1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include <linux/log2.h>
7 #include <linux/iversion.h>
8
9 #include "xfs.h"
10 #include "xfs_fs.h"
11 #include "xfs_shared.h"
12 #include "xfs_format.h"
13 #include "xfs_log_format.h"
14 #include "xfs_trans_resv.h"
15 #include "xfs_sb.h"
16 #include "xfs_mount.h"
17 #include "xfs_defer.h"
18 #include "xfs_inode.h"
19 #include "xfs_da_format.h"
20 #include "xfs_da_btree.h"
21 #include "xfs_dir2.h"
22 #include "xfs_attr_sf.h"
23 #include "xfs_attr.h"
24 #include "xfs_trans_space.h"
25 #include "xfs_trans.h"
26 #include "xfs_buf_item.h"
27 #include "xfs_inode_item.h"
28 #include "xfs_ialloc.h"
29 #include "xfs_bmap.h"
30 #include "xfs_bmap_util.h"
31 #include "xfs_errortag.h"
32 #include "xfs_error.h"
33 #include "xfs_quota.h"
34 #include "xfs_filestream.h"
35 #include "xfs_cksum.h"
36 #include "xfs_trace.h"
37 #include "xfs_icache.h"
38 #include "xfs_symlink.h"
39 #include "xfs_trans_priv.h"
40 #include "xfs_log.h"
41 #include "xfs_bmap_btree.h"
42 #include "xfs_reflink.h"
43 #include "xfs_dir2_priv.h"
44
45 kmem_zone_t *xfs_inode_zone;
46
47 /*
48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
49 * freed from a file in a single transaction.
50 */
51 #define XFS_ITRUNC_MAX_EXTENTS 2
52
53 STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54 STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55 STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
56
57 /*
58 * helper function to extract extent size hint from inode
59 */
60 xfs_extlen_t
xfs_get_extsz_hint(struct xfs_inode * ip)61 xfs_get_extsz_hint(
62 struct xfs_inode *ip)
63 {
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69 }
70
71 /*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
76 */
77 xfs_extlen_t
xfs_get_cowextsz_hint(struct xfs_inode * ip)78 xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80 {
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
92 }
93
94 /*
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
105 *
106 * The functions return a value which should be given to the corresponding
107 * xfs_iunlock() call.
108 */
109 uint
xfs_ilock_data_map_shared(struct xfs_inode * ip)110 xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
112 {
113 uint lock_mode = XFS_ILOCK_SHARED;
114
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
117 lock_mode = XFS_ILOCK_EXCL;
118 xfs_ilock(ip, lock_mode);
119 return lock_mode;
120 }
121
122 uint
xfs_ilock_attr_map_shared(struct xfs_inode * ip)123 xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
125 {
126 uint lock_mode = XFS_ILOCK_SHARED;
127
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
133 }
134
135 /*
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
139 *
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
142 *
143 * Basic locking order:
144 *
145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
146 *
147 * mmap_sem locking order:
148 *
149 * i_rwsem -> page lock -> mmap_sem
150 * mmap_sem -> i_mmap_lock -> page_lock
151 *
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
157 * page faults already hold the mmap_sem.
