1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * Copyright (c) 2012 Red Hat, Inc.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_fs.h"
9 #include "xfs_shared.h"
10 #include "xfs_format.h"
11 #include "xfs_log_format.h"
12 #include "xfs_trans_resv.h"
13 #include "xfs_bit.h"
14 #include "xfs_mount.h"
15 #include "xfs_da_format.h"
16 #include "xfs_defer.h"
17 #include "xfs_inode.h"
18 #include "xfs_btree.h"
19 #include "xfs_trans.h"
20 #include "xfs_extfree_item.h"
21 #include "xfs_alloc.h"
22 #include "xfs_bmap.h"
23 #include "xfs_bmap_util.h"
24 #include "xfs_bmap_btree.h"
25 #include "xfs_rtalloc.h"
26 #include "xfs_error.h"
27 #include "xfs_quota.h"
28 #include "xfs_trans_space.h"
29 #include "xfs_trace.h"
30 #include "xfs_icache.h"
31 #include "xfs_log.h"
32 #include "xfs_rmap_btree.h"
33 #include "xfs_iomap.h"
34 #include "xfs_reflink.h"
35 #include "xfs_refcount.h"
36
37 /* Kernel only BMAP related definitions and functions */
38
39 /*
40 * Convert the given file system block to a disk block. We have to treat it
41 * differently based on whether the file is a real time file or not, because the
42 * bmap code does.
43 */
44 xfs_daddr_t
xfs_fsb_to_db(struct xfs_inode * ip,xfs_fsblock_t fsb)45 xfs_fsb_to_db(struct xfs_inode *ip, xfs_fsblock_t fsb)
46 {
47 return (XFS_IS_REALTIME_INODE(ip) ? \
48 (xfs_daddr_t)XFS_FSB_TO_BB((ip)->i_mount, (fsb)) : \
49 XFS_FSB_TO_DADDR((ip)->i_mount, (fsb)));
50 }
51
52 /*
53 * Routine to zero an extent on disk allocated to the specific inode.
54 *
55 * The VFS functions take a linearised filesystem block offset, so we have to
56 * convert the sparse xfs fsb to the right format first.
57 * VFS types are real funky, too.
58 */
59 int
xfs_zero_extent(struct xfs_inode * ip,xfs_fsblock_t start_fsb,xfs_off_t count_fsb)60 xfs_zero_extent(
61 struct xfs_inode *ip,
62 xfs_fsblock_t start_fsb,
63 xfs_off_t count_fsb)
64 {
65 struct xfs_mount *mp = ip->i_mount;
66 xfs_daddr_t sector = xfs_fsb_to_db(ip, start_fsb);
67 sector_t block = XFS_BB_TO_FSBT(mp, sector);
68
69 return blkdev_issue_zeroout(xfs_find_bdev_for_inode(VFS_I(ip)),
70 block << (mp->m_super->s_blocksize_bits - 9),
71 count_fsb << (mp->m_super->s_blocksize_bits - 9),
72 GFP_NOFS, 0);
73 }
74
75 #ifdef CONFIG_XFS_RT
76 int
xfs_bmap_rtalloc(struct xfs_bmalloca * ap)77 xfs_bmap_rtalloc(
78 struct xfs_bmalloca *ap) /* bmap alloc argument struct */
79 {
80 int error; /* error return value */
81 xfs_mount_t *mp; /* mount point structure */
82 xfs_extlen_t prod = 0; /* product factor for allocators */
83 xfs_extlen_t mod = 0; /* product factor for allocators */
84 xfs_extlen_t ralen = 0; /* realtime allocation length */
85 xfs_extlen_t align; /* minimum allocation alignment */
86 xfs_rtblock_t rtb;
87
88 mp = ap->ip->i_mount;
89 align = xfs_get_extsz_hint(ap->ip);
90 prod = align / mp->m_sb.sb_rextsize;
91 error = xfs_bmap_extsize_align(mp, &ap->got, &ap->prev,
92 align, 1, ap->eof, 0,
93 ap->conv, &ap->offset, &ap->length);
94 if (error)
95 return error;
96 ASSERT(ap->length);
97 ASSERT(ap->length % mp->m_sb.sb_rextsize == 0);
98
99 /*
100 * If the offset & length are not perfectly aligned
101 * then kill prod, it will just get us in trouble.
102 */
103 div_u64_rem(ap->offset, align, &mod);
104 if (mod || ap->length % align)
105 prod = 1;
106 /*
107 * Set ralen to be the actual requested length in rtextents.
108 */
109 ralen = ap->length / mp->m_sb.sb_rextsize;
110 /*
111 * If the old value was close enough to MAXEXTLEN that
112 * we rounded up to it, cut it back so it's valid again.
113 * Note that if it's a really large request (bigger than
114 * MAXEXTLEN), we don't hear about that number, and can't
115 * adjust the starting point to match it.
116 */
117 if (ralen * mp->m_sb.sb_rextsize >= MAXEXTLEN)
118 ralen = MAXEXTLEN / mp->m_sb.sb_rextsize;
119
120 /*
121 * Lock out modifications to both the RT bitmap and summary inodes
122 */
123 xfs_ilock(mp->m_rbmip, XFS_ILOCK_EXCL|XFS_ILOCK_RTBITMAP);
124 xfs_trans_ijoin(ap->tp, mp->m_rbmip, XFS_ILOCK_EXCL);
125 xfs_ilock(mp->m_rsumip, XFS_ILOCK_EXCL|XFS_ILOCK_RTSUM);
126 xfs_trans_ijoin(ap->tp, mp->m_rsumip, XFS_ILOCK_EXCL);
127
128 /*
129 * If it's an allocation to an empty file at offset 0,
130 * pick an extent that will space things out in the rt area.
131 */
132 if (ap->eof && ap->offset == 0) {
133 xfs_rtblock_t rtx; /* realtime extent no */
134
135 error = xfs_rtpick_extent(mp, ap->tp, ralen, &rtx);
136 if (error)
137 return error;
138 ap->blkno = rtx * mp->m_sb.sb_rextsize;
139 } else {
140 ap->blkno = 0;
141 }
142
143 xfs_bmap_adjacent(ap);
144
145 /*
146 * Realtime allocation, done through xfs_rtallocate_extent.
147 */
148 do_div(ap->blkno, mp->m_sb.sb_rextsize);
149 rtb = ap->blkno;
150 ap->length = ralen;
151 error = xfs_rtallocate_extent(ap->tp, ap->blkno, 1, ap->length,
152 &ralen, ap->wasdel, prod, &rtb);
153 if (error)
154 return error;
155
156 ap->blkno = rtb;
157 if (ap->blkno != NULLFSBLOCK) {
158 ap->blkno *= mp->m_sb.sb_rextsize;
159 ralen *= mp->m_sb.sb_rextsize;
160 ap->length = ralen;
161 ap->ip->i_d.di_nblocks += ralen;
162 xfs_trans_log_inode(ap->tp, ap->ip, XFS_ILOG_CORE);
163 if (ap->wasdel)
164 ap->ip->i_delayed_blks -= ralen;
165 /*
166 * Adjust the disk quota also. This was reserved
167 * earlier.
168 */
169 xfs_trans_mod_dquot_byino(ap->tp, ap->ip,
170 ap->wasdel ? XFS_TRANS_DQ_DELRTBCOUNT :
171 XFS_TRANS_DQ_RTBCOUNT, (long) ralen);
172
173 /* Zero the extent if we were asked to do so */
174 if (ap->datatype & XFS_ALLOC_USERDATA_ZERO) {
175 error = xfs_zero_extent(ap->ip, ap->blkno, ap->length);
176 if (error)
177 return error;
178 }
179 } else {
180 ap->length = 0;
181 }
182 return 0;
183 }
184 #endif /* CONFIG_XFS_RT */
185
186 /*
187 * Check if the endoff is outside the last extent. If so the caller will grow
188 * the allocation to a stripe unit boundary. All offsets are considered outside
189 * the end of file for an empty fork, so 1 is returned in *eof in that case.
190 */
191 int
xfs_bmap_eof(struct xfs_inode * ip,xfs_fileoff_t endoff,int whichfork,int * eof)192 xfs_bmap_eof(
193 struct xfs_inode *ip,
194 xfs_fileoff_t endoff,
195 int whichfork,
196 int *eof)
197 {
198 struct xfs_bmbt_irec rec;
199 int error;
200
201 error = xfs_bmap_last_extent(NULL, ip, whichfork, &rec, eof);
202 if (error || *eof)
203 return error;
204
205 *eof = endoff >= rec.br_startoff + rec.br_blockcount;
206 return 0;
207 }
208
209 /*
210 * Extent tree block counting routines.
211 */
212
213 /*
214 * Count leaf blocks given a range of extent records. Delayed allocation
215 * extents are not counted towards the totals.
216 */
217 xfs_extnum_t
xfs_bmap_count_leaves(struct xfs_ifork * ifp,xfs_filblks_t * count)218 xfs_bmap_count_leaves(
219 struct xfs_ifork *ifp,
220 xfs_filblks_t *count)
221 {
222 struct xfs_iext_cursor icur;
223 struct xfs_bmbt_irec got;
224 xfs_extnum_t numrecs = 0;
225
226 for_each_xfs_iext(ifp, &icur, &got) {
227 if (!isnullstartblock(got.br_startblock)) {
228 *count += got.br_blockcount;
229 numrecs++;
230 }
231 }
232
233 return numrecs;
234 }
235
236 /*
237 * Count leaf blocks given a range of extent records originally
238 * in btree format.
