1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include <linux/stddef.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/pagemap.h>
11 #include <linux/init.h>
12 #include <linux/vmalloc.h>
13 #include <linux/bio.h>
14 #include <linux/sysctl.h>
15 #include <linux/proc_fs.h>
16 #include <linux/workqueue.h>
17 #include <linux/percpu.h>
18 #include <linux/blkdev.h>
19 #include <linux/hash.h>
20 #include <linux/kthread.h>
21 #include <linux/migrate.h>
22 #include <linux/backing-dev.h>
23 #include <linux/freezer.h>
24 
25 #include "xfs_format.h"
26 #include "xfs_log_format.h"
27 #include "xfs_trans_resv.h"
28 #include "xfs_sb.h"
29 #include "xfs_mount.h"
30 #include "xfs_trace.h"
31 #include "xfs_log.h"
32 #include "xfs_errortag.h"
33 #include "xfs_error.h"
34 
35 static kmem_zone_t *xfs_buf_zone;
36 
37 #define xb_to_gfp(flags) \
38 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : GFP_NOFS) | __GFP_NOWARN)
39 
40 /*
41  * Locking orders
42  *
43  * xfs_buf_ioacct_inc:
44  * xfs_buf_ioacct_dec:
45  *	b_sema (caller holds)
46  *	  b_lock
47  *
48  * xfs_buf_stale:
49  *	b_sema (caller holds)
50  *	  b_lock
51  *	    lru_lock
52  *
53  * xfs_buf_rele:
54  *	b_lock
55  *	  pag_buf_lock
56  *	    lru_lock
57  *
58  * xfs_buftarg_wait_rele
59  *	lru_lock
60  *	  b_lock (trylock due to inversion)
61  *
62  * xfs_buftarg_isolate
63  *	lru_lock
64  *	  b_lock (trylock due to inversion)
65  */
66 
67 static inline int
xfs_buf_is_vmapped(struct xfs_buf * bp)68 xfs_buf_is_vmapped(
69 	struct xfs_buf	*bp)
70 {
71 	/*
72 	 * Return true if the buffer is vmapped.
73 	 *
74 	 * b_addr is null if the buffer is not mapped, but the code is clever
75 	 * enough to know it doesn't have to map a single page, so the check has
76 	 * to be both for b_addr and bp->b_page_count > 1.
77 	 */
78 	return bp->b_addr && bp->b_page_count > 1;
79 }
80 
81 static inline int
xfs_buf_vmap_len(struct xfs_buf * bp)82 xfs_buf_vmap_len(
83 	struct xfs_buf	*bp)
84 {
85 	return (bp->b_page_count * PAGE_SIZE) - bp->b_offset;
86 }
87 
88 /*
89  * Bump the I/O in flight count on the buftarg if we haven't yet done so for
90  * this buffer. The count is incremented once per buffer (per hold cycle)
91  * because the corresponding decrement is deferred to buffer release. Buffers
92  * can undergo I/O multiple times in a hold-release cycle and per buffer I/O
93  * tracking adds unnecessary overhead. This is used for sychronization purposes
94  * with unmount (see xfs_wait_buftarg()), so all we really need is a count of
95  * in-flight buffers.
96  *
97  * Buffers that are never released (e.g., superblock, iclog buffers) must set
98  * the XBF_NO_IOACCT flag before I/O submission. Otherwise, the buftarg count
99  * never reaches zero and unmount hangs indefinitely.
100  */
101 static inline void
xfs_buf_ioacct_inc(struct xfs_buf * bp)102 xfs_buf_ioacct_inc(
103 	struct xfs_buf	*bp)
104 {
105 	if (bp->b_flags & XBF_NO_IOACCT)
106 		return;
107 
108 	ASSERT(bp->b_flags & XBF_ASYNC);
109 	spin_lock(&bp->b_lock);
110 	if (!(bp->b_state & XFS_BSTATE_IN_FLIGHT)) {
111 		bp->b_state |= XFS_BSTATE_IN_FLIGHT;
112 		percpu_counter_inc(&bp->b_target->bt_io_count);
113 	}
114 	spin_unlock(&bp->b_lock);
115 }
116 
117 /*
118  * Clear the in-flight state on a buffer about to be released to the LRU or
119  * freed and unaccount from the buftarg.
120  */
121 static inline void
__xfs_buf_ioacct_dec(struct xfs_buf * bp)122 __xfs_buf_ioacct_dec(
123 	struct xfs_buf	*bp)
124 {
125 	lockdep_assert_held(&bp->b_lock);
126 
127 	if (bp->b_state & XFS_BSTATE_IN_FLIGHT) {
128 		bp->b_state &= ~XFS_BSTATE_IN_FLIGHT;
129 		percpu_counter_dec(&bp->b_target->bt_io_count);
130 	}
131 }
132 
133 static inline void
xfs_buf_ioacct_dec(struct xfs_buf * bp)134 xfs_buf_ioacct_dec(
135 	struct xfs_buf	*bp)
136 {
137 	spin_lock(&bp->b_lock);
138 	__xfs_buf_ioacct_dec(bp);
139 	spin_unlock(&bp->b_lock);
140 }
141 
142 /*
143  * When we mark a buffer stale, we remove the buffer from the LRU and clear the
144  * b_lru_ref count so that the buffer is freed immediately when the buffer
145  * reference count falls to zero. If the buffer is already on the LRU, we need
146  * to remove the reference that LRU holds on the buffer.
147  *
148  * This prevents build-up of stale buffers on the LRU.
149  */
150 void
xfs_buf_stale(struct xfs_buf * bp)151 xfs_buf_stale(
152 	struct xfs_buf	*bp)
153 {
154 	ASSERT(xfs_buf_islocked(bp));
155 
156 	bp->b_flags |= XBF_STALE;
157 
158 	/*
159 	 * Clear the delwri status so that a delwri queue walker will not
160 	 * flush this buffer to disk now that it is stale. The delwri queue has
161 	 * a reference to the buffer, so this is safe to do.
162 	 */
163 	bp->b_flags &= ~_XBF_DELWRI_Q;
164 
165 	/*
166 	 * Once the buffer is marked stale and unlocked, a subsequent lookup
167 	 * could reset b_flags. There is no guarantee that the buffer is
168 	 * unaccounted (released to LRU) before that occurs. Drop in-flight
169 	 * status now to preserve accounting consistency.
170 	 */
171 	spin_lock(&bp->b_lock);
172 	__xfs_buf_ioacct_dec(bp);
173 
174 	atomic_set(&bp->b_lru_ref, 0);
175 	if (!(bp->b_state & XFS_BSTATE_DISPOSE) &&
176 	    (list_lru_del(&bp->b_target->bt_lru, &bp->b_lru)))
177 		atomic_dec(&bp->b_hold);
178 
179 	ASSERT(atomic_read(&bp->b_hold) >= 1);
180 	spin_unlock(&bp->b_lock);
181 }
182 
183 static int
xfs_buf_get_maps(struct xfs_buf * bp,int map_count)184 xfs_buf_get_maps(
185 	struct xfs_buf		*bp,
186 	int			map_count)
187 {
188 	ASSERT(bp->b_maps == NULL);
189 	bp->b_map_count = map_count;
190 
191 	if (map_count == 1) {
192 		bp->b_maps = &bp->__b_map;
193 		return 0;
194 	}
195 
196 	bp->b_maps = kmem_zalloc(map_count * sizeof(struct xfs_buf_map),
197 				KM_NOFS);
198 	if (!bp->b_maps)
199 		return -ENOMEM;
200 	return 0;
201 }
202 
203 /*
204  *	Frees b_pages if it was allocated.
205  */
206 static void
xfs_buf_free_maps(struct xfs_buf * bp)207 xfs_buf_free_maps(
208 	struct xfs_buf	*bp)
209 {
210 	if (bp->b_maps != &bp->__b_map) {
211 		kmem_free(bp->b_maps);
212 		bp->b_maps = NULL;
213 	}
214 }
215 
216 struct xfs_buf *
_xfs_buf_alloc(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)217 _xfs_buf_alloc(
218 	struct xfs_buftarg	*target,
219 	struct xfs_buf_map	*map,
220 	int			nmaps,
221 	xfs_buf_flags_t		flags)
222 {
223 	struct xfs_buf		*bp;
224 	int			error;
225 	int			i;
226 
227 	bp = kmem_zone_zalloc(xfs_buf_zone, KM_NOFS);
228 	if (unlikely(!bp))
229 		return NULL;
230 
231 	/*
232 	 * We don't want certain flags to appear in b_flags unless they are
233 	 * specifically set by later operations on the buffer.
234 	 */
235 	flags &= ~(XBF_UNMAPPED | XBF_TRYLOCK | XBF_ASYNC | XBF_READ_AHEAD);
236 
237 	atomic_set(&bp->b_hold, 1);
238 	atomic_set(&bp->b_lru_ref, 1);
239 	init_completion(&bp->b_iowait);
240 	INIT_LIST_HEAD(&bp->b_lru);
241 	INIT_LIST_HEAD(&bp->b_list);
242 	INIT_LIST_HEAD(&bp->b_li_list);
243 	sema_init(&bp->b_sema, 0); /* held, no waiters */
244 	spin_lock_init(&bp->b_lock);
245 	bp->b_target = target;
246 	bp->b_flags = flags;
247 
248 	/*
249 	 * Set length and io_length to the same value initially.
250 	 * I/O routines should use io_length, which will be the same in
251 	 * most cases but may be reset (e.g. XFS recovery).
252 	 */
253 	error = xfs_buf_get_maps(bp, nmaps);
254 	if (error)  {
255 		kmem_zone_free(xfs_buf_zone, bp);
256 		return NULL;
257 	}
258 
259 	bp->b_bn = map[0].bm_bn;
260 	bp->b_length = 0;
261 	for (i = 0; i < nmaps; i++) {
262 		bp->b_maps[i].bm_bn = map[i].bm_bn;
263 		bp->b_maps[i].bm_len = map[i].bm_len;
264 		bp->b_length += map[i].bm_len;
265 	}
266 	bp->b_io_length = bp->b_length;
267 
268 	atomic_set(&bp->b_pin_count, 0);
269 	init_waitqueue_head(&bp->b_waiters);
270 
271 	XFS_STATS_INC(target->bt_mount, xb_create);
272 	trace_xfs_buf_init(bp, _RET_IP_);
273 
274 	return bp;
275 }
276 
277 /*
278  *	Allocate a page array capable of holding a specified number
279  *	of pages, and point the page buf at it.