158 *
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
164 */
165 void
xfs_ilock(xfs_inode_t * ip,uint lock_flags)166 xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
169 {
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171
172 /*
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 */
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
184
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
191 }
192
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 }
203
204 /*
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
210 *
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
215 */
216 int
xfs_ilock_nowait(xfs_inode_t * ip,uint lock_flags)217 xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
220 {
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222
223 /*
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 */
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
235
236 if (lock_flags & XFS_IOLOCK_EXCL) {
237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
241 goto out;
242 }
243
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
250 }
251
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
254 goto out_undo_mmaplock;
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
257 goto out_undo_mmaplock;
258 }
259 return 1;
260
261 out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266 out_undo_iolock:
267 if (lock_flags & XFS_IOLOCK_EXCL)
268 up_write(&VFS_I(ip)->i_rwsem);
269 else if (lock_flags & XFS_IOLOCK_SHARED)
270 up_read(&VFS_I(ip)->i_rwsem);
271 out:
272 return 0;
273 }
274
275 /*
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
280 *
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
285 *
286 */
287 void
xfs_iunlock(xfs_inode_t * ip,uint lock_flags)288 xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
291 {
292 /*
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 */
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
304 ASSERT(lock_flags != 0);
305
306 if (lock_flags & XFS_IOLOCK_EXCL)
307 up_write(&VFS_I(ip)->i_rwsem);
308 else if (lock_flags & XFS_IOLOCK_SHARED)
309 up_read(&VFS_I(ip)->i_rwsem);
310
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
315
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
320
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322 }
323
324 /*
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
327 */
328 void
xfs_ilock_demote(xfs_inode_t * ip,uint lock_flags)329 xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
332 {
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
336
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
341 if (lock_flags & XFS_IOLOCK_EXCL)
342 downgrade_write(&VFS_I(ip)->i_rwsem);
343
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345 }
346
347 #if defined(DEBUG) || defined(XFS_WARN)
348 int
xfs_isilocked(xfs_inode_t * ip,uint lock_flags)349 xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
352 {
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
357 }
358
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 }
364
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
370 }
371
372 ASSERT(0);
373 return 0;
374 }
375 #endif
376
377 /*
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
382 */
383 #if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
384 static bool
xfs_lockdep_subclass_ok(int subclass)385 xfs_lockdep_subclass_ok(
386 int subclass)
387 {
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
389 }
390 #else
391 #define xfs_lockdep_subclass_ok(subclass) (true)
392 #endif
393
394 /*
395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
399 */
400 static inline int
xfs_lock_inumorder(int lock_mode,int subclass)401 xfs_lock_inumorder(int lock_mode, int subclass)
402 {
403 int class = 0;
404
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
407 ASSERT(xfs_lockdep_subclass_ok(subclass));
408
409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
411 class += subclass << XFS_IOLOCK_SHIFT;
412 }
413
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
417 }
418
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
422 }
423
424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
425 }
426
427 /*
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
430 *
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
436 *
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
441 */
442 static void
xfs_lock_inodes(xfs_inode_t ** ips,int inodes,uint lock_mode)443 xfs_lock_inodes(
444 xfs_inode_t **ips,
445 int inodes,
446 uint lock_mode)
447 {
448 int attempts = 0, i, j, try_lock;
449 xfs_log_item_t *lp;
450
451 /*
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
457 */
458 ASSERT(ips && inodes >= 2 && inodes <= 5);
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
472
473 try_lock = 0;
474 i = 0;
475 again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
478
479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
480 continue;
481
482 /*
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
485 */
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = (xfs_log_item_t *)ips[j]->i_itemp;
489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
490 try_lock++;
491 }
492 }
493
494 /*
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
499 */
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
