1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_format.h"
9 #include "xfs_log_format.h"
10 #include "xfs_trans_resv.h"
11 #include "xfs_bit.h"
12 #include "xfs_mount.h"
13 #include "xfs_trans.h"
14 #include "xfs_trans_priv.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_extfree_item.h"
17 #include "xfs_log.h"
18 #include "xfs_btree.h"
19 #include "xfs_rmap.h"
20
21
22 kmem_zone_t *xfs_efi_zone;
23 kmem_zone_t *xfs_efd_zone;
24
EFI_ITEM(struct xfs_log_item * lip)25 static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
26 {
27 return container_of(lip, struct xfs_efi_log_item, efi_item);
28 }
29
30 void
xfs_efi_item_free(struct xfs_efi_log_item * efip)31 xfs_efi_item_free(
32 struct xfs_efi_log_item *efip)
33 {
34 kmem_free(efip->efi_item.li_lv_shadow);
35 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
36 kmem_free(efip);
37 else
38 kmem_zone_free(xfs_efi_zone, efip);
39 }
40
41 /*
42 * Freeing the efi requires that we remove it from the AIL if it has already
43 * been placed there. However, the EFI may not yet have been placed in the AIL
44 * when called by xfs_efi_release() from EFD processing due to the ordering of
45 * committed vs unpin operations in bulk insert operations. Hence the reference
46 * count to ensure only the last caller frees the EFI.
47 */
48 void
xfs_efi_release(struct xfs_efi_log_item * efip)49 xfs_efi_release(
50 struct xfs_efi_log_item *efip)
51 {
52 ASSERT(atomic_read(&efip->efi_refcount) > 0);
53 if (atomic_dec_and_test(&efip->efi_refcount)) {
54 xfs_trans_ail_remove(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
55 xfs_efi_item_free(efip);
56 }
57 }
58
59 /*
60 * This returns the number of iovecs needed to log the given efi item.
61 * We only need 1 iovec for an efi item. It just logs the efi_log_format
62 * structure.
63 */
64 static inline int
xfs_efi_item_sizeof(struct xfs_efi_log_item * efip)65 xfs_efi_item_sizeof(
66 struct xfs_efi_log_item *efip)
67 {
68 return sizeof(struct xfs_efi_log_format) +
69 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
70 }
71
72 STATIC void
xfs_efi_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)73 xfs_efi_item_size(
74 struct xfs_log_item *lip,
75 int *nvecs,
76 int *nbytes)
77 {
78 *nvecs += 1;
79 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
80 }
81
82 /*
83 * This is called to fill in the vector of log iovecs for the
84 * given efi log item. We use only 1 iovec, and we point that
85 * at the efi_log_format structure embedded in the efi item.
86 * It is at this point that we assert that all of the extent
87 * slots in the efi item have been filled.
88 */
89 STATIC void
xfs_efi_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)90 xfs_efi_item_format(
91 struct xfs_log_item *lip,
92 struct xfs_log_vec *lv)
93 {
94 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
95 struct xfs_log_iovec *vecp = NULL;
96
97 ASSERT(atomic_read(&efip->efi_next_extent) ==
98 efip->efi_format.efi_nextents);
99
100 efip->efi_format.efi_type = XFS_LI_EFI;
101 efip->efi_format.efi_size = 1;
102
103 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
104 &efip->efi_format,
105 xfs_efi_item_sizeof(efip));
106 }
107
108
109 /*
110 * Pinning has no meaning for an efi item, so just return.
111 */
112 STATIC void
xfs_efi_item_pin(struct xfs_log_item * lip)113 xfs_efi_item_pin(
114 struct xfs_log_item *lip)
115 {
116 }
117
118 /*
119 * The unpin operation is the last place an EFI is manipulated in the log. It is
120 * either inserted in the AIL or aborted in the event of a log I/O error. In
121 * either case, the EFI transaction has been successfully committed to make it
122 * this far. Therefore, we expect whoever committed the EFI to either construct
123 * and commit the EFD or drop the EFD's reference in the event of error. Simply
124 * drop the log's EFI reference now that the log is done with it.
125 */
126 STATIC void
xfs_efi_item_unpin(struct xfs_log_item * lip,int remove)127 xfs_efi_item_unpin(
128 struct xfs_log_item *lip,
129 int remove)
130 {
131 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
132 xfs_efi_release(efip);
133 }
134
135 /*
136 * Efi items have no locking or pushing. However, since EFIs are pulled from
137 * the AIL when their corresponding EFDs are committed to disk, their situation
138 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
139 * will eventually flush the log. This should help in getting the EFI out of
140 * the AIL.
