))
3159 btrfs_err(fs_info, "couldn't build ref tree");
3160
3161 /* do not make disk changes in broken FS or nologreplay is given */
3162 if (btrfs_super_log_root(disk_super) != 0 &&
3163 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3164 btrfs_info(fs_info, "start tree-log replay");
3165 ret = btrfs_replay_log(fs_info, fs_devices);
3166 if (ret) {
3167 err = ret;
3168 goto fail_qgroup;
3169 }
3170 }
3171
3172 ret = btrfs_find_orphan_roots(fs_info);
3173 if (ret)
3174 goto fail_qgroup;
3175
3176 if (!sb_rdonly(sb)) {
3177 ret = btrfs_cleanup_fs_roots(fs_info);
3178 if (ret)
3179 goto fail_qgroup;
3180
3181 mutex_lock(&fs_info->cleaner_mutex);
3182 ret = btrfs_recover_relocation(tree_root);
3183 mutex_unlock(&fs_info->cleaner_mutex);
3184 if (ret < 0) {
3185 btrfs_warn(fs_info, "failed to recover relocation: %d",
3186 ret);
3187 err = -EINVAL;
3188 goto fail_qgroup;
3189 }
3190 }
3191
3192 location.objectid = BTRFS_FS_TREE_OBJECTID;
3193 location.type = BTRFS_ROOT_ITEM_KEY;
3194 location.offset = 0;
3195
3196 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3197 if (IS_ERR(fs_info->fs_root)) {
3198 err = PTR_ERR(fs_info->fs_root);
3199 btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3200 fs_info->fs_root = NULL;
3201 goto fail_qgroup;
3202 }
3203
3204 if (sb_rdonly(sb))
3205 return 0;
3206
3207 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3208 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3209 clear_free_space_tree = 1;
3210 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3211 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3212 btrfs_warn(fs_info, "free space tree is invalid");
3213 clear_free_space_tree = 1;
3214 }
3215
3216 if (clear_free_space_tree) {
3217 btrfs_info(fs_info, "clearing free space tree");
3218 ret = btrfs_clear_free_space_tree(fs_info);
3219 if (ret) {
3220 btrfs_warn(fs_info,
3221 "failed to clear free space tree: %d", ret);
3222 close_ctree(fs_info);
3223 return ret;
3224 }
3225 }
3226
3227 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3228 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3229 btrfs_info(fs_info, "creating free space tree");
3230 ret = btrfs_create_free_space_tree(fs_info);
3231 if (ret) {
3232 btrfs_warn(fs_info,
3233 "failed to create free space tree: %d", ret);
3234 close_ctree(fs_info);
3235 return ret;
3236 }
3237 }
3238
3239 down_read(&fs_info->cleanup_work_sem);
3240 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3241 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3242 up_read(&fs_info->cleanup_work_sem);
3243 close_ctree(fs_info);
3244 return ret;
3245 }
3246 up_read(&fs_info->cleanup_work_sem);
3247
3248 ret = btrfs_resume_balance_async(fs_info);
3249 if (ret) {
3250 btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3251 close_ctree(fs_info);
3252 return ret;
3253 }
3254
3255 ret = btrfs_resume_dev_replace_async(fs_info);
3256 if (ret) {
3257 btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3258 close_ctree(fs_info);
3259 return ret;
3260 }
3261
3262 btrfs_qgroup_rescan_resume(fs_info);
3263
3264 if (!fs_info->uuid_root) {
3265 btrfs_info(fs_info, "creating UUID tree");
3266 ret = btrfs_create_uuid_tree(fs_info);
3267 if (ret) {
3268 btrfs_warn(fs_info,
3269 "failed to create the UUID tree: %d", ret);
3270 close_ctree(fs_info);
3271 return ret;
3272 }
3273 } else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3274 fs_info->generation !=
3275 btrfs_super_uuid_tree_generation(disk_super)) {
3276 btrfs_info(fs_info, "checking UUID tree");
3277 ret = btrfs_check_uuid_tree(fs_info);
3278 if (ret) {
3279 btrfs_warn(fs_info,
3280 "failed to check the UUID tree: %d", ret);
3281 close_ctree(fs_info);
3282 return ret;
3283 }
3284 }
3285 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3286
3287 /*
3288 * backuproot only affect mount behavior, and if open_ctree succeeded,
3289 * no need to keep the flag
3290 */
3291 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3292
3293 return 0;
3294
3295 fail_qgroup:
3296 btrfs_free_qgroup_config(fs_info);
3297 fail_trans_kthread:
3298 kthread_stop(fs_info->transaction_kthread);
3299 btrfs_cleanup_transaction(fs_info);
3300 btrfs_free_fs_roots(fs_info);
3301 fail_cleaner:
3302 kthread_stop(fs_info->cleaner_kthread);
3303
3304 /*
3305 * make sure we're done with the btree inode before we stop our
3306 * kthreads
3307 */
3308 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3309
3310 fail_sysfs:
3311 btrfs_sysfs_remove_mounted(fs_info);
3312
3313 fail_fsdev_sysfs:
3314 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3315
3316 fail_block_groups:
3317 btrfs_put_block_group_cache(fs_info);
3318
3319 fail_tree_roots:
3320 free_root_pointers(fs_info, true);
3321 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3322
3323 fail_sb_buffer:
3324 btrfs_stop_all_workers(fs_info);
3325 btrfs_free_block_groups(fs_info);
3326 fail_alloc:
3327 fail_iput:
3328 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3329
3330 iput(fs_info->btree_inode);
3331 fail_bio_counter:
3332 percpu_counter_destroy(&fs_info->bio_counter);
3333 fail_delalloc_bytes:
3334 percpu_counter_destroy(&fs_info->delalloc_bytes);
3335 fail_dirty_metadata_bytes:
3336 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3337 fail_srcu:
3338 cleanup_srcu_struct(&fs_info->subvol_srcu);
3339 fail:
3340 btrfs_free_stripe_hash_table(fs_info);
3341 btrfs_close_devices(fs_info->fs_devices);
3342 return err;
3343
3344 recovery_tree_root:
3345 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3346 goto fail_tree_roots;
3347
3348 free_root_pointers(fs_info, false);
3349
3350 /* don't use the log in recovery mode, it won't be valid */
3351 btrfs_set_super_log_root(disk_super, 0);
3352
3353 /* we can't trust the free space cache either */
3354 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3355
3356 ret = next_root_backup(fs_info, fs_info->super_copy,
3357 &num_backups_tried, &backup_index);
3358 if (ret == -1)
3359 goto fail_block_groups;
3360 goto retry_root_backup;
3361 }
3362 ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3363
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)3364 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3365 {
3366 if (uptodate) {
3367 set_buffer_uptodate(bh);
3368 } else {
3369 struct btrfs_device *device = (struct btrfs_device *)
3370 bh->b_private;
3371
3372 btrfs_warn_rl_in_rcu(device->fs_info,
3373 "lost page write due to IO error on %s",
3374 rcu_str_deref(device->name));
3375 /* note, we don't set_buffer_write_io_error because we have
3376 * our own ways of dealing with the IO errors
3377 */
3378 clear_buffer_uptodate(bh);
3379 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3380 }
3381 unlock_buffer(bh);
3382 put_bh(bh);
3383 }
3384
btrfs_read_dev_one_super(struct block_device * bdev,int copy_num,struct buffer_head ** bh_ret)3385 int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3386 struct buffer_head **bh_ret)
3387 {
3388 struct buffer_head *bh;
3389 struct btrfs_super_block *super;
3390 u64 bytenr;
3391
3392 bytenr = btrfs_sb_offset(copy_num);
3393 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3394 return -EINVAL;
3395
3396 bh = __bread(bdev, bytenr / BTRFS_BDEV_BLOCKSIZE, BTRFS_SUPER_INFO_SIZE);
3397 /*
3398 * If we fail to read from the underlying devices, as of now
3399 * the best option we have is to mark it EIO.
