1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_dir2.h"
20 #include "xfs_ialloc.h"
21 #include "xfs_alloc.h"
22 #include "xfs_rtalloc.h"
23 #include "xfs_bmap.h"
24 #include "xfs_trans.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_log.h"
27 #include "xfs_error.h"
28 #include "xfs_quota.h"
29 #include "xfs_fsops.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_sysfs.h"
33 #include "xfs_rmap_btree.h"
34 #include "xfs_refcount_btree.h"
35 #include "xfs_reflink.h"
36 #include "xfs_extent_busy.h"
37
38
39 static DEFINE_MUTEX(xfs_uuid_table_mutex);
40 static int xfs_uuid_table_size;
41 static uuid_t *xfs_uuid_table;
42
43 void
xfs_uuid_table_free(void)44 xfs_uuid_table_free(void)
45 {
46 if (xfs_uuid_table_size == 0)
47 return;
48 kmem_free(xfs_uuid_table);
49 xfs_uuid_table = NULL;
50 xfs_uuid_table_size = 0;
51 }
52
53 /*
54 * See if the UUID is unique among mounted XFS filesystems.
55 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
56 */
57 STATIC int
xfs_uuid_mount(struct xfs_mount * mp)58 xfs_uuid_mount(
59 struct xfs_mount *mp)
60 {
61 uuid_t *uuid = &mp->m_sb.sb_uuid;
62 int hole, i;
63
64 /* Publish UUID in struct super_block */
65 uuid_copy(&mp->m_super->s_uuid, uuid);
66
67 if (mp->m_flags & XFS_MOUNT_NOUUID)
68 return 0;
69
70 if (uuid_is_null(uuid)) {
71 xfs_warn(mp, "Filesystem has null UUID - can't mount");
72 return -EINVAL;
73 }
74
75 mutex_lock(&xfs_uuid_table_mutex);
76 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
77 if (uuid_is_null(&xfs_uuid_table[i])) {
78 hole = i;
79 continue;
80 }
81 if (uuid_equal(uuid, &xfs_uuid_table[i]))
82 goto out_duplicate;
83 }
84
85 if (hole < 0) {
86 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
87 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
88 KM_SLEEP);
89 hole = xfs_uuid_table_size++;
90 }
91 xfs_uuid_table[hole] = *uuid;
92 mutex_unlock(&xfs_uuid_table_mutex);
93
94 return 0;
95
96 out_duplicate:
97 mutex_unlock(&xfs_uuid_table_mutex);
98 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
99 return -EINVAL;
100 }
101
102 STATIC void
xfs_uuid_unmount(struct xfs_mount * mp)103 xfs_uuid_unmount(
104 struct xfs_mount *mp)
105 {
106 uuid_t *uuid = &mp->m_sb.sb_uuid;
107 int i;
108
109 if (mp->m_flags & XFS_MOUNT_NOUUID)
110 return;
111
112 mutex_lock(&xfs_uuid_table_mutex);
113 for (i = 0; i < xfs_uuid_table_size; i++) {
114 if (uuid_is_null(&xfs_uuid_table[i]))
115 continue;
116 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
117 continue;
118 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
119 break;
120 }
121 ASSERT(i < xfs_uuid_table_size);
122 mutex_unlock(&xfs_uuid_table_mutex);
123 }
124
125
126 STATIC void
__xfs_free_perag(struct rcu_head * head)127 __xfs_free_perag(
128 struct rcu_head *head)
129 {
130 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
131
132 ASSERT(atomic_read(&pag->pag_ref) == 0);
133 kmem_free(pag);
134 }
135
136 /*
137 * Free up the per-ag resources associated with the mount structure.
138 */
139 STATIC void
xfs_free_perag(xfs_mount_t * mp)140 xfs_free_perag(
141 xfs_mount_t *mp)
142 {
143 xfs_agnumber_t agno;
144 struct xfs_perag *pag;
145
146 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
147 spin_lock(&mp->m_perag_lock);
148 pag = radix_tree_delete(&mp->m_perag_tree, agno);
149 spin_unlock(&mp->m_perag_lock);
150 ASSERT(pag);
151 ASSERT(atomic_read(&pag->pag_ref) == 0);
152 xfs_buf_hash_destroy(pag);
153 mutex_destroy(&pag->pag_ici_reclaim_lock);
154 call_rcu(&pag->rcu_head, __xfs_free_perag);
155 }
156 }
157
158 /*
159 * Check size of device based on the (data/realtime) block count.
160 * Note: this check is used by the growfs code as well as mount.
161 */
162 int
xfs_sb_validate_fsb_count(xfs_sb_t * sbp,uint64_t nblocks)163 xfs_sb_validate_fsb_count(
164 xfs_sb_t *sbp,
165 uint64_t nblocks)
166 {
167 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
168 ASSERT(sbp->sb_blocklog >= BBSHIFT);
169
170 /* Limited by ULONG_MAX of page cache index */
171 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
172 return -EFBIG;
173 return 0;
174 }
175
176 int
xfs_initialize_perag(xfs_mount_t * mp,xfs_agnumber_t agcount,xfs_agnumber_t * maxagi)177 xfs_initialize_perag(
178 xfs_mount_t *mp,
179 xfs_agnumber_t agcount,
180 xfs_agnumber_t *maxagi)
181 {
182 xfs_agnumber_t index;
183 xfs_agnumber_t first_initialised = NULLAGNUMBER;
184 xfs_perag_t *pag;
185 int error = -ENOMEM;
186
187 /*
188 * Walk the current per-ag tree so we don't try to initialise AGs
189 * that already exist (growfs case). Allocate and insert all the
190 * AGs we don't find ready for initialisation.