503 }
504
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
509
510 /*
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
513 */
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
516 /*
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
520 */
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
523
524 xfs_iunlock(ips[j], lock_mode);
525 }
526
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
529 }
530 i = 0;
531 try_lock = 0;
532 goto again;
533 }
534 }
535
536 /*
537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
543 */
544 void
xfs_lock_two_inodes(struct xfs_inode * ip0,uint ip0_mode,struct xfs_inode * ip1,uint ip1_mode)545 xfs_lock_two_inodes(
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
550 {
551 struct xfs_inode *temp;
552 uint mode_temp;
553 int attempts = 0;
554 xfs_log_item_t *lp;
555
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
568
569 ASSERT(ip0->i_ino != ip1->i_ino);
570
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
578 }
579
580 again:
581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
582
583 /*
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
587 */
588 lp = (xfs_log_item_t *)ip0->i_itemp;
589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
595 }
596 } else {
597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
598 }
599 }
600
601 void
__xfs_iflock(struct xfs_inode * ip)602 __xfs_iflock(
603 struct xfs_inode *ip)
604 {
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607
608 do {
609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
610 if (xfs_isiflocked(ip))
611 io_schedule();
612 } while (!xfs_iflock_nowait(ip));
613
614 finish_wait(wq, &wait.wq_entry);
615 }
616
617 STATIC uint
_xfs_dic2xflags(uint16_t di_flags,uint64_t di_flags2,bool has_attr)618 _xfs_dic2xflags(
619 uint16_t di_flags,
620 uint64_t di_flags2,
621 bool has_attr)
622 {
623 uint flags = 0;
624
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
627 flags |= FS_XFLAG_REALTIME;
628 if (di_flags & XFS_DIFLAG_PREALLOC)
629 flags |= FS_XFLAG_PREALLOC;
630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
631 flags |= FS_XFLAG_IMMUTABLE;
632 if (di_flags & XFS_DIFLAG_APPEND)
633 flags |= FS_XFLAG_APPEND;
634 if (di_flags & XFS_DIFLAG_SYNC)
635 flags |= FS_XFLAG_SYNC;
636 if (di_flags & XFS_DIFLAG_NOATIME)
637 flags |= FS_XFLAG_NOATIME;
638 if (di_flags & XFS_DIFLAG_NODUMP)
639 flags |= FS_XFLAG_NODUMP;
640 if (di_flags & XFS_DIFLAG_RTINHERIT)
641 flags |= FS_XFLAG_RTINHERIT;
642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
643 flags |= FS_XFLAG_PROJINHERIT;
644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
645 flags |= FS_XFLAG_NOSYMLINKS;
646 if (di_flags & XFS_DIFLAG_EXTSIZE)
647 flags |= FS_XFLAG_EXTSIZE;
648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
649 flags |= FS_XFLAG_EXTSZINHERIT;
650 if (di_flags & XFS_DIFLAG_NODEFRAG)
651 flags |= FS_XFLAG_NODEFRAG;
652 if (di_flags & XFS_DIFLAG_FILESTREAM)
653 flags |= FS_XFLAG_FILESTREAM;
654 }
655
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
661 }
662
663 if (has_attr)
664 flags |= FS_XFLAG_HASATTR;
665
666 return flags;
667 }
668
669 uint
xfs_ip2xflags(struct xfs_inode * ip)670 xfs_ip2xflags(
671 struct xfs_inode *ip)
672 {
673 struct xfs_icdinode *dic = &ip->i_d;
674
675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
676 }
677
678 /*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684 int
xfs_lookup(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t ** ipp,struct xfs_name * ci_name)685 xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690 {
691 xfs_ino_t inum;
692 int error;
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
697 return -EIO;
698
699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
700 if (error)
701 goto out_unlock;
702
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 if (error)
705 goto out_free_name;
706
707 return 0;
708
709 out_free_name:
710 if (ci_name)
711 kmem_free(ci_name->name);
712 out_unlock:
713 *ipp = NULL;
714 return error;
715 }
716
717 /*
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
722 *
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
727 * set to NULL.
728 *
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
736 *
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
742 *
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
747 */
748 static int
xfs_ialloc(xfs_trans_t * tp,xfs_inode_t * pip,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_buf_t ** ialloc_context,xfs_inode_t ** ipp)749 xfs_ialloc(
750 xfs_trans_t *tp,
751 xfs_inode_t *pip,
752 umode_t mode,
753 xfs_nlink_t nlink,
754 dev_t rdev,
755 prid_t prid,
756 xfs_buf_t **ialloc_context,
757 xfs_inode_t **ipp)
758 {
759 struct xfs_mount *mp = tp->t_mountp;
760 xfs_ino_t ino;
761 xfs_inode_t *ip;
762 uint flags;
763 int error;
764 struct timespec64 tv;
765 struct inode *inode;
766
767 /*
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
770 */
771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
772 ialloc_context, &ino);
773 if (error)
774 return error;
775 if (*ialloc_context || ino == NULLFSINO) {
776 *ipp = NULL;
777 return 0;
778 }
779 ASSERT(*ialloc_context == NULL);
780
781 /*
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
786 * first.