3400 */
3401 if (!bh)
3402 return -EIO;
3403
3404 super = (struct btrfs_super_block *)bh->b_data;
3405 if (btrfs_super_bytenr(super) != bytenr ||
3406 btrfs_super_magic(super) != BTRFS_MAGIC) {
3407 brelse(bh);
3408 return -EINVAL;
3409 }
3410
3411 *bh_ret = bh;
3412 return 0;
3413 }
3414
3415
btrfs_read_dev_super(struct block_device * bdev)3416 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3417 {
3418 struct buffer_head *bh;
3419 struct buffer_head *latest = NULL;
3420 struct btrfs_super_block *super;
3421 int i;
3422 u64 transid = 0;
3423 int ret = -EINVAL;
3424
3425 /* we would like to check all the supers, but that would make
3426 * a btrfs mount succeed after a mkfs from a different FS.
3427 * So, we need to add a special mount option to scan for
3428 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3429 */
3430 for (i = 0; i < 1; i++) {
3431 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3432 if (ret)
3433 continue;
3434
3435 super = (struct btrfs_super_block *)bh->b_data;
3436
3437 if (!latest || btrfs_super_generation(super) > transid) {
3438 brelse(latest);
3439 latest = bh;
3440 transid = btrfs_super_generation(super);
3441 } else {
3442 brelse(bh);
3443 }
3444 }
3445
3446 if (!latest)
3447 return ERR_PTR(ret);
3448
3449 return latest;
3450 }
3451
3452 /*
3453 * Write superblock @sb to the @device. Do not wait for completion, all the
3454 * buffer heads we write are pinned.
3455 *
3456 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3457 * the expected device size at commit time. Note that max_mirrors must be
3458 * same for write and wait phases.
3459 *
3460 * Return number of errors when buffer head is not found or submission fails.
3461 */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int max_mirrors)3462 static int write_dev_supers(struct btrfs_device *device,
3463 struct btrfs_super_block *sb, int max_mirrors)
3464 {
3465 struct buffer_head *bh;
3466 int i;
3467 int ret;
3468 int errors = 0;
3469 u32 crc;
3470 u64 bytenr;
3471 int op_flags;
3472
3473 if (max_mirrors == 0)
3474 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3475
3476 for (i = 0; i < max_mirrors; i++) {
3477 bytenr = btrfs_sb_offset(i);
3478 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3479 device->commit_total_bytes)
3480 break;
3481
3482 btrfs_set_super_bytenr(sb, bytenr);
3483
3484 crc = ~(u32)0;
3485 crc = btrfs_csum_data((const char *)sb + BTRFS_CSUM_SIZE, crc,
3486 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
3487 btrfs_csum_final(crc, sb->csum);
3488
3489 /* One reference for us, and we leave it for the caller */
3490 bh = __getblk(device->bdev, bytenr / BTRFS_BDEV_BLOCKSIZE,
3491 BTRFS_SUPER_INFO_SIZE);
3492 if (!bh) {
3493 btrfs_err(device->fs_info,
3494 "couldn't get super buffer head for bytenr %llu",
3495 bytenr);
3496 errors++;
3497 continue;
3498 }
3499
3500 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3501
3502 /* one reference for submit_bh */
3503 get_bh(bh);
3504
3505 set_buffer_uptodate(bh);
3506 lock_buffer(bh);
3507 bh->b_end_io = btrfs_end_buffer_write_sync;
3508 bh->b_private = device;
3509
3510 /*
3511 * we fua the first super. The others we allow
3512 * to go down lazy.
3513 */
3514 op_flags = REQ_SYNC | REQ_META | REQ_PRIO;
3515 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
3516 op_flags |= REQ_FUA;
3517 ret = btrfsic_submit_bh(REQ_OP_WRITE, op_flags, bh);
3518 if (ret)
3519 errors++;
3520 }
3521 return errors < i ? 0 : -1;
3522 }
3523
3524 /*
3525 * Wait for write completion of superblocks done by write_dev_supers,
3526 * @max_mirrors same for write and wait phases.
3527 *
3528 * Return number of errors when buffer head is not found or not marked up to
3529 * date.