191 */
192 for (index = 0; index < agcount; index++) {
193 pag = xfs_perag_get(mp, index);
194 if (pag) {
195 xfs_perag_put(pag);
196 continue;
197 }
198
199 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
200 if (!pag)
201 goto out_unwind_new_pags;
202 pag->pag_agno = index;
203 pag->pag_mount = mp;
204 spin_lock_init(&pag->pag_ici_lock);
205 mutex_init(&pag->pag_ici_reclaim_lock);
206 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
207 if (xfs_buf_hash_init(pag))
208 goto out_free_pag;
209 init_waitqueue_head(&pag->pagb_wait);
210 spin_lock_init(&pag->pagb_lock);
211 pag->pagb_count = 0;
212 pag->pagb_tree = RB_ROOT;
213
214 if (radix_tree_preload(GFP_NOFS))
215 goto out_hash_destroy;
216
217 spin_lock(&mp->m_perag_lock);
218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
219 BUG();
220 spin_unlock(&mp->m_perag_lock);
221 radix_tree_preload_end();
222 error = -EEXIST;
223 goto out_hash_destroy;
224 }
225 spin_unlock(&mp->m_perag_lock);
226 radix_tree_preload_end();
227 /* first new pag is fully initialized */
228 if (first_initialised == NULLAGNUMBER)
229 first_initialised = index;
230 }
231
232 index = xfs_set_inode_alloc(mp, agcount);
233
234 if (maxagi)
235 *maxagi = index;
236
237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
238 return 0;
239
240 out_hash_destroy:
241 xfs_buf_hash_destroy(pag);
242 out_free_pag:
243 mutex_destroy(&pag->pag_ici_reclaim_lock);
244 kmem_free(pag);
245 out_unwind_new_pags:
246 /* unwind any prior newly initialized pags */
247 for (index = first_initialised; index < agcount; index++) {
248 pag = radix_tree_delete(&mp->m_perag_tree, index);
249 if (!pag)
250 break;
251 xfs_buf_hash_destroy(pag);
252 mutex_destroy(&pag->pag_ici_reclaim_lock);
253 kmem_free(pag);
254 }
255 return error;
256 }
257
258 /*
259 * xfs_readsb
260 *
261 * Does the initial read of the superblock.
262 */
263 int
xfs_readsb(struct xfs_mount * mp,int flags)264 xfs_readsb(
265 struct xfs_mount *mp,
266 int flags)
267 {
268 unsigned int sector_size;
269 struct xfs_buf *bp;
270 struct xfs_sb *sbp = &mp->m_sb;
271 int error;
272 int loud = !(flags & XFS_MFSI_QUIET);
273 const struct xfs_buf_ops *buf_ops;
274
275 ASSERT(mp->m_sb_bp == NULL);
276 ASSERT(mp->m_ddev_targp != NULL);
277
278 /*
279 * For the initial read, we must guess at the sector
280 * size based on the block device. It's enough to
281 * get the sb_sectsize out of the superblock and
282 * then reread with the proper length.
283 * We don't verify it yet, because it may not be complete.
284 */
285 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
286 buf_ops = NULL;
287
288 /*
289 * Allocate a (locked) buffer to hold the superblock. This will be kept
290 * around at all times to optimize access to the superblock. Therefore,
291 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
292 * elevated.
293 */
294 reread:
295 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
296 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
297 buf_ops);
298 if (error) {
299 if (loud)
300 xfs_warn(mp, "SB validate failed with error %d.", error);
301 /* bad CRC means corrupted metadata */
302 if (error == -EFSBADCRC)
303 error = -EFSCORRUPTED;
304 return error;
305 }
306
307 /*
308 * Initialize the mount structure from the superblock.
309 */
310 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
311
312 /*
313 * If we haven't validated the superblock, do so now before we try
314 * to check the sector size and reread the superblock appropriately.
315 */
316 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
317 if (loud)
318 xfs_warn(mp, "Invalid superblock magic number");
319 error = -EINVAL;
320 goto release_buf;
321 }
322
323 /*
324 * We must be able to do sector-sized and sector-aligned IO.
325 */
326 if (sector_size > sbp->sb_sectsize) {
327 if (loud)
328 xfs_warn(mp, "device supports %u byte sectors (not %u)",
329 sector_size, sbp->sb_sectsize);
330 error = -ENOSYS;
331 goto release_buf;
332 }
333
334 if (buf_ops == NULL) {
335 /*
336 * Re-read the superblock so the buffer is correctly sized,
337 * and properly verified.
338 */
339 xfs_buf_relse(bp);
340 sector_size = sbp->sb_sectsize;
341 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
342 goto reread;
343 }
344
345 xfs_reinit_percpu_counters(mp);
346
347 /* no need to be quiet anymore, so reset the buf ops */
348 bp->b_ops = &xfs_sb_buf_ops;
349
350 mp->m_sb_bp = bp;
351 xfs_buf_unlock(bp);
352 return 0;
353
354 release_buf:
355 xfs_buf_relse(bp);
356 return error;
357 }
358
359 /*
360 * Update alignment values based on mount options and sb values
361 */
362 STATIC int
xfs_update_alignment(xfs_mount_t * mp)363 xfs_update_alignment(xfs_mount_t *mp)
364 {
365 xfs_sb_t *sbp = &(mp->m_sb);
366
367 if (mp->m_dalign) {
368 /*
369 * If stripe unit and stripe width are not multiples
370 * of the fs blocksize turn off alignment.
371 */
372 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
373 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
374 xfs_warn(mp,
375 "alignment check failed: sunit/swidth vs. blocksize(%d)",
376 sbp->sb_blocksize);
377 return -EINVAL;
378 } else {
379 /*
380 * Convert the stripe unit and width to FSBs.
