1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34
35 static kmem_zone_t *xfs_buf_zone;
36
37 #define xb_to_gfp(flags) \
38 ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39
40 /*
41 * Locking orders
42 *
43 * xfs_buf_ioacct_inc:
44 * xfs_buf_ioacct_dec:
45 * b_sema (caller holds)
46 * b_lock
47 *
48 * xfs_buf_stale:
49 * b_sema (caller holds)
50 * b_lock
51 * lru_lock
52 *
53 * xfs_buf_rele:
54 * b_lock
55 * pag_buf_lock
56 * lru_lock
57 *
58 * xfs_buftarg_wait_rele
59 * lru_lock
60 * b_lock (trylock due to inversion)
61 *
62 * xfs_buftarg_isolate
63 * lru_lock
64 * b_lock (trylock due to inversion)
65 */
66
67 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)68 xfs_buf_is_vmapped(
69 struct xfs_buf *bp)
70 {
71 /*
72 * Return true if the buffer is vmapped.
73 *
74 * b_addr is null if the buffer is not mapped, but the code is clever
75 * enough to know it doesn't have to map a single page, so the check has
76 * to be both for b_addr and bp->b_page_count > 1.
77 */
78 return bp->b_addr && bp->b_page_count > 1;
79 }
80
81 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)82 xfs_buf_vmap_len(
83 struct xfs_buf *bp)
84 {
85 return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87
88 /*
89 * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90 * this buffer. The count is incremented once per buffer (per hold cycle)
91 * because the corresponding decrement is deferred to buffer release. Buffers
92 * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93 * tracking adds unnecessary overhead. This is used for sychronization purposes
94 * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95 * in-flight buffers.
96 *
97 * Buffers that are never released (e.g., superblock, iclog buffers) must set
98 * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99 * never reaches zero and unmount hangs indefinitely.
100 */
101 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)102 xfs_buf_ioacct_inc(
103 struct xfs_buf *bp)
104 {
105 if (bp->b_flags & XBF_NO_IOACCT)
106 return;
107
108 ASSERT(bp->b_flags & XBF_ASYNC);
109 spin_lock(&bp->b_lock);
110 if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 percpu_counter_inc(&bp->b_target->bt_io_count);
113 }
114 spin_unlock(&bp->b_lock);
115 }
116
117 /*
118 * Clear the in-flight state on a buffer about to be released to the LRU or
119 * freed and unaccount from the buftarg.
120 */
121 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)122 __xfs_buf_ioacct_dec(
123 struct xfs_buf *bp)
124 {
125 lockdep_assert_held(&bp->b_lock);
126
127 if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 percpu_counter_dec(&bp->b_target->bt_io_count);
130 }
131 }
132
133 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)134 xfs_buf_ioacct_dec(
135 struct xfs_buf *bp)
136 {
137 spin_lock(&bp->b_lock);
138 __xfs_buf_ioacct_dec(bp);
139 spin_unlock(&bp->b_lock);
140 }
141
142 /*
143 * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144 * b_lru_ref count so that the buffer is freed immediately when the buffer
145 * reference count falls to zero. If the buffer is already on the LRU, we need
146 * to remove the reference that LRU holds on the buffer.
147 *
148 * This prevents build-up of stale buffers on the LRU.
149 */
150 void
xfs_buf_stale(struct xfs_buf * bp)151 xfs_buf_stale(
152 struct xfs_buf *bp)
153 {
154 ASSERT(xfs_buf_islocked(bp));
155
156 bp->b_flags |= XBF_STALE;
157
158 /*
159 * Clear the delwri status so that a delwri queue walker will not
160 * flush this buffer to disk now that it is stale. The delwri queue has
161 * a reference to the buffer, so this is safe to do.
162 */
163 bp->b_flags &= ~_XBF_DELWRI_Q;
164
165 /*
166 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 * could reset b_flags. There is no guarantee that the buffer is
168 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 * status now to preserve accounting consistency.
170 */
171 spin_lock(&bp->b_lock);
172 __xfs_buf_ioacct_dec(bp);
173
174 atomic_set(&bp->b_lru_ref, 0);
175 if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 atomic_dec(&bp->b_hold);
178
179 ASSERT(atomic_read(&bp->b_hold) >= 1);
180 spin_unlock(&bp->b_lock);
181 }
182
183 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)184 xfs_buf_get_maps(
185 struct xfs_buf *bp,
186 int map_count)
187 {
188 ASSERT(bp->b_maps == NULL);
189 bp->b_map_count = map_count;
190
191 if (map_count == 1) {
192 bp->b_maps = &bp->__b_map;
193 return 0;
194 }
195
196 bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 KM_NOFS);
198 if (!bp->b_maps)
199 return -ENOMEM;
200 return 0;
201 }
202
203 /*
204 * Frees b_pages if it was allocated.
205 */
206 static void
xfs_buf_free_maps(struct xfs_buf * bp)207 xfs_buf_free_maps(
208 struct xfs_buf *bp)
209 {
210 if (bp->b_maps != &bp->__b_map) {
211 kmem_free(bp->b_maps);
212 bp->b_maps = NULL;
213 }
214 }
215
216 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)217 _xfs_buf_alloc(
218 struct xfs_buftarg *target,
219 struct xfs_buf_map *map,
220 int nmaps,
221 xfs_buf_flags_t flags)
222 {
223 struct xfs_buf *bp;
224 int error;
225 int i;
226
227 bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 if (unlikely(!bp))
229 return NULL;
230
231 /*
232 * We don't want certain flags to appear in b_flags unless they are
233 * specifically set by later operations on the buffer.
234 */
235 flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236
237 atomic_set(&bp->b_hold, 1);
238 atomic_set(&bp->b_lru_ref, 1);
239 init_completion(&bp->b_iowait);
240 INIT_LIST_HEAD(&bp->b_lru);
241 INIT_LIST_HEAD(&bp->b_list);
242 INIT_LIST_HEAD(&bp->b_li_list);
243 sema_init(&bp->b_sema, 0); /* held, no waiters */
244 spin_lock_init(&bp->b_lock);
245 bp->b_target = target;
246 bp->b_flags = flags;
247
248 /*
249 * Set length and io_length to the same value initially.
250 * I/O routines should use io_length, which will be the same in
251 * most cases but may be reset (e.g. XFS recovery).
252 */
253 error = xfs_buf_get_maps(bp, nmaps);
254 if (error) {
255 kmem_zone_free(xfs_buf_zone, bp);
256 return NULL;
257 }
258
259 bp->b_bn = map[0].bm_bn;
260 bp->b_length = 0;
261 for (i = 0; i < nmaps; i++) {
262 bp->b_maps[i].bm_bn = map[i].bm_bn;
263 bp->b_maps[i].bm_len = map[i].bm_len;
264 bp->b_length += map[i].bm_len;
265 }
266 bp->b_io_length = bp->b_length;
267
268 atomic_set(&bp->b_pin_count, 0);
269 init_waitqueue_head(&bp->b_waiters);
270
271 XFS_STATS_INC(target->bt_mount, xb_create);
272 trace_xfs_buf_init(bp, _RET_IP_);
273
274 return bp;
275 }
276
277 /*
278 * Allocate a page array capable of holding a specified number
279 * of pages, and point the page buf at it.
280 */
281 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)282 _xfs_buf_get_pages(
283 xfs_buf_t *bp,
284 int page_count)
285 {
286 /* Make sure that we have a page list */
287 if (bp->b_pages == NULL) {
288 bp->b_page_count = page_count;
289 if (page_count <= XB_PAGES) {
290 bp->b_pages = bp->b_page_array;
291 } else {
292 bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 page_count, KM_NOFS);
294 if (bp->b_pages == NULL)
295 return -ENOMEM;
296 }
297 memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 }
299 return 0;
300 }
301
302 /*
303 * Frees b_pages if it was allocated.
304 */
305 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)306 _xfs_buf_free_pages(
307 xfs_buf_t *bp)
308 {
309 if (bp->b_pages != bp->b_page_array) {
310 kmem_free(bp->b_pages);
311 bp->b_pages = NULL;
312 }
313 }
314
315 /*
316 * Releases the specified buffer.
317 *
318 * The modification state of any associated pages is left unchanged.