3530 */
wait_dev_supers(struct btrfs_device * device,int max_mirrors)3531 static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3532 {
3533 struct buffer_head *bh;
3534 int i;
3535 int errors = 0;
3536 bool primary_failed = false;
3537 u64 bytenr;
3538
3539 if (max_mirrors == 0)
3540 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3541
3542 for (i = 0; i < max_mirrors; i++) {
3543 bytenr = btrfs_sb_offset(i);
3544 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3545 device->commit_total_bytes)
3546 break;
3547
3548 bh = __find_get_block(device->bdev,
3549 bytenr / BTRFS_BDEV_BLOCKSIZE,
3550 BTRFS_SUPER_INFO_SIZE);
3551 if (!bh) {
3552 errors++;
3553 if (i == 0)
3554 primary_failed = true;
3555 continue;
3556 }
3557 wait_on_buffer(bh);
3558 if (!buffer_uptodate(bh)) {
3559 errors++;
3560 if (i == 0)
3561 primary_failed = true;
3562 }
3563
3564 /* drop our reference */
3565 brelse(bh);
3566
3567 /* drop the reference from the writing run */
3568 brelse(bh);
3569 }
3570
3571 /* log error, force error return */
3572 if (primary_failed) {
3573 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3574 device->devid);
3575 return -1;
3576 }
3577
3578 return errors < i ? 0 : -1;
3579 }
3580
3581 /*
3582 * endio for the write_dev_flush, this will wake anyone waiting
3583 * for the barrier when it is done
3584 */
btrfs_end_empty_barrier(struct bio * bio)3585 static void btrfs_end_empty_barrier(struct bio *bio)
3586 {
3587 complete(bio->bi_private);
3588 }
3589
3590 /*
3591 * Submit a flush request to the device if it supports it. Error handling is
3592 * done in the waiting counterpart.
3593 */
write_dev_flush(struct btrfs_device * device)3594 static void write_dev_flush(struct btrfs_device *device)
3595 {
3596 struct bio *bio = device->flush_bio;
3597
3598 #ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3599 /*
3600 * When a disk has write caching disabled, we skip submission of a bio
3601 * with flush and sync requests before writing the superblock, since
3602 * it's not needed. However when the integrity checker is enabled, this
3603 * results in reports that there are metadata blocks referred by a
3604 * superblock that were not properly flushed. So don't skip the bio
3605 * submission only when the integrity checker is enabled for the sake
3606 * of simplicity, since this is a debug tool and not meant for use in
3607 * non-debug builds.
3608 */
3609 struct request_queue *q = bdev_get_queue(device->bdev);
3610 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
3611 return;
3612 #endif
3613
3614 bio_reset(bio);
3615 bio->bi_end_io = btrfs_end_empty_barrier;
3616 bio_set_dev(bio, device->bdev);
3617 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
3618 init_completion(&device->flush_wait);
3619 bio->bi_private = &device->flush_wait;
3620
3621 btrfsic_submit_bio(bio);
3622 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3623 }
3624
3625 /*
3626 * If the flush bio has been submitted by write_dev_flush, wait for it.
3627 */
wait_dev_flush(struct btrfs_device * device)3628 static blk_status_t wait_dev_flush(struct btrfs_device *device)
3629 {
3630 struct bio *bio = device->flush_bio;
3631
3632 if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
3633 return BLK_STS_OK;
3634
3635 clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
3636 wait_for_completion_io(&device->flush_wait);
3637
3638 return bio->bi_status;
3639 }
3640
check_barrier_error(struct btrfs_fs_info * fs_info)3641 static int check_barrier_error(struct btrfs_fs_info *fs_info)
3642 {
3643 if (!btrfs_check_rw_degradable(fs_info, NULL))
3644 return -EIO;
3645 return 0;
3646 }
3647
3648 /*
3649 * send an empty flush down to each device in parallel,
3650 * then wait for them
3651 */
barrier_all_devices(struct btrfs_fs_info * info)3652 static int barrier_all_devices(struct btrfs_fs_info *info)
3653 {
3654 struct list_head *head;
3655 struct btrfs_device *dev;
3656 int errors_wait = 0;
3657 blk_status_t ret;
3658
3659 lockdep_assert_held(&info->fs_devices->device_list_mutex);
3660 /* send down all the barriers */
3661 head = &info->fs_devices->devices;
3662 list_for_each_entry(dev, head, dev_list) {
3663 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3664 continue;
3665 if (!dev->bdev)
3666 continue;
3667 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3668 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3669 continue;
3670
3671 write_dev_flush(dev);
3672 dev->last_flush_error = BLK_STS_OK;
3673 }
3674
3675 /* wait for all the barriers */
3676 list_for_each_entry(dev, head, dev_list) {
3677 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
3678 continue;
3679 if (!dev->bdev) {
3680 errors_wait++;
3681 continue;
3682 }
3683 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3684 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3685 continue;
3686
3687 ret = wait_dev_flush(dev);
3688 if (ret) {
3689 dev->last_flush_error = ret;
3690 btrfs_dev_stat_inc_and_print(dev,
3691 BTRFS_DEV_STAT_FLUSH_ERRS);
3692 errors_wait++;
3693 }
3694 }
3695
3696 if (errors_wait) {
3697 /*
3698 * At some point we need the status of all disks
3699 * to arrive at the volume status. So error checking
3700 * is being pushed to a separate loop.
3701 */
3702 return check_barrier_error(info);
3703 }
3704 return 0;
3705 }
3706
btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)3707 int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3708 {
3709 int raid_type;
3710 int min_tolerated = INT_MAX;
3711
3712 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3713 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3714 min_tolerated = min(min_tolerated,
3715 btrfs_raid_array[BTRFS_RAID_SINGLE].
3716 tolerated_failures);
3717
3718 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3719 if (raid_type == BTRFS_RAID_SINGLE)
3720 continue;
3721 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
3722 continue;
3723 min_tolerated = min(min_tolerated,
3724 btrfs_raid_array[raid_type].
3725 tolerated_failures);
3726 }
3727
3728 if (min_tolerated == INT_MAX) {
3729 pr_warn("BTRFS: unknown raid flag: %llu", flags);
3730 min_tolerated = 0;
3731 }
3732
3733 return min_tolerated;
3734 }
3735
write_all_supers(struct btrfs_fs_info * fs_info,int max_mirrors)3736 int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3737 {
3738 struct list_head *head;
3739 struct btrfs_device *dev;
3740 struct btrfs_super_block *sb;
3741 struct btrfs_dev_item *dev_item;
3742 int ret;
3743 int do_barriers;
3744 int max_errors;
3745 int total_errors = 0;
3746 u64 flags;
3747
3748 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3749
3750 /*
3751 * max_mirrors == 0 indicates we're from commit_transaction,
3752 * not from fsync where the tree roots in fs_info have not
3753 * been consistent on disk.