381 */
382 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
383 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
384 xfs_warn(mp,
385 "alignment check failed: sunit/swidth vs. agsize(%d)",
386 sbp->sb_agblocks);
387 return -EINVAL;
388 } else if (mp->m_dalign) {
389 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
390 } else {
391 xfs_warn(mp,
392 "alignment check failed: sunit(%d) less than bsize(%d)",
393 mp->m_dalign, sbp->sb_blocksize);
394 return -EINVAL;
395 }
396 }
397
398 /*
399 * Update superblock with new values
400 * and log changes
401 */
402 if (xfs_sb_version_hasdalign(sbp)) {
403 if (sbp->sb_unit != mp->m_dalign) {
404 sbp->sb_unit = mp->m_dalign;
405 mp->m_update_sb = true;
406 }
407 if (sbp->sb_width != mp->m_swidth) {
408 sbp->sb_width = mp->m_swidth;
409 mp->m_update_sb = true;
410 }
411 } else {
412 xfs_warn(mp,
413 "cannot change alignment: superblock does not support data alignment");
414 return -EINVAL;
415 }
416 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
417 xfs_sb_version_hasdalign(&mp->m_sb)) {
418 mp->m_dalign = sbp->sb_unit;
419 mp->m_swidth = sbp->sb_width;
420 }
421
422 return 0;
423 }
424
425 /*
426 * Set the maximum inode count for this filesystem
427 */
428 STATIC void
xfs_set_maxicount(xfs_mount_t * mp)429 xfs_set_maxicount(xfs_mount_t *mp)
430 {
431 xfs_sb_t *sbp = &(mp->m_sb);
432 uint64_t icount;
433
434 if (sbp->sb_imax_pct) {
435 /*
436 * Make sure the maximum inode count is a multiple
437 * of the units we allocate inodes in.
438 */
439 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
440 do_div(icount, 100);
441 do_div(icount, mp->m_ialloc_blks);
442 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
443 sbp->sb_inopblog;
444 } else {
445 mp->m_maxicount = 0;
446 }
447 }
448
449 /*
450 * Set the default minimum read and write sizes unless
451 * already specified in a mount option.
452 * We use smaller I/O sizes when the file system
453 * is being used for NFS service (wsync mount option).
454 */
455 STATIC void
xfs_set_rw_sizes(xfs_mount_t * mp)456 xfs_set_rw_sizes(xfs_mount_t *mp)
457 {
458 xfs_sb_t *sbp = &(mp->m_sb);
459 int readio_log, writeio_log;
460
461 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
462 if (mp->m_flags & XFS_MOUNT_WSYNC) {
463 readio_log = XFS_WSYNC_READIO_LOG;
464 writeio_log = XFS_WSYNC_WRITEIO_LOG;
465 } else {
466 readio_log = XFS_READIO_LOG_LARGE;
467 writeio_log = XFS_WRITEIO_LOG_LARGE;
468 }
469 } else {
470 readio_log = mp->m_readio_log;
471 writeio_log = mp->m_writeio_log;
472 }
473
474 if (sbp->sb_blocklog > readio_log) {
475 mp->m_readio_log = sbp->sb_blocklog;
476 } else {
477 mp->m_readio_log = readio_log;
478 }
479 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
480 if (sbp->sb_blocklog > writeio_log) {
481 mp->m_writeio_log = sbp->sb_blocklog;
482 } else {
483 mp->m_writeio_log = writeio_log;
484 }
485 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
486 }
487
488 /*
489 * precalculate the low space thresholds for dynamic speculative preallocation.
490 */
491 void
xfs_set_low_space_thresholds(struct xfs_mount * mp)492 xfs_set_low_space_thresholds(
493 struct xfs_mount *mp)
494 {
495 int i;
496
497 for (i = 0; i < XFS_LOWSP_MAX; i++) {
498 uint64_t space = mp->m_sb.sb_dblocks;
499
500 do_div(space, 100);
501 mp->m_low_space[i] = space * (i + 1);
502 }
503 }
504
505
506 /*
507 * Set whether we're using inode alignment.
508 */
509 STATIC void
xfs_set_inoalignment(xfs_mount_t * mp)510 xfs_set_inoalignment(xfs_mount_t *mp)
511 {
512 if (xfs_sb_version_hasalign(&mp->m_sb) &&
513 mp->m_sb.sb_inoalignmt >= xfs_icluster_size_fsb(mp))
514 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
515 else
516 mp->m_inoalign_mask = 0;
517 /*
518 * If we are using stripe alignment, check whether
519 * the stripe unit is a multiple of the inode alignment
520 */
521 if (mp->m_dalign && mp->m_inoalign_mask &&
522 !(mp->m_dalign & mp->m_inoalign_mask))
523 mp->m_sinoalign = mp->m_dalign;
524 else
525 mp->m_sinoalign = 0;
526 }
527
528 /*
529 * Check that the data (and log if separate) is an ok size.
530 */
531 STATIC int
xfs_check_sizes(struct xfs_mount * mp)532 xfs_check_sizes(
533 struct xfs_mount *mp)
534 {
535 struct xfs_buf *bp;
536 xfs_daddr_t d;
537 int error;
538
539 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
540 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
541 xfs_warn(mp, "filesystem size mismatch detected");
542 return -EFBIG;
543 }
544 error = xfs_buf_read_uncached(mp->m_ddev_targp,
545 d - XFS_FSS_TO_BB(mp, 1),
546 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
547 if (error) {
548 xfs_warn(mp, "last sector read failed");
549 return error;
550 }
551 xfs_buf_relse(bp);
552
553 if (mp->m_logdev_targp == mp->m_ddev_targp)
554 return 0;
555
556 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
557 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
558 xfs_warn(mp, "log size mismatch detected");
559 return -EFBIG;
560 }
561 error = xfs_buf_read_uncached(mp->m_logdev_targp,
562 d - XFS_FSB_TO_BB(mp, 1),
563 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
564 if (error) {
565 xfs_warn(mp, "log device read failed");
566 return error;
567 }
568 xfs_buf_relse(bp);
569 return 0;
570 }
571
572 /*
573 * Clear the quotaflags in memory and in the superblock.