280  */
281 STATIC int
_xfs_buf_get_pages(xfs_buf_t * bp,int page_count)282 _xfs_buf_get_pages(
283 	xfs_buf_t		*bp,
284 	int			page_count)
285 {
286 	/* Make sure that we have a page list */
287 	if (bp->b_pages == NULL) {
288 		bp->b_page_count = page_count;
289 		if (page_count <= XB_PAGES) {
290 			bp->b_pages = bp->b_page_array;
291 		} else {
292 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
293 						 page_count, KM_NOFS);
294 			if (bp->b_pages == NULL)
295 				return -ENOMEM;
296 		}
297 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
298 	}
299 	return 0;
300 }
301 
302 /*
303  *	Frees b_pages if it was allocated.
304  */
305 STATIC void
_xfs_buf_free_pages(xfs_buf_t * bp)306 _xfs_buf_free_pages(
307 	xfs_buf_t	*bp)
308 {
309 	if (bp->b_pages != bp->b_page_array) {
310 		kmem_free(bp->b_pages);
311 		bp->b_pages = NULL;
312 	}
313 }
314 
315 /*
316  *	Releases the specified buffer.
317  *
318  * 	The modification state of any associated pages is left unchanged.
319  * 	The buffer must not be on any hash - use xfs_buf_rele instead for
320  * 	hashed and refcounted buffers
321  */
322 void
xfs_buf_free(xfs_buf_t * bp)323 xfs_buf_free(
324 	xfs_buf_t		*bp)
325 {
326 	trace_xfs_buf_free(bp, _RET_IP_);
327 
328 	ASSERT(list_empty(&bp->b_lru));
329 
330 	if (bp->b_flags & _XBF_PAGES) {
331 		uint		i;
332 
333 		if (xfs_buf_is_vmapped(bp))
334 			vm_unmap_ram(bp->b_addr - bp->b_offset,
335 					bp->b_page_count);
336 
337 		for (i = 0; i < bp->b_page_count; i++) {
338 			struct page	*page = bp->b_pages[i];
339 
340 			__free_page(page);
341 		}
342 	} else if (bp->b_flags & _XBF_KMEM)
343 		kmem_free(bp->b_addr);
344 	_xfs_buf_free_pages(bp);
345 	xfs_buf_free_maps(bp);
346 	kmem_zone_free(xfs_buf_zone, bp);
347 }
348 
349 /*
350  * Allocates all the pages for buffer in question and builds it's page list.
351  */
352 STATIC int
xfs_buf_allocate_memory(xfs_buf_t * bp,uint flags)353 xfs_buf_allocate_memory(
354 	xfs_buf_t		*bp,
355 	uint			flags)
356 {
357 	size_t			size;
358 	size_t			nbytes, offset;
359 	gfp_t			gfp_mask = xb_to_gfp(flags);
360 	unsigned short		page_count, i;
361 	xfs_off_t		start, end;
362 	int			error;
363 
364 	/*
365 	 * for buffers that are contained within a single page, just allocate
366 	 * the memory from the heap - there's no need for the complexity of
367 	 * page arrays to keep allocation down to order 0.
368 	 */
369 	size = BBTOB(bp->b_length);
370 	if (size < PAGE_SIZE) {
371 		bp->b_addr = kmem_alloc(size, KM_NOFS);
372 		if (!bp->b_addr) {
373 			/* low memory - use alloc_page loop instead */
374 			goto use_alloc_page;
375 		}
376 
377 		if (((unsigned long)(bp->b_addr + size - 1) & PAGE_MASK) !=
378 		    ((unsigned long)bp->b_addr & PAGE_MASK)) {
379 			/* b_addr spans two pages - use alloc_page instead */
380 			kmem_free(bp->b_addr);
381 			bp->b_addr = NULL;
382 			goto use_alloc_page;
383 		}
384 		bp->b_offset = offset_in_page(bp->b_addr);
385 		bp->b_pages = bp->b_page_array;
386 		bp->b_pages[0] = virt_to_page(bp->b_addr);
387 		bp->b_page_count = 1;
388 		bp->b_flags |= _XBF_KMEM;
389 		return 0;
390 	}
391 
392 use_alloc_page:
393 	start = BBTOB(bp->b_maps[0].bm_bn) >> PAGE_SHIFT;
394 	end = (BBTOB(bp->b_maps[0].bm_bn + bp->b_length) + PAGE_SIZE - 1)
395 								>> PAGE_SHIFT;
396 	page_count = end - start;
397 	error = _xfs_buf_get_pages(bp, page_count);
398 	if (unlikely(error))
399 		return error;
400 
401 	offset = bp->b_offset;
402 	bp->b_flags |= _XBF_PAGES;
403 
404 	for (i = 0; i < bp->b_page_count; i++) {
405 		struct page	*page;
406 		uint		retries = 0;
407 retry:
408 		page = alloc_page(gfp_mask);
409 		if (unlikely(page == NULL)) {
410 			if (flags & XBF_READ_AHEAD) {
411 				bp->b_page_count = i;
412 				error = -ENOMEM;
413 				goto out_free_pages;
414 			}
415 
416 			/*
417 			 * This could deadlock.
418 			 *
419 			 * But until all the XFS lowlevel code is revamped to
420 			 * handle buffer allocation failures we can't do much.
421 			 */
422 			if (!(++retries % 100))
423 				xfs_err(NULL,
424 		"%s(%u) possible memory allocation deadlock in %s (mode:0x%x)",
425 					current->comm, current->pid,
426 					__func__, gfp_mask);
427 
428 			XFS_STATS_INC(bp->b_target->bt_mount, xb_page_retries);
429 			congestion_wait(BLK_RW_ASYNC, HZ/50);
430 			goto retry;
431 		}
432 
433 		XFS_STATS_INC(bp->b_target->bt_mount, xb_page_found);
434 
435 		nbytes = min_t(size_t, size, PAGE_SIZE - offset);
436 		size -= nbytes;
437 		bp->b_pages[i] = page;
438 		offset = 0;
439 	}
440 	return 0;
441 
442 out_free_pages:
443 	for (i = 0; i < bp->b_page_count; i++)
444 		__free_page(bp->b_pages[i]);
445 	bp->b_flags &= ~_XBF_PAGES;
446 	return error;
447 }
448 
449 /*
450  *	Map buffer into kernel address-space if necessary.
451  */
452 STATIC int
_xfs_buf_map_pages(xfs_buf_t * bp,uint flags)453 _xfs_buf_map_pages(
454 	xfs_buf_t		*bp,
455 	uint			flags)
456 {
457 	ASSERT(bp->b_flags & _XBF_PAGES);
458 	if (bp->b_page_count == 1) {
459 		/* A single page buffer is always mappable */
460 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
461 	} else if (flags & XBF_UNMAPPED) {
462 		bp->b_addr = NULL;
463 	} else {
464 		int retried = 0;
465 		unsigned nofs_flag;
466 
467 		/*
468 		 * vm_map_ram() will allocate auxillary structures (e.g.
469 		 * pagetables) with GFP_KERNEL, yet we are likely to be under
470 		 * GFP_NOFS context here. Hence we need to tell memory reclaim
471 		 * that we are in such a context via PF_MEMALLOC_NOFS to prevent
472 		 * memory reclaim re-entering the filesystem here and
473 		 * potentially deadlocking.
474 		 */
475 		nofs_flag = memalloc_nofs_save();
476 		do {
477 			bp->b_addr = vm_map_ram(bp->b_pages, bp->b_page_count,
478 						-1, PAGE_KERNEL);
479 			if (bp->b_addr)
480 				break;
481 			vm_unmap_aliases();
482 		} while (retried++ <= 1);
483 		memalloc_nofs_restore(nofs_flag);
484 
485 		if (!bp->b_addr)
486 			return -ENOMEM;
487 		bp->b_addr += bp->b_offset;
488 	}
489 
490 	return 0;
491 }
492 
493 /*
494  *	Finding and Reading Buffers
495  */
496 static int
_xfs_buf_obj_cmp(struct rhashtable_compare_arg * arg,const void * obj)497 _xfs_buf_obj_cmp(
498 	struct rhashtable_compare_arg	*arg,
499 	const void			*obj)
500 {
501 	const struct xfs_buf_map	*map = arg->key;
502 	const struct xfs_buf		*bp = obj;
503 
504 	/*
505 	 * The key hashing in the lookup path depends on the key being the
506 	 * first element of the compare_arg, make sure to assert this.
507 	 */
508 	BUILD_BUG_ON(offsetof(struct xfs_buf_map, bm_bn) != 0);
509 
510 	if (bp->b_bn != map->bm_bn)
511 		return 1;
512 
513 	if (unlikely(bp->b_length != map->bm_len)) {
514 		/*
515 		 * found a block number match. If the range doesn't
516 		 * match, the only way this is allowed is if the buffer
517 		 * in the cache is stale and the transaction that made
518 		 * it stale has not yet committed. i.e. we are
519 		 * reallocating a busy extent. Skip this buffer and
520 		 * continue searching for an exact match.
521 		 */
522 		ASSERT(bp->b_flags & XBF_STALE);
523 		return 1;
524 	}
525 	return 0;
526 }
527 
528 static const struct rhashtable_params xfs_buf_hash_params = {
529 	.min_size		= 32,	/* empty AGs have minimal footprint */
530 	.nelem_hint		= 16,
531 	.key_len		= sizeof(xfs_daddr_t),
532 	.key_offset		= offsetof(struct xfs_buf, b_bn),
533 	.head_offset		= offsetof(struct xfs_buf, b_rhash_head),
534 	.automatic_shrinking	= true,
535 	.obj_cmpfn		= _xfs_buf_obj_cmp,
536 };
537 
538 int
xfs_buf_hash_init(struct xfs_perag * pag)539 xfs_buf_hash_init(
540 	struct xfs_perag	*pag)
541 {
542 	spin_lock_init(&pag->pag_buf_lock);
543 	return rhashtable_init(&pag->pag_buf_hash, &xfs_buf_hash_params);
544 }
545 
546 void
xfs_buf_hash_destroy(struct xfs_perag * pag)547 xfs_buf_hash_destroy(
548 	struct xfs_perag	*pag)
549 {
550 	rhashtable_destroy(&pag->pag_buf_hash);
551 }
552 
553 /*
554  * Look up a buffer in the buffer cache and return it referenced and locked
555  * in @found_bp.
556  *
557  * If @new_bp is supplied and we have a lookup miss, insert @new_bp into the
558  * cache.
559  *
560  * If XBF_TRYLOCK is set in @flags, only try to lock the buffer and return
561  * -EAGAIN if we fail to lock it.
562  *
563  * Return values are:
564  *	-EFSCORRUPTED if have been supplied with an invalid address
565  *	-EAGAIN on trylock failure
566  *	-ENOENT if we fail to find a match and @new_bp was NULL
567  *	0, with @found_bp:
568  *		- @new_bp if we inserted it into the cache
569  *		- the buffer we found and locked.