787 */
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
791 }
792
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
799 XFS_ILOCK_EXCL, &ip);
800 if (error)
801 return error;
802 ASSERT(ip != NULL);
803 inode = VFS_I(ip);
804
805 /*
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
809 */
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
812
813 inode->i_mode = mode;
814 set_nlink(inode, nlink);
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
817 inode->i_rdev = rdev;
818 xfs_set_projid(ip, prid);
819
820 if (pip && XFS_INHERIT_GID(pip)) {
821 ip->i_d.di_gid = pip->i_d.di_gid;
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
824 }
825
826 /*
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
830 */
831 if ((irix_sgid_inherit) &&
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
835
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
839
840 tv = current_time(inode);
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
844
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
849
850 if (ip->i_d.di_version == 3) {
851 inode_set_iversion(inode, 1);
852 ip->i_d.di_flags2 = 0;
853 ip->i_d.di_cowextsize = 0;
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
856 }
857
858
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
872 uint di_flags = 0;
873
874 if (S_ISDIR(mode)) {
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 }
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
883 } else if (S_ISREG(mode)) {
884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
885 di_flags |= XFS_DIFLAG_REALTIME;
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
889 }
890 }
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
893 di_flags |= XFS_DIFLAG_NOATIME;
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
896 di_flags |= XFS_DIFLAG_NODUMP;
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
899 di_flags |= XFS_DIFLAG_SYNC;
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
908
909 ip->i_d.di_flags |= di_flags;
910 }
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
915 uint64_t di_flags2 = 0;
916
917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 }
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
923
924 ip->i_d.di_flags2 |= di_flags2;
925 }
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = 0;
931 ip->i_df.if_u1.if_root = NULL;
932 break;
933 default:
934 ASSERT(0);
935 }
936 /*
937 * Attribute fork settings for new inode.
938 */
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
941
942 /*
943 * Log the new values stuffed into the inode.
944 */
945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
946 xfs_trans_log_inode(tp, ip, flags);
947
948 /* now that we have an i_mode we can setup the inode structure */
949 xfs_setup_inode(ip);
950
951 *ipp = ip;
952 return 0;
953 }
954
955 /*
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
960 *
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
963 *
964 */
965 int
xfs_dir_ialloc(xfs_trans_t ** tpp,xfs_inode_t * dp,umode_t mode,xfs_nlink_t nlink,dev_t rdev,prid_t prid,xfs_inode_t ** ipp)966 xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
973 dev_t rdev,
974 prid_t prid, /* project id */
975 xfs_inode_t **ipp) /* pointer to inode; it will be
976 locked. */
977 {
978 xfs_trans_t *tp;
979 xfs_inode_t *ip;
980 xfs_buf_t *ialloc_context = NULL;
981 int code;
982 void *dqinfo;
983 uint tflags;
984
985 tp = *tpp;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987
988 /*
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
996 *
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1002 */
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 &ip);
1005
1006 /*
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1010 */
1011 if (code) {
1012 *ipp = NULL;
1013 return code;
1014 }
1015 if (!ialloc_context && !ip) {
1016 *ipp = NULL;
1017 return -ENOSPC;
1018 }
1019
1020 /*
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1025 */
1026 if (ialloc_context) {
1027 /*
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1032 * allocation group.
1033 */
1034 xfs_trans_bhold(tp, ialloc_context);
1035
1036 /*
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1040 */
1041 dqinfo = NULL;
1042 tflags = 0;
1043 if (tp->t_dqinfo) {
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 }
1049
1050 code = xfs_trans_roll(&tp);
1051
1052 /*
1053 * Re-attach the quota info that we detached from prev trx.
