1 /******************************************************************************
2 * Client-facing interface for the Xenbus driver. In other words, the
3 * interface between the Xenbus and the device-specific code, be it the
4 * frontend or the backend of that driver.
5 *
6 * Copyright (C) 2005 XenSource Ltd
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License version 2
10 * as published by the Free Software Foundation; or, when distributed
11 * separately from the Linux kernel or incorporated into other
12 * software packages, subject to the following license:
13 *
14 * Permission is hereby granted, free of charge, to any person obtaining a copy
15 * of this source file (the "Software"), to deal in the Software without
16 * restriction, including without limitation the rights to use, copy, modify,
17 * merge, publish, distribute, sublicense, and/or sell copies of the Software,
18 * and to permit persons to whom the Software is furnished to do so, subject to
19 * the following conditions:
20 *
21 * The above copyright notice and this permission notice shall be included in
22 * all copies or substantial portions of the Software.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
25 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
26 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
27 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
28 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
29 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
30 * IN THE SOFTWARE.
31 */
32
33 #include <linux/mm.h>
34 #include <linux/slab.h>
35 #include <linux/types.h>
36 #include <linux/spinlock.h>
37 #include <linux/vmalloc.h>
38 #include <linux/export.h>
39 #include <asm/xen/hypervisor.h>
40 #include <xen/page.h>
41 #include <xen/interface/xen.h>
42 #include <xen/interface/event_channel.h>
43 #include <xen/balloon.h>
44 #include <xen/events.h>
45 #include <xen/grant_table.h>
46 #include <xen/xenbus.h>
47 #include <xen/xen.h>
48 #include <xen/features.h>
49
50 #include "xenbus.h"
51
52 #define XENBUS_PAGES(_grants) (DIV_ROUND_UP(_grants, XEN_PFN_PER_PAGE))
53
54 #define XENBUS_MAX_RING_PAGES (XENBUS_PAGES(XENBUS_MAX_RING_GRANTS))
55
56 struct xenbus_map_node {
57 struct list_head next;
58 union {
59 struct {
60 struct vm_struct *area;
61 } pv;
62 struct {
63 struct page *pages[XENBUS_MAX_RING_PAGES];
64 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
65 void *addr;
66 } hvm;
67 };
68 grant_handle_t handles[XENBUS_MAX_RING_GRANTS];
69 unsigned int nr_handles;
70 };
71
72 static DEFINE_SPINLOCK(xenbus_valloc_lock);
73 static LIST_HEAD(xenbus_valloc_pages);
74
75 struct xenbus_ring_ops {
76 int (*map)(struct xenbus_device *dev,
77 grant_ref_t *gnt_refs, unsigned int nr_grefs,
78 void **vaddr);
79 int (*unmap)(struct xenbus_device *dev, void *vaddr);
80 };
81
82 static const struct xenbus_ring_ops *ring_ops __read_mostly;
83
xenbus_strstate(enum xenbus_state state)84 const char *xenbus_strstate(enum xenbus_state state)
85 {
86 static const char *const name[] = {
87 [ XenbusStateUnknown ] = "Unknown",
88 [ XenbusStateInitialising ] = "Initialising",
89 [ XenbusStateInitWait ] = "InitWait",
90 [ XenbusStateInitialised ] = "Initialised",
91 [ XenbusStateConnected ] = "Connected",
92 [ XenbusStateClosing ] = "Closing",
93 [ XenbusStateClosed ] = "Closed",
94 [XenbusStateReconfiguring] = "Reconfiguring",
95 [XenbusStateReconfigured] = "Reconfigured",
96 };
97 return (state < ARRAY_SIZE(name)) ? name[state] : "INVALID";
98 }
99 EXPORT_SYMBOL_GPL(xenbus_strstate);
100
101 /**
102 * xenbus_watch_path - register a watch
103 * @dev: xenbus device
104 * @path: path to watch
105 * @watch: watch to register
106 * @callback: callback to register
107 *
108 * Register a @watch on the given path, using the given xenbus_watch structure
109 * for storage, and the given @callback function as the callback. Return 0 on
110 * success, or -errno on error. On success, the given @path will be saved as
111 * @watch->node, and remains the caller's to free. On error, @watch->node will
112 * be NULL, the device will switch to %XenbusStateClosing, and the error will
113 * be saved in the store.