141 */
142 STATIC uint
xfs_efi_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)143 xfs_efi_item_push(
144 struct xfs_log_item *lip,
145 struct list_head *buffer_list)
146 {
147 return XFS_ITEM_PINNED;
148 }
149
150 /*
151 * The EFI has been either committed or aborted if the transaction has been
152 * cancelled. If the transaction was cancelled, an EFD isn't going to be
153 * constructed and thus we free the EFI here directly.
154 */
155 STATIC void
xfs_efi_item_unlock(struct xfs_log_item * lip)156 xfs_efi_item_unlock(
157 struct xfs_log_item *lip)
158 {
159 if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
160 xfs_efi_release(EFI_ITEM(lip));
161 }
162
163 /*
164 * The EFI is logged only once and cannot be moved in the log, so simply return
165 * the lsn at which it's been logged.
166 */
167 STATIC xfs_lsn_t
xfs_efi_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)168 xfs_efi_item_committed(
169 struct xfs_log_item *lip,
170 xfs_lsn_t lsn)
171 {
172 return lsn;
173 }
174
175 /*
176 * The EFI dependency tracking op doesn't do squat. It can't because
177 * it doesn't know where the free extent is coming from. The dependency
178 * tracking has to be handled by the "enclosing" metadata object. For
179 * example, for inodes, the inode is locked throughout the extent freeing
180 * so the dependency should be recorded there.
181 */
182 STATIC void
xfs_efi_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)183 xfs_efi_item_committing(
184 struct xfs_log_item *lip,
185 xfs_lsn_t lsn)
186 {
187 }
188
189 /*
190 * This is the ops vector shared by all efi log items.
191 */
192 static const struct xfs_item_ops xfs_efi_item_ops = {
193 .iop_size = xfs_efi_item_size,
194 .iop_format = xfs_efi_item_format,
195 .iop_pin = xfs_efi_item_pin,
196 .iop_unpin = xfs_efi_item_unpin,
197 .iop_unlock = xfs_efi_item_unlock,
198 .iop_committed = xfs_efi_item_committed,
199 .iop_push = xfs_efi_item_push,
200 .iop_committing = xfs_efi_item_committing
201 };
202
203
204 /*
205 * Allocate and initialize an efi item with the given number of extents.
206 */
207 struct xfs_efi_log_item *
xfs_efi_init(struct xfs_mount * mp,uint nextents)208 xfs_efi_init(
209 struct xfs_mount *mp,
210 uint nextents)
211
212 {
213 struct xfs_efi_log_item *efip;
214 uint size;
215
216 ASSERT(nextents > 0);
217 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
218 size = (uint)(sizeof(xfs_efi_log_item_t) +
219 ((nextents - 1) * sizeof(xfs_extent_t)));
220 efip = kmem_zalloc(size, KM_SLEEP);
221 } else {
222 efip = kmem_zone_zalloc(xfs_efi_zone, KM_SLEEP);
223 }
224
225 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
226 efip->efi_format.efi_nextents = nextents;
227 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
228 atomic_set(&efip->efi_next_extent, 0);
229 atomic_set(&efip->efi_refcount, 2);
230
231 return efip;
232 }
233
234 /*
235 * Copy an EFI format buffer from the given buf, and into the destination
236 * EFI format structure.
237 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
238 * one of which will be the native format for this kernel.
239 * It will handle the conversion of formats if necessary.
240 */
241 int
xfs_efi_copy_format(xfs_log_iovec_t * buf,xfs_efi_log_format_t * dst_efi_fmt)242 xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
243 {
244 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
245 uint i;
246 uint len = sizeof(xfs_efi_log_format_t) +
247 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
248 uint len32 = sizeof(xfs_efi_log_format_32_t) +
249 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
250 uint len64 = sizeof(xfs_efi_log_format_64_t) +
251 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
252
253 if (buf->i_len == len) {
254 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
255 return 0;
256 } else if (buf->i_len == len32) {
257 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
258
259 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
260 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
261 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
262 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
263 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
264 dst_efi_fmt->efi_extents[i].ext_start =
265 src_efi_fmt_32->efi_extents[i].ext_start;
266 dst_efi_fmt->efi_extents[i].ext_len =
267 src_efi_fmt_32->efi_extents[i].ext_len;
268 }
269 return 0;
270 } else if (buf->i_len == len64) {
271 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
272
273 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
274 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
275 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
276 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
277 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
278 dst_efi_fmt->efi_extents[i].ext_start =
279 src_efi_fmt_64->efi_extents[i].ext_start;
280 dst_efi_fmt->efi_extents[i].ext_len =
281 src_efi_fmt_64->efi_extents[i].ext_len;
282 }
283 return 0;
284 }
285 return -EFSCORRUPTED;
286 }
287
EFD_ITEM(struct xfs_log_item * lip)288 static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
289 {
290 return container_of(lip, struct xfs_efd_log_item, efd_item);
291 }
292
293 STATIC void
xfs_efd_item_free(struct xfs_efd_log_item * efdp)294 xfs_efd_item_free(struct xfs_efd_log_item *efdp)
295 {
296 kmem_free(efdp->efd_item.li_lv_shadow);
297 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
298 kmem_free(efdp);
299 else
300 kmem_zone_free(xfs_efd_zone, efdp);
301 }
302
303 /*
304 * This returns the number of iovecs needed to log the given efd item.