1054 */
1055 if (dqinfo) {
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1058 }
1059
1060 if (code) {
1061 xfs_buf_relse(ialloc_context);
1062 *tpp = tp;
1063 *ipp = NULL;
1064 return code;
1065 }
1066 xfs_trans_bjoin(tp, ialloc_context);
1067
1068 /*
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1072 */
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1074 &ialloc_context, &ip);
1075
1076 /*
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1079 */
1080 if (code) {
1081 *tpp = tp;
1082 *ipp = NULL;
1083 return code;
1084 }
1085 ASSERT(!ialloc_context && ip);
1086
1087 }
1088
1089 *ipp = ip;
1090 *tpp = tp;
1091
1092 return 0;
1093 }
1094
1095 /*
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
1099 */
1100 static int /* error */
xfs_droplink(xfs_trans_t * tp,xfs_inode_t * ip)1101 xfs_droplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1104 {
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
1110 if (VFS_I(ip)->i_nlink)
1111 return 0;
1112
1113 return xfs_iunlink(tp, ip);
1114 }
1115
1116 /*
1117 * Increment the link count on an inode & log the change.
1118 */
1119 static int
xfs_bumplink(xfs_trans_t * tp,xfs_inode_t * ip)1120 xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123 {
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
1126 ASSERT(ip->i_d.di_version > 1);
1127 inc_nlink(VFS_I(ip));
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 return 0;
1130 }
1131
1132 int
xfs_create(xfs_inode_t * dp,struct xfs_name * name,umode_t mode,dev_t rdev,xfs_inode_t ** ipp)1133 xfs_create(
1134 xfs_inode_t *dp,
1135 struct xfs_name *name,
1136 umode_t mode,
1137 dev_t rdev,
1138 xfs_inode_t **ipp)
1139 {
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1144 int error;
1145 bool unlock_dp_on_error = false;
1146 prid_t prid;
1147 struct xfs_dquot *udqp = NULL;
1148 struct xfs_dquot *gdqp = NULL;
1149 struct xfs_dquot *pdqp = NULL;
1150 struct xfs_trans_res *tres;
1151 uint resblks;
1152
1153 trace_xfs_create(dp, name);
1154
1155 if (XFS_FORCED_SHUTDOWN(mp))
1156 return -EIO;
1157
1158 prid = xfs_get_initial_prid(dp);
1159
1160 /*
1161 * Make sure that we have allocated dquot(s) on disk.
1162 */
1163 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1164 xfs_kgid_to_gid(current_fsgid()), prid,
1165 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1166 &udqp, &gdqp, &pdqp);
1167 if (error)
1168 return error;
1169
1170 if (is_dir) {
1171 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1172 tres = &M_RES(mp)->tr_mkdir;
1173 } else {
1174 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1175 tres = &M_RES(mp)->tr_create;
1176 }
1177
1178 /*
1179 * Initially assume that the file does not exist and
1180 * reserve the resources for that case. If that is not
1181 * the case we'll drop the one we have and get a more
1182 * appropriate transaction later.
1183 */
1184 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1185 if (error == -ENOSPC) {
1186 /* flush outstanding delalloc blocks and retry */
1187 xfs_flush_inodes(mp);
1188 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1189 }
1190 if (error)
1191 goto out_release_inode;
1192
1193 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1194 unlock_dp_on_error = true;
1195
1196 /*
1197 * Reserve disk quota and the inode.
1198 */
1199 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200 pdqp, resblks, 1, 0);
1201 if (error)
1202 goto out_trans_cancel;
1203
1204 /*
1205 * A newly created regular or special file just has one directory
1206 * entry pointing to them, but a directory also the "." entry
1207 * pointing to itself.
1208 */
1209 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
1210 if (error)
1211 goto out_trans_cancel;
1212
1213 /*
1214 * Now we join the directory inode to the transaction. We do not do it
1215 * earlier because xfs_dir_ialloc might commit the previous transaction
1216 * (and release all the locks). An error from here on will result in
1217 * the transaction cancel unlocking dp so don't do it explicitly in the
1218 * error path.