239 */
240 STATIC void
xfs_bmap_disk_count_leaves(struct xfs_mount * mp,struct xfs_btree_block * block,int numrecs,xfs_filblks_t * count)241 xfs_bmap_disk_count_leaves(
242 struct xfs_mount *mp,
243 struct xfs_btree_block *block,
244 int numrecs,
245 xfs_filblks_t *count)
246 {
247 int b;
248 xfs_bmbt_rec_t *frp;
249
250 for (b = 1; b <= numrecs; b++) {
251 frp = XFS_BMBT_REC_ADDR(mp, block, b);
252 *count += xfs_bmbt_disk_get_blockcount(frp);
253 }
254 }
255
256 /*
257 * Recursively walks each level of a btree
258 * to count total fsblocks in use.
259 */
260 STATIC int
xfs_bmap_count_tree(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_ifork * ifp,xfs_fsblock_t blockno,int levelin,xfs_extnum_t * nextents,xfs_filblks_t * count)261 xfs_bmap_count_tree(
262 struct xfs_mount *mp,
263 struct xfs_trans *tp,
264 struct xfs_ifork *ifp,
265 xfs_fsblock_t blockno,
266 int levelin,
267 xfs_extnum_t *nextents,
268 xfs_filblks_t *count)
269 {
270 int error;
271 struct xfs_buf *bp, *nbp;
272 int level = levelin;
273 __be64 *pp;
274 xfs_fsblock_t bno = blockno;
275 xfs_fsblock_t nextbno;
276 struct xfs_btree_block *block, *nextblock;
277 int numrecs;
278
279 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp, XFS_BMAP_BTREE_REF,
280 &xfs_bmbt_buf_ops);
281 if (error)
282 return error;
283 *count += 1;
284 block = XFS_BUF_TO_BLOCK(bp);
285
286 if (--level) {
287 /* Not at node above leaves, count this level of nodes */
288 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
289 while (nextbno != NULLFSBLOCK) {
290 error = xfs_btree_read_bufl(mp, tp, nextbno, 0, &nbp,
291 XFS_BMAP_BTREE_REF,
292 &xfs_bmbt_buf_ops);
293 if (error)
294 return error;
295 *count += 1;
296 nextblock = XFS_BUF_TO_BLOCK(nbp);
297 nextbno = be64_to_cpu(nextblock->bb_u.l.bb_rightsib);
298 xfs_trans_brelse(tp, nbp);
299 }
300
301 /* Dive to the next level */
302 pp = XFS_BMBT_PTR_ADDR(mp, block, 1, mp->m_bmap_dmxr[1]);
303 bno = be64_to_cpu(*pp);
304 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level, nextents,
305 count);
306 if (error) {
307 xfs_trans_brelse(tp, bp);
308 XFS_ERROR_REPORT("xfs_bmap_count_tree(1)",
309 XFS_ERRLEVEL_LOW, mp);
310 return -EFSCORRUPTED;
311 }
312 xfs_trans_brelse(tp, bp);
313 } else {
314 /* count all level 1 nodes and their leaves */
315 for (;;) {
316 nextbno = be64_to_cpu(block->bb_u.l.bb_rightsib);
317 numrecs = be16_to_cpu(block->bb_numrecs);
318 (*nextents) += numrecs;
319 xfs_bmap_disk_count_leaves(mp, block, numrecs, count);
320 xfs_trans_brelse(tp, bp);
321 if (nextbno == NULLFSBLOCK)
322 break;
323 bno = nextbno;
324 error = xfs_btree_read_bufl(mp, tp, bno, 0, &bp,
325 XFS_BMAP_BTREE_REF,
326 &xfs_bmbt_buf_ops);
327 if (error)
328 return error;
329 *count += 1;
330 block = XFS_BUF_TO_BLOCK(bp);
331 }
332 }
333 return 0;
334 }
335
336 /*
337 * Count fsblocks of the given fork. Delayed allocation extents are
338 * not counted towards the totals.
339 */
340 int
xfs_bmap_count_blocks(struct xfs_trans * tp,struct xfs_inode * ip,int whichfork,xfs_extnum_t * nextents,xfs_filblks_t * count)341 xfs_bmap_count_blocks(
342 struct xfs_trans *tp,
343 struct xfs_inode *ip,
344 int whichfork,
345 xfs_extnum_t *nextents,
346 xfs_filblks_t *count)
347 {
348 struct xfs_mount *mp; /* file system mount structure */
349 __be64 *pp; /* pointer to block address */
350 struct xfs_btree_block *block; /* current btree block */
351 struct xfs_ifork *ifp; /* fork structure */
352 xfs_fsblock_t bno; /* block # of "block" */
353 int level; /* btree level, for checking */
354 int error;
355
356 bno = NULLFSBLOCK;
357 mp = ip->i_mount;
358 *nextents = 0;
359 *count = 0;
360 ifp = XFS_IFORK_PTR(ip, whichfork);
361 if (!ifp)
362 return 0;
363
364 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
365 case XFS_DINODE_FMT_EXTENTS:
366 *nextents = xfs_bmap_count_leaves(ifp, count);
367 return 0;
368 case XFS_DINODE_FMT_BTREE:
369 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
370 error = xfs_iread_extents(tp, ip, whichfork);
371 if (error)
372 return error;
373 }
374
375 /*
376 * Root level must use BMAP_BROOT_PTR_ADDR macro to get ptr out.
377 */
378 block = ifp->if_broot;
379 level = be16_to_cpu(block->bb_level);
380 ASSERT(level > 0);
381 pp = XFS_BMAP_BROOT_PTR_ADDR(mp, block, 1, ifp->if_broot_bytes);
382 bno = be64_to_cpu(*pp);
383 ASSERT(bno != NULLFSBLOCK);
384 ASSERT(XFS_FSB_TO_AGNO(mp, bno) < mp->m_sb.sb_agcount);
385 ASSERT(XFS_FSB_TO_AGBNO(mp, bno) < mp->m_sb.sb_agblocks);
386
387 error = xfs_bmap_count_tree(mp, tp, ifp, bno, level,
388 nextents, count);
389 if (error) {
390 XFS_ERROR_REPORT("xfs_bmap_count_blocks(2)",
391 XFS_ERRLEVEL_LOW, mp);
392 return -EFSCORRUPTED;
393 }
394 return 0;
395 }
396
397 return 0;
398 }
399
400 static int
xfs_getbmap_report_one(struct xfs_inode * ip,struct getbmapx * bmv,struct kgetbmap * out,int64_t bmv_end,struct xfs_bmbt_irec * got)401 xfs_getbmap_report_one(
402 struct xfs_inode *ip,
403 struct getbmapx *bmv,
404 struct kgetbmap *out,
405 int64_t bmv_end,
406 struct xfs_bmbt_irec *got)
407 {
408 struct kgetbmap *p = out + bmv->bmv_entries;
409 bool shared = false, trimmed = false;
410 int error;
411
412 error = xfs_reflink_trim_around_shared(ip, got, &shared, &trimmed);
413 if (error)
414 return error;
415
416 if (isnullstartblock(got->br_startblock) ||
417 got->br_startblock == DELAYSTARTBLOCK) {
418 /*
419 * Delalloc extents that start beyond EOF can occur due to
420 * speculative EOF allocation when the delalloc extent is larger
421 * than the largest freespace extent at conversion time. These
422 * extents cannot be converted by data writeback, so can exist
423 * here even if we are not supposed to be finding delalloc
424 * extents.
425 */
426 if (got->br_startoff < XFS_B_TO_FSB(ip->i_mount, XFS_ISIZE(ip)))
427 ASSERT((bmv->bmv_iflags & BMV_IF_DELALLOC) != 0);
428
429 p->bmv_oflags |= BMV_OF_DELALLOC;
430 p->bmv_block = -2;
431 } else {
432 p->bmv_block = xfs_fsb_to_db(ip, got->br_startblock);
433 }
434
435 if (got->br_state == XFS_EXT_UNWRITTEN &&
436 (bmv->bmv_iflags & BMV_IF_PREALLOC))
437 p->bmv_oflags |= BMV_OF_PREALLOC;
438
439 if (shared)
440 p->bmv_oflags |= BMV_OF_SHARED;
441
442 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, got->br_startoff);
443 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, got->br_blockcount);
444
445 bmv->bmv_offset = p->bmv_offset + p->bmv_length;
446 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
447 bmv->bmv_entries++;
448 return 0;
449 }
450
451 static void
xfs_getbmap_report_hole(struct xfs_inode * ip,struct getbmapx * bmv,struct kgetbmap * out,int64_t bmv_end,xfs_fileoff_t bno,xfs_fileoff_t end)452 xfs_getbmap_report_hole(
453 struct xfs_inode *ip,
454 struct getbmapx *bmv,
455 struct kgetbmap *out,
456 int64_t bmv_end,
457 xfs_fileoff_t bno,
458 xfs_fileoff_t end)
459 {
460 struct kgetbmap *p = out + bmv->bmv_entries;
461
462 if (bmv->bmv_iflags & BMV_IF_NO_HOLES)
463 return;
464
465 p->bmv_block = -1;
466 p->bmv_offset = XFS_FSB_TO_BB(ip->i_mount, bno);
467 p->bmv_length = XFS_FSB_TO_BB(ip->i_mount, end - bno);
468
469 bmv->bmv_offset = p->bmv_offset + p->bmv_length;
470 bmv->bmv_length = max(0LL, bmv_end - bmv->bmv_offset);
471 bmv->bmv_entries++;
472 }
473
474 static inline bool
xfs_getbmap_full(struct getbmapx * bmv)475 xfs_getbmap_full(
476 struct getbmapx *bmv)
477 {
478 return bmv->bmv_length == 0 || bmv->bmv_entries >= bmv->bmv_count - 1;
479 }
480
481 static bool
xfs_getbmap_next_rec(struct xfs_bmbt_irec * rec,xfs_fileoff_t total_end)482 xfs_getbmap_next_rec(
483 struct xfs_bmbt_irec *rec,
484 xfs_fileoff_t total_end)
485 {
486 xfs_fileoff_t end = rec->br_startoff + rec->br_blockcount;
487
488 if (end == total_end)
489 return false;
490
491 rec->br_startoff += rec->br_blockcount;
492 if (!isnullstartblock(rec->br_startblock) &&
493 rec->br_startblock != DELAYSTARTBLOCK)
494 rec->br_startblock += rec->br_blockcount;
495 rec->br_blockcount = total_end - end;
496 return true;
497 }
498
499 /*
500 * Get inode's extents as described in bmv, and format for output.