3754 */
3755 if (max_mirrors == 0)
3756 backup_super_roots(fs_info);
3757
3758 sb = fs_info->super_for_commit;
3759 dev_item = &sb->dev_item;
3760
3761 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3762 head = &fs_info->fs_devices->devices;
3763 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3764
3765 if (do_barriers) {
3766 ret = barrier_all_devices(fs_info);
3767 if (ret) {
3768 mutex_unlock(
3769 &fs_info->fs_devices->device_list_mutex);
3770 btrfs_handle_fs_error(fs_info, ret,
3771 "errors while submitting device barriers.");
3772 return ret;
3773 }
3774 }
3775
3776 list_for_each_entry(dev, head, dev_list) {
3777 if (!dev->bdev) {
3778 total_errors++;
3779 continue;
3780 }
3781 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3782 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3783 continue;
3784
3785 btrfs_set_stack_device_generation(dev_item, 0);
3786 btrfs_set_stack_device_type(dev_item, dev->type);
3787 btrfs_set_stack_device_id(dev_item, dev->devid);
3788 btrfs_set_stack_device_total_bytes(dev_item,
3789 dev->commit_total_bytes);
3790 btrfs_set_stack_device_bytes_used(dev_item,
3791 dev->commit_bytes_used);
3792 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3793 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3794 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3795 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3796 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_FSID_SIZE);
3797
3798 flags = btrfs_super_flags(sb);
3799 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3800
3801 ret = btrfs_validate_write_super(fs_info, sb);
3802 if (ret < 0) {
3803 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3804 btrfs_handle_fs_error(fs_info, -EUCLEAN,
3805 "unexpected superblock corruption detected");
3806 return -EUCLEAN;
3807 }
3808
3809 ret = write_dev_supers(dev, sb, max_mirrors);
3810 if (ret)
3811 total_errors++;
3812 }
3813 if (total_errors > max_errors) {
3814 btrfs_err(fs_info, "%d errors while writing supers",
3815 total_errors);
3816 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3817
3818 /* FUA is masked off if unsupported and can't be the reason */
3819 btrfs_handle_fs_error(fs_info, -EIO,
3820 "%d errors while writing supers",
3821 total_errors);
3822 return -EIO;
3823 }
3824
3825 total_errors = 0;
3826 list_for_each_entry(dev, head, dev_list) {
3827 if (!dev->bdev)
3828 continue;
3829 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3830 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
3831 continue;
3832
3833 ret = wait_dev_supers(dev, max_mirrors);
3834 if (ret)
3835 total_errors++;
3836 }
3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3838 if (total_errors > max_errors) {
3839 btrfs_handle_fs_error(fs_info, -EIO,
3840 "%d errors while writing supers",
3841 total_errors);
3842 return -EIO;
3843 }
3844 return 0;
3845 }
3846
3847 /* Drop a fs root from the radix tree and free it. */
btrfs_drop_and_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)3848 void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3849 struct btrfs_root *root)
3850 {
3851 spin_lock(&fs_info->fs_roots_radix_lock);
3852 radix_tree_delete(&fs_info->fs_roots_radix,
3853 (unsigned long)root->root_key.objectid);
3854 spin_unlock(&fs_info->fs_roots_radix_lock);
3855
3856 if (btrfs_root_refs(&root->root_item) == 0)
3857 synchronize_srcu(&fs_info->subvol_srcu);
3858
3859 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3860 btrfs_free_log(NULL, root);
3861 if (root->reloc_root) {
3862 free_extent_buffer(root->reloc_root->node);
3863 free_extent_buffer(root->reloc_root->commit_root);
3864 btrfs_put_fs_root(root->reloc_root);
3865 root->reloc_root = NULL;
3866 }
3867 }
3868
3869 if (root->free_ino_pinned)
3870 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3871 if (root->free_ino_ctl)
3872 __btrfs_remove_free_space_cache(root->free_ino_ctl);
3873 btrfs_free_fs_root(root);
3874 }
3875
btrfs_free_fs_root(struct btrfs_root * root)3876 void btrfs_free_fs_root(struct btrfs_root *root)
3877 {
3878 iput(root->ino_cache_inode);
3879 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3880 if (root->anon_dev)
3881 free_anon_bdev(root->anon_dev);
3882 if (root->subv_writers)
3883 btrfs_free_subvolume_writers(root->subv_writers);
3884 free_extent_buffer(root->node);
3885 free_extent_buffer(root->commit_root);
3886 kfree(root->free_ino_ctl);
3887 kfree(root->free_ino_pinned);
3888 btrfs_put_fs_root(root);
3889 }
3890
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)3891 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3892 {
3893 u64 root_objectid = 0;
3894 struct btrfs_root *gang[8];
3895 int i = 0;
3896 int err = 0;
3897 unsigned int ret = 0;
3898 int index;
3899
3900 while (1) {
3901 index = srcu_read_lock(&fs_info->subvol_srcu);
3902 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3903 (void **)gang, root_objectid,
3904 ARRAY_SIZE(gang));
3905 if (!ret) {
3906 srcu_read_unlock(&fs_info->subvol_srcu, index);
3907 break;
3908 }
3909 root_objectid = gang[ret - 1]->root_key.objectid + 1;
3910
3911 for (i = 0; i < ret; i++) {
3912 /* Avoid to grab roots in dead_roots */
3913 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3914 gang[i] = NULL;
3915 continue;
3916 }
3917 /* grab all the search result for later use */
3918 gang[i] = btrfs_grab_fs_root(gang[i]);
3919 }
3920 srcu_read_unlock(&fs_info->subvol_srcu, index);
3921
3922 for (i = 0; i < ret; i++) {
3923 if (!gang[i])
3924 continue;
3925 root_objectid = gang[i]->root_key.objectid;
3926 err = btrfs_orphan_cleanup(gang[i]);
3927 if (err)
3928 break;
3929 btrfs_put_fs_root(gang[i]);
3930 }
3931 root_objectid++;
3932 }
3933
3934 /* release the uncleaned roots due to error */
3935 for (; i < ret; i++) {
3936 if (gang[i])
3937 btrfs_put_fs_root(gang[i]);
3938 }
3939 return err;
3940 }
3941
btrfs_commit_super(struct btrfs_fs_info * fs_info)3942 int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3943 {
3944 struct btrfs_root *root = fs_info->tree_root;
3945 struct btrfs_trans_handle *trans;
3946
3947 mutex_lock(&fs_info->cleaner_mutex);
3948 btrfs_run_delayed_iputs(fs_info);
3949 mutex_unlock(&fs_info->cleaner_mutex);
3950 wake_up_process(fs_info->cleaner_kthread);
3951
3952 /* wait until ongoing cleanup work done */
3953 down_write(&fs_info->cleanup_work_sem);
3954 up_write(&fs_info->cleanup_work_sem);
3955
3956 trans = btrfs_join_transaction(root);
3957 if (IS_ERR(trans))
3958 return PTR_ERR(trans);
3959 return btrfs_commit_transaction(trans);
3960 }
3961
close_ctree(struct btrfs_fs_info * fs_info)3962 void close_ctree(struct btrfs_fs_info *fs_info)
3963 {
3964 int ret;
3965
3966 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3967 /*
3968 * We don't want the cleaner to start new transactions, add more delayed
3969 * iputs, etc. while we're closing. We can't use kthread_stop() yet
3970 * because that frees the task_struct, and the transaction kthread might
3971 * still try to wake up the cleaner.