570  */
571 static int
xfs_buf_find(struct xfs_buftarg * btp,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf * new_bp,struct xfs_buf ** found_bp)572 xfs_buf_find(
573 	struct xfs_buftarg	*btp,
574 	struct xfs_buf_map	*map,
575 	int			nmaps,
576 	xfs_buf_flags_t		flags,
577 	struct xfs_buf		*new_bp,
578 	struct xfs_buf		**found_bp)
579 {
580 	struct xfs_perag	*pag;
581 	xfs_buf_t		*bp;
582 	struct xfs_buf_map	cmap = { .bm_bn = map[0].bm_bn };
583 	xfs_daddr_t		eofs;
584 	int			i;
585 
586 	*found_bp = NULL;
587 
588 	for (i = 0; i < nmaps; i++)
589 		cmap.bm_len += map[i].bm_len;
590 
591 	/* Check for IOs smaller than the sector size / not sector aligned */
592 	ASSERT(!(BBTOB(cmap.bm_len) < btp->bt_meta_sectorsize));
593 	ASSERT(!(BBTOB(cmap.bm_bn) & (xfs_off_t)btp->bt_meta_sectormask));
594 
595 	/*
596 	 * Corrupted block numbers can get through to here, unfortunately, so we
597 	 * have to check that the buffer falls within the filesystem bounds.
598 	 */
599 	eofs = XFS_FSB_TO_BB(btp->bt_mount, btp->bt_mount->m_sb.sb_dblocks);
600 	if (cmap.bm_bn < 0 || cmap.bm_bn >= eofs) {
601 		xfs_alert(btp->bt_mount,
602 			  "%s: daddr 0x%llx out of range, EOFS 0x%llx",
603 			  __func__, cmap.bm_bn, eofs);
604 		WARN_ON(1);
605 		return -EFSCORRUPTED;
606 	}
607 
608 	pag = xfs_perag_get(btp->bt_mount,
609 			    xfs_daddr_to_agno(btp->bt_mount, cmap.bm_bn));
610 
611 	spin_lock(&pag->pag_buf_lock);
612 	bp = rhashtable_lookup_fast(&pag->pag_buf_hash, &cmap,
613 				    xfs_buf_hash_params);
614 	if (bp) {
615 		atomic_inc(&bp->b_hold);
616 		goto found;
617 	}
618 
619 	/* No match found */
620 	if (!new_bp) {
621 		XFS_STATS_INC(btp->bt_mount, xb_miss_locked);
622 		spin_unlock(&pag->pag_buf_lock);
623 		xfs_perag_put(pag);
624 		return -ENOENT;
625 	}
626 
627 	/* the buffer keeps the perag reference until it is freed */
628 	new_bp->b_pag = pag;
629 	rhashtable_insert_fast(&pag->pag_buf_hash, &new_bp->b_rhash_head,
630 			       xfs_buf_hash_params);
631 	spin_unlock(&pag->pag_buf_lock);
632 	*found_bp = new_bp;
633 	return 0;
634 
635 found:
636 	spin_unlock(&pag->pag_buf_lock);
637 	xfs_perag_put(pag);
638 
639 	if (!xfs_buf_trylock(bp)) {
640 		if (flags & XBF_TRYLOCK) {
641 			xfs_buf_rele(bp);
642 			XFS_STATS_INC(btp->bt_mount, xb_busy_locked);
643 			return -EAGAIN;
644 		}
645 		xfs_buf_lock(bp);
646 		XFS_STATS_INC(btp->bt_mount, xb_get_locked_waited);
647 	}
648 
649 	/*
650 	 * if the buffer is stale, clear all the external state associated with
651 	 * it. We need to keep flags such as how we allocated the buffer memory
652 	 * intact here.
653 	 */
654 	if (bp->b_flags & XBF_STALE) {
655 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
656 		ASSERT(bp->b_iodone == NULL);
657 		bp->b_flags &= _XBF_KMEM | _XBF_PAGES;
658 		bp->b_ops = NULL;
659 	}
660 
661 	trace_xfs_buf_find(bp, flags, _RET_IP_);
662 	XFS_STATS_INC(btp->bt_mount, xb_get_locked);
663 	*found_bp = bp;
664 	return 0;
665 }
666 
667 struct xfs_buf *
xfs_buf_incore(struct xfs_buftarg * target,xfs_daddr_t blkno,size_t numblks,xfs_buf_flags_t flags)668 xfs_buf_incore(
669 	struct xfs_buftarg	*target,
670 	xfs_daddr_t		blkno,
671 	size_t			numblks,
672 	xfs_buf_flags_t		flags)
673 {
674 	struct xfs_buf		*bp;
675 	int			error;
676 	DEFINE_SINGLE_BUF_MAP(map, blkno, numblks);
677 
678 	error = xfs_buf_find(target, &map, 1, flags, NULL, &bp);
679 	if (error)
680 		return NULL;
681 	return bp;
682 }
683 
684 /*
685  * Assembles a buffer covering the specified range. The code is optimised for
686  * cache hits, as metadata intensive workloads will see 3 orders of magnitude
687  * more hits than misses.
688  */
689 struct xfs_buf *
xfs_buf_get_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)690 xfs_buf_get_map(
691 	struct xfs_buftarg	*target,
692 	struct xfs_buf_map	*map,
693 	int			nmaps,
694 	xfs_buf_flags_t		flags)
695 {
696 	struct xfs_buf		*bp;
697 	struct xfs_buf		*new_bp;
698 	int			error = 0;
699 
700 	error = xfs_buf_find(target, map, nmaps, flags, NULL, &bp);
701 
702 	switch (error) {
703 	case 0:
704 		/* cache hit */
705 		goto found;
706 	case -EAGAIN:
707 		/* cache hit, trylock failure, caller handles failure */
708 		ASSERT(flags & XBF_TRYLOCK);
709 		return NULL;
710 	case -ENOENT:
711 		/* cache miss, go for insert */
712 		break;
713 	case -EFSCORRUPTED:
714 	default:
715 		/*
716 		 * None of the higher layers understand failure types
717 		 * yet, so return NULL to signal a fatal lookup error.
718 		 */
719 		return NULL;
720 	}
721 
722 	new_bp = _xfs_buf_alloc(target, map, nmaps, flags);
723 	if (unlikely(!new_bp))
724 		return NULL;
725 
726 	error = xfs_buf_allocate_memory(new_bp, flags);
727 	if (error) {
728 		xfs_buf_free(new_bp);
729 		return NULL;
730 	}
731 
732 	error = xfs_buf_find(target, map, nmaps, flags, new_bp, &bp);
733 	if (error) {
734 		xfs_buf_free(new_bp);
735 		return NULL;
736 	}
737 
738 	if (bp != new_bp)
739 		xfs_buf_free(new_bp);
740 
741 found:
742 	if (!bp->b_addr) {
743 		error = _xfs_buf_map_pages(bp, flags);
744 		if (unlikely(error)) {
745 			xfs_warn(target->bt_mount,
746 				"%s: failed to map pagesn", __func__);
747 			xfs_buf_relse(bp);
748 			return NULL;
749 		}
750 	}
751 
752 	/*
753 	 * Clear b_error if this is a lookup from a caller that doesn't expect
754 	 * valid data to be found in the buffer.
755 	 */
756 	if (!(flags & XBF_READ))
757 		xfs_buf_ioerror(bp, 0);
758 
759 	XFS_STATS_INC(target->bt_mount, xb_get);
760 	trace_xfs_buf_get(bp, flags, _RET_IP_);
761 	return bp;
762 }
763 
764 STATIC int
_xfs_buf_read(xfs_buf_t * bp,xfs_buf_flags_t flags)765 _xfs_buf_read(
766 	xfs_buf_t		*bp,
767 	xfs_buf_flags_t		flags)
768 {
769 	ASSERT(!(flags & XBF_WRITE));
770 	ASSERT(bp->b_maps[0].bm_bn != XFS_BUF_DADDR_NULL);
771 
772 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_READ_AHEAD);
773 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | XBF_READ_AHEAD);
774 
775 	return xfs_buf_submit(bp);
776 }
777 
778 xfs_buf_t *
xfs_buf_read_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,const struct xfs_buf_ops * ops)779 xfs_buf_read_map(
780 	struct xfs_buftarg	*target,
781 	struct xfs_buf_map	*map,
782 	int			nmaps,
783 	xfs_buf_flags_t		flags,
784 	const struct xfs_buf_ops *ops)
785 {
786 	struct xfs_buf		*bp;
787 
788 	flags |= XBF_READ;
789 
790 	bp = xfs_buf_get_map(target, map, nmaps, flags);
791 	if (bp) {
792 		trace_xfs_buf_read(bp, flags, _RET_IP_);
793 
794 		if (!(bp->b_flags & XBF_DONE)) {
795 			XFS_STATS_INC(target->bt_mount, xb_get_read);
796 			bp->b_ops = ops;
797 			_xfs_buf_read(bp, flags);
798 		} else if (flags & XBF_ASYNC) {
799 			/*
800 			 * Read ahead call which is already satisfied,
801 			 * drop the buffer
802 			 */
803 			xfs_buf_relse(bp);
804 			return NULL;
805 		} else {
806 			/* We do not want read in the flags */
807 			bp->b_flags &= ~XBF_READ;
808 		}
809 	}
810 
811 	return bp;
812 }
813 
814 /*
815  *	If we are not low on memory then do the readahead in a deadlock
816  *	safe manner.
817  */
818 void
xfs_buf_readahead_map(struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,const struct xfs_buf_ops * ops)819 xfs_buf_readahead_map(
820 	struct xfs_buftarg	*target,
821 	struct xfs_buf_map	*map,
822 	int			nmaps,
823 	const struct xfs_buf_ops *ops)
824 {
825 	if (bdi_read_congested(target->bt_bdev->bd_bdi))
826 		return;
827 
828 	xfs_buf_read_map(target, map, nmaps,
829 		     XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD, ops);
830 }
831 
832 /*
833  * Read an uncached buffer from disk. Allocates and returns a locked
834  * buffer containing the disk contents or nothing.