319 * The buffer must not be on any hash - use xfs_buf_rele instead for
320 * hashed and refcounted buffers
321 */
322 void
xfs_buf_free(xfs_buf_t * bp)323 xfs_buf_free(
324 xfs_buf_t *bp)
325 {
326 trace_xfs_buf_free(bp, _RET_IP_);
327
328 ASSERT(list_empty(&bp->b_lru));
329
330 if (bp->b_flags & _XBF_PAGES) {
331 uint i;
332
333 if (xfs_buf_is_vmapped(bp))
334 vm_unmap_ram(bp->b_addr - bp->b_offset,
335 bp->b_page_count);
336
337 for (i = 0; i < bp->b_page_count; i++) {
338 struct page *page = bp->b_pages[i];
339
340 __free_page(page);
341 }
342 } else if (bp->b_flags & _XBF_KMEM)
343 kmem_free(bp->b_addr);
344 _xfs_buf_free_pages(bp);
345 xfs_buf_free_maps(bp);
346 kmem_zone_free(xfs_buf_zone, bp);
347 }
348
349 /*
350 * Allocates all the pages for buffer in question and builds it's page list.
351 */
352 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)353 xfs_buf_allocate_memory(
354 xfs_buf_t *bp,
355 uint flags)
356 {
357 size_t size;
358 size_t nbytes, offset;
359 gfp_t gfp_mask = xb_to_gfp(flags);
360 unsigned short page_count, i;
361 xfs_off_t start, end;
362 int error;
363
364 /*
365 * for buffers that are contained within a single page, just allocate
366 * the memory from the heap - there's no need for the complexity of
367 * page arrays to keep allocation down to order 0.
368 */
369 size = BBTOB(bp->b_length);
370 if (size < PAGE_SIZE) {
371 bp->b_addr = kmem_alloc(size, KM_NOFS);
372 if (!bp->b_addr) {
373 /* low memory - use alloc_page loop instead */
374 goto use_alloc_page;
375 }
376
377 if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 /* b_addr spans two pages - use alloc_page instead */
380 kmem_free(bp->b_addr);
381 bp->b_addr = NULL;
382 goto use_alloc_page;
383 }
384 bp->b_offset = offset_in_page(bp->b_addr);
385 bp->b_pages = bp->b_page_array;
386 bp->b_pages[0] = virt_to_page(bp->b_addr);
387 bp->b_page_count = 1;
388 bp->b_flags |= _XBF_KMEM;
389 return 0;
390 }
391
392 use_alloc_page:
393 start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 >> PAGE_SHIFT;
396 page_count = end - start;
397 error = _xfs_buf_get_pages(bp, page_count);
398 if (unlikely(error))
399 return error;
400
401 offset = bp->b_offset;
402 bp->b_flags |= _XBF_PAGES;
403
404 for (i = 0; i < bp->b_page_count; i++) {
405 struct page *page;
406 uint retries = 0;
407 retry:
408 page = alloc_page(gfp_mask);
409 if (unlikely(page == NULL)) {
410 if (flags & XBF_READ_AHEAD) {
411 bp->b_page_count = i;
412 error = -ENOMEM;
413 goto out_free_pages;
414 }
415
416 /*
417 * This could deadlock.
418 *
419 * But until all the XFS lowlevel code is revamped to
420 * handle buffer allocation failures we can't do much.
421 */
422 if (!(++retries % 100))
423 xfs_err(NULL,
424 "%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 current->comm, current->pid,
426 __func__, gfp_mask);
427
428 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 congestion_wait(BLK_RW_ASYNC, HZ/50);
430 goto retry;
431 }
432
433 XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434
435 nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 size -= nbytes;
437 bp->b_pages[i] = page;
438 offset = 0;
439 }
440 return 0;
441
442 out_free_pages:
443 for (i = 0; i < bp->b_page_count; i++)
444 __free_page(bp->b_pages[i]);
445 bp->b_flags &= ~_XBF_PAGES;
446 return error;
447 }
448
449 /*
450 * Map buffer into kernel address-space if necessary.
451 */
452 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)453 _xfs_buf_map_pages(
454 xfs_buf_t *bp,
455 uint flags)
456 {
457 ASSERT(bp->b_flags & _XBF_PAGES);
458 if (bp->b_page_count == 1) {
459 /* A single page buffer is always mappable */
460 bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 } else if (flags & XBF_UNMAPPED) {
462 bp->b_addr = NULL;
463 } else {
464 int retried = 0;
465 unsigned nofs_flag;
466
467 /*
468 * vm_map_ram() will allocate auxillary structures (e.g.
469 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 * memory reclaim re-entering the filesystem here and
473 * potentially deadlocking.
474 */
475 nofs_flag = memalloc_nofs_save();
476 do {
477 bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 -1, PAGE_KERNEL);
479 if (bp->b_addr)
480 break;
481 vm_unmap_aliases();
482 } while (retried++ <= 1);
483 memalloc_nofs_restore(nofs_flag);
484
485 if (!bp->b_addr)
486 return -ENOMEM;
487 bp->b_addr += bp->b_offset;
488 }
489
490 return 0;
491 }
492
493 /*
494 * Finding and Reading Buffers
495 */
496 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)497 _xfs_buf_obj_cmp(
498 struct rhashtable_compare_arg *arg,
499 const void *obj)
500 {
501 const struct xfs_buf_map *map = arg->key;
502 const struct xfs_buf *bp = obj;
503
504 /*
505 * The key hashing in the lookup path depends on the key being the
506 * first element of the compare_arg, make sure to assert this.
507 */
508 BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509
510 if (bp->b_bn != map->bm_bn)
511 return 1;
512
513 if (unlikely(bp->b_length != map->bm_len)) {
514 /*
515 * found a block number match. If the range doesn't
516 * match, the only way this is allowed is if the buffer
517 * in the cache is stale and the transaction that made
518 * it stale has not yet committed. i.e. we are
519 * reallocating a busy extent. Skip this buffer and
520 * continue searching for an exact match.
521 */
522 ASSERT(bp->b_flags & XBF_STALE);
523 return 1;
524 }
525 return 0;
526 }
527
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 .min_size = 32, /* empty AGs have minimal footprint */
530 .nelem_hint = 16,
531 .key_len = sizeof(xfs_daddr_t),
532 .key_offset = offsetof(struct xfs_buf, b_bn),
533 .head_offset = offsetof(struct xfs_buf, b_rhash_head),
534 .automatic_shrinking = true,
535 .obj_cmpfn = _xfs_buf_obj_cmp,
536 };
537
538 int
xfs_buf_hash_init(struct xfs_perag * pag)539 xfs_buf_hash_init(
540 struct xfs_perag *pag)
541 {
542 spin_lock_init(&pag->pag_buf_lock);
543 return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 }
545
546 void
xfs_buf_hash_destroy(struct xfs_perag * pag)547 xfs_buf_hash_destroy(
548 struct xfs_perag *pag)
549 {
550 rhashtable_destroy(&pag->pag_buf_hash);
551 }
552
553 /*
554 * Look up a buffer in the buffer cache and return it referenced and locked
555 * in @found_bp.
556 *
557 * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558 * cache.
559 *
560 * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561 * -EAGAIN if we fail to lock it.
562 *
563 * Return values are:
564 * -EFSCORRUPTED if have been supplied with an invalid address
565 * -EAGAIN on trylock failure
566 * -ENOENT if we fail to find a match and @new_bp was NULL
567 * 0, with @found_bp:
568 * - @new_bp if we inserted it into the cache
569 * - the buffer we found and locked.
570 */
571 static int
xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf * new_bp,struct xfs_buf ** found_bp)572 xfs_buf_find(
573 struct xfs_buftarg *btp,
574 struct xfs_buf_map *map,
575 int nmaps,
576 xfs_buf_flags_t flags,
577 struct xfs_buf *new_bp,
578 struct xfs_buf **found_bp)
579 {
580 struct xfs_perag *pag;
581 xfs_buf_t *bp;
582 struct xfs_buf_map cmap = { .bm_bn = map[0].bm_bn };
583 xfs_daddr_t eofs;
584 int i;
585
586 *found_bp = NULL;
587
588 for (i = 0; i < nmaps; i++)
589 cmap.bm_len += map[i].bm_len;
590
591 /* Check for IOs smaller than the sector size / not sector aligned */
592 ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594
595 /*
596 * Corrupted block numbers can get through to here, unfortunately, so we
597 * have to check that the buffer falls within the filesystem bounds.