114 */
xenbus_watch_path(struct xenbus_device * dev,const char * path,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *))115 int xenbus_watch_path(struct xenbus_device *dev, const char *path,
116 struct xenbus_watch *watch,
117 bool (*will_handle)(struct xenbus_watch *,
118 const char *, const char *),
119 void (*callback)(struct xenbus_watch *,
120 const char *, const char *))
121 {
122 int err;
123
124 watch->node = path;
125 watch->will_handle = will_handle;
126 watch->callback = callback;
127
128 err = register_xenbus_watch(watch);
129
130 if (err) {
131 watch->node = NULL;
132 watch->will_handle = NULL;
133 watch->callback = NULL;
134 xenbus_dev_fatal(dev, err, "adding watch on %s", path);
135 }
136
137 return err;
138 }
139 EXPORT_SYMBOL_GPL(xenbus_watch_path);
140
141
142 /**
143 * xenbus_watch_pathfmt - register a watch on a sprintf-formatted path
144 * @dev: xenbus device
145 * @watch: watch to register
146 * @callback: callback to register
147 * @pathfmt: format of path to watch
148 *
149 * Register a watch on the given @path, using the given xenbus_watch
150 * structure for storage, and the given @callback function as the callback.
151 * Return 0 on success, or -errno on error. On success, the watched path
152 * (@path/@path2) will be saved as @watch->node, and becomes the caller's to
153 * kfree(). On error, watch->node will be NULL, so the caller has nothing to
154 * free, the device will switch to %XenbusStateClosing, and the error will be
155 * saved in the store.
156 */
xenbus_watch_pathfmt(struct xenbus_device * dev,struct xenbus_watch * watch,bool (* will_handle)(struct xenbus_watch *,const char *,const char *),void (* callback)(struct xenbus_watch *,const char *,const char *),const char * pathfmt,...)157 int xenbus_watch_pathfmt(struct xenbus_device *dev,
158 struct xenbus_watch *watch,
159 bool (*will_handle)(struct xenbus_watch *,
160 const char *, const char *),
161 void (*callback)(struct xenbus_watch *,
162 const char *, const char *),
163 const char *pathfmt, ...)
164 {
165 int err;
166 va_list ap;
167 char *path;
168
169 va_start(ap, pathfmt);
170 path = kvasprintf(GFP_NOIO | __GFP_HIGH, pathfmt, ap);
171 va_end(ap);
172
173 if (!path) {
174 xenbus_dev_fatal(dev, -ENOMEM, "allocating path for watch");
175 return -ENOMEM;
176 }
177 err = xenbus_watch_path(dev, path, watch, will_handle, callback);
178
179 if (err)
180 kfree(path);
181 return err;
182 }
183 EXPORT_SYMBOL_GPL(xenbus_watch_pathfmt);
184
185 static void xenbus_switch_fatal(struct xenbus_device *, int, int,
186 const char *, ...);
187
188 static int
__xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state,int depth)189 __xenbus_switch_state(struct xenbus_device *dev,
190 enum xenbus_state state, int depth)
191 {
192 /* We check whether the state is currently set to the given value, and
193 if not, then the state is set. We don't want to unconditionally
194 write the given state, because we don't want to fire watches
195 unnecessarily. Furthermore, if the node has gone, we don't write
196 to it, as the device will be tearing down, and we don't want to
197 resurrect that directory.
198
199 Note that, because of this cached value of our state, this
200 function will not take a caller's Xenstore transaction
201 (something it was trying to in the past) because dev->state
202 would not get reset if the transaction was aborted.
203 */
204
205 struct xenbus_transaction xbt;
206 int current_state;
207 int err, abort;
208
209 if (state == dev->state)
210 return 0;
211
212 again:
213 abort = 1;
214
215 err = xenbus_transaction_start(&xbt);
216 if (err) {
217 xenbus_switch_fatal(dev, depth, err, "starting transaction");
218 return 0;
219 }
220
221 err = xenbus_scanf(xbt, dev->nodename, "state", "%d", ¤t_state);
222 if (err != 1)
223 goto abort;
224
225 err = xenbus_printf(xbt, dev->nodename, "state", "%d", state);
226 if (err) {
227 xenbus_switch_fatal(dev, depth, err, "writing new state");
228 goto abort;
229 }
230
231 abort = 0;
232 abort:
233 err = xenbus_transaction_end(xbt, abort);
234 if (err) {
235 if (err == -EAGAIN && !abort)
236 goto again;
237 xenbus_switch_fatal(dev, depth, err, "ending transaction");
238 } else
239 dev->state = state;
240
241 return 0;
242 }
243
244 /**
245 * xenbus_switch_state
246 * @dev: xenbus device
247 * @state: new state
248 *
249 * Advertise in the store a change of the given driver to the given new_state.