3972 */
3973 kthread_park(fs_info->cleaner_kthread);
3974
3975 /* wait for the qgroup rescan worker to stop */
3976 btrfs_qgroup_wait_for_completion(fs_info, false);
3977
3978 /* wait for the uuid_scan task to finish */
3979 down(&fs_info->uuid_tree_rescan_sem);
3980 /* avoid complains from lockdep et al., set sem back to initial state */
3981 up(&fs_info->uuid_tree_rescan_sem);
3982
3983 /* pause restriper - we want to resume on mount */
3984 btrfs_pause_balance(fs_info);
3985
3986 btrfs_dev_replace_suspend_for_unmount(fs_info);
3987
3988 btrfs_scrub_cancel(fs_info);
3989
3990 /* wait for any defraggers to finish */
3991 wait_event(fs_info->transaction_wait,
3992 (atomic_read(&fs_info->defrag_running) == 0));
3993
3994 /* clear out the rbtree of defraggable inodes */
3995 btrfs_cleanup_defrag_inodes(fs_info);
3996
3997 cancel_work_sync(&fs_info->async_reclaim_work);
3998
3999 if (!sb_rdonly(fs_info->sb)) {
4000 /*
4001 * The cleaner kthread is stopped, so do one final pass over
4002 * unused block groups.
4003 */
4004 btrfs_delete_unused_bgs(fs_info);
4005
4006 /*
4007 * There might be existing delayed inode workers still running
4008 * and holding an empty delayed inode item. We must wait for
4009 * them to complete first because they can create a transaction.
4010 * This happens when someone calls btrfs_balance_delayed_items()
4011 * and then a transaction commit runs the same delayed nodes
4012 * before any delayed worker has done something with the nodes.
4013 * We must wait for any worker here and not at transaction
4014 * commit time since that could cause a deadlock.
4015 * This is a very rare case.
4016 */
4017 btrfs_flush_workqueue(fs_info->delayed_workers);
4018
4019 ret = btrfs_commit_super(fs_info);
4020 if (ret)
4021 btrfs_err(fs_info, "commit super ret %d", ret);
4022 }
4023
4024 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state) ||
4025 test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state))
4026 btrfs_error_commit_super(fs_info);
4027
4028 kthread_stop(fs_info->transaction_kthread);
4029 kthread_stop(fs_info->cleaner_kthread);
4030
4031 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4032
4033 btrfs_free_qgroup_config(fs_info);
4034 ASSERT(list_empty(&fs_info->delalloc_roots));
4035
4036 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4037 btrfs_info(fs_info, "at unmount delalloc count %lld",
4038 percpu_counter_sum(&fs_info->delalloc_bytes));
4039 }
4040
4041 btrfs_sysfs_remove_mounted(fs_info);
4042 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4043
4044 btrfs_free_fs_roots(fs_info);
4045
4046 btrfs_put_block_group_cache(fs_info);
4047
4048 /*
4049 * we must make sure there is not any read request to
4050 * submit after we stopping all workers.
4051 */
4052 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4053 btrfs_stop_all_workers(fs_info);
4054
4055 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4056 free_root_pointers(fs_info, true);
4057
4058 /*
4059 * We must free the block groups after dropping the fs_roots as we could
4060 * have had an IO error and have left over tree log blocks that aren't
4061 * cleaned up until the fs roots are freed. This makes the block group
4062 * accounting appear to be wrong because there's pending reserved bytes,
4063 * so make sure we do the block group cleanup afterwards.
4064 */
4065 btrfs_free_block_groups(fs_info);
4066
4067 iput(fs_info->btree_inode);
4068
4069 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4070 if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4071 btrfsic_unmount(fs_info->fs_devices);
4072 #endif
4073
4074 btrfs_close_devices(fs_info->fs_devices);
4075 btrfs_mapping_tree_free(&fs_info->mapping_tree);
4076
4077 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4078 percpu_counter_destroy(&fs_info->delalloc_bytes);
4079 percpu_counter_destroy(&fs_info->bio_counter);
4080 cleanup_srcu_struct(&fs_info->subvol_srcu);
4081
4082 btrfs_free_stripe_hash_table(fs_info);
4083 btrfs_free_ref_cache(fs_info);
4084
4085 while (!list_empty(&fs_info->pinned_chunks)) {
4086 struct extent_map *em;
4087
4088 em = list_first_entry(&fs_info->pinned_chunks,
4089 struct extent_map, list);
4090 list_del_init(&em->list);
4091 free_extent_map(em);
4092 }
4093 }
4094
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)4095 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4096 int atomic)
4097 {
4098 int ret;
4099 struct inode *btree_inode = buf->pages[0]->mapping->host;
4100
4101 ret = extent_buffer_uptodate(buf);
4102 if (!ret)
4103 return ret;
4104
4105 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4106 parent_transid, atomic);
4107 if (ret == -EAGAIN)
4108 return ret;
4109 return !ret;
4110 }
4111
btrfs_mark_buffer_dirty(struct extent_buffer * buf)4112 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4113 {
4114 struct btrfs_fs_info *fs_info;
4115 struct btrfs_root *root;
4116 u64 transid = btrfs_header_generation(buf);
4117 int was_dirty;
4118
4119 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4120 /*
4121 * This is a fast path so only do this check if we have sanity tests
4122 * enabled. Normal people shouldn't be using umapped buffers as dirty
4123 * outside of the sanity tests.