598 */
599 eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 xfs_alert(btp->bt_mount,
602 "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 __func__, cmap.bm_bn, eofs);
604 WARN_ON(1);
605 return -EFSCORRUPTED;
606 }
607
608 pag = xfs_perag_get(btp->bt_mount,
609 xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610
611 spin_lock(&pag->pag_buf_lock);
612 bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 xfs_buf_hash_params);
614 if (bp) {
615 atomic_inc(&bp->b_hold);
616 goto found;
617 }
618
619 /* No match found */
620 if (!new_bp) {
621 XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 spin_unlock(&pag->pag_buf_lock);
623 xfs_perag_put(pag);
624 return -ENOENT;
625 }
626
627 /* the buffer keeps the perag reference until it is freed */
628 new_bp->b_pag = pag;
629 rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 xfs_buf_hash_params);
631 spin_unlock(&pag->pag_buf_lock);
632 *found_bp = new_bp;
633 return 0;
634
635 found:
636 spin_unlock(&pag->pag_buf_lock);
637 xfs_perag_put(pag);
638
639 if (!xfs_buf_trylock(bp)) {
640 if (flags & XBF_TRYLOCK) {
641 xfs_buf_rele(bp);
642 XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 return -EAGAIN;
644 }
645 xfs_buf_lock(bp);
646 XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 }
648
649 /*
650 * if the buffer is stale, clear all the external state associated with
651 * it. We need to keep flags such as how we allocated the buffer memory
652 * intact here.
653 */
654 if (bp->b_flags & XBF_STALE) {
655 ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 ASSERT(bp->b_iodone == NULL);
657 bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 bp->b_ops = NULL;
659 }
660
661 trace_xfs_buf_find(bp, flags, _RET_IP_);
662 XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 *found_bp = bp;
664 return 0;
665 }
666
667 struct xfs_buf *
xfs_buf_incore(struct xfs_buftarg * target,xfs_daddr_t blkno,size_t numblks,xfs_buf_flags_t flags)668 xfs_buf_incore(
669 struct xfs_buftarg *target,
670 xfs_daddr_t blkno,
671 size_t numblks,
672 xfs_buf_flags_t flags)
673 {
674 struct xfs_buf *bp;
675 int error;
676 DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677
678 error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 if (error)
680 return NULL;
681 return bp;
682 }
683
684 /*
685 * Assembles a buffer covering the specified range. The code is optimised for
686 * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687 * more hits than misses.
688 */
689 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)690 xfs_buf_get_map(
691 struct xfs_buftarg *target,
692 struct xfs_buf_map *map,
693 int nmaps,
694 xfs_buf_flags_t flags)
695 {
696 struct xfs_buf *bp;
697 struct xfs_buf *new_bp;
698 int error = 0;
699
700 error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701
702 switch (error) {
703 case 0:
704 /* cache hit */
705 goto found;
706 case -EAGAIN:
707 /* cache hit, trylock failure, caller handles failure */
708 ASSERT(flags & XBF_TRYLOCK);
709 return NULL;
710 case -ENOENT:
711 /* cache miss, go for insert */
712 break;
713 case -EFSCORRUPTED:
714 default:
715 /*
716 * None of the higher layers understand failure types
717 * yet, so return NULL to signal a fatal lookup error.
718 */
719 return NULL;
720 }
721
722 new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 if (unlikely(!new_bp))
724 return NULL;
725
726 error = xfs_buf_allocate_memory(new_bp, flags);
727 if (error) {
728 xfs_buf_free(new_bp);
729 return NULL;
730 }
731
732 error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 if (error) {
734 xfs_buf_free(new_bp);
735 return NULL;
736 }
737
738 if (bp != new_bp)
739 xfs_buf_free(new_bp);
740
741 found:
742 if (!bp->b_addr) {
743 error = _xfs_buf_map_pages(bp, flags);
744 if (unlikely(error)) {
745 xfs_warn(target->bt_mount,
746 "%s: failed to map pagesn", __func__);
747 xfs_buf_relse(bp);
748 return NULL;
749 }
750 }
751
752 /*
753 * Clear b_error if this is a lookup from a caller that doesn't expect
754 * valid data to be found in the buffer.
755 */
756 if (!(flags & XBF_READ))
757 xfs_buf_ioerror(bp, 0);
758
759 XFS_STATS_INC(target->bt_mount, xb_get);
760 trace_xfs_buf_get(bp, flags, _RET_IP_);
761 return bp;
762 }
763
764 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)765 _xfs_buf_read(
766 xfs_buf_t *bp,
767 xfs_buf_flags_t flags)
768 {
769 ASSERT(!(flags & XBF_WRITE));
770 ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771
772 bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774
775 return xfs_buf_submit(bp);
776 }
777
778 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)779 xfs_buf_read_map(
780 struct xfs_buftarg *target,
781 struct xfs_buf_map *map,
782 int nmaps,
783 xfs_buf_flags_t flags,
784 const struct xfs_buf_ops *ops)
785 {
786 struct xfs_buf *bp;
787
788 flags |= XBF_READ;
789
790 bp = xfs_buf_get_map(target, map, nmaps, flags);
791 if (bp) {
792 trace_xfs_buf_read(bp, flags, _RET_IP_);
793
794 if (!(bp->b_flags & XBF_DONE)) {
795 XFS_STATS_INC(target->bt_mount, xb_get_read);
796 bp->b_ops = ops;
797 _xfs_buf_read(bp, flags);
798 } else if (flags & XBF_ASYNC) {
799 /*
800 * Read ahead call which is already satisfied,
801 * drop the buffer
802 */
803 xfs_buf_relse(bp);
804 return NULL;
805 } else {
806 /* We do not want read in the flags */
807 bp->b_flags &= ~XBF_READ;
808 }
809 }
810
811 return bp;
812 }
813
814 /*
815 * If we are not low on memory then do the readahead in a deadlock
816 * safe manner.
817 */
818 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)819 xfs_buf_readahead_map(
820 struct xfs_buftarg *target,
821 struct xfs_buf_map *map,
822 int nmaps,
823 const struct xfs_buf_ops *ops)
824 {
825 if (bdi_read_congested(target->bt_bdev->bd_bdi))
826 return;
827
828 xfs_buf_read_map(target, map, nmaps,
829 XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
830 }
831
832 /*
833 * Read an uncached buffer from disk. Allocates and returns a locked
834 * buffer containing the disk contents or nothing.
835 */
836 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)837 xfs_buf_read_uncached(
838 struct xfs_buftarg *target,
839 xfs_daddr_t daddr,
840 size_t numblks,
841 int flags,
842 struct xfs_buf **bpp,
843 const struct xfs_buf_ops *ops)
844 {
845 struct xfs_buf *bp;
846
847 *bpp = NULL;
848
849 bp = xfs_buf_get_uncached(target, numblks, flags);
850 if (!bp)
851 return -ENOMEM;
852
853 /* set up the buffer for a read IO */
854 ASSERT(bp->b_map_count == 1);
855 bp->b_bn = XFS_BUF_DADDR_NULL; /* always null for uncached buffers */
856 bp->b_maps[0].bm_bn = daddr;
857 bp->b_flags |= XBF_READ;
858 bp->b_ops = ops;
859
860 xfs_buf_submit(bp);
861 if (bp->b_error) {
862 int error = bp->b_error;
863 xfs_buf_relse(bp);
864 return error;
865 }
866
867 *bpp = bp;
868 return 0;
869 }
870
871 /*
872 * Return a buffer allocated as an empty buffer and associated to external
873 * memory via xfs_buf_associate_memory() back to it's empty state.