835  */
836 int
xfs_buf_read_uncached(struct xfs_buftarg * target,xfs_daddr_t daddr,size_t numblks,int flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)837 xfs_buf_read_uncached(
838 	struct xfs_buftarg	*target,
839 	xfs_daddr_t		daddr,
840 	size_t			numblks,
841 	int			flags,
842 	struct xfs_buf		**bpp,
843 	const struct xfs_buf_ops *ops)
844 {
845 	struct xfs_buf		*bp;
846 
847 	*bpp = NULL;
848 
849 	bp = xfs_buf_get_uncached(target, numblks, flags);
850 	if (!bp)
851 		return -ENOMEM;
852 
853 	/* set up the buffer for a read IO */
854 	ASSERT(bp->b_map_count == 1);
855 	bp->b_bn = XFS_BUF_DADDR_NULL;  /* always null for uncached buffers */
856 	bp->b_maps[0].bm_bn = daddr;
857 	bp->b_flags |= XBF_READ;
858 	bp->b_ops = ops;
859 
860 	xfs_buf_submit(bp);
861 	if (bp->b_error) {
862 		int	error = bp->b_error;
863 		xfs_buf_relse(bp);
864 		return error;
865 	}
866 
867 	*bpp = bp;
868 	return 0;
869 }
870 
871 /*
872  * Return a buffer allocated as an empty buffer and associated to external
873  * memory via xfs_buf_associate_memory() back to it's empty state.
874  */
875 void
xfs_buf_set_empty(struct xfs_buf * bp,size_t numblks)876 xfs_buf_set_empty(
877 	struct xfs_buf		*bp,
878 	size_t			numblks)
879 {
880 	if (bp->b_pages)
881 		_xfs_buf_free_pages(bp);
882 
883 	bp->b_pages = NULL;
884 	bp->b_page_count = 0;
885 	bp->b_addr = NULL;
886 	bp->b_length = numblks;
887 	bp->b_io_length = numblks;
888 
889 	ASSERT(bp->b_map_count == 1);
890 	bp->b_bn = XFS_BUF_DADDR_NULL;
891 	bp->b_maps[0].bm_bn = XFS_BUF_DADDR_NULL;
892 	bp->b_maps[0].bm_len = bp->b_length;
893 }
894 
895 static inline struct page *
mem_to_page(void * addr)896 mem_to_page(
897 	void			*addr)
898 {
899 	if ((!is_vmalloc_addr(addr))) {
900 		return virt_to_page(addr);
901 	} else {
902 		return vmalloc_to_page(addr);
903 	}
904 }
905 
906 int
xfs_buf_associate_memory(xfs_buf_t * bp,void * mem,size_t len)907 xfs_buf_associate_memory(
908 	xfs_buf_t		*bp,
909 	void			*mem,
910 	size_t			len)
911 {
912 	int			rval;
913 	int			i = 0;
914 	unsigned long		pageaddr;
915 	unsigned long		offset;
916 	size_t			buflen;
917 	int			page_count;
918 
919 	pageaddr = (unsigned long)mem & PAGE_MASK;
920 	offset = (unsigned long)mem - pageaddr;
921 	buflen = PAGE_ALIGN(len + offset);
922 	page_count = buflen >> PAGE_SHIFT;
923 
924 	/* Free any previous set of page pointers */
925 	if (bp->b_pages)
926 		_xfs_buf_free_pages(bp);
927 
928 	bp->b_pages = NULL;
929 	bp->b_addr = mem;
930 
931 	rval = _xfs_buf_get_pages(bp, page_count);
932 	if (rval)
933 		return rval;
934 
935 	bp->b_offset = offset;
936 
937 	for (i = 0; i < bp->b_page_count; i++) {
938 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
939 		pageaddr += PAGE_SIZE;
940 	}
941 
942 	bp->b_io_length = BTOBB(len);
943 	bp->b_length = BTOBB(buflen);
944 
945 	return 0;
946 }
947 
948 xfs_buf_t *
xfs_buf_get_uncached(struct xfs_buftarg * target,size_t numblks,int flags)949 xfs_buf_get_uncached(
950 	struct xfs_buftarg	*target,
951 	size_t			numblks,
952 	int			flags)
953 {
954 	unsigned long		page_count;
955 	int			error, i;
956 	struct xfs_buf		*bp;
957 	DEFINE_SINGLE_BUF_MAP(map, XFS_BUF_DADDR_NULL, numblks);
958 
959 	/* flags might contain irrelevant bits, pass only what we care about */
960 	bp = _xfs_buf_alloc(target, &map, 1, flags & XBF_NO_IOACCT);
961 	if (unlikely(bp == NULL))
962 		goto fail;
963 
964 	page_count = PAGE_ALIGN(numblks << BBSHIFT) >> PAGE_SHIFT;
965 	error = _xfs_buf_get_pages(bp, page_count);
966 	if (error)
967 		goto fail_free_buf;
968 
969 	for (i = 0; i < page_count; i++) {
970 		bp->b_pages[i] = alloc_page(xb_to_gfp(flags));
971 		if (!bp->b_pages[i])
972 			goto fail_free_mem;
973 	}
974 	bp->b_flags |= _XBF_PAGES;
975 
976 	error = _xfs_buf_map_pages(bp, 0);
977 	if (unlikely(error)) {
978 		xfs_warn(target->bt_mount,
979 			"%s: failed to map pages", __func__);
980 		goto fail_free_mem;
981 	}
982 
983 	trace_xfs_buf_get_uncached(bp, _RET_IP_);
984 	return bp;
985 
986  fail_free_mem:
987 	while (--i >= 0)
988 		__free_page(bp->b_pages[i]);
989 	_xfs_buf_free_pages(bp);
990  fail_free_buf:
991 	xfs_buf_free_maps(bp);
992 	kmem_zone_free(xfs_buf_zone, bp);
993  fail:
994 	return NULL;
995 }
996 
997 /*
998  *	Increment reference count on buffer, to hold the buffer concurrently
999  *	with another thread which may release (free) the buffer asynchronously.
1000  *	Must hold the buffer already to call this function.
1001  */
1002 void
xfs_buf_hold(xfs_buf_t * bp)1003 xfs_buf_hold(
1004 	xfs_buf_t		*bp)
1005 {
1006 	trace_xfs_buf_hold(bp, _RET_IP_);
1007 	atomic_inc(&bp->b_hold);
1008 }
1009 
1010 /*
1011  * Release a hold on the specified buffer. If the hold count is 1, the buffer is
1012  * placed on LRU or freed (depending on b_lru_ref).
1013  */
1014 void
xfs_buf_rele(xfs_buf_t * bp)1015 xfs_buf_rele(
1016 	xfs_buf_t		*bp)
1017 {
1018 	struct xfs_perag	*pag = bp->b_pag;
1019 	bool			release;
1020 	bool			freebuf = false;
1021 
1022 	trace_xfs_buf_rele(bp, _RET_IP_);
1023 
1024 	if (!pag) {
1025 		ASSERT(list_empty(&bp->b_lru));
1026 		if (atomic_dec_and_test(&bp->b_hold)) {
1027 			xfs_buf_ioacct_dec(bp);
1028 			xfs_buf_free(bp);
1029 		}
1030 		return;
1031 	}
1032 
1033 	ASSERT(atomic_read(&bp->b_hold) > 0);
1034 
1035 	/*
1036 	 * We grab the b_lock here first to serialise racing xfs_buf_rele()
1037 	 * calls. The pag_buf_lock being taken on the last reference only
1038 	 * serialises against racing lookups in xfs_buf_find(). IOWs, the second
1039 	 * to last reference we drop here is not serialised against the last
1040 	 * reference until we take bp->b_lock. Hence if we don't grab b_lock
1041 	 * first, the last "release" reference can win the race to the lock and
1042 	 * free the buffer before the second-to-last reference is processed,
1043 	 * leading to a use-after-free scenario.
1044 	 */
1045 	spin_lock(&bp->b_lock);
1046 	release = atomic_dec_and_lock(&bp->b_hold, &pag->pag_buf_lock);
1047 	if (!release) {
1048 		/*
1049 		 * Drop the in-flight state if the buffer is already on the LRU
1050 		 * and it holds the only reference. This is racy because we
1051 		 * haven't acquired the pag lock, but the use of _XBF_IN_FLIGHT
1052 		 * ensures the decrement occurs only once per-buf.
1053 		 */
1054 		if ((atomic_read(&bp->b_hold) == 1) && !list_empty(&bp->b_lru))
1055 			__xfs_buf_ioacct_dec(bp);
1056 		goto out_unlock;
1057 	}
1058 
1059 	/* the last reference has been dropped ... */
1060 	__xfs_buf_ioacct_dec(bp);
1061 	if (!(bp->b_flags & XBF_STALE) && atomic_read(&bp->b_lru_ref)) {
1062 		/*
1063 		 * If the buffer is added to the LRU take a new reference to the
1064 		 * buffer for the LRU and clear the (now stale) dispose list
1065 		 * state flag
1066 		 */
1067 		if (list_lru_add(&bp->b_target->bt_lru, &bp->b_lru)) {
1068 			bp->b_state &= ~XFS_BSTATE_DISPOSE;
1069 			atomic_inc(&bp->b_hold);
1070 		}
1071 		spin_unlock(&pag->pag_buf_lock);
1072 	} else {
1073 		/*
1074 		 * most of the time buffers will already be removed from the
1075 		 * LRU, so optimise that case by checking for the
1076 		 * XFS_BSTATE_DISPOSE flag indicating the last list the buffer
1077 		 * was on was the disposal list
1078 		 */
1079 		if (!(bp->b_state & XFS_BSTATE_DISPOSE)) {
1080 			list_lru_del(&bp->b_target->bt_lru, &bp->b_lru);
1081 		} else {
1082 			ASSERT(list_empty(&bp->b_lru));
1083 		}
1084 
1085 		ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1086 		rhashtable_remove_fast(&pag->pag_buf_hash, &bp->b_rhash_head,
1087 				       xfs_buf_hash_params);
1088 		spin_unlock(&pag->pag_buf_lock);
1089 		xfs_perag_put(pag);
1090 		freebuf = true;
1091 	}
1092 
1093 out_unlock:
1094 	spin_unlock(&bp->b_lock);
1095 
1096 	if (freebuf)
1097 		xfs_buf_free(bp);
1098 }
1099 
1100 
1101 /*
1102  *	Lock a buffer object, if it is not already locked.
1103  *
1104  *	If we come across a stale, pinned, locked buffer, we know that we are
1105  *	being asked to lock a buffer that has been reallocated. Because it is
1106  *	pinned, we know that the log has not been pushed to disk and hence it
1107  *	will still be locked.  Rather than continuing to have trylock attempts
1108  *	fail until someone else pushes the log, push it ourselves before
1109  *	returning.  This means that the xfsaild will not get stuck trying
1110  *	to push on stale inode buffers.