574 */
575 int
xfs_mount_reset_sbqflags(struct xfs_mount * mp)576 xfs_mount_reset_sbqflags(
577 struct xfs_mount *mp)
578 {
579 mp->m_qflags = 0;
580
581 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
582 if (mp->m_sb.sb_qflags == 0)
583 return 0;
584 spin_lock(&mp->m_sb_lock);
585 mp->m_sb.sb_qflags = 0;
586 spin_unlock(&mp->m_sb_lock);
587
588 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
589 return 0;
590
591 return xfs_sync_sb(mp, false);
592 }
593
594 uint64_t
xfs_default_resblks(xfs_mount_t * mp)595 xfs_default_resblks(xfs_mount_t *mp)
596 {
597 uint64_t resblks;
598
599 /*
600 * We default to 5% or 8192 fsbs of space reserved, whichever is
601 * smaller. This is intended to cover concurrent allocation
602 * transactions when we initially hit enospc. These each require a 4
603 * block reservation. Hence by default we cover roughly 2000 concurrent
604 * allocation reservations.
605 */
606 resblks = mp->m_sb.sb_dblocks;
607 do_div(resblks, 20);
608 resblks = min_t(uint64_t, resblks, 8192);
609 return resblks;
610 }
611
612 /* Ensure the summary counts are correct. */
613 STATIC int
xfs_check_summary_counts(struct xfs_mount * mp)614 xfs_check_summary_counts(
615 struct xfs_mount *mp)
616 {
617 /*
618 * The AG0 superblock verifier rejects in-progress filesystems,
619 * so we should never see the flag set this far into mounting.
620 */
621 if (mp->m_sb.sb_inprogress) {
622 xfs_err(mp, "sb_inprogress set after log recovery??");
623 WARN_ON(1);
624 return -EFSCORRUPTED;
625 }
626
627 /*
628 * Now the log is mounted, we know if it was an unclean shutdown or
629 * not. If it was, with the first phase of recovery has completed, we
630 * have consistent AG blocks on disk. We have not recovered EFIs yet,
631 * but they are recovered transactionally in the second recovery phase
632 * later.
633 *
634 * If the log was clean when we mounted, we can check the summary
635 * counters. If any of them are obviously incorrect, we can recompute
636 * them from the AGF headers in the next step.
637 */
638 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
639 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
640 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
641 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
642 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY;
643
644 /*
645 * We can safely re-initialise incore superblock counters from the
646 * per-ag data. These may not be correct if the filesystem was not
647 * cleanly unmounted, so we waited for recovery to finish before doing
648 * this.
649 *
650 * If the filesystem was cleanly unmounted or the previous check did
651 * not flag anything weird, then we can trust the values in the
652 * superblock to be correct and we don't need to do anything here.
653 * Otherwise, recalculate the summary counters.
654 */
655 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
656 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
657 !(mp->m_flags & XFS_MOUNT_BAD_SUMMARY))
658 return 0;
659
660 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
661 }
662
663 /*
664 * This function does the following on an initial mount of a file system:
665 * - reads the superblock from disk and init the mount struct
666 * - if we're a 32-bit kernel, do a size check on the superblock
667 * so we don't mount terabyte filesystems
668 * - init mount struct realtime fields
669 * - allocate inode hash table for fs
670 * - init directory manager
671 * - perform recovery and init the log manager
672 */
673 int
xfs_mountfs(struct xfs_mount * mp)674 xfs_mountfs(
675 struct xfs_mount *mp)
676 {
677 struct xfs_sb *sbp = &(mp->m_sb);
678 struct xfs_inode *rip;
679 uint64_t resblks;
680 uint quotamount = 0;
681 uint quotaflags = 0;
682 int error = 0;
683
684 xfs_sb_mount_common(mp, sbp);
685
686 /*
687 * Check for a mismatched features2 values. Older kernels read & wrote
688 * into the wrong sb offset for sb_features2 on some platforms due to
689 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
690 * which made older superblock reading/writing routines swap it as a
691 * 64-bit value.
692 *
693 * For backwards compatibility, we make both slots equal.
694 *
695 * If we detect a mismatched field, we OR the set bits into the existing
696 * features2 field in case it has already been modified; we don't want
697 * to lose any features. We then update the bad location with the ORed
698 * value so that older kernels will see any features2 flags. The
699 * superblock writeback code ensures the new sb_features2 is copied to
700 * sb_bad_features2 before it is logged or written to disk.
701 */
702 if (xfs_sb_has_mismatched_features2(sbp)) {
703 xfs_warn(mp, "correcting sb_features alignment problem");
704 sbp->sb_features2 |= sbp->sb_bad_features2;
705 mp->m_update_sb = true;
706
707 /*
708 * Re-check for ATTR2 in case it was found in bad_features2
709 * slot.
710 */
711 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
712 !(mp->m_flags & XFS_MOUNT_NOATTR2))
713 mp->m_flags |= XFS_MOUNT_ATTR2;
714 }
715
716 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
717 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
718 xfs_sb_version_removeattr2(&mp->m_sb);
719 mp->m_update_sb = true;
720
721 /* update sb_versionnum for the clearing of the morebits */
722 if (!sbp->sb_features2)
723 mp->m_update_sb = true;
724 }
725
726 /* always use v2 inodes by default now */
727 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
728 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
729 mp->m_update_sb = true;
730 }
731
732 /*
733 * Check if sb_agblocks is aligned at stripe boundary
734 * If sb_agblocks is NOT aligned turn off m_dalign since
735 * allocator alignment is within an ag, therefore ag has
736 * to be aligned at stripe boundary.