874 */
875 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)876 xfs_buf_set_empty(
877 struct xfs_buf *bp,
878 size_t numblks)
879 {
880 if (bp->b_pages)
881 _xfs_buf_free_pages(bp);
882
883 bp->b_pages = NULL;
884 bp->b_page_count = 0;
885 bp->b_addr = NULL;
886 bp->b_length = numblks;
887 bp->b_io_length = numblks;
888
889 ASSERT(bp->b_map_count == 1);
890 bp->b_bn = XFS_BUF_DADDR_NULL;
891 bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
892 bp->b_maps[0].bm_len = bp->b_length;
893 }
894
895 static inline struct page *
mem_to_page(void * addr)896 mem_to_page(
897 void *addr)
898 {
899 if ((!is_vmalloc_addr(addr))) {
900 return virt_to_page(addr);
901 } else {
902 return vmalloc_to_page(addr);
903 }
904 }
905
906 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)907 xfs_buf_associate_memory(
908 xfs_buf_t *bp,
909 void *mem,
910 size_t len)
911 {
912 int rval;
913 int i = 0;
914 unsigned long pageaddr;
915 unsigned long offset;
916 size_t buflen;
917 int page_count;
918
919 pageaddr = (unsigned long)mem & PAGE_MASK;
920 offset = (unsigned long)mem - pageaddr;
921 buflen = PAGE_ALIGN(len + offset);
922 page_count = buflen >> PAGE_SHIFT;
923
924 /* Free any previous set of page pointers */
925 if (bp->b_pages)
926 _xfs_buf_free_pages(bp);
927
928 bp->b_pages = NULL;
929 bp->b_addr = mem;
930
931 rval = _xfs_buf_get_pages(bp, page_count);
932 if (rval)
933 return rval;
934
935 bp->b_offset = offset;
936
937 for (i = 0; i < bp->b_page_count; i++) {
938 bp->b_pages[i] = mem_to_page((void *)pageaddr);
939 pageaddr += PAGE_SIZE;
940 }
941
942 bp->b_io_length = BTOBB(len);
943 bp->b_length = BTOBB(buflen);
944
945 return 0;
946 }
947
948 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)949 xfs_buf_get_uncached(
950 struct xfs_buftarg *target,
951 size_t numblks,
952 int flags)
953 {
954 unsigned long page_count;
955 int error, i;
956 struct xfs_buf *bp;
957 DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
958
959 /* flags might contain irrelevant bits, pass only what we care about */
960 bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
961 if (unlikely(bp == NULL))
962 goto fail;
963
964 page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
965 error = _xfs_buf_get_pages(bp, page_count);
966 if (error)
967 goto fail_free_buf;
968
969 for (i = 0; i < page_count; i++) {
970 bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
971 if (!bp->b_pages[i])
972 goto fail_free_mem;
973 }
974 bp->b_flags |= _XBF_PAGES;
975
976 error = _xfs_buf_map_pages(bp, 0);
977 if (unlikely(error)) {
978 xfs_warn(target->bt_mount,
979 "%s: failed to map pages", __func__);
980 goto fail_free_mem;
981 }
982
983 trace_xfs_buf_get_uncached(bp, _RET_IP_);
984 return bp;
985
986 fail_free_mem:
987 while (--i >= 0)
988 __free_page(bp->b_pages[i]);
989 _xfs_buf_free_pages(bp);
990 fail_free_buf:
991 xfs_buf_free_maps(bp);
992 kmem_zone_free(xfs_buf_zone, bp);
993 fail:
994 return NULL;
995 }
996
997 /*
998 * Increment reference count on buffer, to hold the buffer concurrently
999 * with another thread which may release (free) the buffer asynchronously.
1000 * Must hold the buffer already to call this function.
1001 */
1002 void
xfs_buf_hold(xfs_buf_t * bp)1003 xfs_buf_hold(
1004 xfs_buf_t *bp)
1005 {
1006 trace_xfs_buf_hold(bp, _RET_IP_);
1007 atomic_inc(&bp->b_hold);
1008 }
1009
1010 /*
1011 * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1012 * placed on LRU or freed (depending on b_lru_ref).
1013 */
1014 void
xfs_buf_rele(xfs_buf_t * bp)1015 xfs_buf_rele(
1016 xfs_buf_t *bp)
1017 {
1018 struct xfs_perag *pag = bp->b_pag;
1019 bool release;
1020 bool freebuf = false;
1021
1022 trace_xfs_buf_rele(bp, _RET_IP_);
1023
1024 if (!pag) {
1025 ASSERT(list_empty(&bp->b_lru));
1026 if (atomic_dec_and_test(&bp->b_hold)) {
1027 xfs_buf_ioacct_dec(bp);
1028 xfs_buf_free(bp);
1029 }
1030 return;
1031 }
1032
1033 ASSERT(atomic_read(&bp->b_hold) > 0);
1034
1035 /*
1036 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1037 * calls. The pag_buf_lock being taken on the last reference only
1038 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1039 * to last reference we drop here is not serialised against the last
1040 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1041 * first, the last "release" reference can win the race to the lock and
1042 * free the buffer before the second-to-last reference is processed,
1043 * leading to a use-after-free scenario.
1044 */
1045 spin_lock(&bp->b_lock);
1046 release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1047 if (!release) {
1048 /*
1049 * Drop the in-flight state if the buffer is already on the LRU
1050 * and it holds the only reference. This is racy because we
1051 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1052 * ensures the decrement occurs only once per-buf.
1053 */
1054 if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1055 __xfs_buf_ioacct_dec(bp);
1056 goto out_unlock;
1057 }
1058
1059 /* the last reference has been dropped ... */
1060 __xfs_buf_ioacct_dec(bp);
1061 if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1062 /*
1063 * If the buffer is added to the LRU take a new reference to the
1064 * buffer for the LRU and clear the (now stale) dispose list
1065 * state flag
1066 */
1067 if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1068 bp->b_state &= ~XFS_BSTATE_DISPOSE;
1069 atomic_inc(&bp->b_hold);
1070 }
1071 spin_unlock(&pag->pag_buf_lock);
1072 } else {
1073 /*
1074 * most of the time buffers will already be removed from the
1075 * LRU, so optimise that case by checking for the
1076 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1077 * was on was the disposal list
1078 */
1079 if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1080 list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1081 } else {
1082 ASSERT(list_empty(&bp->b_lru));
1083 }
1084
1085 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1086 rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1087 xfs_buf_hash_params);
1088 spin_unlock(&pag->pag_buf_lock);
1089 xfs_perag_put(pag);
1090 freebuf = true;
1091 }
1092
1093 out_unlock:
1094 spin_unlock(&bp->b_lock);
1095
1096 if (freebuf)
1097 xfs_buf_free(bp);
1098 }
1099
1100
1101 /*
1102 * Lock a buffer object, if it is not already locked.
1103 *
1104 * If we come across a stale, pinned, locked buffer, we know that we are
1105 * being asked to lock a buffer that has been reallocated. Because it is
1106 * pinned, we know that the log has not been pushed to disk and hence it
1107 * will still be locked. Rather than continuing to have trylock attempts
1108 * fail until someone else pushes the log, push it ourselves before
1109 * returning. This means that the xfsaild will not get stuck trying
1110 * to push on stale inode buffers.
1111 */
1112 int
xfs_buf_trylock(struct xfs_buf * bp)1113 xfs_buf_trylock(
1114 struct xfs_buf *bp)
1115 {
1116 int locked;
1117
1118 locked = down_trylock(&bp->b_sema) == 0;
1119 if (locked)
1120 trace_xfs_buf_trylock(bp, _RET_IP_);
1121 else
1122 trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1123 return locked;
1124 }
1125
1126 /*
1127 * Lock a buffer object.
1128 *
1129 * If we come across a stale, pinned, locked buffer, we know that we
1130 * are being asked to lock a buffer that has been reallocated. Because
1131 * it is pinned, we know that the log has not been pushed to disk and
1132 * hence it will still be locked. Rather than sleeping until someone
1133 * else pushes the log, push it ourselves before trying to get the lock.