501 * Calls formatter to fill the user's buffer until all extents
502 * are mapped, until the passed-in bmv->bmv_count slots have
503 * been filled, or until the formatter short-circuits the loop,
504 * if it is tracking filled-in extents on its own.
505 */
506 int /* error code */
xfs_getbmap(struct xfs_inode * ip,struct getbmapx * bmv,struct kgetbmap * out)507 xfs_getbmap(
508 struct xfs_inode *ip,
509 struct getbmapx *bmv, /* user bmap structure */
510 struct kgetbmap *out)
511 {
512 struct xfs_mount *mp = ip->i_mount;
513 int iflags = bmv->bmv_iflags;
514 int whichfork, lock, error = 0;
515 int64_t bmv_end, max_len;
516 xfs_fileoff_t bno, first_bno;
517 struct xfs_ifork *ifp;
518 struct xfs_bmbt_irec got, rec;
519 xfs_filblks_t len;
520 struct xfs_iext_cursor icur;
521
522 if (bmv->bmv_iflags & ~BMV_IF_VALID)
523 return -EINVAL;
524 #ifndef DEBUG
525 /* Only allow CoW fork queries if we're debugging. */
526 if (iflags & BMV_IF_COWFORK)
527 return -EINVAL;
528 #endif
529 if ((iflags & BMV_IF_ATTRFORK) && (iflags & BMV_IF_COWFORK))
530 return -EINVAL;
531
532 if (bmv->bmv_length < -1)
533 return -EINVAL;
534 bmv->bmv_entries = 0;
535 if (bmv->bmv_length == 0)
536 return 0;
537
538 if (iflags & BMV_IF_ATTRFORK)
539 whichfork = XFS_ATTR_FORK;
540 else if (iflags & BMV_IF_COWFORK)
541 whichfork = XFS_COW_FORK;
542 else
543 whichfork = XFS_DATA_FORK;
544 ifp = XFS_IFORK_PTR(ip, whichfork);
545
546 xfs_ilock(ip, XFS_IOLOCK_SHARED);
547 switch (whichfork) {
548 case XFS_ATTR_FORK:
549 if (!XFS_IFORK_Q(ip))
550 goto out_unlock_iolock;
551
552 max_len = 1LL << 32;
553 lock = xfs_ilock_attr_map_shared(ip);
554 break;
555 case XFS_COW_FORK:
556 /* No CoW fork? Just return */
557 if (!ifp)
558 goto out_unlock_iolock;
559
560 if (xfs_get_cowextsz_hint(ip))
561 max_len = mp->m_super->s_maxbytes;
562 else
563 max_len = XFS_ISIZE(ip);
564
565 lock = XFS_ILOCK_SHARED;
566 xfs_ilock(ip, lock);
567 break;
568 case XFS_DATA_FORK:
569 if (!(iflags & BMV_IF_DELALLOC) &&
570 (ip->i_delayed_blks || XFS_ISIZE(ip) > ip->i_d.di_size)) {
571 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
572 if (error)
573 goto out_unlock_iolock;
574
575 /*
576 * Even after flushing the inode, there can still be
577 * delalloc blocks on the inode beyond EOF due to
578 * speculative preallocation. These are not removed
579 * until the release function is called or the inode
580 * is inactivated. Hence we cannot assert here that
581 * ip->i_delayed_blks == 0.
582 */
583 }
584
585 if (xfs_get_extsz_hint(ip) ||
586 (ip->i_d.di_flags &
587 (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND)))
588 max_len = mp->m_super->s_maxbytes;
589 else
590 max_len = XFS_ISIZE(ip);
591
592 lock = xfs_ilock_data_map_shared(ip);
593 break;
594 }
595
596 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
597 case XFS_DINODE_FMT_EXTENTS:
598 case XFS_DINODE_FMT_BTREE:
599 break;
600 case XFS_DINODE_FMT_LOCAL:
601 /* Local format inode forks report no extents. */
602 goto out_unlock_ilock;
603 default:
604 error = -EINVAL;
605 goto out_unlock_ilock;
606 }
607
608 if (bmv->bmv_length == -1) {
609 max_len = XFS_FSB_TO_BB(mp, XFS_B_TO_FSB(mp, max_len));
610 bmv->bmv_length = max(0LL, max_len - bmv->bmv_offset);
611 }
612
613 bmv_end = bmv->bmv_offset + bmv->bmv_length;
614
615 first_bno = bno = XFS_BB_TO_FSBT(mp, bmv->bmv_offset);
616 len = XFS_BB_TO_FSB(mp, bmv->bmv_length);
617
618 if (!(ifp->if_flags & XFS_IFEXTENTS)) {
619 error = xfs_iread_extents(NULL, ip, whichfork);
620 if (error)
621 goto out_unlock_ilock;
622 }
623
624 if (!xfs_iext_lookup_extent(ip, ifp, bno, &icur, &got)) {
625 /*
626 * Report a whole-file hole if the delalloc flag is set to
627 * stay compatible with the old implementation.
628 */
629 if (iflags & BMV_IF_DELALLOC)
630 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
631 XFS_B_TO_FSB(mp, XFS_ISIZE(ip)));
632 goto out_unlock_ilock;
633 }
634
635 while (!xfs_getbmap_full(bmv)) {
636 xfs_trim_extent(&got, first_bno, len);
637
638 /*
639 * Report an entry for a hole if this extent doesn't directly
640 * follow the previous one.
641 */
642 if (got.br_startoff > bno) {
643 xfs_getbmap_report_hole(ip, bmv, out, bmv_end, bno,
644 got.br_startoff);
645 if (xfs_getbmap_full(bmv))
646 break;
647 }
648
649 /*
650 * In order to report shared extents accurately, we report each
651 * distinct shared / unshared part of a single bmbt record with
652 * an individual getbmapx record.
653 */
654 bno = got.br_startoff + got.br_blockcount;
655 rec = got;
656 do {
657 error = xfs_getbmap_report_one(ip, bmv, out, bmv_end,
658 &rec);
659 if (error || xfs_getbmap_full(bmv))
660 goto out_unlock_ilock;
661 } while (xfs_getbmap_next_rec(&rec, bno));
662
663 if (!xfs_iext_next_extent(ifp, &icur, &got)) {
664 xfs_fileoff_t end = XFS_B_TO_FSB(mp, XFS_ISIZE(ip));
665
666 out[bmv->bmv_entries - 1].bmv_oflags |= BMV_OF_LAST;
667
668 if (whichfork != XFS_ATTR_FORK && bno < end &&
669 !xfs_getbmap_full(bmv)) {
670 xfs_getbmap_report_hole(ip, bmv, out, bmv_end,
671 bno, end);
672 }
673 break;
674 }
675
676 if (bno >= first_bno + len)
677 break;
678 }
679
680 out_unlock_ilock:
681 xfs_iunlock(ip, lock);
682 out_unlock_iolock:
683 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
684 return error;
685 }
686
687 /*
688 * Dead simple method of punching delalyed allocation blocks from a range in
689 * the inode. This will always punch out both the start and end blocks, even
690 * if the ranges only partially overlap them, so it is up to the caller to
691 * ensure that partial blocks are not passed in.
692 */
693 int
xfs_bmap_punch_delalloc_range(struct xfs_inode * ip,xfs_fileoff_t start_fsb,xfs_fileoff_t length)694 xfs_bmap_punch_delalloc_range(
695 struct xfs_inode *ip,
696 xfs_fileoff_t start_fsb,
697 xfs_fileoff_t length)
698 {
699 struct xfs_ifork *ifp = &ip->i_df;
700 xfs_fileoff_t end_fsb = start_fsb + length;
701 struct xfs_bmbt_irec got, del;
702 struct xfs_iext_cursor icur;
703 int error = 0;
704
705 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
706
707 xfs_ilock(ip, XFS_ILOCK_EXCL);
708 if (!xfs_iext_lookup_extent_before(ip, ifp, &end_fsb, &icur, &got))
709 goto out_unlock;
710
711 while (got.br_startoff + got.br_blockcount > start_fsb) {
712 del = got;
713 xfs_trim_extent(&del, start_fsb, length);
714
715 /*
716 * A delete can push the cursor forward. Step back to the
717 * previous extent on non-delalloc or extents outside the
718 * target range.