250 * Return 0 on success, or -errno on error. On error, the device will switch
251 * to XenbusStateClosing, and the error will be saved in the store.
252 */
xenbus_switch_state(struct xenbus_device * dev,enum xenbus_state state)253 int xenbus_switch_state(struct xenbus_device *dev, enum xenbus_state state)
254 {
255 return __xenbus_switch_state(dev, state, 0);
256 }
257
258 EXPORT_SYMBOL_GPL(xenbus_switch_state);
259
xenbus_frontend_closed(struct xenbus_device * dev)260 int xenbus_frontend_closed(struct xenbus_device *dev)
261 {
262 xenbus_switch_state(dev, XenbusStateClosed);
263 complete(&dev->down);
264 return 0;
265 }
266 EXPORT_SYMBOL_GPL(xenbus_frontend_closed);
267
xenbus_va_dev_error(struct xenbus_device * dev,int err,const char * fmt,va_list ap)268 static void xenbus_va_dev_error(struct xenbus_device *dev, int err,
269 const char *fmt, va_list ap)
270 {
271 unsigned int len;
272 char *printf_buffer;
273 char *path_buffer;
274
275 #define PRINTF_BUFFER_SIZE 4096
276
277 printf_buffer = kmalloc(PRINTF_BUFFER_SIZE, GFP_KERNEL);
278 if (!printf_buffer)
279 return;
280
281 len = sprintf(printf_buffer, "%i ", -err);
282 vsnprintf(printf_buffer + len, PRINTF_BUFFER_SIZE - len, fmt, ap);
283
284 dev_err(&dev->dev, "%s\n", printf_buffer);
285
286 path_buffer = kasprintf(GFP_KERNEL, "error/%s", dev->nodename);
287 if (!path_buffer ||
288 xenbus_write(XBT_NIL, path_buffer, "error", printf_buffer))
289 dev_err(&dev->dev, "failed to write error node for %s (%s)\n",
290 dev->nodename, printf_buffer);
291
292 kfree(printf_buffer);
293 kfree(path_buffer);
294 }
295
296 /**
297 * xenbus_dev_error
298 * @dev: xenbus device
299 * @err: error to report
300 * @fmt: error message format
301 *
302 * Report the given negative errno into the store, along with the given
303 * formatted message.
304 */
xenbus_dev_error(struct xenbus_device * dev,int err,const char * fmt,...)305 void xenbus_dev_error(struct xenbus_device *dev, int err, const char *fmt, ...)
306 {
307 va_list ap;
308
309 va_start(ap, fmt);
310 xenbus_va_dev_error(dev, err, fmt, ap);
311 va_end(ap);
312 }
313 EXPORT_SYMBOL_GPL(xenbus_dev_error);
314
315 /**
316 * xenbus_dev_fatal
317 * @dev: xenbus device
318 * @err: error to report
319 * @fmt: error message format
320 *
321 * Equivalent to xenbus_dev_error(dev, err, fmt, args), followed by
322 * xenbus_switch_state(dev, XenbusStateClosing) to schedule an orderly
323 * closedown of this driver and its peer.
324 */
325
xenbus_dev_fatal(struct xenbus_device * dev,int err,const char * fmt,...)326 void xenbus_dev_fatal(struct xenbus_device *dev, int err, const char *fmt, ...)
327 {
328 va_list ap;
329
330 va_start(ap, fmt);
331 xenbus_va_dev_error(dev, err, fmt, ap);
332 va_end(ap);
333
334 xenbus_switch_state(dev, XenbusStateClosing);
335 }
336 EXPORT_SYMBOL_GPL(xenbus_dev_fatal);
337
338 /**
339 * Equivalent to xenbus_dev_fatal(dev, err, fmt, args), but helps
340 * avoiding recursion within xenbus_switch_state.
341 */
xenbus_switch_fatal(struct xenbus_device * dev,int depth,int err,const char * fmt,...)342 static void xenbus_switch_fatal(struct xenbus_device *dev, int depth, int err,
343 const char *fmt, ...)
344 {
345 va_list ap;
346
347 va_start(ap, fmt);
348 xenbus_va_dev_error(dev, err, fmt, ap);
349 va_end(ap);
350
351 if (!depth)
352 __xenbus_switch_state(dev, XenbusStateClosing, 1);
353 }
354
355 /**
356 * xenbus_grant_ring
357 * @dev: xenbus device
358 * @vaddr: starting virtual address of the ring
359 * @nr_pages: number of pages to be granted
360 * @grefs: grant reference array to be filled in
361 *
362 * Grant access to the given @vaddr to the peer of the given device.