1134 */
1135 void
xfs_buf_lock(struct xfs_buf * bp)1136 xfs_buf_lock(
1137 struct xfs_buf *bp)
1138 {
1139 trace_xfs_buf_lock(bp, _RET_IP_);
1140
1141 if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1142 xfs_log_force(bp->b_target->bt_mount, 0);
1143 down(&bp->b_sema);
1144
1145 trace_xfs_buf_lock_done(bp, _RET_IP_);
1146 }
1147
1148 void
xfs_buf_unlock(struct xfs_buf * bp)1149 xfs_buf_unlock(
1150 struct xfs_buf *bp)
1151 {
1152 ASSERT(xfs_buf_islocked(bp));
1153
1154 up(&bp->b_sema);
1155 trace_xfs_buf_unlock(bp, _RET_IP_);
1156 }
1157
1158 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)1159 xfs_buf_wait_unpin(
1160 xfs_buf_t *bp)
1161 {
1162 DECLARE_WAITQUEUE (wait, current);
1163
1164 if (atomic_read(&bp->b_pin_count) == 0)
1165 return;
1166
1167 add_wait_queue(&bp->b_waiters, &wait);
1168 for (;;) {
1169 set_current_state(TASK_UNINTERRUPTIBLE);
1170 if (atomic_read(&bp->b_pin_count) == 0)
1171 break;
1172 io_schedule();
1173 }
1174 remove_wait_queue(&bp->b_waiters, &wait);
1175 set_current_state(TASK_RUNNING);
1176 }
1177
1178 /*
1179 * Buffer Utility Routines
1180 */
1181
1182 void
xfs_buf_ioend(struct xfs_buf * bp)1183 xfs_buf_ioend(
1184 struct xfs_buf *bp)
1185 {
1186 bool read = bp->b_flags & XBF_READ;
1187
1188 trace_xfs_buf_iodone(bp, _RET_IP_);
1189
1190 bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1191
1192 /*
1193 * Pull in IO completion errors now. We are guaranteed to be running
1194 * single threaded, so we don't need the lock to read b_io_error.
1195 */
1196 if (!bp->b_error && bp->b_io_error)
1197 xfs_buf_ioerror(bp, bp->b_io_error);
1198
1199 /* Only validate buffers that were read without errors */
1200 if (read && !bp->b_error && bp->b_ops) {
1201 ASSERT(!bp->b_iodone);
1202 bp->b_ops->verify_read(bp);
1203 }
1204
1205 if (!bp->b_error) {
1206 bp->b_flags &= ~XBF_WRITE_FAIL;
1207 bp->b_flags |= XBF_DONE;
1208 }
1209
1210 if (bp->b_iodone)
1211 (*(bp->b_iodone))(bp);
1212 else if (bp->b_flags & XBF_ASYNC)
1213 xfs_buf_relse(bp);
1214 else
1215 complete(&bp->b_iowait);
1216 }
1217
1218 static void
xfs_buf_ioend_work(struct work_struct * work)1219 xfs_buf_ioend_work(
1220 struct work_struct *work)
1221 {
1222 struct xfs_buf *bp =
1223 container_of(work, xfs_buf_t, b_ioend_work);
1224
1225 xfs_buf_ioend(bp);
1226 }
1227
1228 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1229 xfs_buf_ioend_async(
1230 struct xfs_buf *bp)
1231 {
1232 INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1233 queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1234 }
1235
1236 void
__xfs_buf_ioerror(xfs_buf_t * bp,int error,xfs_failaddr_t failaddr)1237 __xfs_buf_ioerror(
1238 xfs_buf_t *bp,
1239 int error,
1240 xfs_failaddr_t failaddr)
1241 {
1242 ASSERT(error <= 0 && error >= -1000);
1243 bp->b_error = error;
1244 trace_xfs_buf_ioerror(bp, error, failaddr);
1245 }
1246
1247 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1248 xfs_buf_ioerror_alert(
1249 struct xfs_buf *bp,
1250 const char *func)
1251 {
1252 xfs_alert(bp->b_target->bt_mount,
1253 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1254 func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1255 -bp->b_error);
1256 }
1257
1258 int
xfs_bwrite(struct xfs_buf * bp)1259 xfs_bwrite(
1260 struct xfs_buf *bp)
1261 {
1262 int error;
1263
1264 ASSERT(xfs_buf_islocked(bp));
1265
1266 bp->b_flags |= XBF_WRITE;
1267 bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1268 XBF_DONE);
1269
1270 error = xfs_buf_submit(bp);
1271 if (error) {
1272 xfs_force_shutdown(bp->b_target->bt_mount,
1273 SHUTDOWN_META_IO_ERROR);
1274 }
1275 return error;
1276 }
1277
1278 static void
xfs_buf_bio_end_io(struct bio * bio)1279 xfs_buf_bio_end_io(
1280 struct bio *bio)
1281 {
1282 struct xfs_buf *bp = (struct xfs_buf *)bio->bi_private;
1283
1284 /*
1285 * don't overwrite existing errors - otherwise we can lose errors on
1286 * buffers that require multiple bios to complete.
1287 */
1288 if (bio->bi_status) {
1289 int error = blk_status_to_errno(bio->bi_status);
1290
1291 cmpxchg(&bp->b_io_error, 0, error);
1292 }
1293
1294 if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1295 invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1296
1297 if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1298 xfs_buf_ioend_async(bp);
1299 bio_put(bio);
1300 }
1301
1302 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op,int op_flags)1303 xfs_buf_ioapply_map(
1304 struct xfs_buf *bp,
1305 int map,
1306 int *buf_offset,
1307 int *count,
1308 int op,
1309 int op_flags)
1310 {
1311 int page_index;
1312 int total_nr_pages = bp->b_page_count;
1313 int nr_pages;
1314 struct bio *bio;
1315 sector_t sector = bp->b_maps[map].bm_bn;
1316 int size;
1317 int offset;
1318
1319 /* skip the pages in the buffer before the start offset */
1320 page_index = 0;
1321 offset = *buf_offset;
1322 while (offset >= PAGE_SIZE) {
1323 page_index++;
1324 offset -= PAGE_SIZE;
1325 }
1326
1327 /*
1328 * Limit the IO size to the length of the current vector, and update the
1329 * remaining IO count for the next time around.
1330 */
1331 size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1332 *count -= size;
1333 *buf_offset += size;
1334
1335 next_chunk:
1336 atomic_inc(&bp->b_io_remaining);
1337 nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1338
1339 bio = bio_alloc(GFP_NOIO, nr_pages);
1340 bio_set_dev(bio, bp->b_target->bt_bdev);
1341 bio->bi_iter.bi_sector = sector;
1342 bio->bi_end_io = xfs_buf_bio_end_io;
1343 bio->bi_private = bp;
1344 bio_set_op_attrs(bio, op, op_flags);
1345
1346 for (; size && nr_pages; nr_pages--, page_index++) {
1347 int rbytes, nbytes = PAGE_SIZE - offset;
1348
1349 if (nbytes > size)
1350 nbytes = size;
1351
1352 rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1353 offset);
1354 if (rbytes < nbytes)
1355 break;
1356
1357 offset = 0;
1358 sector += BTOBB(nbytes);
1359 size -= nbytes;
1360 total_nr_pages--;
1361 }
1362
1363 if (likely(bio->bi_iter.bi_size)) {
1364 if (xfs_buf_is_vmapped(bp)) {
1365 flush_kernel_vmap_range(bp->b_addr,
1366 xfs_buf_vmap_len(bp));
1367 }
1368 submit_bio(bio);
1369 if (size)
1370 goto next_chunk;
1371 } else {
1372 /*
1373 * This is guaranteed not to be the last io reference count
1374 * because the caller (xfs_buf_submit) holds a count itself.
1375 */
1376 atomic_dec(&bp->b_io_remaining);
1377 xfs_buf_ioerror(bp, -EIO);
1378 bio_put(bio);
1379 }
1380
1381 }
1382
1383 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1384 _xfs_buf_ioapply(
1385 struct xfs_buf *bp)
1386 {
1387 struct blk_plug plug;
1388 int op;
1389 int op_flags = 0;
1390 int offset;
1391 int size;
1392 int i;
1393
1394 /*
1395 * Make sure we capture only current IO errors rather than stale errors
1396 * left over from previous use of the buffer (e.g. failed readahead).
1397 */
1398 bp->b_error = 0;
1399
1400 /*
1401 * Initialize the I/O completion workqueue if we haven't yet or the
1402 * submitter has not opted to specify a custom one.