1111  */
1112 int
xfs_buf_trylock(struct xfs_buf * bp)1113 xfs_buf_trylock(
1114 	struct xfs_buf		*bp)
1115 {
1116 	int			locked;
1117 
1118 	locked = down_trylock(&bp->b_sema) == 0;
1119 	if (locked)
1120 		trace_xfs_buf_trylock(bp, _RET_IP_);
1121 	else
1122 		trace_xfs_buf_trylock_fail(bp, _RET_IP_);
1123 	return locked;
1124 }
1125 
1126 /*
1127  *	Lock a buffer object.
1128  *
1129  *	If we come across a stale, pinned, locked buffer, we know that we
1130  *	are being asked to lock a buffer that has been reallocated. Because
1131  *	it is pinned, we know that the log has not been pushed to disk and
1132  *	hence it will still be locked. Rather than sleeping until someone
1133  *	else pushes the log, push it ourselves before trying to get the lock.
1134  */
1135 void
xfs_buf_lock(struct xfs_buf * bp)1136 xfs_buf_lock(
1137 	struct xfs_buf		*bp)
1138 {
1139 	trace_xfs_buf_lock(bp, _RET_IP_);
1140 
1141 	if (atomic_read(&bp->b_pin_count) && (bp->b_flags & XBF_STALE))
1142 		xfs_log_force(bp->b_target->bt_mount, 0);
1143 	down(&bp->b_sema);
1144 
1145 	trace_xfs_buf_lock_done(bp, _RET_IP_);
1146 }
1147 
1148 void
xfs_buf_unlock(struct xfs_buf * bp)1149 xfs_buf_unlock(
1150 	struct xfs_buf		*bp)
1151 {
1152 	ASSERT(xfs_buf_islocked(bp));
1153 
1154 	up(&bp->b_sema);
1155 	trace_xfs_buf_unlock(bp, _RET_IP_);
1156 }
1157 
1158 STATIC void
xfs_buf_wait_unpin(xfs_buf_t * bp)1159 xfs_buf_wait_unpin(
1160 	xfs_buf_t		*bp)
1161 {
1162 	DECLARE_WAITQUEUE	(wait, current);
1163 
1164 	if (atomic_read(&bp->b_pin_count) == 0)
1165 		return;
1166 
1167 	add_wait_queue(&bp->b_waiters, &wait);
1168 	for (;;) {
1169 		set_current_state(TASK_UNINTERRUPTIBLE);
1170 		if (atomic_read(&bp->b_pin_count) == 0)
1171 			break;
1172 		io_schedule();
1173 	}
1174 	remove_wait_queue(&bp->b_waiters, &wait);
1175 	set_current_state(TASK_RUNNING);
1176 }
1177 
1178 /*
1179  *	Buffer Utility Routines
1180  */
1181 
1182 void
xfs_buf_ioend(struct xfs_buf * bp)1183 xfs_buf_ioend(
1184 	struct xfs_buf	*bp)
1185 {
1186 	bool		read = bp->b_flags & XBF_READ;
1187 
1188 	trace_xfs_buf_iodone(bp, _RET_IP_);
1189 
1190 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
1191 
1192 	/*
1193 	 * Pull in IO completion errors now. We are guaranteed to be running
1194 	 * single threaded, so we don't need the lock to read b_io_error.
1195 	 */
1196 	if (!bp->b_error && bp->b_io_error)
1197 		xfs_buf_ioerror(bp, bp->b_io_error);
1198 
1199 	/* Only validate buffers that were read without errors */
1200 	if (read && !bp->b_error && bp->b_ops) {
1201 		ASSERT(!bp->b_iodone);
1202 		bp->b_ops->verify_read(bp);
1203 	}
1204 
1205 	if (!bp->b_error) {
1206 		bp->b_flags &= ~XBF_WRITE_FAIL;
1207 		bp->b_flags |= XBF_DONE;
1208 	}
1209 
1210 	if (bp->b_iodone)
1211 		(*(bp->b_iodone))(bp);
1212 	else if (bp->b_flags & XBF_ASYNC)
1213 		xfs_buf_relse(bp);
1214 	else
1215 		complete(&bp->b_iowait);
1216 }
1217 
1218 static void
xfs_buf_ioend_work(struct work_struct * work)1219 xfs_buf_ioend_work(
1220 	struct work_struct	*work)
1221 {
1222 	struct xfs_buf		*bp =
1223 		container_of(work, xfs_buf_t, b_ioend_work);
1224 
1225 	xfs_buf_ioend(bp);
1226 }
1227 
1228 static void
xfs_buf_ioend_async(struct xfs_buf * bp)1229 xfs_buf_ioend_async(
1230 	struct xfs_buf	*bp)
1231 {
1232 	INIT_WORK(&bp->b_ioend_work, xfs_buf_ioend_work);
1233 	queue_work(bp->b_ioend_wq, &bp->b_ioend_work);
1234 }
1235 
1236 void
__xfs_buf_ioerror(xfs_buf_t * bp,int error,xfs_failaddr_t failaddr)1237 __xfs_buf_ioerror(
1238 	xfs_buf_t		*bp,
1239 	int			error,
1240 	xfs_failaddr_t		failaddr)
1241 {
1242 	ASSERT(error <= 0 && error >= -1000);
1243 	bp->b_error = error;
1244 	trace_xfs_buf_ioerror(bp, error, failaddr);
1245 }
1246 
1247 void
xfs_buf_ioerror_alert(struct xfs_buf * bp,const char * func)1248 xfs_buf_ioerror_alert(
1249 	struct xfs_buf		*bp,
1250 	const char		*func)
1251 {
1252 	xfs_alert(bp->b_target->bt_mount,
1253 "metadata I/O error in \"%s\" at daddr 0x%llx len %d error %d",
1254 			func, (uint64_t)XFS_BUF_ADDR(bp), bp->b_length,
1255 			-bp->b_error);
1256 }
1257 
1258 int
xfs_bwrite(struct xfs_buf * bp)1259 xfs_bwrite(
1260 	struct xfs_buf		*bp)
1261 {
1262 	int			error;
1263 
1264 	ASSERT(xfs_buf_islocked(bp));
1265 
1266 	bp->b_flags |= XBF_WRITE;
1267 	bp->b_flags &= ~(XBF_ASYNC | XBF_READ | _XBF_DELWRI_Q |
1268 			 XBF_DONE);
1269 
1270 	error = xfs_buf_submit(bp);
1271 	if (error) {
1272 		xfs_force_shutdown(bp->b_target->bt_mount,
1273 				   SHUTDOWN_META_IO_ERROR);
1274 	}
1275 	return error;
1276 }
1277 
1278 static void
xfs_buf_bio_end_io(struct bio * bio)1279 xfs_buf_bio_end_io(
1280 	struct bio		*bio)
1281 {
1282 	struct xfs_buf		*bp = (struct xfs_buf *)bio->bi_private;
1283 
1284 	/*
1285 	 * don't overwrite existing errors - otherwise we can lose errors on
1286 	 * buffers that require multiple bios to complete.
1287 	 */
1288 	if (bio->bi_status) {
1289 		int error = blk_status_to_errno(bio->bi_status);
1290 
1291 		cmpxchg(&bp->b_io_error, 0, error);
1292 	}
1293 
1294 	if (!bp->b_error && xfs_buf_is_vmapped(bp) && (bp->b_flags & XBF_READ))
1295 		invalidate_kernel_vmap_range(bp->b_addr, xfs_buf_vmap_len(bp));
1296 
1297 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1)
1298 		xfs_buf_ioend_async(bp);
1299 	bio_put(bio);
1300 }
1301 
1302 static void
xfs_buf_ioapply_map(struct xfs_buf * bp,int map,int * buf_offset,int * count,int op,int op_flags)1303 xfs_buf_ioapply_map(
1304 	struct xfs_buf	*bp,
1305 	int		map,
1306 	int		*buf_offset,
1307 	int		*count,
1308 	int		op,
1309 	int		op_flags)
1310 {
1311 	int		page_index;
1312 	int		total_nr_pages = bp->b_page_count;
1313 	int		nr_pages;
1314 	struct bio	*bio;
1315 	sector_t	sector =  bp->b_maps[map].bm_bn;
1316 	int		size;
1317 	int		offset;
1318 
1319 	/* skip the pages in the buffer before the start offset */
1320 	page_index = 0;
1321 	offset = *buf_offset;
1322 	while (offset >= PAGE_SIZE) {
1323 		page_index++;
1324 		offset -= PAGE_SIZE;
1325 	}
1326 
1327 	/*
1328 	 * Limit the IO size to the length of the current vector, and update the
1329 	 * remaining IO count for the next time around.
1330 	 */
1331 	size = min_t(int, BBTOB(bp->b_maps[map].bm_len), *count);
1332 	*count -= size;
1333 	*buf_offset += size;
1334 
1335 next_chunk:
1336 	atomic_inc(&bp->b_io_remaining);
1337 	nr_pages = min(total_nr_pages, BIO_MAX_PAGES);
1338 
1339 	bio = bio_alloc(GFP_NOIO, nr_pages);
1340 	bio_set_dev(bio, bp->b_target->bt_bdev);
1341 	bio->bi_iter.bi_sector = sector;
1342 	bio->bi_end_io = xfs_buf_bio_end_io;
1343 	bio->bi_private = bp;
1344 	bio_set_op_attrs(bio, op, op_flags);
1345 
1346 	for (; size && nr_pages; nr_pages--, page_index++) {
1347 		int	rbytes, nbytes = PAGE_SIZE - offset;
1348 
1349 		if (nbytes > size)
1350 			nbytes = size;
1351 
1352 		rbytes = bio_add_page(bio, bp->b_pages[page_index], nbytes,
1353 				      offset);
1354 		if (rbytes < nbytes)
1355 			break;
1356 
1357 		offset = 0;
1358 		sector += BTOBB(nbytes);
1359 		size -= nbytes;
1360 		total_nr_pages--;
1361 	}
1362 
1363 	if (likely(bio->bi_iter.bi_size)) {
1364 		if (xfs_buf_is_vmapped(bp)) {
1365 			flush_kernel_vmap_range(bp->b_addr,
1366 						xfs_buf_vmap_len(bp));
1367 		}
1368 		submit_bio(bio);
1369 		if (size)
1370 			goto next_chunk;
1371 	} else {
1372 		/*
1373 		 * This is guaranteed not to be the last io reference count
1374 		 * because the caller (xfs_buf_submit) holds a count itself.
1375 		 */
1376 		atomic_dec(&bp->b_io_remaining);
1377 		xfs_buf_ioerror(bp, -EIO);
1378 		bio_put(bio);
1379 	}
1380 
1381 }
1382 
1383 STATIC void
_xfs_buf_ioapply(struct xfs_buf * bp)1384 _xfs_buf_ioapply(
1385 	struct xfs_buf	*bp)
1386 {
1387 	struct blk_plug	plug;
1388 	int		op;
1389 	int		op_flags = 0;
1390 	int		offset;
1391 	int		size;
1392 	int		i;
1393 
1394 	/*
1395 	 * Make sure we capture only current IO errors rather than stale errors
1396 	 * left over from previous use of the buffer (e.g. failed readahead).