719 */
720 if (!del.br_blockcount ||
721 !isnullstartblock(del.br_startblock)) {
722 if (!xfs_iext_prev_extent(ifp, &icur, &got))
723 break;
724 continue;
725 }
726
727 error = xfs_bmap_del_extent_delay(ip, XFS_DATA_FORK, &icur,
728 &got, &del);
729 if (error || !xfs_iext_get_extent(ifp, &icur, &got))
730 break;
731 }
732
733 out_unlock:
734 xfs_iunlock(ip, XFS_ILOCK_EXCL);
735 return error;
736 }
737
738 /*
739 * Test whether it is appropriate to check an inode for and free post EOF
740 * blocks. The 'force' parameter determines whether we should also consider
741 * regular files that are marked preallocated or append-only.
742 */
743 bool
xfs_can_free_eofblocks(struct xfs_inode * ip,bool force)744 xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
745 {
746 /* prealloc/delalloc exists only on regular files */
747 if (!S_ISREG(VFS_I(ip)->i_mode))
748 return false;
749
750 /*
751 * Zero sized files with no cached pages and delalloc blocks will not
752 * have speculative prealloc/delalloc blocks to remove.
753 */
754 if (VFS_I(ip)->i_size == 0 &&
755 VFS_I(ip)->i_mapping->nrpages == 0 &&
756 ip->i_delayed_blks == 0)
757 return false;
758
759 /* If we haven't read in the extent list, then don't do it now. */
760 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
761 return false;
762
763 /*
764 * Do not free real preallocated or append-only files unless the file
765 * has delalloc blocks and we are forced to remove them.
766 */
767 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
768 if (!force || ip->i_delayed_blks == 0)
769 return false;
770
771 return true;
772 }
773
774 /*
775 * This is called to free any blocks beyond eof. The caller must hold
776 * IOLOCK_EXCL unless we are in the inode reclaim path and have the only
777 * reference to the inode.
778 */
779 int
xfs_free_eofblocks(struct xfs_inode * ip)780 xfs_free_eofblocks(
781 struct xfs_inode *ip)
782 {
783 struct xfs_trans *tp;
784 int error;
785 xfs_fileoff_t end_fsb;
786 xfs_fileoff_t last_fsb;
787 xfs_filblks_t map_len;
788 int nimaps;
789 struct xfs_bmbt_irec imap;
790 struct xfs_mount *mp = ip->i_mount;
791
792 /*
793 * Figure out if there are any blocks beyond the end
794 * of the file. If not, then there is nothing to do.
795 */
796 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_ISIZE(ip));
797 last_fsb = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
798 if (last_fsb <= end_fsb)
799 return 0;
800 map_len = last_fsb - end_fsb;
801
802 nimaps = 1;
803 xfs_ilock(ip, XFS_ILOCK_SHARED);
804 error = xfs_bmapi_read(ip, end_fsb, map_len, &imap, &nimaps, 0);
805 xfs_iunlock(ip, XFS_ILOCK_SHARED);
806
807 /*
808 * If there are blocks after the end of file, truncate the file to its
809 * current size to free them up.
810 */
811 if (!error && (nimaps != 0) &&
812 (imap.br_startblock != HOLESTARTBLOCK ||
813 ip->i_delayed_blks)) {
814 /*
815 * Attach the dquots to the inode up front.
816 */
817 error = xfs_qm_dqattach(ip);
818 if (error)
819 return error;
820
821 /* wait on dio to ensure i_size has settled */
822 inode_dio_wait(VFS_I(ip));
823
824 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0,
825 &tp);
826 if (error) {
827 ASSERT(XFS_FORCED_SHUTDOWN(mp));
828 return error;
829 }
830
831 xfs_ilock(ip, XFS_ILOCK_EXCL);
832 xfs_trans_ijoin(tp, ip, 0);
833
834 /*
835 * Do not update the on-disk file size. If we update the
836 * on-disk file size and then the system crashes before the
837 * contents of the file are flushed to disk then the files
838 * may be full of holes (ie NULL files bug).
839 */
840 error = xfs_itruncate_extents_flags(&tp, ip, XFS_DATA_FORK,
841 XFS_ISIZE(ip), XFS_BMAPI_NODISCARD);
842 if (error) {
843 /*
844 * If we get an error at this point we simply don't
845 * bother truncating the file.
846 */
847 xfs_trans_cancel(tp);
848 } else {
849 error = xfs_trans_commit(tp);
850 if (!error)
851 xfs_inode_clear_eofblocks_tag(ip);
852 }
853
854 xfs_iunlock(ip, XFS_ILOCK_EXCL);
855 }
856 return error;
857 }
858
859 int
xfs_alloc_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len,int alloc_type)860 xfs_alloc_file_space(
861 struct xfs_inode *ip,
862 xfs_off_t offset,
863 xfs_off_t len,
864 int alloc_type)
865 {
866 xfs_mount_t *mp = ip->i_mount;
867 xfs_off_t count;
868 xfs_filblks_t allocated_fsb;
869 xfs_filblks_t allocatesize_fsb;
870 xfs_extlen_t extsz, temp;
871 xfs_fileoff_t startoffset_fsb;
872 int nimaps;
873 int quota_flag;
874 int rt;
875 xfs_trans_t *tp;
876 xfs_bmbt_irec_t imaps[1], *imapp;
877 uint qblocks, resblks, resrtextents;
878 int error;
879
880 trace_xfs_alloc_file_space(ip);
881
882 if (XFS_FORCED_SHUTDOWN(mp))
883 return -EIO;
884
885 error = xfs_qm_dqattach(ip);
886 if (error)
887 return error;
888
889 if (len <= 0)
890 return -EINVAL;
891
892 rt = XFS_IS_REALTIME_INODE(ip);
893 extsz = xfs_get_extsz_hint(ip);
894
895 count = len;
896 imapp = &imaps[0];
897 nimaps = 1;
898 startoffset_fsb = XFS_B_TO_FSBT(mp, offset);
899 allocatesize_fsb = XFS_B_TO_FSB(mp, count);
900
901 /*
902 * Allocate file space until done or until there is an error
903 */
904 while (allocatesize_fsb && !error) {
905 xfs_fileoff_t s, e;
906
907 /*
908 * Determine space reservations for data/realtime.
909 */
910 if (unlikely(extsz)) {
911 s = startoffset_fsb;
912 do_div(s, extsz);
913 s *= extsz;
914 e = startoffset_fsb + allocatesize_fsb;
915 div_u64_rem(startoffset_fsb, extsz, &temp);
916 if (temp)
917 e += temp;
918 div_u64_rem(e, extsz, &temp);
919 if (temp)
920 e += extsz - temp;
921 } else {
922 s = 0;
923 e = allocatesize_fsb;
924 }
925
926 /*
927 * The transaction reservation is limited to a 32-bit block
928 * count, hence we need to limit the number of blocks we are
929 * trying to reserve to avoid an overflow. We can't allocate
930 * more than @nimaps extents, and an extent is limited on disk
931 * to MAXEXTLEN (21 bits), so use that to enforce the limit.
932 */
933 resblks = min_t(xfs_fileoff_t, (e - s), (MAXEXTLEN * nimaps));
934 if (unlikely(rt)) {
935 resrtextents = qblocks = resblks;
936 resrtextents /= mp->m_sb.sb_rextsize;
937 resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
938 quota_flag = XFS_QMOPT_RES_RTBLKS;
939 } else {
940 resrtextents = 0;
941 resblks = qblocks = XFS_DIOSTRAT_SPACE_RES(mp, resblks);
942 quota_flag = XFS_QMOPT_RES_REGBLKS;
943 }
944
945 /*
946 * Allocate and setup the transaction.
947 */
948 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks,
949 resrtextents, 0, &tp);
950
951 /*
952 * Check for running out of space
953 */
954 if (error) {
955 /*
956 * Free the transaction structure.