1219 */
1220 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1221 unlock_dp_on_error = false;
1222
1223 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1224 resblks ?
1225 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1226 if (error) {
1227 ASSERT(error != -ENOSPC);
1228 goto out_trans_cancel;
1229 }
1230 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1231 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1232
1233 if (is_dir) {
1234 error = xfs_dir_init(tp, ip, dp);
1235 if (error)
1236 goto out_trans_cancel;
1237
1238 error = xfs_bumplink(tp, dp);
1239 if (error)
1240 goto out_trans_cancel;
1241 }
1242
1243 /*
1244 * If this is a synchronous mount, make sure that the
1245 * create transaction goes to disk before returning to
1246 * the user.
1247 */
1248 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1249 xfs_trans_set_sync(tp);
1250
1251 /*
1252 * Attach the dquot(s) to the inodes and modify them incore.
1253 * These ids of the inode couldn't have changed since the new
1254 * inode has been locked ever since it was created.
1255 */
1256 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1257
1258 error = xfs_trans_commit(tp);
1259 if (error)
1260 goto out_release_inode;
1261
1262 xfs_qm_dqrele(udqp);
1263 xfs_qm_dqrele(gdqp);
1264 xfs_qm_dqrele(pdqp);
1265
1266 *ipp = ip;
1267 return 0;
1268
1269 out_trans_cancel:
1270 xfs_trans_cancel(tp);
1271 out_release_inode:
1272 /*
1273 * Wait until after the current transaction is aborted to finish the
1274 * setup of the inode and release the inode. This prevents recursive
1275 * transactions and deadlocks from xfs_inactive.
1276 */
1277 if (ip) {
1278 xfs_finish_inode_setup(ip);
1279 xfs_irele(ip);
1280 }
1281
1282 xfs_qm_dqrele(udqp);
1283 xfs_qm_dqrele(gdqp);
1284 xfs_qm_dqrele(pdqp);
1285
1286 if (unlock_dp_on_error)
1287 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1288 return error;
1289 }
1290
1291 int
xfs_create_tmpfile(struct xfs_inode * dp,umode_t mode,struct xfs_inode ** ipp)1292 xfs_create_tmpfile(
1293 struct xfs_inode *dp,
1294 umode_t mode,
1295 struct xfs_inode **ipp)
1296 {
1297 struct xfs_mount *mp = dp->i_mount;
1298 struct xfs_inode *ip = NULL;
1299 struct xfs_trans *tp = NULL;
1300 int error;
1301 prid_t prid;
1302 struct xfs_dquot *udqp = NULL;
1303 struct xfs_dquot *gdqp = NULL;
1304 struct xfs_dquot *pdqp = NULL;
1305 struct xfs_trans_res *tres;
1306 uint resblks;
1307
1308 if (XFS_FORCED_SHUTDOWN(mp))
1309 return -EIO;
1310
1311 prid = xfs_get_initial_prid(dp);
1312
1313 /*
1314 * Make sure that we have allocated dquot(s) on disk.
1315 */
1316 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1317 xfs_kgid_to_gid(current_fsgid()), prid,
1318 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1319 &udqp, &gdqp, &pdqp);
1320 if (error)
1321 return error;
1322
1323 resblks = XFS_IALLOC_SPACE_RES(mp);
1324 tres = &M_RES(mp)->tr_create_tmpfile;
1325
1326 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1327 if (error)
1328 goto out_release_inode;
1329
1330 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1331 pdqp, resblks, 1, 0);
1332 if (error)
1333 goto out_trans_cancel;
1334
1335 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
1336 if (error)
1337 goto out_trans_cancel;
1338
1339 if (mp->m_flags & XFS_MOUNT_WSYNC)
1340 xfs_trans_set_sync(tp);
1341
1342 /*
1343 * Attach the dquot(s) to the inodes and modify them incore.