363 * Then fill in @grefs with grant references. Return 0 on success, or
364 * -errno on error. On error, the device will switch to
365 * XenbusStateClosing, and the error will be saved in the store.
366 */
xenbus_grant_ring(struct xenbus_device * dev,void * vaddr,unsigned int nr_pages,grant_ref_t * grefs)367 int xenbus_grant_ring(struct xenbus_device *dev, void *vaddr,
368 unsigned int nr_pages, grant_ref_t *grefs)
369 {
370 int err;
371 unsigned int i;
372 grant_ref_t gref_head;
373
374 err = gnttab_alloc_grant_references(nr_pages, &gref_head);
375 if (err) {
376 xenbus_dev_fatal(dev, err, "granting access to ring page");
377 return err;
378 }
379
380 for (i = 0; i < nr_pages; i++) {
381 unsigned long gfn;
382
383 if (is_vmalloc_addr(vaddr))
384 gfn = pfn_to_gfn(vmalloc_to_pfn(vaddr));
385 else
386 gfn = virt_to_gfn(vaddr);
387
388 grefs[i] = gnttab_claim_grant_reference(&gref_head);
389 gnttab_grant_foreign_access_ref(grefs[i], dev->otherend_id,
390 gfn, 0);
391
392 vaddr = vaddr + XEN_PAGE_SIZE;
393 }
394
395 return 0;
396 }
397 EXPORT_SYMBOL_GPL(xenbus_grant_ring);
398
399
400 /**
401 * Allocate an event channel for the given xenbus_device, assigning the newly
402 * created local port to *port. Return 0 on success, or -errno on error. On
403 * error, the device will switch to XenbusStateClosing, and the error will be
404 * saved in the store.
405 */
xenbus_alloc_evtchn(struct xenbus_device * dev,int * port)406 int xenbus_alloc_evtchn(struct xenbus_device *dev, int *port)
407 {
408 struct evtchn_alloc_unbound alloc_unbound;
409 int err;
410
411 alloc_unbound.dom = DOMID_SELF;
412 alloc_unbound.remote_dom = dev->otherend_id;
413
414 err = HYPERVISOR_event_channel_op(EVTCHNOP_alloc_unbound,
415 &alloc_unbound);
416 if (err)
417 xenbus_dev_fatal(dev, err, "allocating event channel");
418 else
419 *port = alloc_unbound.port;
420
421 return err;
422 }
423 EXPORT_SYMBOL_GPL(xenbus_alloc_evtchn);
424
425
426 /**
427 * Free an existing event channel. Returns 0 on success or -errno on error.
428 */
xenbus_free_evtchn(struct xenbus_device * dev,int port)429 int xenbus_free_evtchn(struct xenbus_device *dev, int port)
430 {
431 struct evtchn_close close;
432 int err;
433
434 close.port = port;
435
436 err = HYPERVISOR_event_channel_op(EVTCHNOP_close, &close);
437 if (err)
438 xenbus_dev_error(dev, err, "freeing event channel %d", port);
439
440 return err;
441 }
442 EXPORT_SYMBOL_GPL(xenbus_free_evtchn);
443
444
445 /**
446 * xenbus_map_ring_valloc
447 * @dev: xenbus device
448 * @gnt_refs: grant reference array
449 * @nr_grefs: number of grant references
450 * @vaddr: pointer to address to be filled out by mapping
451 *
452 * Map @nr_grefs pages of memory into this domain from another
453 * domain's grant table. xenbus_map_ring_valloc allocates @nr_grefs
454 * pages of virtual address space, maps the pages to that address, and
455 * sets *vaddr to that address. Returns 0 on success, and GNTST_*
456 * (see xen/include/interface/grant_table.h) or -ENOMEM / -EINVAL on
457 * error. If an error is returned, device will switch to
458 * XenbusStateClosing and the error message will be saved in XenStore.