1403 */
1404 if (!bp->b_ioend_wq)
1405 bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1406
1407 if (bp->b_flags & XBF_WRITE) {
1408 op = REQ_OP_WRITE;
1409 if (bp->b_flags & XBF_SYNCIO)
1410 op_flags = REQ_SYNC;
1411 if (bp->b_flags & XBF_FUA)
1412 op_flags |= REQ_FUA;
1413 if (bp->b_flags & XBF_FLUSH)
1414 op_flags |= REQ_PREFLUSH;
1415
1416 /*
1417 * Run the write verifier callback function if it exists. If
1418 * this function fails it will mark the buffer with an error and
1419 * the IO should not be dispatched.
1420 */
1421 if (bp->b_ops) {
1422 bp->b_ops->verify_write(bp);
1423 if (bp->b_error) {
1424 xfs_force_shutdown(bp->b_target->bt_mount,
1425 SHUTDOWN_CORRUPT_INCORE);
1426 return;
1427 }
1428 } else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1429 struct xfs_mount *mp = bp->b_target->bt_mount;
1430
1431 /*
1432 * non-crc filesystems don't attach verifiers during
1433 * log recovery, so don't warn for such filesystems.
1434 */
1435 if (xfs_sb_version_hascrc(&mp->m_sb)) {
1436 xfs_warn(mp,
1437 "%s: no buf ops on daddr 0x%llx len %d",
1438 __func__, bp->b_bn, bp->b_length);
1439 xfs_hex_dump(bp->b_addr,
1440 XFS_CORRUPTION_DUMP_LEN);
1441 dump_stack();
1442 }
1443 }
1444 } else if (bp->b_flags & XBF_READ_AHEAD) {
1445 op = REQ_OP_READ;
1446 op_flags = REQ_RAHEAD;
1447 } else {
1448 op = REQ_OP_READ;
1449 }
1450
1451 /* we only use the buffer cache for meta-data */
1452 op_flags |= REQ_META;
1453
1454 /*
1455 * Walk all the vectors issuing IO on them. Set up the initial offset
1456 * into the buffer and the desired IO size before we start -
1457 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1458 * subsequent call.
1459 */
1460 offset = bp->b_offset;
1461 size = BBTOB(bp->b_io_length);
1462 blk_start_plug(&plug);
1463 for (i = 0; i < bp->b_map_count; i++) {
1464 xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1465 if (bp->b_error)
1466 break;
1467 if (size <= 0)
1468 break; /* all done */
1469 }
1470 blk_finish_plug(&plug);
1471 }
1472
1473 /*
1474 * Wait for I/O completion of a sync buffer and return the I/O error code.
1475 */
1476 static int
xfs_buf_iowait(struct xfs_buf * bp)1477 xfs_buf_iowait(
1478 struct xfs_buf *bp)
1479 {
1480 ASSERT(!(bp->b_flags & XBF_ASYNC));
1481
1482 trace_xfs_buf_iowait(bp, _RET_IP_);
1483 wait_for_completion(&bp->b_iowait);
1484 trace_xfs_buf_iowait_done(bp, _RET_IP_);
1485
1486 return bp->b_error;
1487 }
1488
1489 /*
1490 * Buffer I/O submission path, read or write. Asynchronous submission transfers
1491 * the buffer lock ownership and the current reference to the IO. It is not
1492 * safe to reference the buffer after a call to this function unless the caller
1493 * holds an additional reference itself.
1494 */
1495 int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1496 __xfs_buf_submit(
1497 struct xfs_buf *bp,
1498 bool wait)
1499 {
1500 int error = 0;
1501
1502 trace_xfs_buf_submit(bp, _RET_IP_);
1503
1504 ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1505
1506 /* on shutdown we stale and complete the buffer immediately */
1507 if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1508 xfs_buf_ioerror(bp, -EIO);
1509 bp->b_flags &= ~XBF_DONE;
1510 xfs_buf_stale(bp);
1511 xfs_buf_ioend(bp);
1512 return -EIO;
1513 }
1514
1515 /*
1516 * Grab a reference so the buffer does not go away underneath us. For
1517 * async buffers, I/O completion drops the callers reference, which
1518 * could occur before submission returns.
1519 */
1520 xfs_buf_hold(bp);
1521
1522 if (bp->b_flags & XBF_WRITE)
1523 xfs_buf_wait_unpin(bp);
1524
1525 /* clear the internal error state to avoid spurious errors */
1526 bp->b_io_error = 0;
1527
1528 /*
1529 * Set the count to 1 initially, this will stop an I/O completion
1530 * callout which happens before we have started all the I/O from calling
1531 * xfs_buf_ioend too early.
1532 */
1533 atomic_set(&bp->b_io_remaining, 1);
1534 if (bp->b_flags & XBF_ASYNC)
1535 xfs_buf_ioacct_inc(bp);
1536 _xfs_buf_ioapply(bp);
1537
1538 /*
1539 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1540 * reference we took above. If we drop it to zero, run completion so
1541 * that we don't return to the caller with completion still pending.
1542 */
1543 if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1544 if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1545 xfs_buf_ioend(bp);
1546 else
1547 xfs_buf_ioend_async(bp);
1548 }
1549
1550 if (wait)
1551 error = xfs_buf_iowait(bp);
1552
1553 /*
1554 * Release the hold that keeps the buffer referenced for the entire
1555 * I/O. Note that if the buffer is async, it is not safe to reference
1556 * after this release.
1557 */
1558 xfs_buf_rele(bp);
1559 return error;
1560 }
1561
1562 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1563 xfs_buf_offset(
1564 struct xfs_buf *bp,
1565 size_t offset)
1566 {
1567 struct page *page;
1568
1569 if (bp->b_addr)
1570 return bp->b_addr + offset;
1571
1572 offset += bp->b_offset;
1573 page = bp->b_pages[offset >> PAGE_SHIFT];
1574 return page_address(page) + (offset & (PAGE_SIZE-1));
1575 }
1576
1577 /*
1578 * Move data into or out of a buffer.
1579 */
1580 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1581 xfs_buf_iomove(
1582 xfs_buf_t *bp, /* buffer to process */
1583 size_t boff, /* starting buffer offset */
1584 size_t bsize, /* length to copy */
1585 void *data, /* data address */
1586 xfs_buf_rw_t mode) /* read/write/zero flag */
1587 {
1588 size_t bend;
1589
1590 bend = boff + bsize;
1591 while (boff < bend) {
1592 struct page *page;
1593 int page_index, page_offset, csize;
1594
1595 page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1596 page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1597 page = bp->b_pages[page_index];
1598 csize = min_t(size_t, PAGE_SIZE - page_offset,
1599 BBTOB(bp->b_io_length) - boff);
1600
1601 ASSERT((csize + page_offset) <= PAGE_SIZE);
1602
1603 switch (mode) {
1604 case XBRW_ZERO:
1605 memset(page_address(page) + page_offset, 0, csize);
1606 break;
1607 case XBRW_READ:
1608 memcpy(data, page_address(page) + page_offset, csize);
1609 break;
1610 case XBRW_WRITE:
1611 memcpy(page_address(page) + page_offset, data, csize);
1612 }
1613
1614 boff += csize;
1615 data += csize;
1616 }
1617 }
1618
1619 /*
1620 * Handling of buffer targets (buftargs).
1621 */
1622
1623 /*
1624 * Wait for any bufs with callbacks that have been submitted but have not yet
1625 * returned. These buffers will have an elevated hold count, so wait on those
1626 * while freeing all the buffers only held by the LRU.
1627 */
1628 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1629 xfs_buftarg_wait_rele(
1630 struct list_head *item,
1631 struct list_lru_one *lru,
1632 spinlock_t *lru_lock,
1633 void *arg)
1634
1635 {
1636 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1637 struct list_head *dispose = arg;
1638
1639 if (atomic_read(&bp->b_hold) > 1) {
1640 /* need to wait, so skip it this pass */
1641 trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1642 return LRU_SKIP;
1643 }
1644 if (!spin_trylock(&bp->b_lock))
1645 return LRU_SKIP;
1646
1647 /*
1648 * clear the LRU reference count so the buffer doesn't get
1649 * ignored in xfs_buf_rele().
1650 */
1651 atomic_set(&bp->b_lru_ref, 0);
1652 bp->b_state |= XFS_BSTATE_DISPOSE;
1653 list_lru_isolate_move(lru, item, dispose);
1654 spin_unlock(&bp->b_lock);
1655 return LRU_REMOVED;
1656 }
1657
1658 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1659 xfs_wait_buftarg(
1660 struct xfs_buftarg *btp)
1661 {
1662 LIST_HEAD(dispose);
1663 int loop = 0;
1664
1665 /*
1666 * First wait on the buftarg I/O count for all in-flight buffers to be
1667 * released. This is critical as new buffers do not make the LRU until
1668 * they are released.