737 */
738 error = xfs_update_alignment(mp);
739 if (error)
740 goto out;
741
742 xfs_alloc_compute_maxlevels(mp);
743 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
744 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
745 xfs_ialloc_compute_maxlevels(mp);
746 xfs_rmapbt_compute_maxlevels(mp);
747 xfs_refcountbt_compute_maxlevels(mp);
748
749 xfs_set_maxicount(mp);
750
751 /* enable fail_at_unmount as default */
752 mp->m_fail_unmount = true;
753
754 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
755 if (error)
756 goto out;
757
758 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
759 &mp->m_kobj, "stats");
760 if (error)
761 goto out_remove_sysfs;
762
763 error = xfs_error_sysfs_init(mp);
764 if (error)
765 goto out_del_stats;
766
767 error = xfs_errortag_init(mp);
768 if (error)
769 goto out_remove_error_sysfs;
770
771 error = xfs_uuid_mount(mp);
772 if (error)
773 goto out_remove_errortag;
774
775 /*
776 * Set the minimum read and write sizes
777 */
778 xfs_set_rw_sizes(mp);
779
780 /* set the low space thresholds for dynamic preallocation */
781 xfs_set_low_space_thresholds(mp);
782
783 /*
784 * Set the inode cluster size.
785 * This may still be overridden by the file system
786 * block size if it is larger than the chosen cluster size.
787 *
788 * For v5 filesystems, scale the cluster size with the inode size to
789 * keep a constant ratio of inode per cluster buffer, but only if mkfs
790 * has set the inode alignment value appropriately for larger cluster
791 * sizes.
792 */
793 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
794 if (xfs_sb_version_hascrc(&mp->m_sb)) {
795 int new_size = mp->m_inode_cluster_size;
796
797 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
798 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
799 mp->m_inode_cluster_size = new_size;
800 }
801
802 /*
803 * If enabled, sparse inode chunk alignment is expected to match the
804 * cluster size. Full inode chunk alignment must match the chunk size,
805 * but that is checked on sb read verification...
806 */
807 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
808 mp->m_sb.sb_spino_align !=
809 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
810 xfs_warn(mp,
811 "Sparse inode block alignment (%u) must match cluster size (%llu).",
812 mp->m_sb.sb_spino_align,
813 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
814 error = -EINVAL;
815 goto out_remove_uuid;
816 }
817
818 /*
819 * Set inode alignment fields
820 */
821 xfs_set_inoalignment(mp);
822
823 /*
824 * Check that the data (and log if separate) is an ok size.
825 */
826 error = xfs_check_sizes(mp);
827 if (error)
828 goto out_remove_uuid;
829
830 /*
831 * Initialize realtime fields in the mount structure
832 */
833 error = xfs_rtmount_init(mp);
834 if (error) {
835 xfs_warn(mp, "RT mount failed");
836 goto out_remove_uuid;
837 }
838
839 /*
840 * Copies the low order bits of the timestamp and the randomly
841 * set "sequence" number out of a UUID.
842 */
843 mp->m_fixedfsid[0] =
844 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
845 get_unaligned_be16(&sbp->sb_uuid.b[4]);
846 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
847
848 error = xfs_da_mount(mp);
849 if (error) {
850 xfs_warn(mp, "Failed dir/attr init: %d", error);
851 goto out_remove_uuid;
852 }
853
854 /*
855 * Initialize the precomputed transaction reservations values.
856 */
857 xfs_trans_init(mp);
858
859 /*
860 * Allocate and initialize the per-ag data.
861 */
862 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
863 if (error) {
864 xfs_warn(mp, "Failed per-ag init: %d", error);
865 goto out_free_dir;
866 }
867
868 if (!sbp->sb_logblocks) {
869 xfs_warn(mp, "no log defined");
870 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
871 error = -EFSCORRUPTED;
872 goto out_free_perag;
873 }
874
875 /*
876 * Log's mount-time initialization. The first part of recovery can place
877 * some items on the AIL, to be handled when recovery is finished or
878 * cancelled.
879 */
880 error = xfs_log_mount(mp, mp->m_logdev_targp,
881 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
882 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
883 if (error) {
884 xfs_warn(mp, "log mount failed");
885 goto out_fail_wait;
886 }
887
888 /* Make sure the summary counts are ok. */
889 error = xfs_check_summary_counts(mp);
890 if (error)
891 goto out_log_dealloc;
892
893 /*
894 * Get and sanity-check the root inode.
895 * Save the pointer to it in the mount structure.
896 */
897 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
898 XFS_ILOCK_EXCL, &rip);
899 if (error) {
900 xfs_warn(mp,
901 "Failed to read root inode 0x%llx, error %d",
902 sbp->sb_rootino, -error);
903 goto out_log_dealloc;
904 }
905
906 ASSERT(rip != NULL);
907
908 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
909 xfs_warn(mp, "corrupted root inode %llu: not a directory",
910 (unsigned long long)rip->i_ino);
911 xfs_iunlock(rip, XFS_ILOCK_EXCL);
912 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
913 mp);
914 error = -EFSCORRUPTED;
915 goto out_rele_rip;
916 }
917 mp->m_rootip = rip; /* save it */
918
919 xfs_iunlock(rip, XFS_ILOCK_EXCL);
920
921 /*
922 * Initialize realtime inode pointers in the mount structure
923 */
924 error = xfs_rtmount_inodes(mp);
925 if (error) {
926 /*
927 * Free up the root inode.
928 */
929 xfs_warn(mp, "failed to read RT inodes");
930 goto out_rele_rip;
931 }
932
933 /*
934 * If this is a read-only mount defer the superblock updates until
935 * the next remount into writeable mode. Otherwise we would never
936 * perform the update e.g. for the root filesystem.