459 */
xenbus_map_ring_valloc(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)460 int xenbus_map_ring_valloc(struct xenbus_device *dev, grant_ref_t *gnt_refs,
461 unsigned int nr_grefs, void **vaddr)
462 {
463 int err;
464
465 err = ring_ops->map(dev, gnt_refs, nr_grefs, vaddr);
466 /* Some hypervisors are buggy and can return 1. */
467 if (err > 0)
468 err = GNTST_general_error;
469
470 return err;
471 }
472 EXPORT_SYMBOL_GPL(xenbus_map_ring_valloc);
473
474 /* N.B. sizeof(phys_addr_t) doesn't always equal to sizeof(unsigned
475 * long), e.g. 32-on-64. Caller is responsible for preparing the
476 * right array to feed into this function */
__xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,phys_addr_t * addrs,unsigned int flags,bool * leaked)477 static int __xenbus_map_ring(struct xenbus_device *dev,
478 grant_ref_t *gnt_refs,
479 unsigned int nr_grefs,
480 grant_handle_t *handles,
481 phys_addr_t *addrs,
482 unsigned int flags,
483 bool *leaked)
484 {
485 struct gnttab_map_grant_ref map[XENBUS_MAX_RING_GRANTS];
486 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
487 int i, j;
488 int err = GNTST_okay;
489
490 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
491 return -EINVAL;
492
493 for (i = 0; i < nr_grefs; i++) {
494 memset(&map[i], 0, sizeof(map[i]));
495 gnttab_set_map_op(&map[i], addrs[i], flags, gnt_refs[i],
496 dev->otherend_id);
497 handles[i] = INVALID_GRANT_HANDLE;
498 }
499
500 gnttab_batch_map(map, i);
501
502 for (i = 0; i < nr_grefs; i++) {
503 if (map[i].status != GNTST_okay) {
504 err = map[i].status;
505 xenbus_dev_fatal(dev, map[i].status,
506 "mapping in shared page %d from domain %d",
507 gnt_refs[i], dev->otherend_id);
508 goto fail;
509 } else
510 handles[i] = map[i].handle;
511 }
512
513 return GNTST_okay;
514
515 fail:
516 for (i = j = 0; i < nr_grefs; i++) {
517 if (handles[i] != INVALID_GRANT_HANDLE) {
518 memset(&unmap[j], 0, sizeof(unmap[j]));
519 gnttab_set_unmap_op(&unmap[j], (phys_addr_t)addrs[i],
520 GNTMAP_host_map, handles[i]);
521 j++;
522 }
523 }
524
525 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, j))
526 BUG();
527
528 *leaked = false;
529 for (i = 0; i < j; i++) {
530 if (unmap[i].status != GNTST_okay) {
531 *leaked = true;
532 break;
533 }
534 }
535
536 return err;
537 }
538
539 struct map_ring_valloc_hvm
540 {
541 unsigned int idx;
542
543 /* Why do we need two arrays? See comment of __xenbus_map_ring */
544 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
545 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
546 };
547
xenbus_map_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)548 static void xenbus_map_ring_setup_grant_hvm(unsigned long gfn,
549 unsigned int goffset,
550 unsigned int len,
551 void *data)
552 {
553 struct map_ring_valloc_hvm *info = data;
554 unsigned long vaddr = (unsigned long)gfn_to_virt(gfn);
555
556 info->phys_addrs[info->idx] = vaddr;
557 info->addrs[info->idx] = vaddr;
558
559 info->idx++;
560 }
561
xenbus_map_ring_valloc_hvm(struct xenbus_device * dev,grant_ref_t * gnt_ref,unsigned int nr_grefs,void ** vaddr)562 static int xenbus_map_ring_valloc_hvm(struct xenbus_device *dev,
563 grant_ref_t *gnt_ref,
564 unsigned int nr_grefs,
565 void **vaddr)
566 {
567 struct xenbus_map_node *node;
568 int err;
569 void *addr;
570 bool leaked = false;
571 struct map_ring_valloc_hvm info = {
572 .idx = 0,
573 };
574 unsigned int nr_pages = XENBUS_PAGES(nr_grefs);
575
576 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