957 */
958 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
959 break;
960 }
961 xfs_ilock(ip, XFS_ILOCK_EXCL);
962 error = xfs_trans_reserve_quota_nblks(tp, ip, qblocks,
963 0, quota_flag);
964 if (error)
965 goto error1;
966
967 xfs_trans_ijoin(tp, ip, 0);
968
969 error = xfs_bmapi_write(tp, ip, startoffset_fsb,
970 allocatesize_fsb, alloc_type, resblks,
971 imapp, &nimaps);
972 if (error)
973 goto error0;
974
975 /*
976 * Complete the transaction
977 */
978 error = xfs_trans_commit(tp);
979 xfs_iunlock(ip, XFS_ILOCK_EXCL);
980 if (error)
981 break;
982
983 allocated_fsb = imapp->br_blockcount;
984
985 if (nimaps == 0) {
986 error = -ENOSPC;
987 break;
988 }
989
990 startoffset_fsb += allocated_fsb;
991 allocatesize_fsb -= allocated_fsb;
992 }
993
994 return error;
995
996 error0: /* unlock inode, unreserve quota blocks, cancel trans */
997 xfs_trans_unreserve_quota_nblks(tp, ip, (long)qblocks, 0, quota_flag);
998
999 error1: /* Just cancel transaction */
1000 xfs_trans_cancel(tp);
1001 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1002 return error;
1003 }
1004
1005 static int
xfs_unmap_extent(struct xfs_inode * ip,xfs_fileoff_t startoffset_fsb,xfs_filblks_t len_fsb,int * done)1006 xfs_unmap_extent(
1007 struct xfs_inode *ip,
1008 xfs_fileoff_t startoffset_fsb,
1009 xfs_filblks_t len_fsb,
1010 int *done)
1011 {
1012 struct xfs_mount *mp = ip->i_mount;
1013 struct xfs_trans *tp;
1014 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1015 int error;
1016
1017 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1018 if (error) {
1019 ASSERT(error == -ENOSPC || XFS_FORCED_SHUTDOWN(mp));
1020 return error;
1021 }
1022
1023 xfs_ilock(ip, XFS_ILOCK_EXCL);
1024 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot, ip->i_gdquot,
1025 ip->i_pdquot, resblks, 0, XFS_QMOPT_RES_REGBLKS);
1026 if (error)
1027 goto out_trans_cancel;
1028
1029 xfs_trans_ijoin(tp, ip, 0);
1030
1031 error = xfs_bunmapi(tp, ip, startoffset_fsb, len_fsb, 0, 2, done);
1032 if (error)
1033 goto out_trans_cancel;
1034
1035 error = xfs_trans_commit(tp);
1036 out_unlock:
1037 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1038 return error;
1039
1040 out_trans_cancel:
1041 xfs_trans_cancel(tp);
1042 goto out_unlock;
1043 }
1044
1045 static int
xfs_adjust_extent_unmap_boundaries(struct xfs_inode * ip,xfs_fileoff_t * startoffset_fsb,xfs_fileoff_t * endoffset_fsb)1046 xfs_adjust_extent_unmap_boundaries(
1047 struct xfs_inode *ip,
1048 xfs_fileoff_t *startoffset_fsb,
1049 xfs_fileoff_t *endoffset_fsb)
1050 {
1051 struct xfs_mount *mp = ip->i_mount;
1052 struct xfs_bmbt_irec imap;
1053 int nimap, error;
1054 xfs_extlen_t mod = 0;
1055
1056 nimap = 1;
1057 error = xfs_bmapi_read(ip, *startoffset_fsb, 1, &imap, &nimap, 0);
1058 if (error)
1059 return error;
1060
1061 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1062 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1063 div_u64_rem(imap.br_startblock, mp->m_sb.sb_rextsize, &mod);
1064 if (mod)
1065 *startoffset_fsb += mp->m_sb.sb_rextsize - mod;
1066 }
1067
1068 nimap = 1;
1069 error = xfs_bmapi_read(ip, *endoffset_fsb - 1, 1, &imap, &nimap, 0);
1070 if (error)
1071 return error;
1072
1073 if (nimap && imap.br_startblock != HOLESTARTBLOCK) {
1074 ASSERT(imap.br_startblock != DELAYSTARTBLOCK);
1075 mod++;
1076 if (mod && mod != mp->m_sb.sb_rextsize)
1077 *endoffset_fsb -= mod;
1078 }
1079
1080 return 0;
1081 }
1082
1083 int
xfs_flush_unmap_range(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1084 xfs_flush_unmap_range(
1085 struct xfs_inode *ip,
1086 xfs_off_t offset,
1087 xfs_off_t len)
1088 {
1089 struct xfs_mount *mp = ip->i_mount;
1090 struct inode *inode = VFS_I(ip);
1091 xfs_off_t rounding, start, end;
1092 int error;
1093
1094 /* wait for the completion of any pending DIOs */
1095 inode_dio_wait(inode);
1096
1097 rounding = max_t(xfs_off_t, 1 << mp->m_sb.sb_blocklog, PAGE_SIZE);
1098 start = round_down(offset, rounding);
1099 end = round_up(offset + len, rounding) - 1;
1100
1101 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
1102 if (error)
1103 return error;
1104 truncate_pagecache_range(inode, start, end);
1105 return 0;
1106 }
1107
1108 int
xfs_free_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1109 xfs_free_file_space(
1110 struct xfs_inode *ip,
1111 xfs_off_t offset,
1112 xfs_off_t len)
1113 {
1114 struct xfs_mount *mp = ip->i_mount;
1115 xfs_fileoff_t startoffset_fsb;
1116 xfs_fileoff_t endoffset_fsb;
1117 int done = 0, error;
1118
1119 trace_xfs_free_file_space(ip);
1120
1121 error = xfs_qm_dqattach(ip);
1122 if (error)
1123 return error;
1124
1125 if (len <= 0) /* if nothing being freed */
1126 return 0;
1127
1128 error = xfs_flush_unmap_range(ip, offset, len);
1129 if (error)
1130 return error;
1131
1132 startoffset_fsb = XFS_B_TO_FSB(mp, offset);
1133 endoffset_fsb = XFS_B_TO_FSBT(mp, offset + len);
1134
1135 /*
1136 * Need to zero the stuff we're not freeing, on disk. If it's a RT file
1137 * and we can't use unwritten extents then we actually need to ensure
1138 * to zero the whole extent, otherwise we just need to take of block
1139 * boundaries, and xfs_bunmapi will handle the rest.
1140 */
1141 if (XFS_IS_REALTIME_INODE(ip) &&
1142 !xfs_sb_version_hasextflgbit(&mp->m_sb)) {
1143 error = xfs_adjust_extent_unmap_boundaries(ip, &startoffset_fsb,
1144 &endoffset_fsb);
1145 if (error)
1146 return error;
1147 }
1148
1149 if (endoffset_fsb > startoffset_fsb) {
1150 while (!done) {
1151 error = xfs_unmap_extent(ip, startoffset_fsb,
1152 endoffset_fsb - startoffset_fsb, &done);
1153 if (error)
1154 return error;
1155 }
1156 }
1157
1158 /*
1159 * Now that we've unmap all full blocks we'll have to zero out any
1160 * partial block at the beginning and/or end. iomap_zero_range is smart
1161 * enough to skip any holes, including those we just created, but we
1162 * must take care not to zero beyond EOF and enlarge i_size.
1163 */
1164 if (offset >= XFS_ISIZE(ip))
1165 return 0;
1166 if (offset + len > XFS_ISIZE(ip))
1167 len = XFS_ISIZE(ip) - offset;
1168 error = iomap_zero_range(VFS_I(ip), offset, len, NULL, &xfs_iomap_ops);
1169 if (error)
1170 return error;
1171
1172 /*
1173 * If we zeroed right up to EOF and EOF straddles a page boundary we
1174 * must make sure that the post-EOF area is also zeroed because the
1175 * page could be mmap'd and iomap_zero_range doesn't do that for us.
1176 * Writeback of the eof page will do this, albeit clumsily.
1177 */
1178 if (offset + len >= XFS_ISIZE(ip) && offset_in_page(offset + len) > 0) {
1179 error = filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
1180 round_down(offset + len, PAGE_SIZE), LLONG_MAX);
1181 }
1182
1183 return error;
1184 }
1185
1186 /*
1187 * Preallocate and zero a range of a file. This mechanism has the allocation
1188 * semantics of fallocate and in addition converts data in the range to zeroes.
1189 */
1190 int
xfs_zero_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1191 xfs_zero_file_space(
1192 struct xfs_inode *ip,
1193 xfs_off_t offset,
1194 xfs_off_t len)
1195 {
1196 struct xfs_mount *mp = ip->i_mount;
1197 uint blksize;
1198 int error;
1199
1200 trace_xfs_zero_file_space(ip);
1201
1202 blksize = 1 << mp->m_sb.sb_blocklog;
1203
1204 /*
1205 * Punch a hole and prealloc the range. We use hole punch rather than
1206 * unwritten extent conversion for two reasons:
1207 *
1208 * 1.) Hole punch handles partial block zeroing for us.
1209 *
1210 * 2.) If prealloc returns ENOSPC, the file range is still zero-valued
1211 * by virtue of the hole punch.
1212 */
1213 error = xfs_free_file_space(ip, offset, len);
1214 if (error)
1215 goto out;
1216
1217 error = xfs_alloc_file_space(ip, round_down(offset, blksize),
1218 round_up(offset + len, blksize) -
1219 round_down(offset, blksize),
1220 XFS_BMAPI_PREALLOC);
1221 out:
1222 return error;
1223
1224 }
1225
1226 static int
xfs_prepare_shift(struct xfs_inode * ip,loff_t offset)1227 xfs_prepare_shift(
1228 struct xfs_inode *ip,
1229 loff_t offset)
1230 {
1231 int error;
1232
1233 /*
1234 * Trim eofblocks to avoid shifting uninitialized post-eof preallocation
1235 * into the accessible region of the file.
1236 */
1237 if (xfs_can_free_eofblocks(ip, true)) {
1238 error = xfs_free_eofblocks(ip);
1239 if (error)
1240 return error;
1241 }
1242
1243 /*
1244 * Writeback and invalidate cache for the remainder of the file as we're
1245 * about to shift down every extent from offset to EOF.
1246 */
1247 error = xfs_flush_unmap_range(ip, offset, XFS_ISIZE(ip));
1248 if (error)
1249 return error;
1250
1251 /*
1252 * Clean out anything hanging around in the cow fork now that
1253 * we've flushed all the dirty data out to disk to avoid having
1254 * CoW extents at the wrong offsets.
1255 */
1256 if (xfs_inode_has_cow_data(ip)) {
1257 error = xfs_reflink_cancel_cow_range(ip, offset, NULLFILEOFF,
1258 true);
1259 if (error)
1260 return error;
1261 }
1262
1263 return 0;
1264 }
1265
1266 /*
1267 * xfs_collapse_file_space()
1268 * This routine frees disk space and shift extent for the given file.
1269 * The first thing we do is to free data blocks in the specified range
1270 * by calling xfs_free_file_space(). It would also sync dirty data
1271 * and invalidate page cache over the region on which collapse range
1272 * is working. And Shift extent records to the left to cover a hole.