937 */
938 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
939 error = xfs_sync_sb(mp, false);
940 if (error) {
941 xfs_warn(mp, "failed to write sb changes");
942 goto out_rtunmount;
943 }
944 }
945
946 /*
947 * Initialise the XFS quota management subsystem for this mount
948 */
949 if (XFS_IS_QUOTA_RUNNING(mp)) {
950 error = xfs_qm_newmount(mp, "amount, "aflags);
951 if (error)
952 goto out_rtunmount;
953 } else {
954 ASSERT(!XFS_IS_QUOTA_ON(mp));
955
956 /*
957 * If a file system had quotas running earlier, but decided to
958 * mount without -o uquota/pquota/gquota options, revoke the
959 * quotachecked license.
960 */
961 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
962 xfs_notice(mp, "resetting quota flags");
963 error = xfs_mount_reset_sbqflags(mp);
964 if (error)
965 goto out_rtunmount;
966 }
967 }
968
969 /*
970 * Finish recovering the file system. This part needed to be delayed
971 * until after the root and real-time bitmap inodes were consistently
972 * read in.
973 */
974 error = xfs_log_mount_finish(mp);
975 if (error) {
976 xfs_warn(mp, "log mount finish failed");
977 goto out_rtunmount;
978 }
979
980 /*
981 * Now the log is fully replayed, we can transition to full read-only
982 * mode for read-only mounts. This will sync all the metadata and clean
983 * the log so that the recovery we just performed does not have to be
984 * replayed again on the next mount.
985 *
986 * We use the same quiesce mechanism as the rw->ro remount, as they are
987 * semantically identical operations.
988 */
989 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
990 XFS_MOUNT_RDONLY) {
991 xfs_quiesce_attr(mp);
992 }
993
994 /*
995 * Complete the quota initialisation, post-log-replay component.
996 */
997 if (quotamount) {
998 ASSERT(mp->m_qflags == 0);
999 mp->m_qflags = quotaflags;
1000
1001 xfs_qm_mount_quotas(mp);
1002 }
1003
1004 /*
1005 * Now we are mounted, reserve a small amount of unused space for
1006 * privileged transactions. This is needed so that transaction
1007 * space required for critical operations can dip into this pool
1008 * when at ENOSPC. This is needed for operations like create with
1009 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1010 * are not allowed to use this reserved space.
1011 *
1012 * This may drive us straight to ENOSPC on mount, but that implies
1013 * we were already there on the last unmount. Warn if this occurs.
1014 */
1015 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1016 resblks = xfs_default_resblks(mp);
1017 error = xfs_reserve_blocks(mp, &resblks, NULL);
1018 if (error)
1019 xfs_warn(mp,
1020 "Unable to allocate reserve blocks. Continuing without reserve pool.");
1021
1022 /* Recover any CoW blocks that never got remapped. */
1023 error = xfs_reflink_recover_cow(mp);
1024 if (error) {
1025 xfs_err(mp,
1026 "Error %d recovering leftover CoW allocations.", error);
1027 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1028 goto out_quota;
1029 }
1030
1031 /* Reserve AG blocks for future btree expansion. */
1032 error = xfs_fs_reserve_ag_blocks(mp);
1033 if (error && error != -ENOSPC)
1034 goto out_agresv;
1035 }
1036
1037 return 0;
1038
1039 out_agresv:
1040 xfs_fs_unreserve_ag_blocks(mp);
1041 out_quota:
1042 xfs_qm_unmount_quotas(mp);
1043 out_rtunmount:
1044 xfs_rtunmount_inodes(mp);
1045 out_rele_rip:
1046 xfs_irele(rip);
1047 /* Clean out dquots that might be in memory after quotacheck. */
1048 xfs_qm_unmount(mp);
1049 /*
1050 * Cancel all delayed reclaim work and reclaim the inodes directly.
1051 * We have to do this /after/ rtunmount and qm_unmount because those
1052 * two will have scheduled delayed reclaim for the rt/quota inodes.
1053 *
1054 * This is slightly different from the unmountfs call sequence
1055 * because we could be tearing down a partially set up mount. In
1056 * particular, if log_mount_finish fails we bail out without calling
1057 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1058 * quota inodes.
1059 */
1060 cancel_delayed_work_sync(&mp->m_reclaim_work);
1061 xfs_reclaim_inodes(mp, SYNC_WAIT);
1062 out_log_dealloc:
1063 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1064 xfs_log_mount_cancel(mp);
1065 out_fail_wait:
1066 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1067 xfs_wait_buftarg(mp->m_logdev_targp);
1068 xfs_wait_buftarg(mp->m_ddev_targp);
1069 out_free_perag:
1070 xfs_free_perag(mp);
1071 out_free_dir:
1072 xfs_da_unmount(mp);
1073 out_remove_uuid:
1074 xfs_uuid_unmount(mp);
1075 out_remove_errortag:
1076 xfs_errortag_del(mp);
1077 out_remove_error_sysfs:
1078 xfs_error_sysfs_del(mp);
1079 out_del_stats:
1080 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1081 out_remove_sysfs:
1082 xfs_sysfs_del(&mp->m_kobj);
1083 out:
1084 return error;
1085 }
1086
1087 /*
1088 * This flushes out the inodes,dquots and the superblock, unmounts the
1089 * log and makes sure that incore structures are freed.
1090 */
1091 void
xfs_unmountfs(struct xfs_mount * mp)1092 xfs_unmountfs(
1093 struct xfs_mount *mp)
1094 {
1095 uint64_t resblks;
1096 int error;
1097
1098 xfs_icache_disable_reclaim(mp);
1099 xfs_fs_unreserve_ag_blocks(mp);
1100 xfs_qm_unmount_quotas(mp);
1101 xfs_rtunmount_inodes(mp);
1102 xfs_irele(mp->m_rootip);
1103
1104 /*
1105 * We can potentially deadlock here if we have an inode cluster
1106 * that has been freed has its buffer still pinned in memory because
1107 * the transaction is still sitting in a iclog. The stale inodes
1108 * on that buffer will have their flush locks held until the
1109 * transaction hits the disk and the callbacks run. the inode
1110 * flush takes the flush lock unconditionally and with nothing to
1111 * push out the iclog we will never get that unlocked. hence we
1112 * need to force the log first.