577 return -EINVAL;
578
579 *vaddr = NULL;
580
581 node = kzalloc(sizeof(*node), GFP_KERNEL);
582 if (!node)
583 return -ENOMEM;
584
585 err = alloc_xenballooned_pages(nr_pages, node->hvm.pages);
586 if (err)
587 goto out_err;
588
589 gnttab_foreach_grant(node->hvm.pages, nr_grefs,
590 xenbus_map_ring_setup_grant_hvm,
591 &info);
592
593 err = __xenbus_map_ring(dev, gnt_ref, nr_grefs, node->handles,
594 info.phys_addrs, GNTMAP_host_map, &leaked);
595 node->nr_handles = nr_grefs;
596
597 if (err)
598 goto out_free_ballooned_pages;
599
600 addr = vmap(node->hvm.pages, nr_pages, VM_MAP | VM_IOREMAP,
601 PAGE_KERNEL);
602 if (!addr) {
603 err = -ENOMEM;
604 goto out_xenbus_unmap_ring;
605 }
606
607 node->hvm.addr = addr;
608
609 spin_lock(&xenbus_valloc_lock);
610 list_add(&node->next, &xenbus_valloc_pages);
611 spin_unlock(&xenbus_valloc_lock);
612
613 *vaddr = addr;
614 return 0;
615
616 out_xenbus_unmap_ring:
617 if (!leaked)
618 xenbus_unmap_ring(dev, node->handles, nr_grefs, info.addrs);
619 else
620 pr_alert("leaking %p size %u page(s)",
621 addr, nr_pages);
622 out_free_ballooned_pages:
623 if (!leaked)
624 free_xenballooned_pages(nr_pages, node->hvm.pages);
625 out_err:
626 kfree(node);
627 return err;
628 }
629
630
631 /**
632 * xenbus_map_ring
633 * @dev: xenbus device
634 * @gnt_refs: grant reference array
635 * @nr_grefs: number of grant reference
636 * @handles: pointer to grant handle to be filled
637 * @vaddrs: addresses to be mapped to
638 * @leaked: fail to clean up a failed map, caller should not free vaddr
639 *
640 * Map pages of memory into this domain from another domain's grant table.
641 * xenbus_map_ring does not allocate the virtual address space (you must do
642 * this yourself!). It only maps in the pages to the specified address.
643 * Returns 0 on success, and GNTST_* (see xen/include/interface/grant_table.h)
644 * or -ENOMEM / -EINVAL on error. If an error is returned, device will switch to
645 * XenbusStateClosing and the first error message will be saved in XenStore.
646 * Further more if we fail to map the ring, caller should check @leaked.
647 * If @leaked is not zero it means xenbus_map_ring fails to clean up, caller
648 * should not free the address space of @vaddr.
649 */
xenbus_map_ring(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,grant_handle_t * handles,unsigned long * vaddrs,bool * leaked)650 int xenbus_map_ring(struct xenbus_device *dev, grant_ref_t *gnt_refs,
651 unsigned int nr_grefs, grant_handle_t *handles,
652 unsigned long *vaddrs, bool *leaked)
653 {
654 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
655 int i;
656
657 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
658 return -EINVAL;
659
660 for (i = 0; i < nr_grefs; i++)
661 phys_addrs[i] = (unsigned long)vaddrs[i];
662
663 return __xenbus_map_ring(dev, gnt_refs, nr_grefs, handles,
664 phys_addrs, GNTMAP_host_map, leaked);
665 }
666 EXPORT_SYMBOL_GPL(xenbus_map_ring);
667
668
669 /**
670 * xenbus_unmap_ring_vfree
671 * @dev: xenbus device
672 * @vaddr: addr to unmap
673 *
674 * Based on Rusty Russell's skeleton driver's unmap_page.
675 * Unmap a page of memory in this domain that was imported from another domain.
676 * Use xenbus_unmap_ring_vfree if you mapped in your memory with
677 * xenbus_map_ring_valloc (it will free the virtual address space).
678 * Returns 0 on success and returns GNTST_* on error
679 * (see xen/include/interface/grant_table.h).