1397 	 */
1398 	bp->b_error = 0;
1399 
1400 	/*
1401 	 * Initialize the I/O completion workqueue if we haven't yet or the
1402 	 * submitter has not opted to specify a custom one.
1403 	 */
1404 	if (!bp->b_ioend_wq)
1405 		bp->b_ioend_wq = bp->b_target->bt_mount->m_buf_workqueue;
1406 
1407 	if (bp->b_flags & XBF_WRITE) {
1408 		op = REQ_OP_WRITE;
1409 		if (bp->b_flags & XBF_SYNCIO)
1410 			op_flags = REQ_SYNC;
1411 		if (bp->b_flags & XBF_FUA)
1412 			op_flags |= REQ_FUA;
1413 		if (bp->b_flags & XBF_FLUSH)
1414 			op_flags |= REQ_PREFLUSH;
1415 
1416 		/*
1417 		 * Run the write verifier callback function if it exists. If
1418 		 * this function fails it will mark the buffer with an error and
1419 		 * the IO should not be dispatched.
1420 		 */
1421 		if (bp->b_ops) {
1422 			bp->b_ops->verify_write(bp);
1423 			if (bp->b_error) {
1424 				xfs_force_shutdown(bp->b_target->bt_mount,
1425 						   SHUTDOWN_CORRUPT_INCORE);
1426 				return;
1427 			}
1428 		} else if (bp->b_bn != XFS_BUF_DADDR_NULL) {
1429 			struct xfs_mount *mp = bp->b_target->bt_mount;
1430 
1431 			/*
1432 			 * non-crc filesystems don't attach verifiers during
1433 			 * log recovery, so don't warn for such filesystems.
1434 			 */
1435 			if (xfs_sb_version_hascrc(&mp->m_sb)) {
1436 				xfs_warn(mp,
1437 					"%s: no buf ops on daddr 0x%llx len %d",
1438 					__func__, bp->b_bn, bp->b_length);
1439 				xfs_hex_dump(bp->b_addr,
1440 						XFS_CORRUPTION_DUMP_LEN);
1441 				dump_stack();
1442 			}
1443 		}
1444 	} else if (bp->b_flags & XBF_READ_AHEAD) {
1445 		op = REQ_OP_READ;
1446 		op_flags = REQ_RAHEAD;
1447 	} else {
1448 		op = REQ_OP_READ;
1449 	}
1450 
1451 	/* we only use the buffer cache for meta-data */
1452 	op_flags |= REQ_META;
1453 
1454 	/*
1455 	 * Walk all the vectors issuing IO on them. Set up the initial offset
1456 	 * into the buffer and the desired IO size before we start -
1457 	 * _xfs_buf_ioapply_vec() will modify them appropriately for each
1458 	 * subsequent call.
1459 	 */
1460 	offset = bp->b_offset;
1461 	size = BBTOB(bp->b_io_length);
1462 	blk_start_plug(&plug);
1463 	for (i = 0; i < bp->b_map_count; i++) {
1464 		xfs_buf_ioapply_map(bp, i, &offset, &size, op, op_flags);
1465 		if (bp->b_error)
1466 			break;
1467 		if (size <= 0)
1468 			break;	/* all done */
1469 	}
1470 	blk_finish_plug(&plug);
1471 }
1472 
1473 /*
1474  * Wait for I/O completion of a sync buffer and return the I/O error code.
1475  */
1476 static int
xfs_buf_iowait(struct xfs_buf * bp)1477 xfs_buf_iowait(
1478 	struct xfs_buf	*bp)
1479 {
1480 	ASSERT(!(bp->b_flags & XBF_ASYNC));
1481 
1482 	trace_xfs_buf_iowait(bp, _RET_IP_);
1483 	wait_for_completion(&bp->b_iowait);
1484 	trace_xfs_buf_iowait_done(bp, _RET_IP_);
1485 
1486 	return bp->b_error;
1487 }
1488 
1489 /*
1490  * Buffer I/O submission path, read or write. Asynchronous submission transfers
1491  * the buffer lock ownership and the current reference to the IO. It is not
1492  * safe to reference the buffer after a call to this function unless the caller
1493  * holds an additional reference itself.
1494  */
1495 int
__xfs_buf_submit(struct xfs_buf * bp,bool wait)1496 __xfs_buf_submit(
1497 	struct xfs_buf	*bp,
1498 	bool		wait)
1499 {
1500 	int		error = 0;
1501 
1502 	trace_xfs_buf_submit(bp, _RET_IP_);
1503 
1504 	ASSERT(!(bp->b_flags & _XBF_DELWRI_Q));
1505 
1506 	/* on shutdown we stale and complete the buffer immediately */
1507 	if (XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
1508 		xfs_buf_ioerror(bp, -EIO);
1509 		bp->b_flags &= ~XBF_DONE;
1510 		xfs_buf_stale(bp);
1511 		xfs_buf_ioend(bp);
1512 		return -EIO;
1513 	}
1514 
1515 	/*
1516 	 * Grab a reference so the buffer does not go away underneath us. For
1517 	 * async buffers, I/O completion drops the callers reference, which
1518 	 * could occur before submission returns.
1519 	 */
1520 	xfs_buf_hold(bp);
1521 
1522 	if (bp->b_flags & XBF_WRITE)
1523 		xfs_buf_wait_unpin(bp);
1524 
1525 	/* clear the internal error state to avoid spurious errors */
1526 	bp->b_io_error = 0;
1527 
1528 	/*
1529 	 * Set the count to 1 initially, this will stop an I/O completion
1530 	 * callout which happens before we have started all the I/O from calling
1531 	 * xfs_buf_ioend too early.
1532 	 */
1533 	atomic_set(&bp->b_io_remaining, 1);
1534 	if (bp->b_flags & XBF_ASYNC)
1535 		xfs_buf_ioacct_inc(bp);
1536 	_xfs_buf_ioapply(bp);
1537 
1538 	/*
1539 	 * If _xfs_buf_ioapply failed, we can get back here with only the IO
1540 	 * reference we took above. If we drop it to zero, run completion so
1541 	 * that we don't return to the caller with completion still pending.
1542 	 */
1543 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
1544 		if (bp->b_error || !(bp->b_flags & XBF_ASYNC))
1545 			xfs_buf_ioend(bp);
1546 		else
1547 			xfs_buf_ioend_async(bp);
1548 	}
1549 
1550 	if (wait)
1551 		error = xfs_buf_iowait(bp);
1552 
1553 	/*
1554 	 * Release the hold that keeps the buffer referenced for the entire
1555 	 * I/O. Note that if the buffer is async, it is not safe to reference
1556 	 * after this release.
1557 	 */
1558 	xfs_buf_rele(bp);
1559 	return error;
1560 }
1561 
1562 void *
xfs_buf_offset(struct xfs_buf * bp,size_t offset)1563 xfs_buf_offset(
1564 	struct xfs_buf		*bp,
1565 	size_t			offset)
1566 {
1567 	struct page		*page;
1568 
1569 	if (bp->b_addr)
1570 		return bp->b_addr + offset;
1571 
1572 	offset += bp->b_offset;
1573 	page = bp->b_pages[offset >> PAGE_SHIFT];
1574 	return page_address(page) + (offset & (PAGE_SIZE-1));
1575 }
1576 
1577 /*
1578  *	Move data into or out of a buffer.
1579  */
1580 void
xfs_buf_iomove(xfs_buf_t * bp,size_t boff,size_t bsize,void * data,xfs_buf_rw_t mode)1581 xfs_buf_iomove(
1582 	xfs_buf_t		*bp,	/* buffer to process		*/
1583 	size_t			boff,	/* starting buffer offset	*/
1584 	size_t			bsize,	/* length to copy		*/
1585 	void			*data,	/* data address			*/
1586 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
1587 {
1588 	size_t			bend;
1589 
1590 	bend = boff + bsize;
1591 	while (boff < bend) {
1592 		struct page	*page;
1593 		int		page_index, page_offset, csize;
1594 
1595 		page_index = (boff + bp->b_offset) >> PAGE_SHIFT;
1596 		page_offset = (boff + bp->b_offset) & ~PAGE_MASK;
1597 		page = bp->b_pages[page_index];
1598 		csize = min_t(size_t, PAGE_SIZE - page_offset,
1599 				      BBTOB(bp->b_io_length) - boff);
1600 
1601 		ASSERT((csize + page_offset) <= PAGE_SIZE);
1602 
1603 		switch (mode) {
1604 		case XBRW_ZERO:
1605 			memset(page_address(page) + page_offset, 0, csize);
1606 			break;
1607 		case XBRW_READ:
1608 			memcpy(data, page_address(page) + page_offset, csize);
1609 			break;
1610 		case XBRW_WRITE:
1611 			memcpy(page_address(page) + page_offset, data, csize);
1612 		}
1613 
1614 		boff += csize;
1615 		data += csize;
1616 	}
1617 }
1618 
1619 /*
1620  *	Handling of buffer targets (buftargs).
1621  */
1622 
1623 /*
1624  * Wait for any bufs with callbacks that have been submitted but have not yet
1625  * returned. These buffers will have an elevated hold count, so wait on those
1626  * while freeing all the buffers only held by the LRU.
1627  */
1628 static enum lru_status
xfs_buftarg_wait_rele(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1629 xfs_buftarg_wait_rele(
1630 	struct list_head	*item,
1631 	struct list_lru_one	*lru,
1632 	spinlock_t		*lru_lock,
1633 	void			*arg)
1634 
1635 {
1636 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1637 	struct list_head	*dispose = arg;
1638 
1639 	if (atomic_read(&bp->b_hold) > 1) {
1640 		/* need to wait, so skip it this pass */
1641 		trace_xfs_buf_wait_buftarg(bp, _RET_IP_);
1642 		return LRU_SKIP;
1643 	}
1644 	if (!spin_trylock(&bp->b_lock))
1645 		return LRU_SKIP;
1646 
1647 	/*
1648 	 * clear the LRU reference count so the buffer doesn't get
1649 	 * ignored in xfs_buf_rele().