1273 * RETURNS:
1274 * 0 on success
1275 * errno on error
1276 *
1277 */
1278 int
xfs_collapse_file_space(struct xfs_inode * ip,xfs_off_t offset,xfs_off_t len)1279 xfs_collapse_file_space(
1280 struct xfs_inode *ip,
1281 xfs_off_t offset,
1282 xfs_off_t len)
1283 {
1284 struct xfs_mount *mp = ip->i_mount;
1285 struct xfs_trans *tp;
1286 int error;
1287 xfs_fileoff_t next_fsb = XFS_B_TO_FSB(mp, offset + len);
1288 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len);
1289 uint resblks = XFS_DIOSTRAT_SPACE_RES(mp, 0);
1290 bool done = false;
1291
1292 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1293 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
1294
1295 trace_xfs_collapse_file_space(ip);
1296
1297 error = xfs_free_file_space(ip, offset, len);
1298 if (error)
1299 return error;
1300
1301 error = xfs_prepare_shift(ip, offset);
1302 if (error)
1303 return error;
1304
1305 while (!error && !done) {
1306 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0,
1307 &tp);
1308 if (error)
1309 break;
1310
1311 xfs_ilock(ip, XFS_ILOCK_EXCL);
1312 error = xfs_trans_reserve_quota(tp, mp, ip->i_udquot,
1313 ip->i_gdquot, ip->i_pdquot, resblks, 0,
1314 XFS_QMOPT_RES_REGBLKS);
1315 if (error)
1316 goto out_trans_cancel;
1317 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1318
1319 error = xfs_bmap_collapse_extents(tp, ip, &next_fsb, shift_fsb,
1320 &done);
1321 if (error)
1322 goto out_trans_cancel;
1323
1324 error = xfs_trans_commit(tp);
1325 }
1326
1327 return error;
1328
1329 out_trans_cancel:
1330 xfs_trans_cancel(tp);
1331 return error;
1332 }
1333
1334 /*
1335 * xfs_insert_file_space()
1336 * This routine create hole space by shifting extents for the given file.
1337 * The first thing we do is to sync dirty data and invalidate page cache
1338 * over the region on which insert range is working. And split an extent
1339 * to two extents at given offset by calling xfs_bmap_split_extent.
1340 * And shift all extent records which are laying between [offset,
1341 * last allocated extent] to the right to reserve hole range.
1342 * RETURNS:
1343 * 0 on success
1344 * errno on error
1345 */
1346 int
xfs_insert_file_space(struct xfs_inode * ip,loff_t offset,loff_t len)1347 xfs_insert_file_space(
1348 struct xfs_inode *ip,
1349 loff_t offset,
1350 loff_t len)
1351 {
1352 struct xfs_mount *mp = ip->i_mount;
1353 struct xfs_trans *tp;
1354 int error;
1355 xfs_fileoff_t stop_fsb = XFS_B_TO_FSB(mp, offset);
1356 xfs_fileoff_t next_fsb = NULLFSBLOCK;
1357 xfs_fileoff_t shift_fsb = XFS_B_TO_FSB(mp, len);
1358 bool done = false;
1359
1360 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1361 ASSERT(xfs_isilocked(ip, XFS_MMAPLOCK_EXCL));
1362
1363 trace_xfs_insert_file_space(ip);
1364
1365 error = xfs_bmap_can_insert_extents(ip, stop_fsb, shift_fsb);
1366 if (error)
1367 return error;
1368
1369 error = xfs_prepare_shift(ip, offset);
1370 if (error)
1371 return error;
1372
1373 /*
1374 * The extent shifting code works on extent granularity. So, if stop_fsb
1375 * is not the starting block of extent, we need to split the extent at
1376 * stop_fsb.
1377 */
1378 error = xfs_bmap_split_extent(ip, stop_fsb);
1379 if (error)
1380 return error;
1381
1382 while (!error && !done) {
1383 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, 0, 0, 0,
1384 &tp);
1385 if (error)
1386 break;
1387
1388 xfs_ilock(ip, XFS_ILOCK_EXCL);
1389 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1390 error = xfs_bmap_insert_extents(tp, ip, &next_fsb, shift_fsb,
1391 &done, stop_fsb);
1392 if (error)
1393 goto out_trans_cancel;
1394
1395 error = xfs_trans_commit(tp);
1396 }
1397
1398 return error;
1399
1400 out_trans_cancel:
1401 xfs_trans_cancel(tp);
1402 return error;
1403 }
1404
1405 /*
1406 * We need to check that the format of the data fork in the temporary inode is
1407 * valid for the target inode before doing the swap. This is not a problem with
1408 * attr1 because of the fixed fork offset, but attr2 has a dynamically sized
1409 * data fork depending on the space the attribute fork is taking so we can get
1410 * invalid formats on the target inode.
1411 *
1412 * E.g. target has space for 7 extents in extent format, temp inode only has
1413 * space for 6. If we defragment down to 7 extents, then the tmp format is a
1414 * btree, but when swapped it needs to be in extent format. Hence we can't just
1415 * blindly swap data forks on attr2 filesystems.
1416 *
1417 * Note that we check the swap in both directions so that we don't end up with
1418 * a corrupt temporary inode, either.
1419 *
1420 * Note that fixing the way xfs_fsr sets up the attribute fork in the source
1421 * inode will prevent this situation from occurring, so all we do here is
1422 * reject and log the attempt. basically we are putting the responsibility on
1423 * userspace to get this right.
1424 */
1425 static int
xfs_swap_extents_check_format(struct xfs_inode * ip,struct xfs_inode * tip)1426 xfs_swap_extents_check_format(
1427 struct xfs_inode *ip, /* target inode */
1428 struct xfs_inode *tip) /* tmp inode */
1429 {
1430
1431 /* Should never get a local format */
1432 if (ip->i_d.di_format == XFS_DINODE_FMT_LOCAL ||
1433 tip->i_d.di_format == XFS_DINODE_FMT_LOCAL)
1434 return -EINVAL;
1435
1436 /*
1437 * if the target inode has less extents that then temporary inode then
1438 * why did userspace call us?
1439 */
1440 if (ip->i_d.di_nextents < tip->i_d.di_nextents)
1441 return -EINVAL;
1442
1443 /*
1444 * If we have to use the (expensive) rmap swap method, we can
1445 * handle any number of extents and any format.
1446 */
1447 if (xfs_sb_version_hasrmapbt(&ip->i_mount->m_sb))
1448 return 0;
1449
1450 /*
1451 * if the target inode is in extent form and the temp inode is in btree
1452 * form then we will end up with the target inode in the wrong format
1453 * as we already know there are less extents in the temp inode.
1454 */
1455 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1456 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1457 return -EINVAL;
1458
1459 /* Check temp in extent form to max in target */
1460 if (tip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1461 XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) >
1462 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1463 return -EINVAL;
1464
1465 /* Check target in extent form to max in temp */
1466 if (ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS &&
1467 XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) >
1468 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1469 return -EINVAL;
1470
1471 /*
1472 * If we are in a btree format, check that the temp root block will fit
1473 * in the target and that it has enough extents to be in btree format
1474 * in the target.
1475 *
1476 * Note that we have to be careful to allow btree->extent conversions
1477 * (a common defrag case) which will occur when the temp inode is in
1478 * extent format...
1479 */
1480 if (tip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1481 if (XFS_IFORK_Q(ip) &&
1482 XFS_BMAP_BMDR_SPACE(tip->i_df.if_broot) > XFS_IFORK_BOFF(ip))
1483 return -EINVAL;
1484 if (XFS_IFORK_NEXTENTS(tip, XFS_DATA_FORK) <=
1485 XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK))
1486 return -EINVAL;
1487 }
1488
1489 /* Reciprocal target->temp btree format checks */
1490 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE) {
1491 if (XFS_IFORK_Q(tip) &&
1492 XFS_BMAP_BMDR_SPACE(ip->i_df.if_broot) > XFS_IFORK_BOFF(tip))
1493 return -EINVAL;
1494 if (XFS_IFORK_NEXTENTS(ip, XFS_DATA_FORK) <=
1495 XFS_IFORK_MAXEXT(tip, XFS_DATA_FORK))
1496 return -EINVAL;
1497 }
1498
1499 return 0;
1500 }
1501
1502 static int
xfs_swap_extent_flush(struct xfs_inode * ip)1503 xfs_swap_extent_flush(
1504 struct xfs_inode *ip)
1505 {
1506 int error;
1507
1508 error = filemap_write_and_wait(VFS_I(ip)->i_mapping);
1509 if (error)
1510 return error;
1511 truncate_pagecache_range(VFS_I(ip), 0, -1);
1512
1513 /* Verify O_DIRECT for ftmp */
1514 if (VFS_I(ip)->i_mapping->nrpages)
1515 return -EINVAL;
1516 return 0;
1517 }
1518
1519 /*
1520 * Move extents from one file to another, when rmap is enabled.
1521 */
1522 STATIC int
xfs_swap_extent_rmap(struct xfs_trans ** tpp,struct xfs_inode * ip,struct xfs_inode * tip)1523 xfs_swap_extent_rmap(
1524 struct xfs_trans **tpp,
1525 struct xfs_inode *ip,
1526 struct xfs_inode *tip)
1527 {
1528 struct xfs_trans *tp = *tpp;
1529 struct xfs_bmbt_irec irec;
1530 struct xfs_bmbt_irec uirec;
1531 struct xfs_bmbt_irec tirec;
1532 xfs_fileoff_t offset_fsb;
1533 xfs_fileoff_t end_fsb;
1534 xfs_filblks_t count_fsb;
1535 int error;
1536 xfs_filblks_t ilen;
1537 xfs_filblks_t rlen;
1538 int nimaps;
1539 uint64_t tip_flags2;
1540
1541 /*
1542 * If the source file has shared blocks, we must flag the donor
1543 * file as having shared blocks so that we get the shared-block
1544 * rmap functions when we go to fix up the rmaps. The flags
1545 * will be switch for reals later.