305 * We only need 1 iovec for an efd item. It just logs the efd_log_format
306 * structure.
307 */
308 static inline int
xfs_efd_item_sizeof(struct xfs_efd_log_item * efdp)309 xfs_efd_item_sizeof(
310 struct xfs_efd_log_item *efdp)
311 {
312 return sizeof(xfs_efd_log_format_t) +
313 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
314 }
315
316 STATIC void
xfs_efd_item_size(struct xfs_log_item * lip,int * nvecs,int * nbytes)317 xfs_efd_item_size(
318 struct xfs_log_item *lip,
319 int *nvecs,
320 int *nbytes)
321 {
322 *nvecs += 1;
323 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
324 }
325
326 /*
327 * This is called to fill in the vector of log iovecs for the
328 * given efd log item. We use only 1 iovec, and we point that
329 * at the efd_log_format structure embedded in the efd item.
330 * It is at this point that we assert that all of the extent
331 * slots in the efd item have been filled.
332 */
333 STATIC void
xfs_efd_item_format(struct xfs_log_item * lip,struct xfs_log_vec * lv)334 xfs_efd_item_format(
335 struct xfs_log_item *lip,
336 struct xfs_log_vec *lv)
337 {
338 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
339 struct xfs_log_iovec *vecp = NULL;
340
341 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
342
343 efdp->efd_format.efd_type = XFS_LI_EFD;
344 efdp->efd_format.efd_size = 1;
345
346 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
347 &efdp->efd_format,
348 xfs_efd_item_sizeof(efdp));
349 }
350
351 /*
352 * Pinning has no meaning for an efd item, so just return.
353 */
354 STATIC void
xfs_efd_item_pin(struct xfs_log_item * lip)355 xfs_efd_item_pin(
356 struct xfs_log_item *lip)
357 {
358 }
359
360 /*
361 * Since pinning has no meaning for an efd item, unpinning does
362 * not either.
363 */
364 STATIC void
xfs_efd_item_unpin(struct xfs_log_item * lip,int remove)365 xfs_efd_item_unpin(
366 struct xfs_log_item *lip,
367 int remove)
368 {
369 }
370
371 /*
372 * There isn't much you can do to push on an efd item. It is simply stuck
373 * waiting for the log to be flushed to disk.
374 */
375 STATIC uint
xfs_efd_item_push(struct xfs_log_item * lip,struct list_head * buffer_list)376 xfs_efd_item_push(
377 struct xfs_log_item *lip,
378 struct list_head *buffer_list)
379 {
380 return XFS_ITEM_PINNED;
381 }
382
383 /*
384 * The EFD is either committed or aborted if the transaction is cancelled. If
385 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
386 */
387 STATIC void
xfs_efd_item_unlock(struct xfs_log_item * lip)388 xfs_efd_item_unlock(
389 struct xfs_log_item *lip)
390 {
391 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
392
393 if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
394 xfs_efi_release(efdp->efd_efip);
395 xfs_efd_item_free(efdp);
396 }
397 }
398
399 /*
400 * When the efd item is committed to disk, all we need to do is delete our
401 * reference to our partner efi item and then free ourselves. Since we're
402 * freeing ourselves we must return -1 to keep the transaction code from further
403 * referencing this item.
404 */
405 STATIC xfs_lsn_t
xfs_efd_item_committed(struct xfs_log_item * lip,xfs_lsn_t lsn)406 xfs_efd_item_committed(
407 struct xfs_log_item *lip,
408 xfs_lsn_t lsn)
409 {
410 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
411
412 /*
413 * Drop the EFI reference regardless of whether the EFD has been
414 * aborted. Once the EFD transaction is constructed, it is the sole
415 * responsibility of the EFD to release the EFI (even if the EFI is
416 * aborted due to log I/O error).