1650 	 */
1651 	atomic_set(&bp->b_lru_ref, 0);
1652 	bp->b_state |= XFS_BSTATE_DISPOSE;
1653 	list_lru_isolate_move(lru, item, dispose);
1654 	spin_unlock(&bp->b_lock);
1655 	return LRU_REMOVED;
1656 }
1657 
1658 void
xfs_wait_buftarg(struct xfs_buftarg * btp)1659 xfs_wait_buftarg(
1660 	struct xfs_buftarg	*btp)
1661 {
1662 	LIST_HEAD(dispose);
1663 	int loop = 0;
1664 
1665 	/*
1666 	 * First wait on the buftarg I/O count for all in-flight buffers to be
1667 	 * released. This is critical as new buffers do not make the LRU until
1668 	 * they are released.
1669 	 *
1670 	 * Next, flush the buffer workqueue to ensure all completion processing
1671 	 * has finished. Just waiting on buffer locks is not sufficient for
1672 	 * async IO as the reference count held over IO is not released until
1673 	 * after the buffer lock is dropped. Hence we need to ensure here that
1674 	 * all reference counts have been dropped before we start walking the
1675 	 * LRU list.
1676 	 */
1677 	while (percpu_counter_sum(&btp->bt_io_count))
1678 		delay(100);
1679 	flush_workqueue(btp->bt_mount->m_buf_workqueue);
1680 
1681 	/* loop until there is nothing left on the lru list. */
1682 	while (list_lru_count(&btp->bt_lru)) {
1683 		list_lru_walk(&btp->bt_lru, xfs_buftarg_wait_rele,
1684 			      &dispose, LONG_MAX);
1685 
1686 		while (!list_empty(&dispose)) {
1687 			struct xfs_buf *bp;
1688 			bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1689 			list_del_init(&bp->b_lru);
1690 			if (bp->b_flags & XBF_WRITE_FAIL) {
1691 				xfs_alert(btp->bt_mount,
1692 "Corruption Alert: Buffer at daddr 0x%llx had permanent write failures!",
1693 					(long long)bp->b_bn);
1694 				xfs_alert(btp->bt_mount,
1695 "Please run xfs_repair to determine the extent of the problem.");
1696 			}
1697 			xfs_buf_rele(bp);
1698 		}
1699 		if (loop++ != 0)
1700 			delay(100);
1701 	}
1702 }
1703 
1704 static enum lru_status
xfs_buftarg_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)1705 xfs_buftarg_isolate(
1706 	struct list_head	*item,
1707 	struct list_lru_one	*lru,
1708 	spinlock_t		*lru_lock,
1709 	void			*arg)
1710 {
1711 	struct xfs_buf		*bp = container_of(item, struct xfs_buf, b_lru);
1712 	struct list_head	*dispose = arg;
1713 
1714 	/*
1715 	 * we are inverting the lru lock/bp->b_lock here, so use a trylock.
1716 	 * If we fail to get the lock, just skip it.
1717 	 */
1718 	if (!spin_trylock(&bp->b_lock))
1719 		return LRU_SKIP;
1720 	/*
1721 	 * Decrement the b_lru_ref count unless the value is already
1722 	 * zero. If the value is already zero, we need to reclaim the
1723 	 * buffer, otherwise it gets another trip through the LRU.
1724 	 */
1725 	if (atomic_add_unless(&bp->b_lru_ref, -1, 0)) {
1726 		spin_unlock(&bp->b_lock);
1727 		return LRU_ROTATE;
1728 	}
1729 
1730 	bp->b_state |= XFS_BSTATE_DISPOSE;
1731 	list_lru_isolate_move(lru, item, dispose);
1732 	spin_unlock(&bp->b_lock);
1733 	return LRU_REMOVED;
1734 }
1735 
1736 static unsigned long
xfs_buftarg_shrink_scan(struct shrinker * shrink,struct shrink_control * sc)1737 xfs_buftarg_shrink_scan(
1738 	struct shrinker		*shrink,
1739 	struct shrink_control	*sc)
1740 {
1741 	struct xfs_buftarg	*btp = container_of(shrink,
1742 					struct xfs_buftarg, bt_shrinker);
1743 	LIST_HEAD(dispose);
1744 	unsigned long		freed;
1745 
1746 	freed = list_lru_shrink_walk(&btp->bt_lru, sc,
1747 				     xfs_buftarg_isolate, &dispose);
1748 
1749 	while (!list_empty(&dispose)) {
1750 		struct xfs_buf *bp;
1751 		bp = list_first_entry(&dispose, struct xfs_buf, b_lru);
1752 		list_del_init(&bp->b_lru);
1753 		xfs_buf_rele(bp);
1754 	}
1755 
1756 	return freed;
1757 }
1758 
1759 static unsigned long
xfs_buftarg_shrink_count(struct shrinker * shrink,struct shrink_control * sc)1760 xfs_buftarg_shrink_count(
1761 	struct shrinker		*shrink,
1762 	struct shrink_control	*sc)
1763 {
1764 	struct xfs_buftarg	*btp = container_of(shrink,
1765 					struct xfs_buftarg, bt_shrinker);
1766 	return list_lru_shrink_count(&btp->bt_lru, sc);
1767 }
1768 
1769 void
xfs_free_buftarg(struct xfs_buftarg * btp)1770 xfs_free_buftarg(
1771 	struct xfs_buftarg	*btp)
1772 {
1773 	unregister_shrinker(&btp->bt_shrinker);
1774 	ASSERT(percpu_counter_sum(&btp->bt_io_count) == 0);
1775 	percpu_counter_destroy(&btp->bt_io_count);
1776 	list_lru_destroy(&btp->bt_lru);
1777 
1778 	xfs_blkdev_issue_flush(btp);
1779 
1780 	kmem_free(btp);
1781 }
1782 
1783 int
xfs_setsize_buftarg(xfs_buftarg_t * btp,unsigned int sectorsize)1784 xfs_setsize_buftarg(
1785 	xfs_buftarg_t		*btp,
1786 	unsigned int		sectorsize)
1787 {
1788 	/* Set up metadata sector size info */
1789 	btp->bt_meta_sectorsize = sectorsize;
1790 	btp->bt_meta_sectormask = sectorsize - 1;
1791 
1792 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
1793 		xfs_warn(btp->bt_mount,
1794 			"Cannot set_blocksize to %u on device %pg",
1795 			sectorsize, btp->bt_bdev);
1796 		return -EINVAL;
1797 	}
1798 
1799 	/* Set up device logical sector size mask */
1800 	btp->bt_logical_sectorsize = bdev_logical_block_size(btp->bt_bdev);
1801 	btp->bt_logical_sectormask = bdev_logical_block_size(btp->bt_bdev) - 1;
1802 
1803 	return 0;
1804 }
1805 
1806 /*
1807  * When allocating the initial buffer target we have not yet
1808  * read in the superblock, so don't know what sized sectors
1809  * are being used at this early stage.  Play safe.
1810  */
1811 STATIC int
xfs_setsize_buftarg_early(xfs_buftarg_t * btp,struct block_device * bdev)1812 xfs_setsize_buftarg_early(
1813 	xfs_buftarg_t		*btp,
1814 	struct block_device	*bdev)
1815 {
1816 	return xfs_setsize_buftarg(btp, bdev_logical_block_size(bdev));
1817 }
1818 
1819 xfs_buftarg_t *
xfs_alloc_buftarg(struct xfs_mount * mp,struct block_device * bdev,struct dax_device * dax_dev)1820 xfs_alloc_buftarg(
1821 	struct xfs_mount	*mp,
1822 	struct block_device	*bdev,
1823 	struct dax_device	*dax_dev)
1824 {
1825 	xfs_buftarg_t		*btp;
1826 
1827 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP | KM_NOFS);
1828 
1829 	btp->bt_mount = mp;
1830 	btp->bt_dev =  bdev->bd_dev;
1831 	btp->bt_bdev = bdev;
1832 	btp->bt_daxdev = dax_dev;
1833 
1834 	if (xfs_setsize_buftarg_early(btp, bdev))
1835 		goto error_free;
1836 
1837 	if (list_lru_init(&btp->bt_lru))
1838 		goto error_free;
1839 
1840 	if (percpu_counter_init(&btp->bt_io_count, 0, GFP_KERNEL))
1841 		goto error_lru;
1842 
1843 	btp->bt_shrinker.count_objects = xfs_buftarg_shrink_count;
1844 	btp->bt_shrinker.scan_objects = xfs_buftarg_shrink_scan;
1845 	btp->bt_shrinker.seeks = DEFAULT_SEEKS;
1846 	btp->bt_shrinker.flags = SHRINKER_NUMA_AWARE;
1847 	if (register_shrinker(&btp->bt_shrinker))
1848 		goto error_pcpu;
1849 	return btp;
1850 
1851 error_pcpu:
1852 	percpu_counter_destroy(&btp->bt_io_count);
1853 error_lru:
1854 	list_lru_destroy(&btp->bt_lru);
1855 error_free:
1856 	kmem_free(btp);
1857 	return NULL;
1858 }
1859 
1860 /*
1861  * Cancel a delayed write list.
1862  *
1863  * Remove each buffer from the list, clear the delwri queue flag and drop the
1864  * associated buffer reference.
1865  */
1866 void
xfs_buf_delwri_cancel(struct list_head * list)1867 xfs_buf_delwri_cancel(
1868 	struct list_head	*list)
1869 {
1870 	struct xfs_buf		*bp;
1871 
1872 	while (!list_empty(list)) {
1873 		bp = list_first_entry(list, struct xfs_buf, b_list);
1874 
1875 		xfs_buf_lock(bp);
1876 		bp->b_flags &= ~_XBF_DELWRI_Q;
1877 		list_del_init(&bp->b_list);
1878 		xfs_buf_relse(bp);
1879 	}
1880 }
1881 
1882 /*
1883  * Add a buffer to the delayed write list.
1884  *
1885  * This queues a buffer for writeout if it hasn't already been.  Note that
1886  * neither this routine nor the buffer list submission functions perform
1887  * any internal synchronization.  It is expected that the lists are thread-local
1888  * to the callers.
1889  *
1890  * Returns true if we queued up the buffer, or false if it already had
1891  * been on the buffer list.
1892  */
1893 bool
xfs_buf_delwri_queue(struct xfs_buf * bp,struct list_head * list)1894 xfs_buf_delwri_queue(
1895 	struct xfs_buf		*bp,
1896 	struct list_head	*list)
1897 {
1898 	ASSERT(xfs_buf_islocked(bp));
1899 	ASSERT(!(bp->b_flags & XBF_READ));
1900 
1901 	/*
1902 	 * If the buffer is already marked delwri it already is queued up
1903 	 * by someone else for imediate writeout.  Just ignore it in that
1904 	 * case.