1546 */
1547 tip_flags2 = tip->i_d.di_flags2;
1548 if (ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)
1549 tip->i_d.di_flags2 |= XFS_DIFLAG2_REFLINK;
1550
1551 offset_fsb = 0;
1552 end_fsb = XFS_B_TO_FSB(ip->i_mount, i_size_read(VFS_I(ip)));
1553 count_fsb = (xfs_filblks_t)(end_fsb - offset_fsb);
1554
1555 while (count_fsb) {
1556 /* Read extent from the donor file */
1557 nimaps = 1;
1558 error = xfs_bmapi_read(tip, offset_fsb, count_fsb, &tirec,
1559 &nimaps, 0);
1560 if (error)
1561 goto out;
1562 ASSERT(nimaps == 1);
1563 ASSERT(tirec.br_startblock != DELAYSTARTBLOCK);
1564
1565 trace_xfs_swap_extent_rmap_remap(tip, &tirec);
1566 ilen = tirec.br_blockcount;
1567
1568 /* Unmap the old blocks in the source file. */
1569 while (tirec.br_blockcount) {
1570 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1571 trace_xfs_swap_extent_rmap_remap_piece(tip, &tirec);
1572
1573 /* Read extent from the source file */
1574 nimaps = 1;
1575 error = xfs_bmapi_read(ip, tirec.br_startoff,
1576 tirec.br_blockcount, &irec,
1577 &nimaps, 0);
1578 if (error)
1579 goto out;
1580 ASSERT(nimaps == 1);
1581 ASSERT(tirec.br_startoff == irec.br_startoff);
1582 trace_xfs_swap_extent_rmap_remap_piece(ip, &irec);
1583
1584 /* Trim the extent. */
1585 uirec = tirec;
1586 uirec.br_blockcount = rlen = min_t(xfs_filblks_t,
1587 tirec.br_blockcount,
1588 irec.br_blockcount);
1589 trace_xfs_swap_extent_rmap_remap_piece(tip, &uirec);
1590
1591 /* Remove the mapping from the donor file. */
1592 error = xfs_bmap_unmap_extent(tp, tip, &uirec);
1593 if (error)
1594 goto out;
1595
1596 /* Remove the mapping from the source file. */
1597 error = xfs_bmap_unmap_extent(tp, ip, &irec);
1598 if (error)
1599 goto out;
1600
1601 /* Map the donor file's blocks into the source file. */
1602 error = xfs_bmap_map_extent(tp, ip, &uirec);
1603 if (error)
1604 goto out;
1605
1606 /* Map the source file's blocks into the donor file. */
1607 error = xfs_bmap_map_extent(tp, tip, &irec);
1608 if (error)
1609 goto out;
1610
1611 error = xfs_defer_finish(tpp);
1612 tp = *tpp;
1613 if (error)
1614 goto out;
1615
1616 tirec.br_startoff += rlen;
1617 if (tirec.br_startblock != HOLESTARTBLOCK &&
1618 tirec.br_startblock != DELAYSTARTBLOCK)
1619 tirec.br_startblock += rlen;
1620 tirec.br_blockcount -= rlen;
1621 }
1622
1623 /* Roll on... */
1624 count_fsb -= ilen;
1625 offset_fsb += ilen;
1626 }
1627
1628 tip->i_d.di_flags2 = tip_flags2;
1629 return 0;
1630
1631 out:
1632 trace_xfs_swap_extent_rmap_error(ip, error, _RET_IP_);
1633 tip->i_d.di_flags2 = tip_flags2;
1634 return error;
1635 }
1636
1637 /* Swap the extents of two files by swapping data forks. */
1638 STATIC int
xfs_swap_extent_forks(struct xfs_trans * tp,struct xfs_inode * ip,struct xfs_inode * tip,int * src_log_flags,int * target_log_flags)1639 xfs_swap_extent_forks(
1640 struct xfs_trans *tp,
1641 struct xfs_inode *ip,
1642 struct xfs_inode *tip,
1643 int *src_log_flags,
1644 int *target_log_flags)
1645 {
1646 xfs_filblks_t aforkblks = 0;
1647 xfs_filblks_t taforkblks = 0;
1648 xfs_extnum_t junk;
1649 uint64_t tmp;
1650 int error;
1651
1652 /*
1653 * Count the number of extended attribute blocks
1654 */
1655 if ( ((XFS_IFORK_Q(ip) != 0) && (ip->i_d.di_anextents > 0)) &&
1656 (ip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1657 error = xfs_bmap_count_blocks(tp, ip, XFS_ATTR_FORK, &junk,
1658 &aforkblks);
1659 if (error)
1660 return error;
1661 }
1662 if ( ((XFS_IFORK_Q(tip) != 0) && (tip->i_d.di_anextents > 0)) &&
1663 (tip->i_d.di_aformat != XFS_DINODE_FMT_LOCAL)) {
1664 error = xfs_bmap_count_blocks(tp, tip, XFS_ATTR_FORK, &junk,
1665 &taforkblks);
1666 if (error)
1667 return error;
1668 }
1669
1670 /*
1671 * Btree format (v3) inodes have the inode number stamped in the bmbt
1672 * block headers. We can't start changing the bmbt blocks until the
1673 * inode owner change is logged so recovery does the right thing in the
1674 * event of a crash. Set the owner change log flags now and leave the
1675 * bmbt scan as the last step.
1676 */
1677 if (ip->i_d.di_version == 3 &&
1678 ip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1679 (*target_log_flags) |= XFS_ILOG_DOWNER;
1680 if (tip->i_d.di_version == 3 &&
1681 tip->i_d.di_format == XFS_DINODE_FMT_BTREE)
1682 (*src_log_flags) |= XFS_ILOG_DOWNER;
1683
1684 /*
1685 * Swap the data forks of the inodes
1686 */
1687 swap(ip->i_df, tip->i_df);
1688
1689 /*
1690 * Fix the on-disk inode values
1691 */
1692 tmp = (uint64_t)ip->i_d.di_nblocks;
1693 ip->i_d.di_nblocks = tip->i_d.di_nblocks - taforkblks + aforkblks;
1694 tip->i_d.di_nblocks = tmp + taforkblks - aforkblks;
1695
1696 swap(ip->i_d.di_nextents, tip->i_d.di_nextents);
1697 swap(ip->i_d.di_format, tip->i_d.di_format);
1698
1699 /*
1700 * The extents in the source inode could still contain speculative
1701 * preallocation beyond EOF (e.g. the file is open but not modified
1702 * while defrag is in progress). In that case, we need to copy over the
1703 * number of delalloc blocks the data fork in the source inode is
1704 * tracking beyond EOF so that when the fork is truncated away when the
1705 * temporary inode is unlinked we don't underrun the i_delayed_blks
1706 * counter on that inode.
1707 */
1708 ASSERT(tip->i_delayed_blks == 0);
1709 tip->i_delayed_blks = ip->i_delayed_blks;
1710 ip->i_delayed_blks = 0;
1711
1712 switch (ip->i_d.di_format) {
1713 case XFS_DINODE_FMT_EXTENTS:
1714 (*src_log_flags) |= XFS_ILOG_DEXT;
1715 break;
1716 case XFS_DINODE_FMT_BTREE:
1717 ASSERT(ip->i_d.di_version < 3 ||
1718 (*src_log_flags & XFS_ILOG_DOWNER));
1719 (*src_log_flags) |= XFS_ILOG_DBROOT;
1720 break;
1721 }
1722
1723 switch (tip->i_d.di_format) {
1724 case XFS_DINODE_FMT_EXTENTS:
1725 (*target_log_flags) |= XFS_ILOG_DEXT;
1726 break;
1727 case XFS_DINODE_FMT_BTREE:
1728 (*target_log_flags) |= XFS_ILOG_DBROOT;
1729 ASSERT(tip->i_d.di_version < 3 ||
1730 (*target_log_flags & XFS_ILOG_DOWNER));
1731 break;
1732 }
1733
1734 return 0;
1735 }
1736
1737 /*
1738 * Fix up the owners of the bmbt blocks to refer to the current inode. The
1739 * change owner scan attempts to order all modified buffers in the current
1740 * transaction. In the event of ordered buffer failure, the offending buffer is
1741 * physically logged as a fallback and the scan returns -EAGAIN. We must roll
1742 * the transaction in this case to replenish the fallback log reservation and
1743 * restart the scan. This process repeats until the scan completes.
1744 */
1745 static int
xfs_swap_change_owner(struct xfs_trans ** tpp,struct xfs_inode * ip,struct xfs_inode * tmpip)1746 xfs_swap_change_owner(
1747 struct xfs_trans **tpp,
1748 struct xfs_inode *ip,
1749 struct xfs_inode *tmpip)
1750 {
1751 int error;
1752 struct xfs_trans *tp = *tpp;
1753
1754 do {
1755 error = xfs_bmbt_change_owner(tp, ip, XFS_DATA_FORK, ip->i_ino,
1756 NULL);
1757 /* success or fatal error */
1758 if (error != -EAGAIN)
1759 break;
1760
1761 error = xfs_trans_roll(tpp);
1762 if (error)
1763 break;
1764 tp = *tpp;
1765
1766 /*
1767 * Redirty both inodes so they can relog and keep the log tail
1768 * moving forward.