417 */
418 xfs_efi_release(efdp->efd_efip);
419 xfs_efd_item_free(efdp);
420
421 return (xfs_lsn_t)-1;
422 }
423
424 /*
425 * The EFD dependency tracking op doesn't do squat. It can't because
426 * it doesn't know where the free extent is coming from. The dependency
427 * tracking has to be handled by the "enclosing" metadata object. For
428 * example, for inodes, the inode is locked throughout the extent freeing
429 * so the dependency should be recorded there.
430 */
431 STATIC void
xfs_efd_item_committing(struct xfs_log_item * lip,xfs_lsn_t lsn)432 xfs_efd_item_committing(
433 struct xfs_log_item *lip,
434 xfs_lsn_t lsn)
435 {
436 }
437
438 /*
439 * This is the ops vector shared by all efd log items.
440 */
441 static const struct xfs_item_ops xfs_efd_item_ops = {
442 .iop_size = xfs_efd_item_size,
443 .iop_format = xfs_efd_item_format,
444 .iop_pin = xfs_efd_item_pin,
445 .iop_unpin = xfs_efd_item_unpin,
446 .iop_unlock = xfs_efd_item_unlock,
447 .iop_committed = xfs_efd_item_committed,
448 .iop_push = xfs_efd_item_push,
449 .iop_committing = xfs_efd_item_committing
450 };
451
452 /*
453 * Allocate and initialize an efd item with the given number of extents.
454 */
455 struct xfs_efd_log_item *
xfs_efd_init(struct xfs_mount * mp,struct xfs_efi_log_item * efip,uint nextents)456 xfs_efd_init(
457 struct xfs_mount *mp,
458 struct xfs_efi_log_item *efip,
459 uint nextents)
460
461 {
462 struct xfs_efd_log_item *efdp;
463 uint size;
464
465 ASSERT(nextents > 0);
466 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
467 size = (uint)(sizeof(xfs_efd_log_item_t) +
468 ((nextents - 1) * sizeof(xfs_extent_t)));
469 efdp = kmem_zalloc(size, KM_SLEEP);
470 } else {
471 efdp = kmem_zone_zalloc(xfs_efd_zone, KM_SLEEP);
472 }
473
474 xfs_log_item_init(mp, &efdp->efd_item, XFS_LI_EFD, &xfs_efd_item_ops);
475 efdp->efd_efip = efip;
476 efdp->efd_format.efd_nextents = nextents;
477 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
478
479 return efdp;
480 }
481
482 /*
483 * Process an extent free intent item that was recovered from
484 * the log. We need to free the extents that it describes.
485 */
486 int
xfs_efi_recover(struct xfs_mount * mp,struct xfs_efi_log_item * efip)487 xfs_efi_recover(
488 struct xfs_mount *mp,
489 struct xfs_efi_log_item *efip)
490 {
491 struct xfs_efd_log_item *efdp;
492 struct xfs_trans *tp;
493 int i;
494 int error = 0;
495 xfs_extent_t *extp;
496 xfs_fsblock_t startblock_fsb;
497 struct xfs_owner_info oinfo;
498
499 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
500
501 /*
502 * First check the validity of the extents described by the
503 * EFI. If any are bad, then assume that all are bad and
504 * just toss the EFI.
505 */
506 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
507 extp = &efip->efi_format.efi_extents[i];
508 startblock_fsb = XFS_BB_TO_FSB(mp,
509 XFS_FSB_TO_DADDR(mp, extp->ext_start));
510 if (startblock_fsb == 0 ||
511 extp->ext_len == 0 ||
512 startblock_fsb >= mp->m_sb.sb_dblocks ||
513 extp->ext_len >= mp->m_sb.sb_agblocks) {
514 /*
515 * This will pull the EFI from the AIL and
516 * free the memory associated with it.
517 */
518 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
519 xfs_efi_release(efip);
520 return -EIO;
521 }
522 }
523
524 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
525 if (error)
526 return error;
527 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
528
529 xfs_rmap_any_owner_update(&oinfo);
530 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
531 extp = &efip->efi_format.efi_extents[i];
532 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
533 extp->ext_len, &oinfo, false);
534 if (error)
535 goto abort_error;
536
537 }
538
539 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
540 error = xfs_trans_commit(tp);
541 return error;
542
543 abort_error:
544 xfs_trans_cancel(tp);
545 return error;
546 }
547