1905 	 */
1906 	if (bp->b_flags & _XBF_DELWRI_Q) {
1907 		trace_xfs_buf_delwri_queued(bp, _RET_IP_);
1908 		return false;
1909 	}
1910 
1911 	trace_xfs_buf_delwri_queue(bp, _RET_IP_);
1912 
1913 	/*
1914 	 * If a buffer gets written out synchronously or marked stale while it
1915 	 * is on a delwri list we lazily remove it. To do this, the other party
1916 	 * clears the  _XBF_DELWRI_Q flag but otherwise leaves the buffer alone.
1917 	 * It remains referenced and on the list.  In a rare corner case it
1918 	 * might get readded to a delwri list after the synchronous writeout, in
1919 	 * which case we need just need to re-add the flag here.
1920 	 */
1921 	bp->b_flags |= _XBF_DELWRI_Q;
1922 	if (list_empty(&bp->b_list)) {
1923 		atomic_inc(&bp->b_hold);
1924 		list_add_tail(&bp->b_list, list);
1925 	}
1926 
1927 	return true;
1928 }
1929 
1930 /*
1931  * Compare function is more complex than it needs to be because
1932  * the return value is only 32 bits and we are doing comparisons
1933  * on 64 bit values
1934  */
1935 static int
xfs_buf_cmp(void * priv,struct list_head * a,struct list_head * b)1936 xfs_buf_cmp(
1937 	void		*priv,
1938 	struct list_head *a,
1939 	struct list_head *b)
1940 {
1941 	struct xfs_buf	*ap = container_of(a, struct xfs_buf, b_list);
1942 	struct xfs_buf	*bp = container_of(b, struct xfs_buf, b_list);
1943 	xfs_daddr_t		diff;
1944 
1945 	diff = ap->b_maps[0].bm_bn - bp->b_maps[0].bm_bn;
1946 	if (diff < 0)
1947 		return -1;
1948 	if (diff > 0)
1949 		return 1;
1950 	return 0;
1951 }
1952 
1953 /*
1954  * Submit buffers for write. If wait_list is specified, the buffers are
1955  * submitted using sync I/O and placed on the wait list such that the caller can
1956  * iowait each buffer. Otherwise async I/O is used and the buffers are released
1957  * at I/O completion time. In either case, buffers remain locked until I/O
1958  * completes and the buffer is released from the queue.
1959  */
1960 static int
xfs_buf_delwri_submit_buffers(struct list_head * buffer_list,struct list_head * wait_list)1961 xfs_buf_delwri_submit_buffers(
1962 	struct list_head	*buffer_list,
1963 	struct list_head	*wait_list)
1964 {
1965 	struct xfs_buf		*bp, *n;
1966 	LIST_HEAD		(submit_list);
1967 	int			pinned = 0;
1968 	struct blk_plug		plug;
1969 
1970 	list_sort(NULL, buffer_list, xfs_buf_cmp);
1971 
1972 	blk_start_plug(&plug);
1973 	list_for_each_entry_safe(bp, n, buffer_list, b_list) {
1974 		if (!wait_list) {
1975 			if (xfs_buf_ispinned(bp)) {
1976 				pinned++;
1977 				continue;
1978 			}
1979 			if (!xfs_buf_trylock(bp))
1980 				continue;
1981 		} else {
1982 			xfs_buf_lock(bp);
1983 		}
1984 
1985 		/*
1986 		 * Someone else might have written the buffer synchronously or
1987 		 * marked it stale in the meantime.  In that case only the
1988 		 * _XBF_DELWRI_Q flag got cleared, and we have to drop the
1989 		 * reference and remove it from the list here.
1990 		 */
1991 		if (!(bp->b_flags & _XBF_DELWRI_Q)) {
1992 			list_del_init(&bp->b_list);
1993 			xfs_buf_relse(bp);
1994 			continue;
1995 		}
1996 
1997 		trace_xfs_buf_delwri_split(bp, _RET_IP_);
1998 
1999 		/*
2000 		 * If we have a wait list, each buffer (and associated delwri
2001 		 * queue reference) transfers to it and is submitted
2002 		 * synchronously. Otherwise, drop the buffer from the delwri
2003 		 * queue and submit async.
2004 		 */
2005 		bp->b_flags &= ~_XBF_DELWRI_Q;
2006 		bp->b_flags |= XBF_WRITE;
2007 		if (wait_list) {
2008 			bp->b_flags &= ~XBF_ASYNC;
2009 			list_move_tail(&bp->b_list, wait_list);
2010 		} else {
2011 			bp->b_flags |= XBF_ASYNC;
2012 			list_del_init(&bp->b_list);
2013 		}
2014 		__xfs_buf_submit(bp, false);
2015 	}
2016 	blk_finish_plug(&plug);
2017 
2018 	return pinned;
2019 }
2020 
2021 /*
2022  * Write out a buffer list asynchronously.
2023  *
2024  * This will take the @buffer_list, write all non-locked and non-pinned buffers
2025  * out and not wait for I/O completion on any of the buffers.  This interface
2026  * is only safely useable for callers that can track I/O completion by higher
2027  * level means, e.g. AIL pushing as the @buffer_list is consumed in this
2028  * function.
2029  *
2030  * Note: this function will skip buffers it would block on, and in doing so
2031  * leaves them on @buffer_list so they can be retried on a later pass. As such,
2032  * it is up to the caller to ensure that the buffer list is fully submitted or
2033  * cancelled appropriately when they are finished with the list. Failure to
2034  * cancel or resubmit the list until it is empty will result in leaked buffers
2035  * at unmount time.
2036  */
2037 int
xfs_buf_delwri_submit_nowait(struct list_head * buffer_list)2038 xfs_buf_delwri_submit_nowait(
2039 	struct list_head	*buffer_list)
2040 {
2041 	return xfs_buf_delwri_submit_buffers(buffer_list, NULL);
2042 }
2043 
2044 /*
2045  * Write out a buffer list synchronously.
2046  *
2047  * This will take the @buffer_list, write all buffers out and wait for I/O
2048  * completion on all of the buffers. @buffer_list is consumed by the function,
2049  * so callers must have some other way of tracking buffers if they require such
2050  * functionality.
2051  */
2052 int
xfs_buf_delwri_submit(struct list_head * buffer_list)2053 xfs_buf_delwri_submit(
2054 	struct list_head	*buffer_list)
2055 {
2056 	LIST_HEAD		(wait_list);
2057 	int			error = 0, error2;
2058 	struct xfs_buf		*bp;
2059 
2060 	xfs_buf_delwri_submit_buffers(buffer_list, &wait_list);
2061 
2062 	/* Wait for IO to complete. */
2063 	while (!list_empty(&wait_list)) {
2064 		bp = list_first_entry(&wait_list, struct xfs_buf, b_list);
2065 
2066 		list_del_init(&bp->b_list);
2067 
2068 		/*
2069 		 * Wait on the locked buffer, check for errors and unlock and
2070 		 * release the delwri queue reference.
2071 		 */
2072 		error2 = xfs_buf_iowait(bp);
2073 		xfs_buf_relse(bp);
2074 		if (!error)
2075 			error = error2;
2076 	}
2077 
2078 	return error;
2079 }
2080 
2081 /*
2082  * Push a single buffer on a delwri queue.
2083  *
2084  * The purpose of this function is to submit a single buffer of a delwri queue
2085  * and return with the buffer still on the original queue. The waiting delwri
2086  * buffer submission infrastructure guarantees transfer of the delwri queue
2087  * buffer reference to a temporary wait list. We reuse this infrastructure to
2088  * transfer the buffer back to the original queue.
2089  *
2090  * Note the buffer transitions from the queued state, to the submitted and wait
2091  * listed state and back to the queued state during this call. The buffer
2092  * locking and queue management logic between _delwri_pushbuf() and
2093  * _delwri_queue() guarantee that the buffer cannot be queued to another list
2094  * before returning.
2095  */
2096 int
xfs_buf_delwri_pushbuf(struct xfs_buf * bp,struct list_head * buffer_list)2097 xfs_buf_delwri_pushbuf(
2098 	struct xfs_buf		*bp,
2099 	struct list_head	*buffer_list)
2100 {
2101 	LIST_HEAD		(submit_list);
2102 	int			error;
2103 
2104 	ASSERT(bp->b_flags & _XBF_DELWRI_Q);
2105 
2106 	trace_xfs_buf_delwri_pushbuf(bp, _RET_IP_);
2107 
2108 	/*
2109 	 * Isolate the buffer to a new local list so we can submit it for I/O
2110 	 * independently from the rest of the original list.
2111 	 */
2112 	xfs_buf_lock(bp);
2113 	list_move(&bp->b_list, &submit_list);
2114 	xfs_buf_unlock(bp);
2115 
2116 	/*
2117 	 * Delwri submission clears the DELWRI_Q buffer flag and returns with
2118 	 * the buffer on the wait list with the original reference. Rather than
2119 	 * bounce the buffer from a local wait list back to the original list
2120 	 * after I/O completion, reuse the original list as the wait list.
2121 	 */
2122 	xfs_buf_delwri_submit_buffers(&submit_list, buffer_list);
2123 
2124 	/*
2125 	 * The buffer is now locked, under I/O and wait listed on the original
2126 	 * delwri queue. Wait for I/O completion, restore the DELWRI_Q flag and
2127 	 * return with the buffer unlocked and on the original queue.
2128 	 */
2129 	error = xfs_buf_iowait(bp);
2130 	bp->b_flags |= _XBF_DELWRI_Q;
2131 	xfs_buf_unlock(bp);
2132 
2133 	return error;
2134 }
2135 
2136 int __init
xfs_buf_init(void)2137 xfs_buf_init(void)
2138 {
2139 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
2140 						KM_ZONE_HWALIGN, NULL);
2141 	if (!xfs_buf_zone)
2142 		goto out;
2143 
2144 	return 0;
2145 
2146  out:
2147 	return -ENOMEM;
2148 }
2149 
2150 void
xfs_buf_terminate(void)2151 xfs_buf_terminate(void)
2152 {
2153 	kmem_zone_destroy(xfs_buf_zone);
2154 }
2155 
xfs_buf_set_ref(struct xfs_buf * bp,int lru_ref)2156 void xfs_buf_set_ref(struct xfs_buf *bp, int lru_ref)
2157 {
2158 	/*
2159 	 * Set the lru reference count to 0 based on the error injection tag.
2160 	 * This allows userspace to disrupt buffer caching for debug/testing
2161 	 * purposes.
2162 	 */
2163 	if (XFS_TEST_ERROR(false, bp->b_target->bt_mount,
2164 			   XFS_ERRTAG_BUF_LRU_REF))
2165 		lru_ref = 0;
2166 
2167 	atomic_set(&bp->b_lru_ref, lru_ref);
2168 }
2169