1769 */
1770 xfs_trans_ijoin(tp, ip, 0);
1771 xfs_trans_ijoin(tp, tmpip, 0);
1772 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1773 xfs_trans_log_inode(tp, tmpip, XFS_ILOG_CORE);
1774 } while (true);
1775
1776 return error;
1777 }
1778
1779 int
xfs_swap_extents(struct xfs_inode * ip,struct xfs_inode * tip,struct xfs_swapext * sxp)1780 xfs_swap_extents(
1781 struct xfs_inode *ip, /* target inode */
1782 struct xfs_inode *tip, /* tmp inode */
1783 struct xfs_swapext *sxp)
1784 {
1785 struct xfs_mount *mp = ip->i_mount;
1786 struct xfs_trans *tp;
1787 struct xfs_bstat *sbp = &sxp->sx_stat;
1788 int src_log_flags, target_log_flags;
1789 int error = 0;
1790 int lock_flags;
1791 uint64_t f;
1792 int resblks = 0;
1793
1794 /*
1795 * Lock the inodes against other IO, page faults and truncate to
1796 * begin with. Then we can ensure the inodes are flushed and have no
1797 * page cache safely. Once we have done this we can take the ilocks and
1798 * do the rest of the checks.
1799 */
1800 lock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1801 lock_flags = XFS_MMAPLOCK_EXCL;
1802 xfs_lock_two_inodes(ip, XFS_MMAPLOCK_EXCL, tip, XFS_MMAPLOCK_EXCL);
1803
1804 /* Verify that both files have the same format */
1805 if ((VFS_I(ip)->i_mode & S_IFMT) != (VFS_I(tip)->i_mode & S_IFMT)) {
1806 error = -EINVAL;
1807 goto out_unlock;
1808 }
1809
1810 /* Verify both files are either real-time or non-realtime */
1811 if (XFS_IS_REALTIME_INODE(ip) != XFS_IS_REALTIME_INODE(tip)) {
1812 error = -EINVAL;
1813 goto out_unlock;
1814 }
1815
1816 error = xfs_swap_extent_flush(ip);
1817 if (error)
1818 goto out_unlock;
1819 error = xfs_swap_extent_flush(tip);
1820 if (error)
1821 goto out_unlock;
1822
1823 if (xfs_inode_has_cow_data(tip)) {
1824 error = xfs_reflink_cancel_cow_range(tip, 0, NULLFILEOFF, true);
1825 if (error)
1826 goto out_unlock;
1827 }
1828
1829 /*
1830 * Extent "swapping" with rmap requires a permanent reservation and
1831 * a block reservation because it's really just a remap operation
1832 * performed with log redo items!
1833 */
1834 if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
1835 int w = XFS_DATA_FORK;
1836 uint32_t ipnext = XFS_IFORK_NEXTENTS(ip, w);
1837 uint32_t tipnext = XFS_IFORK_NEXTENTS(tip, w);
1838
1839 /*
1840 * Conceptually this shouldn't affect the shape of either bmbt,
1841 * but since we atomically move extents one by one, we reserve
1842 * enough space to rebuild both trees.
1843 */
1844 resblks = XFS_SWAP_RMAP_SPACE_RES(mp, ipnext, w);
1845 resblks += XFS_SWAP_RMAP_SPACE_RES(mp, tipnext, w);
1846
1847 /*
1848 * Handle the corner case where either inode might straddle the
1849 * btree format boundary. If so, the inode could bounce between
1850 * btree <-> extent format on unmap -> remap cycles, freeing and
1851 * allocating a bmapbt block each time.
1852 */
1853 if (ipnext == (XFS_IFORK_MAXEXT(ip, w) + 1))
1854 resblks += XFS_IFORK_MAXEXT(ip, w);
1855 if (tipnext == (XFS_IFORK_MAXEXT(tip, w) + 1))
1856 resblks += XFS_IFORK_MAXEXT(tip, w);
1857 }
1858 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
1859 if (error)
1860 goto out_unlock;
1861
1862 /*
1863 * Lock and join the inodes to the tansaction so that transaction commit
1864 * or cancel will unlock the inodes from this point onwards.
1865 */
1866 xfs_lock_two_inodes(ip, XFS_ILOCK_EXCL, tip, XFS_ILOCK_EXCL);
1867 lock_flags |= XFS_ILOCK_EXCL;
1868 xfs_trans_ijoin(tp, ip, 0);
1869 xfs_trans_ijoin(tp, tip, 0);
1870
1871
1872 /* Verify all data are being swapped */
1873 if (sxp->sx_offset != 0 ||
1874 sxp->sx_length != ip->i_d.di_size ||
1875 sxp->sx_length != tip->i_d.di_size) {
1876 error = -EFAULT;
1877 goto out_trans_cancel;
1878 }
1879
1880 trace_xfs_swap_extent_before(ip, 0);
1881 trace_xfs_swap_extent_before(tip, 1);
1882
1883 /* check inode formats now that data is flushed */
1884 error = xfs_swap_extents_check_format(ip, tip);
1885 if (error) {
1886 xfs_notice(mp,
1887 "%s: inode 0x%llx format is incompatible for exchanging.",
1888 __func__, ip->i_ino);
1889 goto out_trans_cancel;
1890 }
1891
1892 /*
1893 * Compare the current change & modify times with that
1894 * passed in. If they differ, we abort this swap.
1895 * This is the mechanism used to ensure the calling
1896 * process that the file was not changed out from
1897 * under it.
1898 */
1899 if ((sbp->bs_ctime.tv_sec != VFS_I(ip)->i_ctime.tv_sec) ||
1900 (sbp->bs_ctime.tv_nsec != VFS_I(ip)->i_ctime.tv_nsec) ||
1901 (sbp->bs_mtime.tv_sec != VFS_I(ip)->i_mtime.tv_sec) ||
1902 (sbp->bs_mtime.tv_nsec != VFS_I(ip)->i_mtime.tv_nsec)) {
1903 error = -EBUSY;
1904 goto out_trans_cancel;
1905 }
1906
1907 /*
1908 * Note the trickiness in setting the log flags - we set the owner log
1909 * flag on the opposite inode (i.e. the inode we are setting the new
1910 * owner to be) because once we swap the forks and log that, log
1911 * recovery is going to see the fork as owned by the swapped inode,
1912 * not the pre-swapped inodes.
1913 */
1914 src_log_flags = XFS_ILOG_CORE;
1915 target_log_flags = XFS_ILOG_CORE;
1916
1917 if (xfs_sb_version_hasrmapbt(&mp->m_sb))
1918 error = xfs_swap_extent_rmap(&tp, ip, tip);
1919 else
1920 error = xfs_swap_extent_forks(tp, ip, tip, &src_log_flags,
1921 &target_log_flags);
1922 if (error)
1923 goto out_trans_cancel;
1924
1925 /* Do we have to swap reflink flags? */
1926 if ((ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK) ^
1927 (tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK)) {
1928 f = ip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
1929 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1930 ip->i_d.di_flags2 |= tip->i_d.di_flags2 & XFS_DIFLAG2_REFLINK;
1931 tip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1932 tip->i_d.di_flags2 |= f & XFS_DIFLAG2_REFLINK;
1933 }
1934
1935 /* Swap the cow forks. */
1936 if (xfs_sb_version_hasreflink(&mp->m_sb)) {
1937 ASSERT(ip->i_cformat == XFS_DINODE_FMT_EXTENTS);
1938 ASSERT(tip->i_cformat == XFS_DINODE_FMT_EXTENTS);
1939
1940 swap(ip->i_cnextents, tip->i_cnextents);
1941 swap(ip->i_cowfp, tip->i_cowfp);
1942
1943 if (ip->i_cowfp && ip->i_cowfp->if_bytes)
1944 xfs_inode_set_cowblocks_tag(ip);
1945 else
1946 xfs_inode_clear_cowblocks_tag(ip);
1947 if (tip->i_cowfp && tip->i_cowfp->if_bytes)
1948 xfs_inode_set_cowblocks_tag(tip);
1949 else
1950 xfs_inode_clear_cowblocks_tag(tip);
1951 }
1952
1953 xfs_trans_log_inode(tp, ip, src_log_flags);
1954 xfs_trans_log_inode(tp, tip, target_log_flags);
1955
1956 /*
1957 * The extent forks have been swapped, but crc=1,rmapbt=0 filesystems
1958 * have inode number owner values in the bmbt blocks that still refer to
1959 * the old inode. Scan each bmbt to fix up the owner values with the
1960 * inode number of the current inode.
1961 */
1962 if (src_log_flags & XFS_ILOG_DOWNER) {
1963 error = xfs_swap_change_owner(&tp, ip, tip);
1964 if (error)
1965 goto out_trans_cancel;
1966 }
1967 if (target_log_flags & XFS_ILOG_DOWNER) {
1968 error = xfs_swap_change_owner(&tp, tip, ip);
1969 if (error)
1970 goto out_trans_cancel;
1971 }
1972
1973 /*
1974 * If this is a synchronous mount, make sure that the
1975 * transaction goes to disk before returning to the user.
1976 */
1977 if (mp->m_flags & XFS_MOUNT_WSYNC)
1978 xfs_trans_set_sync(tp);
1979
1980 error = xfs_trans_commit(tp);
1981
1982 trace_xfs_swap_extent_after(ip, 0);
1983 trace_xfs_swap_extent_after(tip, 1);
1984
1985 out_unlock:
1986 xfs_iunlock(ip, lock_flags);
1987 xfs_iunlock(tip, lock_flags);
1988 unlock_two_nondirectories(VFS_I(ip), VFS_I(tip));
1989 return error;
1990
1991 out_trans_cancel:
1992 xfs_trans_cancel(tp);
1993 goto out_unlock;
1994 }
1995