1113 */
1114 xfs_log_force(mp, XFS_LOG_SYNC);
1115
1116 /*
1117 * Wait for all busy extents to be freed, including completion of
1118 * any discard operation.
1119 */
1120 xfs_extent_busy_wait_all(mp);
1121 flush_workqueue(xfs_discard_wq);
1122
1123 /*
1124 * We now need to tell the world we are unmounting. This will allow
1125 * us to detect that the filesystem is going away and we should error
1126 * out anything that we have been retrying in the background. This will
1127 * prevent neverending retries in AIL pushing from hanging the unmount.
1128 */
1129 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1130
1131 /*
1132 * Flush all pending changes from the AIL.
1133 */
1134 xfs_ail_push_all_sync(mp->m_ail);
1135
1136 /*
1137 * And reclaim all inodes. At this point there should be no dirty
1138 * inodes and none should be pinned or locked, but use synchronous
1139 * reclaim just to be sure. We can stop background inode reclaim
1140 * here as well if it is still running.
1141 */
1142 cancel_delayed_work_sync(&mp->m_reclaim_work);
1143 xfs_reclaim_inodes(mp, SYNC_WAIT);
1144
1145 xfs_qm_unmount(mp);
1146
1147 /*
1148 * Unreserve any blocks we have so that when we unmount we don't account
1149 * the reserved free space as used. This is really only necessary for
1150 * lazy superblock counting because it trusts the incore superblock
1151 * counters to be absolutely correct on clean unmount.
1152 *
1153 * We don't bother correcting this elsewhere for lazy superblock
1154 * counting because on mount of an unclean filesystem we reconstruct the
1155 * correct counter value and this is irrelevant.
1156 *
1157 * For non-lazy counter filesystems, this doesn't matter at all because
1158 * we only every apply deltas to the superblock and hence the incore
1159 * value does not matter....
1160 */
1161 resblks = 0;
1162 error = xfs_reserve_blocks(mp, &resblks, NULL);
1163 if (error)
1164 xfs_warn(mp, "Unable to free reserved block pool. "
1165 "Freespace may not be correct on next mount.");
1166
1167 error = xfs_log_sbcount(mp);
1168 if (error)
1169 xfs_warn(mp, "Unable to update superblock counters. "
1170 "Freespace may not be correct on next mount.");
1171
1172
1173 xfs_log_unmount(mp);
1174 xfs_da_unmount(mp);
1175 xfs_uuid_unmount(mp);
1176
1177 #if defined(DEBUG)
1178 xfs_errortag_clearall(mp);
1179 #endif
1180 xfs_free_perag(mp);
1181
1182 xfs_errortag_del(mp);
1183 xfs_error_sysfs_del(mp);
1184 xfs_sysfs_del(&mp->m_stats.xs_kobj);
1185 xfs_sysfs_del(&mp->m_kobj);
1186 }
1187
1188 /*
1189 * Determine whether modifications can proceed. The caller specifies the minimum
1190 * freeze level for which modifications should not be allowed. This allows
1191 * certain operations to proceed while the freeze sequence is in progress, if
1192 * necessary.
1193 */
1194 bool
xfs_fs_writable(struct xfs_mount * mp,int level)1195 xfs_fs_writable(
1196 struct xfs_mount *mp,
1197 int level)
1198 {
1199 ASSERT(level > SB_UNFROZEN);
1200 if ((mp->m_super->s_writers.frozen >= level) ||
1201 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1202 return false;
1203
1204 return true;
1205 }
1206
1207 /*
1208 * xfs_log_sbcount
1209 *
1210 * Sync the superblock counters to disk.
1211 *
1212 * Note this code can be called during the process of freezing, so we use the
1213 * transaction allocator that does not block when the transaction subsystem is
1214 * in its frozen state.
1215 */
1216 int
xfs_log_sbcount(xfs_mount_t * mp)1217 xfs_log_sbcount(xfs_mount_t *mp)
1218 {
1219 /* allow this to proceed during the freeze sequence... */
1220 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
1221 return 0;
1222
1223 /*
1224 * we don't need to do this if we are updating the superblock
1225 * counters on every modification.
1226 */
1227 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1228 return 0;
1229
1230 return xfs_sync_sb(mp, true);
1231 }
1232
1233 /*
1234 * Deltas for the inode count are +/-64, hence we use a large batch size
1235 * of 128 so we don't need to take the counter lock on every update.
1236 */
1237 #define XFS_ICOUNT_BATCH 128
1238 int
xfs_mod_icount(struct xfs_mount * mp,int64_t delta)1239 xfs_mod_icount(
1240 struct xfs_mount *mp,
1241 int64_t delta)
1242 {
1243 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1244 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
1245 ASSERT(0);
1246 percpu_counter_add(&mp->m_icount, -delta);
1247 return -EINVAL;
1248 }
1249 return 0;
1250 }
1251
1252 int
xfs_mod_ifree(struct xfs_mount * mp,int64_t delta)1253 xfs_mod_ifree(
1254 struct xfs_mount *mp,
1255 int64_t delta)
1256 {
1257 percpu_counter_add(&mp->m_ifree, delta);
1258 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1259 ASSERT(0);
1260 percpu_counter_add(&mp->m_ifree, -delta);
1261 return -EINVAL;
1262 }
1263 return 0;
1264 }
1265
1266 /*
1267 * Deltas for the block count can vary from 1 to very large, but lock contention
1268 * only occurs on frequent small block count updates such as in the delayed
1269 * allocation path for buffered writes (page a time updates). Hence we set
1270 * a large batch count (1024) to minimise global counter updates except when
1271 * we get near to ENOSPC and we have to be very accurate with our updates.