4124 */
4125 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4126 return;
4127 #endif
4128 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4129 fs_info = root->fs_info;
4130 btrfs_assert_tree_locked(buf);
4131 if (transid != fs_info->generation)
4132 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4133 buf->start, transid, fs_info->generation);
4134 was_dirty = set_extent_buffer_dirty(buf);
4135 if (!was_dirty)
4136 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4137 buf->len,
4138 fs_info->dirty_metadata_batch);
4139 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4140 /*
4141 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4142 * but item data not updated.
4143 * So here we should only check item pointers, not item data.
4144 */
4145 if (btrfs_header_level(buf) == 0 &&
4146 btrfs_check_leaf_relaxed(fs_info, buf)) {
4147 btrfs_print_leaf(buf);
4148 ASSERT(0);
4149 }
4150 #endif
4151 }
4152
__btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info,int flush_delayed)4153 static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4154 int flush_delayed)
4155 {
4156 /*
4157 * looks as though older kernels can get into trouble with
4158 * this code, they end up stuck in balance_dirty_pages forever
4159 */
4160 int ret;
4161
4162 if (current->flags & PF_MEMALLOC)
4163 return;
4164
4165 if (flush_delayed)
4166 btrfs_balance_delayed_items(fs_info);
4167
4168 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4169 BTRFS_DIRTY_METADATA_THRESH,
4170 fs_info->dirty_metadata_batch);
4171 if (ret > 0) {
4172 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4173 }
4174 }
4175
btrfs_btree_balance_dirty(struct btrfs_fs_info * fs_info)4176 void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4177 {
4178 __btrfs_btree_balance_dirty(fs_info, 1);
4179 }
4180
btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info * fs_info)4181 void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4182 {
4183 __btrfs_btree_balance_dirty(fs_info, 0);
4184 }
4185
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid,int level,struct btrfs_key * first_key)4186 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid, int level,
4187 struct btrfs_key *first_key)
4188 {
4189 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4190 struct btrfs_fs_info *fs_info = root->fs_info;
4191
4192 return btree_read_extent_buffer_pages(fs_info, buf, parent_transid,
4193 level, first_key);
4194 }
4195
btrfs_error_commit_super(struct btrfs_fs_info * fs_info)4196 static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4197 {
4198 /* cleanup FS via transaction */
4199 btrfs_cleanup_transaction(fs_info);
4200
4201 mutex_lock(&fs_info->cleaner_mutex);
4202 btrfs_run_delayed_iputs(fs_info);
4203 mutex_unlock(&fs_info->cleaner_mutex);
4204
4205 down_write(&fs_info->cleanup_work_sem);
4206 up_write(&fs_info->cleanup_work_sem);
4207 }
4208
btrfs_destroy_ordered_extents(struct btrfs_root * root)4209 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4210 {
4211 struct btrfs_ordered_extent *ordered;
4212
4213 spin_lock(&root->ordered_extent_lock);
4214 /*
4215 * This will just short circuit the ordered completion stuff which will
4216 * make sure the ordered extent gets properly cleaned up.
4217 */
4218 list_for_each_entry(ordered, &root->ordered_extents,
4219 root_extent_list)
4220 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4221 spin_unlock(&root->ordered_extent_lock);
4222 }
4223
btrfs_destroy_all_ordered_extents(struct btrfs_fs_info * fs_info)4224 static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4225 {
4226 struct btrfs_root *root;
4227 struct list_head splice;
4228
4229 INIT_LIST_HEAD(&splice);
4230
4231 spin_lock(&fs_info->ordered_root_lock);
4232 list_splice_init(&fs_info->ordered_roots, &splice);
4233 while (!list_empty(&splice)) {
4234 root = list_first_entry(&splice, struct btrfs_root,
4235 ordered_root);
4236 list_move_tail(&root->ordered_root,
4237 &fs_info->ordered_roots);
4238
4239 spin_unlock(&fs_info->ordered_root_lock);
4240 btrfs_destroy_ordered_extents(root);
4241
4242 cond_resched();
4243 spin_lock(&fs_info->ordered_root_lock);
4244 }
4245 spin_unlock(&fs_info->ordered_root_lock);
4246
4247 /*
4248 * We need this here because if we've been flipped read-only we won't
4249 * get sync() from the umount, so we need to make sure any ordered
4250 * extents that haven't had their dirty pages IO start writeout yet
4251 * actually get run and error out properly.