1669 *
1670 * Next, flush the buffer workqueue to ensure all completion processing
1671 * has finished. Just waiting on buffer locks is not sufficient for
1672 * async IO as the reference count held over IO is not released until
1673 * after the buffer lock is dropped. Hence we need to ensure here that
1674 * all reference counts have been dropped before we start walking the
1675 * LRU list.
1676 */
1677 while (percpu_counter_sum(&btp->bt_io_count))
1678 delay(100);
1679 flush_workqueue(btp->bt_mount->m_buf_workqueue);
1680
1681 /* loop until there is nothing left on the lru list. */
1682 while (list_lru_count(&btp->bt_lru)) {
1683 list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1684 &dispose, LONG_MAX);
1685
1686 while (!list_empty(&dispose)) {
1687 struct xfs_buf *bp;
1688 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1689 list_del_init(&bp->b_lru);
1690 if (bp->b_flags & XBF_WRITE_FAIL) {
1691 xfs_alert(btp->bt_mount,
1692 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1693 (long long)bp->b_bn);
1694 xfs_alert(btp->bt_mount,
1695 "Please run xfs_repair to determine the extent of the problem.");
1696 }
1697 xfs_buf_rele(bp);
1698 }
1699 if (loop++ != 0)
1700 delay(100);
1701 }
1702 }
1703
1704 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1705 xfs_buftarg_isolate(
1706 struct list_head *item,
1707 struct list_lru_one *lru,
1708 spinlock_t *lru_lock,
1709 void *arg)
1710 {
1711 struct xfs_buf *bp = container_of(item, struct xfs_buf, b_lru);
1712 struct list_head *dispose = arg;
1713
1714 /*
1715 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1716 * If we fail to get the lock, just skip it.
1717 */
1718 if (!spin_trylock(&bp->b_lock))
1719 return LRU_SKIP;
1720 /*
1721 * Decrement the b_lru_ref count unless the value is already
1722 * zero. If the value is already zero, we need to reclaim the
1723 * buffer, otherwise it gets another trip through the LRU.
1724 */
1725 if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1726 spin_unlock(&bp->b_lock);
1727 return LRU_ROTATE;
1728 }
1729
1730 bp->b_state |= XFS_BSTATE_DISPOSE;
1731 list_lru_isolate_move(lru, item, dispose);
1732 spin_unlock(&bp->b_lock);
1733 return LRU_REMOVED;
1734 }
1735
1736 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1737 xfs_buftarg_shrink_scan(
1738 struct shrinker *shrink,
1739 struct shrink_control *sc)
1740 {
1741 struct xfs_buftarg *btp = container_of(shrink,
1742 struct xfs_buftarg, bt_shrinker);
1743 LIST_HEAD(dispose);
1744 unsigned long freed;
1745
1746 freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1747 xfs_buftarg_isolate, &dispose);
1748
1749 while (!list_empty(&dispose)) {
1750 struct xfs_buf *bp;
1751 bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1752 list_del_init(&bp->b_lru);
1753 xfs_buf_rele(bp);
1754 }
1755
1756 return freed;
1757 }
1758
1759 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1760 xfs_buftarg_shrink_count(
1761 struct shrinker *shrink,
1762 struct shrink_control *sc)
1763 {
1764 struct xfs_buftarg *btp = container_of(shrink,
1765 struct xfs_buftarg, bt_shrinker);
1766 return list_lru_shrink_count(&btp->bt_lru, sc);
1767 }
1768
1769 void
xfs_free_buftarg(struct xfs_buftarg * btp)1770 xfs_free_buftarg(
1771 struct xfs_buftarg *btp)
1772 {
1773 unregister_shrinker(&btp->bt_shrinker);
1774 ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1775 percpu_counter_destroy(&btp->bt_io_count);
1776 list_lru_destroy(&btp->bt_lru);
1777
1778 xfs_blkdev_issue_flush(btp);
1779
1780 kmem_free(btp);
1781 }
1782
1783 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1784 xfs_setsize_buftarg(
1785 xfs_buftarg_t *btp,
1786 unsigned int sectorsize)
1787 {
1788 /* Set up metadata sector size info */
1789 btp->bt_meta_sectorsize = sectorsize;
1790 btp->bt_meta_sectormask = sectorsize - 1;
1791
1792 if (set_blocksize(btp->bt_bdev, sectorsize)) {
1793 xfs_warn(btp->bt_mount,
1794 "Cannot set_blocksize to %u on device %pg",
1795 sectorsize, btp->bt_bdev);
1796 return -EINVAL;
1797 }
1798
1799 /* Set up device logical sector size mask */
1800 btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1801 btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1802
1803 return 0;
1804 }
1805
1806 /*
1807 * When allocating the initial buffer target we have not yet
1808 * read in the superblock, so don't know what sized sectors
1809 * are being used at this early stage. Play safe.
1810 */
1811 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1812 xfs_setsize_buftarg_early(
1813 xfs_buftarg_t *btp,
1814 struct block_device *bdev)
1815 {
1816 return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1817 }
1818
1819 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)1820 xfs_alloc_buftarg(
1821 struct xfs_mount *mp,
1822 struct block_device *bdev,
1823 struct dax_device *dax_dev)
1824 {
1825 xfs_buftarg_t *btp;
1826
1827 btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1828
1829 btp->bt_mount = mp;
1830 btp->bt_dev = bdev->bd_dev;
1831 btp->bt_bdev = bdev;
1832 btp->bt_daxdev = dax_dev;
1833
1834 if (xfs_setsize_buftarg_early(btp, bdev))
1835 goto error_free;
1836
1837 if (list_lru_init(&btp->bt_lru))
1838 goto error_free;
1839
1840 if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1841 goto error_lru;
1842
1843 btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1844 btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1845 btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1846 btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1847 if (register_shrinker(&btp->bt_shrinker))
1848 goto error_pcpu;
1849 return btp;
1850
1851 error_pcpu:
1852 percpu_counter_destroy(&btp->bt_io_count);
1853 error_lru:
1854 list_lru_destroy(&btp->bt_lru);
1855 error_free:
1856 kmem_free(btp);
1857 return NULL;
1858 }
1859
1860 /*
1861 * Cancel a delayed write list.
1862 *
1863 * Remove each buffer from the list, clear the delwri queue flag and drop the
1864 * associated buffer reference.
1865 */
1866 void
xfs_buf_delwri_cancel(struct list_head * list)1867 xfs_buf_delwri_cancel(
1868 struct list_head *list)
1869 {
1870 struct xfs_buf *bp;
1871
1872 while (!list_empty(list)) {
1873 bp = list_first_entry(list, struct xfs_buf, b_list);
1874
1875 xfs_buf_lock(bp);
1876 bp->b_flags &= ~_XBF_DELWRI_Q;
1877 list_del_init(&bp->b_list);
1878 xfs_buf_relse(bp);
1879 }
1880 }
1881
1882 /*
1883 * Add a buffer to the delayed write list.
1884 *
1885 * This queues a buffer for writeout if it hasn't already been. Note that
1886 * neither this routine nor the buffer list submission functions perform
1887 * any internal synchronization. It is expected that the lists are thread-local
1888 * to the callers.
1889 *
1890 * Returns true if we queued up the buffer, or false if it already had
1891 * been on the buffer list.
1892 */
1893 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1894 xfs_buf_delwri_queue(
1895 struct xfs_buf *bp,
1896 struct list_head *list)
1897 {
1898 ASSERT(xfs_buf_islocked(bp));
1899 ASSERT(!(bp->b_flags & XBF_READ));
1900
1901 /*
1902 * If the buffer is already marked delwri it already is queued up
1903 * by someone else for imediate writeout. Just ignore it in that
1904 * case.