680 */
xenbus_unmap_ring_vfree(struct xenbus_device * dev,void * vaddr)681 int xenbus_unmap_ring_vfree(struct xenbus_device *dev, void *vaddr)
682 {
683 return ring_ops->unmap(dev, vaddr);
684 }
685 EXPORT_SYMBOL_GPL(xenbus_unmap_ring_vfree);
686
687 #ifdef CONFIG_XEN_PV
xenbus_map_ring_valloc_pv(struct xenbus_device * dev,grant_ref_t * gnt_refs,unsigned int nr_grefs,void ** vaddr)688 static int xenbus_map_ring_valloc_pv(struct xenbus_device *dev,
689 grant_ref_t *gnt_refs,
690 unsigned int nr_grefs,
691 void **vaddr)
692 {
693 struct xenbus_map_node *node;
694 struct vm_struct *area;
695 pte_t *ptes[XENBUS_MAX_RING_GRANTS];
696 phys_addr_t phys_addrs[XENBUS_MAX_RING_GRANTS];
697 int err = GNTST_okay;
698 int i;
699 bool leaked;
700
701 *vaddr = NULL;
702
703 if (nr_grefs > XENBUS_MAX_RING_GRANTS)
704 return -EINVAL;
705
706 node = kzalloc(sizeof(*node), GFP_KERNEL);
707 if (!node)
708 return -ENOMEM;
709
710 area = alloc_vm_area(XEN_PAGE_SIZE * nr_grefs, ptes);
711 if (!area) {
712 kfree(node);
713 return -ENOMEM;
714 }
715
716 for (i = 0; i < nr_grefs; i++)
717 phys_addrs[i] = arbitrary_virt_to_machine(ptes[i]).maddr;
718
719 err = __xenbus_map_ring(dev, gnt_refs, nr_grefs, node->handles,
720 phys_addrs,
721 GNTMAP_host_map | GNTMAP_contains_pte,
722 &leaked);
723 if (err)
724 goto failed;
725
726 node->nr_handles = nr_grefs;
727 node->pv.area = area;
728
729 spin_lock(&xenbus_valloc_lock);
730 list_add(&node->next, &xenbus_valloc_pages);
731 spin_unlock(&xenbus_valloc_lock);
732
733 *vaddr = area->addr;
734 return 0;
735
736 failed:
737 if (!leaked)
738 free_vm_area(area);
739 else
740 pr_alert("leaking VM area %p size %u page(s)", area, nr_grefs);
741
742 kfree(node);
743 return err;
744 }
745
xenbus_unmap_ring_vfree_pv(struct xenbus_device * dev,void * vaddr)746 static int xenbus_unmap_ring_vfree_pv(struct xenbus_device *dev, void *vaddr)
747 {
748 struct xenbus_map_node *node;
749 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
750 unsigned int level;
751 int i;
752 bool leaked = false;
753 int err;
754
755 spin_lock(&xenbus_valloc_lock);
756 list_for_each_entry(node, &xenbus_valloc_pages, next) {
757 if (node->pv.area->addr == vaddr) {
758 list_del(&node->next);
759 goto found;
760 }
761 }
762 node = NULL;
763 found:
764 spin_unlock(&xenbus_valloc_lock);
765
766 if (!node) {
767 xenbus_dev_error(dev, -ENOENT,
768 "can't find mapped virtual address %p", vaddr);
769 return GNTST_bad_virt_addr;
770 }
771
772 for (i = 0; i < node->nr_handles; i++) {
773 unsigned long addr;
774
775 memset(&unmap[i], 0, sizeof(unmap[i]));
776 addr = (unsigned long)vaddr + (XEN_PAGE_SIZE * i);
777 unmap[i].host_addr = arbitrary_virt_to_machine(
778 lookup_address(addr, &level)).maddr;
779 unmap[i].dev_bus_addr = 0;
780 unmap[i].handle = node->handles[i];
781 }
782
783 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
784 BUG();
785
786 err = GNTST_okay;
787 leaked = false;
788 for (i = 0; i < node->nr_handles; i++) {
789 if (unmap[i].status != GNTST_okay) {
790 leaked = true;
791 xenbus_dev_error(dev, unmap[i].status,
792 "unmapping page at handle %d error %d",
793 node->handles[i], unmap[i].status);
794 err = unmap[i].status;
795 break;
796 }
797 }
798
799 if (!leaked)
800 free_vm_area(node->pv.area);
801 else
802 pr_alert("leaking VM area %p size %u page(s)",
803 node->pv.area, node->nr_handles);
804
805 kfree(node);
806 return err;
807 }
808
809 static const struct xenbus_ring_ops ring_ops_pv = {
810 .map = xenbus_map_ring_valloc_pv,
811 .unmap = xenbus_unmap_ring_vfree_pv,
812 };
813 #endif
814
815 struct unmap_ring_vfree_hvm
816 {
817 unsigned int idx;
818 unsigned long addrs[XENBUS_MAX_RING_GRANTS];
819 };
820
xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,unsigned int goffset,unsigned int len,void * data)821 static void xenbus_unmap_ring_setup_grant_hvm(unsigned long gfn,