4252 */
4253 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
4254 }
4255
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_fs_info * fs_info)4256 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4257 struct btrfs_fs_info *fs_info)
4258 {
4259 struct rb_node *node;
4260 struct btrfs_delayed_ref_root *delayed_refs;
4261 struct btrfs_delayed_ref_node *ref;
4262 int ret = 0;
4263
4264 delayed_refs = &trans->delayed_refs;
4265
4266 spin_lock(&delayed_refs->lock);
4267 if (atomic_read(&delayed_refs->num_entries) == 0) {
4268 spin_unlock(&delayed_refs->lock);
4269 btrfs_info(fs_info, "delayed_refs has NO entry");
4270 return ret;
4271 }
4272
4273 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4274 struct btrfs_delayed_ref_head *head;
4275 struct rb_node *n;
4276 bool pin_bytes = false;
4277
4278 head = rb_entry(node, struct btrfs_delayed_ref_head,
4279 href_node);
4280 if (!mutex_trylock(&head->mutex)) {
4281 refcount_inc(&head->refs);
4282 spin_unlock(&delayed_refs->lock);
4283
4284 mutex_lock(&head->mutex);
4285 mutex_unlock(&head->mutex);
4286 btrfs_put_delayed_ref_head(head);
4287 spin_lock(&delayed_refs->lock);
4288 continue;
4289 }
4290 spin_lock(&head->lock);
4291 while ((n = rb_first(&head->ref_tree)) != NULL) {
4292 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4293 ref_node);
4294 ref->in_tree = 0;
4295 rb_erase(&ref->ref_node, &head->ref_tree);
4296 RB_CLEAR_NODE(&ref->ref_node);
4297 if (!list_empty(&ref->add_list))
4298 list_del(&ref->add_list);
4299 atomic_dec(&delayed_refs->num_entries);
4300 btrfs_put_delayed_ref(ref);
4301 }
4302 if (head->must_insert_reserved)
4303 pin_bytes = true;
4304 btrfs_free_delayed_extent_op(head->extent_op);
4305 delayed_refs->num_heads--;
4306 if (head->processing == 0)
4307 delayed_refs->num_heads_ready--;
4308 atomic_dec(&delayed_refs->num_entries);
4309 rb_erase(&head->href_node, &delayed_refs->href_root);
4310 RB_CLEAR_NODE(&head->href_node);
4311 spin_unlock(&head->lock);
4312 spin_unlock(&delayed_refs->lock);
4313 mutex_unlock(&head->mutex);
4314
4315 if (pin_bytes)
4316 btrfs_pin_extent(fs_info, head->bytenr,
4317 head->num_bytes, 1);
4318 btrfs_put_delayed_ref_head(head);
4319 cond_resched();
4320 spin_lock(&delayed_refs->lock);
4321 }
4322
4323 spin_unlock(&delayed_refs->lock);
4324
4325 return ret;
4326 }
4327
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)4328 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4329 {
4330 struct btrfs_inode *btrfs_inode;
4331 struct list_head splice;
4332
4333 INIT_LIST_HEAD(&splice);
4334
4335 spin_lock(&root->delalloc_lock);
4336 list_splice_init(&root->delalloc_inodes, &splice);
4337
4338 while (!list_empty(&splice)) {
4339 struct inode *inode = NULL;
4340 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4341 delalloc_inodes);
4342 __btrfs_del_delalloc_inode(root, btrfs_inode);
4343 spin_unlock(&root->delalloc_lock);
4344
4345 /*
4346 * Make sure we get a live inode and that it'll not disappear
4347 * meanwhile.
4348 */
4349 inode = igrab(&btrfs_inode->vfs_inode);
4350 if (inode) {
4351 unsigned int nofs_flag;
4352
4353 nofs_flag = memalloc_nofs_save();
4354 invalidate_inode_pages2(inode->i_mapping);
4355 memalloc_nofs_restore(nofs_flag);
4356 iput(inode);
4357 }
4358 spin_lock(&root->delalloc_lock);
4359 }
4360 spin_unlock(&root->delalloc_lock);
4361 }
4362
btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info * fs_info)4363 static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4364 {
4365 struct btrfs_root *root;
4366 struct list_head splice;
4367
4368 INIT_LIST_HEAD(&splice);
4369
4370 spin_lock(&fs_info->delalloc_root_lock);
4371 list_splice_init(&fs_info->delalloc_roots, &splice);
4372 while (!list_empty(&splice)) {
4373 root = list_first_entry(&splice, struct btrfs_root,
4374 delalloc_root);
4375 root = btrfs_grab_fs_root(root);
4376 BUG_ON(!root);
4377 spin_unlock(&fs_info->delalloc_root_lock);
4378
4379 btrfs_destroy_delalloc_inodes(root);
4380 btrfs_put_fs_root(root);
4381
4382 spin_lock(&fs_info->delalloc_root_lock);
4383 }
4384 spin_unlock(&fs_info->delalloc_root_lock);
4385 }
4386
btrfs_destroy_marked_extents(struct btrfs_fs_info * fs_info,struct extent_io_tree * dirty_pages,int mark)4387 static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4388 struct extent_io_tree *dirty_pages,
4389 int mark)
4390 {
4391 int ret;
4392 struct extent_buffer *eb;
4393 u64 start = 0;
4394 u64 end;
4395
4396 while (1) {
4397 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4398 mark, NULL);
4399 if (ret)
4400 break;
4401
4402 clear_extent_bits(dirty_pages, start, end, mark);
4403 while (start <= end) {
4404 eb = find_extent_buffer(fs_info, start);
4405 start += fs_info->nodesize;
4406 if (!eb)
4407 continue;
4408 wait_on_extent_buffer_writeback(eb);
4409
4410 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4411 &eb->bflags))
4412 clear_extent_buffer_dirty(eb);
4413 free_extent_buffer_stale(eb);
4414 }
4415 }
4416
4417 return ret;
4418 }
4419
btrfs_destroy_pinned_extent(struct btrfs_fs_info * fs_info,struct extent_io_tree * pinned_extents)4420 static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4421 struct extent_io_tree *pinned_extents)
4422 {
4423 struct extent_io_tree *unpin;
4424 u64 start;
4425 u64 end;
4426 int ret;
4427 bool loop = true;
4428
4429 unpin = pinned_extents;
4430 again:
4431 while (1) {
4432 struct extent_state *cached_state = NULL;
4433
4434 /*
4435 * The btrfs_finish_extent_commit() may get the same range as
4436 * ours between find_first_extent_bit and clear_extent_dirty.
4437 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4438 * the same extent range.