1272 */
1273 #define XFS_FDBLOCKS_BATCH 1024
1274 int
xfs_mod_fdblocks(struct xfs_mount * mp,int64_t delta,bool rsvd)1275 xfs_mod_fdblocks(
1276 struct xfs_mount *mp,
1277 int64_t delta,
1278 bool rsvd)
1279 {
1280 int64_t lcounter;
1281 long long res_used;
1282 s32 batch;
1283
1284 if (delta > 0) {
1285 /*
1286 * If the reserve pool is depleted, put blocks back into it
1287 * first. Most of the time the pool is full.
1288 */
1289 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1290 percpu_counter_add(&mp->m_fdblocks, delta);
1291 return 0;
1292 }
1293
1294 spin_lock(&mp->m_sb_lock);
1295 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1296
1297 if (res_used > delta) {
1298 mp->m_resblks_avail += delta;
1299 } else {
1300 delta -= res_used;
1301 mp->m_resblks_avail = mp->m_resblks;
1302 percpu_counter_add(&mp->m_fdblocks, delta);
1303 }
1304 spin_unlock(&mp->m_sb_lock);
1305 return 0;
1306 }
1307
1308 /*
1309 * Taking blocks away, need to be more accurate the closer we
1310 * are to zero.
1311 *
1312 * If the counter has a value of less than 2 * max batch size,
1313 * then make everything serialise as we are real close to
1314 * ENOSPC.
1315 */
1316 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1317 XFS_FDBLOCKS_BATCH) < 0)
1318 batch = 1;
1319 else
1320 batch = XFS_FDBLOCKS_BATCH;
1321
1322 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1323 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1324 XFS_FDBLOCKS_BATCH) >= 0) {
1325 /* we had space! */
1326 return 0;
1327 }
1328
1329 /*
1330 * lock up the sb for dipping into reserves before releasing the space
1331 * that took us to ENOSPC.
1332 */
1333 spin_lock(&mp->m_sb_lock);
1334 percpu_counter_add(&mp->m_fdblocks, -delta);
1335 if (!rsvd)
1336 goto fdblocks_enospc;
1337
1338 lcounter = (long long)mp->m_resblks_avail + delta;
1339 if (lcounter >= 0) {
1340 mp->m_resblks_avail = lcounter;
1341 spin_unlock(&mp->m_sb_lock);
1342 return 0;
1343 }
1344 printk_once(KERN_WARNING
1345 "Filesystem \"%s\": reserve blocks depleted! "
1346 "Consider increasing reserve pool size.",
1347 mp->m_fsname);
1348 fdblocks_enospc:
1349 spin_unlock(&mp->m_sb_lock);
1350 return -ENOSPC;
1351 }
1352
1353 int
xfs_mod_frextents(struct xfs_mount * mp,int64_t delta)1354 xfs_mod_frextents(
1355 struct xfs_mount *mp,
1356 int64_t delta)
1357 {
1358 int64_t lcounter;
1359 int ret = 0;
1360
1361 spin_lock(&mp->m_sb_lock);
1362 lcounter = mp->m_sb.sb_frextents + delta;
1363 if (lcounter < 0)
1364 ret = -ENOSPC;
1365 else
1366 mp->m_sb.sb_frextents = lcounter;
1367 spin_unlock(&mp->m_sb_lock);
1368 return ret;
1369 }
1370
1371 /*
1372 * xfs_getsb() is called to obtain the buffer for the superblock.
1373 * The buffer is returned locked and read in from disk.
1374 * The buffer should be released with a call to xfs_brelse().
1375 *
1376 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1377 * the superblock buffer if it can be locked without sleeping.
1378 * If it can't then we'll return NULL.
1379 */
1380 struct xfs_buf *
xfs_getsb(struct xfs_mount * mp,int flags)1381 xfs_getsb(
1382 struct xfs_mount *mp,
1383 int flags)
1384 {
1385 struct xfs_buf *bp = mp->m_sb_bp;
1386
1387 if (!xfs_buf_trylock(bp)) {
1388 if (flags & XBF_TRYLOCK)
1389 return NULL;
1390 xfs_buf_lock(bp);
1391 }
1392
1393 xfs_buf_hold(bp);
1394 ASSERT(bp->b_flags & XBF_DONE);
1395 return bp;
1396 }
1397
1398 /*
1399 * Used to free the superblock along various error paths.
1400 */
1401 void
xfs_freesb(struct xfs_mount * mp)1402 xfs_freesb(
1403 struct xfs_mount *mp)
1404 {
1405 struct xfs_buf *bp = mp->m_sb_bp;
1406
1407 xfs_buf_lock(bp);
1408 mp->m_sb_bp = NULL;
1409 xfs_buf_relse(bp);
1410 }
1411
1412 /*
1413 * If the underlying (data/log/rt) device is readonly, there are some
1414 * operations that cannot proceed.
1415 */
1416 int
xfs_dev_is_read_only(struct xfs_mount * mp,char * message)1417 xfs_dev_is_read_only(
1418 struct xfs_mount *mp,
1419 char *message)
1420 {
1421 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1422 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1423 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1424 xfs_notice(mp, "%s required on read-only device.", message);
1425 xfs_notice(mp, "write access unavailable, cannot proceed.");
1426 return -EROFS;
1427 }
1428 return 0;
1429 }
1430
1431 /* Force the summary counters to be recalculated at next mount. */
1432 void
xfs_force_summary_recalc(struct xfs_mount * mp)1433 xfs_force_summary_recalc(
1434 struct xfs_mount *mp)
1435 {
1436 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1437 return;
1438
1439 spin_lock(&mp->m_sb_lock);
1440 mp->m_flags |= XFS_MOUNT_BAD_SUMMARY;
1441 spin_unlock(&mp->m_sb_lock);
1442 }
1443