822 unsigned int goffset,
823 unsigned int len,
824 void *data)
825 {
826 struct unmap_ring_vfree_hvm *info = data;
827
828 info->addrs[info->idx] = (unsigned long)gfn_to_virt(gfn);
829
830 info->idx++;
831 }
832
xenbus_unmap_ring_vfree_hvm(struct xenbus_device * dev,void * vaddr)833 static int xenbus_unmap_ring_vfree_hvm(struct xenbus_device *dev, void *vaddr)
834 {
835 int rv;
836 struct xenbus_map_node *node;
837 void *addr;
838 struct unmap_ring_vfree_hvm info = {
839 .idx = 0,
840 };
841 unsigned int nr_pages;
842
843 spin_lock(&xenbus_valloc_lock);
844 list_for_each_entry(node, &xenbus_valloc_pages, next) {
845 addr = node->hvm.addr;
846 if (addr == vaddr) {
847 list_del(&node->next);
848 goto found;
849 }
850 }
851 node = addr = NULL;
852 found:
853 spin_unlock(&xenbus_valloc_lock);
854
855 if (!node) {
856 xenbus_dev_error(dev, -ENOENT,
857 "can't find mapped virtual address %p", vaddr);
858 return GNTST_bad_virt_addr;
859 }
860
861 nr_pages = XENBUS_PAGES(node->nr_handles);
862
863 gnttab_foreach_grant(node->hvm.pages, node->nr_handles,
864 xenbus_unmap_ring_setup_grant_hvm,
865 &info);
866
867 rv = xenbus_unmap_ring(dev, node->handles, node->nr_handles,
868 info.addrs);
869 if (!rv) {
870 vunmap(vaddr);
871 free_xenballooned_pages(nr_pages, node->hvm.pages);
872 }
873 else
874 WARN(1, "Leaking %p, size %u page(s)\n", vaddr, nr_pages);
875
876 kfree(node);
877 return rv;
878 }
879
880 /**
881 * xenbus_unmap_ring
882 * @dev: xenbus device
883 * @handles: grant handle array
884 * @nr_handles: number of handles in the array
885 * @vaddrs: addresses to unmap
886 *
887 * Unmap memory in this domain that was imported from another domain.
888 * Returns 0 on success and returns GNTST_* on error
889 * (see xen/include/interface/grant_table.h).
890 */
xenbus_unmap_ring(struct xenbus_device * dev,grant_handle_t * handles,unsigned int nr_handles,unsigned long * vaddrs)891 int xenbus_unmap_ring(struct xenbus_device *dev,
892 grant_handle_t *handles, unsigned int nr_handles,
893 unsigned long *vaddrs)
894 {
895 struct gnttab_unmap_grant_ref unmap[XENBUS_MAX_RING_GRANTS];
896 int i;
897 int err;
898
899 if (nr_handles > XENBUS_MAX_RING_GRANTS)
900 return -EINVAL;
901
902 for (i = 0; i < nr_handles; i++)
903 gnttab_set_unmap_op(&unmap[i], vaddrs[i],
904 GNTMAP_host_map, handles[i]);
905
906 if (HYPERVISOR_grant_table_op(GNTTABOP_unmap_grant_ref, unmap, i))
907 BUG();
908
909 err = GNTST_okay;
910 for (i = 0; i < nr_handles; i++) {
911 if (unmap[i].status != GNTST_okay) {
912 xenbus_dev_error(dev, unmap[i].status,
913 "unmapping page at handle %d error %d",
914 handles[i], unmap[i].status);
915 err = unmap[i].status;
916 break;
917 }
918 }
919
920 return err;
921 }
922 EXPORT_SYMBOL_GPL(xenbus_unmap_ring);
923
924
925 /**
926 * xenbus_read_driver_state
927 * @path: path for driver
928 *
929 * Return the state of the driver rooted at the given store path, or
930 * XenbusStateUnknown if no state can be read.
931 */
xenbus_read_driver_state(const char * path)932 enum xenbus_state xenbus_read_driver_state(const char *path)
933 {
934 enum xenbus_state result;
935 int err = xenbus_gather(XBT_NIL, path, "state", "%d", &result, NULL);
936 if (err)
937 result = XenbusStateUnknown;
938
939 return result;
940 }
941 EXPORT_SYMBOL_GPL(xenbus_read_driver_state);
942
943 static const struct xenbus_ring_ops ring_ops_hvm = {
944 .map = xenbus_map_ring_valloc_hvm,
945 .unmap = xenbus_unmap_ring_vfree_hvm,
946 };
947
xenbus_ring_ops_init(void)948 void __init xenbus_ring_ops_init(void)
949 {
950 #ifdef CONFIG_XEN_PV
951 if (!xen_feature(XENFEAT_auto_translated_physmap))
952 ring_ops = &ring_ops_pv;
953 else
954 #endif
955 ring_ops = &ring_ops_hvm;
956 }
957