4439 */
4440 mutex_lock(&fs_info->unused_bg_unpin_mutex);
4441 ret = find_first_extent_bit(unpin, 0, &start, &end,
4442 EXTENT_DIRTY, &cached_state);
4443 if (ret) {
4444 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4445 break;
4446 }
4447
4448 clear_extent_dirty(unpin, start, end, &cached_state);
4449 free_extent_state(cached_state);
4450 btrfs_error_unpin_extent_range(fs_info, start, end);
4451 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
4452 cond_resched();
4453 }
4454
4455 if (loop) {
4456 if (unpin == &fs_info->freed_extents[0])
4457 unpin = &fs_info->freed_extents[1];
4458 else
4459 unpin = &fs_info->freed_extents[0];
4460 loop = false;
4461 goto again;
4462 }
4463
4464 return 0;
4465 }
4466
btrfs_cleanup_bg_io(struct btrfs_block_group_cache * cache)4467 static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4468 {
4469 struct inode *inode;
4470
4471 inode = cache->io_ctl.inode;
4472 if (inode) {
4473 unsigned int nofs_flag;
4474
4475 nofs_flag = memalloc_nofs_save();
4476 invalidate_inode_pages2(inode->i_mapping);
4477 memalloc_nofs_restore(nofs_flag);
4478
4479 BTRFS_I(inode)->generation = 0;
4480 cache->io_ctl.inode = NULL;
4481 iput(inode);
4482 }
4483 ASSERT(cache->io_ctl.pages == NULL);
4484 btrfs_put_block_group(cache);
4485 }
4486
btrfs_cleanup_dirty_bgs(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4487 void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4488 struct btrfs_fs_info *fs_info)
4489 {
4490 struct btrfs_block_group_cache *cache;
4491
4492 spin_lock(&cur_trans->dirty_bgs_lock);
4493 while (!list_empty(&cur_trans->dirty_bgs)) {
4494 cache = list_first_entry(&cur_trans->dirty_bgs,
4495 struct btrfs_block_group_cache,
4496 dirty_list);
4497
4498 if (!list_empty(&cache->io_list)) {
4499 spin_unlock(&cur_trans->dirty_bgs_lock);
4500 list_del_init(&cache->io_list);
4501 btrfs_cleanup_bg_io(cache);
4502 spin_lock(&cur_trans->dirty_bgs_lock);
4503 }
4504
4505 list_del_init(&cache->dirty_list);
4506 spin_lock(&cache->lock);
4507 cache->disk_cache_state = BTRFS_DC_ERROR;
4508 spin_unlock(&cache->lock);
4509
4510 spin_unlock(&cur_trans->dirty_bgs_lock);
4511 btrfs_put_block_group(cache);
4512 spin_lock(&cur_trans->dirty_bgs_lock);
4513 }
4514 spin_unlock(&cur_trans->dirty_bgs_lock);
4515
4516 /*
4517 * Refer to the definition of io_bgs member for details why it's safe
4518 * to use it without any locking
4519 */
4520 while (!list_empty(&cur_trans->io_bgs)) {
4521 cache = list_first_entry(&cur_trans->io_bgs,
4522 struct btrfs_block_group_cache,
4523 io_list);
4524
4525 list_del_init(&cache->io_list);
4526 spin_lock(&cache->lock);
4527 cache->disk_cache_state = BTRFS_DC_ERROR;
4528 spin_unlock(&cache->lock);
4529 btrfs_cleanup_bg_io(cache);
4530 }
4531 }
4532
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_fs_info * fs_info)4533 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4534 struct btrfs_fs_info *fs_info)
4535 {
4536 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4537 ASSERT(list_empty(&cur_trans->dirty_bgs));
4538 ASSERT(list_empty(&cur_trans->io_bgs));
4539
4540 btrfs_destroy_delayed_refs(cur_trans, fs_info);
4541
4542 cur_trans->state = TRANS_STATE_COMMIT_START;
4543 wake_up(&fs_info->transaction_blocked_wait);
4544
4545 cur_trans->state = TRANS_STATE_UNBLOCKED;
4546 wake_up(&fs_info->transaction_wait);
4547
4548 btrfs_destroy_delayed_inodes(fs_info);
4549
4550 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4551 EXTENT_DIRTY);
4552 btrfs_destroy_pinned_extent(fs_info,
4553 fs_info->pinned_extents);
4554
4555 cur_trans->state =TRANS_STATE_COMPLETED;
4556 wake_up(&cur_trans->commit_wait);
4557 }
4558
btrfs_cleanup_transaction(struct btrfs_fs_info * fs_info)4559 static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4560 {
4561 struct btrfs_transaction *t;
4562
4563 mutex_lock(&fs_info->transaction_kthread_mutex);
4564
4565 spin_lock(&fs_info->trans_lock);
4566 while (!list_empty(&fs_info->trans_list)) {
4567 t = list_first_entry(&fs_info->trans_list,
4568 struct btrfs_transaction, list);
4569 if (t->state >= TRANS_STATE_COMMIT_START) {
4570 refcount_inc(&t->use_count);
4571 spin_unlock(&fs_info->trans_lock);
4572 btrfs_wait_for_commit(fs_info, t->transid);
4573 btrfs_put_transaction(t);
4574 spin_lock(&fs_info->trans_lock);
4575 continue;
4576 }
4577 if (t == fs_info->running_transaction) {
4578 t->state = TRANS_STATE_COMMIT_DOING;
4579 spin_unlock(&fs_info->trans_lock);
4580 /*
4581 * We wait for 0 num_writers since we don't hold a trans
4582 * handle open currently for this transaction.
4583 */
4584 wait_event(t->writer_wait,
4585 atomic_read(&t->num_writers) == 0);
4586 } else {
4587 spin_unlock(&fs_info->trans_lock);
4588 }
4589 btrfs_cleanup_one_transaction(t, fs_info);
4590
4591 spin_lock(&fs_info->trans_lock);
4592 if (t == fs_info->running_transaction)
4593 fs_info->running_transaction = NULL;
4594 list_del_init(&t->list);
4595 spin_unlock(&fs_info->trans_lock);
4596
4597 btrfs_put_transaction(t);
4598 trace_btrfs_transaction_commit(fs_info->tree_root);
4599 spin_lock(&fs_info->trans_lock);
4600 }
4601 spin_unlock(&fs_info->trans_lock);
4602 btrfs_destroy_all_ordered_extents(fs_info);
4603 btrfs_destroy_delayed_inodes(fs_info);
4604 btrfs_assert_delayed_root_empty(fs_info);
4605 btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4606 btrfs_destroy_all_delalloc_inodes(fs_info);
4607 mutex_unlock(&fs_info->transaction_kthread_mutex);
4608
4609 return 0;
4610 }
4611
4612 static const struct extent_io_ops btree_extent_io_ops = {
4613 /* mandatory callbacks */
4614 .submit_bio_hook = btree_submit_bio_hook,
4615 .readpage_end_io_hook = btree_readpage_end_io_hook,
4616 .readpage_io_failed_hook = btree_io_failed_hook,
4617
4618 /* optional callbacks */
4619 };
4620