1905 */
1906 if (bp->b_flags & _XBF_DELWRI_Q) {
1907 trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1908 return false;
1909 }
1910
1911 trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1912
1913 /*
1914 * If a buffer gets written out synchronously or marked stale while it
1915 * is on a delwri list we lazily remove it. To do this, the other party
1916 * clears the _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1917 * It remains referenced and on the list. In a rare corner case it
1918 * might get readded to a delwri list after the synchronous writeout, in
1919 * which case we need just need to re-add the flag here.
1920 */
1921 bp->b_flags |= _XBF_DELWRI_Q;
1922 if (list_empty(&bp->b_list)) {
1923 atomic_inc(&bp->b_hold);
1924 list_add_tail(&bp->b_list, list);
1925 }
1926
1927 return true;
1928 }
1929
1930 /*
1931 * Compare function is more complex than it needs to be because
1932 * the return value is only 32 bits and we are doing comparisons
1933 * on 64 bit values
1934 */
1935 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1936 xfs_buf_cmp(
1937 void *priv,
1938 struct list_head *a,
1939 struct list_head *b)
1940 {
1941 struct xfs_buf *ap = container_of(a, struct xfs_buf, b_list);
1942 struct xfs_buf *bp = container_of(b, struct xfs_buf, b_list);
1943 xfs_daddr_t diff;
1944
1945 diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1946 if (diff < 0)
1947 return -1;
1948 if (diff > 0)
1949 return 1;
1950 return 0;
1951 }
1952
1953 /*
1954 * Submit buffers for write. If wait_list is specified, the buffers are
1955 * submitted using sync I/O and placed on the wait list such that the caller can
1956 * iowait each buffer. Otherwise async I/O is used and the buffers are released
1957 * at I/O completion time. In either case, buffers remain locked until I/O
1958 * completes and the buffer is released from the queue.
1959 */
1960 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)1961 xfs_buf_delwri_submit_buffers(
1962 struct list_head *buffer_list,
1963 struct list_head *wait_list)
1964 {
1965 struct xfs_buf *bp, *n;
1966 LIST_HEAD (submit_list);
1967 int pinned = 0;
1968 struct blk_plug plug;
1969
1970 list_sort(NULL, buffer_list, xfs_buf_cmp);
1971
1972 blk_start_plug(&plug);
1973 list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1974 if (!wait_list) {
1975 if (xfs_buf_ispinned(bp)) {
1976 pinned++;
1977 continue;
1978 }
1979 if (!xfs_buf_trylock(bp))
1980 continue;
1981 } else {
1982 xfs_buf_lock(bp);
1983 }
1984
1985 /*
1986 * Someone else might have written the buffer synchronously or
1987 * marked it stale in the meantime. In that case only the
1988 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1989 * reference and remove it from the list here.
1990 */
1991 if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1992 list_del_init(&bp->b_list);
1993 xfs_buf_relse(bp);
1994 continue;
1995 }
1996
1997 trace_xfs_buf_delwri_split(bp, _RET_IP_);
1998
1999 /*
2000 * If we have a wait list, each buffer (and associated delwri
2001 * queue reference) transfers to it and is submitted
2002 * synchronously. Otherwise, drop the buffer from the delwri
2003 * queue and submit async.
2004 */
2005 bp->b_flags &= ~_XBF_DELWRI_Q;
2006 bp->b_flags |= XBF_WRITE;
2007 if (wait_list) {
2008 bp->b_flags &= ~XBF_ASYNC;
2009 list_move_tail(&bp->b_list, wait_list);
2010 } else {
2011 bp->b_flags |= XBF_ASYNC;
2012 list_del_init(&bp->b_list);
2013 }
2014 __xfs_buf_submit(bp, false);
2015 }
2016 blk_finish_plug(&plug);
2017
2018 return pinned;
2019 }
2020
2021 /*
2022 * Write out a buffer list asynchronously.
2023 *
2024 * This will take the @buffer_list, write all non-locked and non-pinned buffers
2025 * out and not wait for I/O completion on any of the buffers. This interface
2026 * is only safely useable for callers that can track I/O completion by higher
2027 * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2028 * function.
2029 *
2030 * Note: this function will skip buffers it would block on, and in doing so
2031 * leaves them on @buffer_list so they can be retried on a later pass. As such,
2032 * it is up to the caller to ensure that the buffer list is fully submitted or
2033 * cancelled appropriately when they are finished with the list. Failure to
2034 * cancel or resubmit the list until it is empty will result in leaked buffers
2035 * at unmount time.
2036 */
2037 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2038 xfs_buf_delwri_submit_nowait(
2039 struct list_head *buffer_list)
2040 {
2041 return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2042 }
2043
2044 /*
2045 * Write out a buffer list synchronously.
2046 *
2047 * This will take the @buffer_list, write all buffers out and wait for I/O
2048 * completion on all of the buffers. @buffer_list is consumed by the function,
2049 * so callers must have some other way of tracking buffers if they require such
2050 * functionality.
2051 */
2052 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2053 xfs_buf_delwri_submit(
2054 struct list_head *buffer_list)
2055 {
2056 LIST_HEAD (wait_list);
2057 int error = 0, error2;
2058 struct xfs_buf *bp;
2059
2060 xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2061
2062 /* Wait for IO to complete. */
2063 while (!list_empty(&wait_list)) {
2064 bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2065
2066 list_del_init(&bp->b_list);
2067
2068 /*
2069 * Wait on the locked buffer, check for errors and unlock and
2070 * release the delwri queue reference.
2071 */
2072 error2 = xfs_buf_iowait(bp);
2073 xfs_buf_relse(bp);
2074 if (!error)
2075 error = error2;
2076 }
2077
2078 return error;
2079 }
2080
2081 /*
2082 * Push a single buffer on a delwri queue.
2083 *
2084 * The purpose of this function is to submit a single buffer of a delwri queue
2085 * and return with the buffer still on the original queue. The waiting delwri
2086 * buffer submission infrastructure guarantees transfer of the delwri queue
2087 * buffer reference to a temporary wait list. We reuse this infrastructure to
2088 * transfer the buffer back to the original queue.
2089 *
2090 * Note the buffer transitions from the queued state, to the submitted and wait
2091 * listed state and back to the queued state during this call. The buffer
2092 * locking and queue management logic between _delwri_pushbuf() and
2093 * _delwri_queue() guarantee that the buffer cannot be queued to another list
2094 * before returning.
2095 */
2096 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2097 xfs_buf_delwri_pushbuf(
2098 struct xfs_buf *bp,
2099 struct list_head *buffer_list)
2100 {
2101 LIST_HEAD (submit_list);
2102 int error;
2103
2104 ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2105
2106 trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2107
2108 /*
2109 * Isolate the buffer to a new local list so we can submit it for I/O
2110 * independently from the rest of the original list.
2111 */
2112 xfs_buf_lock(bp);
2113 list_move(&bp->b_list, &submit_list);
2114 xfs_buf_unlock(bp);
2115
2116 /*
2117 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2118 * the buffer on the wait list with the original reference. Rather than
2119 * bounce the buffer from a local wait list back to the original list
2120 * after I/O completion, reuse the original list as the wait list.
2121 */
2122 xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2123
2124 /*
2125 * The buffer is now locked, under I/O and wait listed on the original
2126 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2127 * return with the buffer unlocked and on the original queue.
2128 */
2129 error = xfs_buf_iowait(bp);
2130 bp->b_flags |= _XBF_DELWRI_Q;
2131 xfs_buf_unlock(bp);
2132
2133 return error;
2134 }
2135
2136 int __init
xfs_buf_init(void)2137 xfs_buf_init(void)
2138 {
2139 xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2140 KM_ZONE_HWALIGN, NULL);
2141 if (!xfs_buf_zone)
2142 goto out;
2143
2144 return 0;
2145
2146 out:
2147 return -ENOMEM;
2148 }
2149
2150 void
xfs_buf_terminate(void)2151 xfs_buf_terminate(void)
2152 {
2153 kmem_zone_destroy(xfs_buf_zone);
2154 }
2155
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2156 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2157 {
2158 /*
2159 * Set the lru reference count to 0 based on the error injection tag.
2160 * This allows userspace to disrupt buffer caching for debug/testing
2161 * purposes.
2162 */
2163 if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2164 XFS_ERRTAG_BUF_LRU_REF))
2165 lru_ref = 0;
2166
2167 atomic_set(&bp->b_lru_ref, lru_ref);
2168 }
2169