1344 * These ids of the inode couldn't have changed since the new
1345 * inode has been locked ever since it was created.
1346 */
1347 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1348
1349 error = xfs_iunlink(tp, ip);
1350 if (error)
1351 goto out_trans_cancel;
1352
1353 error = xfs_trans_commit(tp);
1354 if (error)
1355 goto out_release_inode;
1356
1357 xfs_qm_dqrele(udqp);
1358 xfs_qm_dqrele(gdqp);
1359 xfs_qm_dqrele(pdqp);
1360
1361 *ipp = ip;
1362 return 0;
1363
1364 out_trans_cancel:
1365 xfs_trans_cancel(tp);
1366 out_release_inode:
1367 /*
1368 * Wait until after the current transaction is aborted to finish the
1369 * setup of the inode and release the inode. This prevents recursive
1370 * transactions and deadlocks from xfs_inactive.
1371 */
1372 if (ip) {
1373 xfs_finish_inode_setup(ip);
1374 xfs_irele(ip);
1375 }
1376
1377 xfs_qm_dqrele(udqp);
1378 xfs_qm_dqrele(gdqp);
1379 xfs_qm_dqrele(pdqp);
1380
1381 return error;
1382 }
1383
1384 int
xfs_link(xfs_inode_t * tdp,xfs_inode_t * sip,struct xfs_name * target_name)1385 xfs_link(
1386 xfs_inode_t *tdp,
1387 xfs_inode_t *sip,
1388 struct xfs_name *target_name)
1389 {
1390 xfs_mount_t *mp = tdp->i_mount;
1391 xfs_trans_t *tp;
1392 int error;
1393 int resblks;
1394
1395 trace_xfs_link(tdp, target_name);
1396
1397 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1398
1399 if (XFS_FORCED_SHUTDOWN(mp))
1400 return -EIO;
1401
1402 error = xfs_qm_dqattach(sip);
1403 if (error)
1404 goto std_return;
1405
1406 error = xfs_qm_dqattach(tdp);
1407 if (error)
1408 goto std_return;
1409
1410 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1411 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1412 if (error == -ENOSPC) {
1413 resblks = 0;
1414 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1415 }
1416 if (error)
1417 goto std_return;
1418
1419 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
1420
1421 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1422 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1423
1424 /*
1425 * If we are using project inheritance, we only allow hard link
1426 * creation in our tree when the project IDs are the same; else
1427 * the tree quota mechanism could be circumvented.
1428 */
1429 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1430 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1431 error = -EXDEV;
1432 goto error_return;
1433 }
1434
1435 if (!resblks) {
1436 error = xfs_dir_canenter(tp, tdp, target_name);
1437 if (error)
1438 goto error_return;
1439 }
1440
1441 /*
1442 * Handle initial link state of O_TMPFILE inode
1443 */
1444 if (VFS_I(sip)->i_nlink == 0) {
1445 error = xfs_iunlink_remove(tp, sip);
1446 if (error)
1447 goto error_return;
1448 }
1449
1450 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1451 resblks);
1452 if (error)
1453 goto error_return;
1454 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1455 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1456
1457 error = xfs_bumplink(tp, sip);
1458 if (error)
1459 goto error_return;
1460
1461 /*
1462 * If this is a synchronous mount, make sure that the
1463 * link transaction goes to disk before returning to
1464 * the user.
1465 */
1466 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1467 xfs_trans_set_sync(tp);
1468
1469 return xfs_trans_commit(tp);
1470
1471 error_return:
1472 xfs_trans_cancel(tp);
1473 std_return:
1474 return error;
1475 }
1476
1477 /* Clear the reflink flag and the cowblocks tag if possible. */
1478 static void
xfs_itruncate_clear_reflink_flags(struct xfs_inode * ip)1479 xfs_itruncate_clear_reflink_flags(
1480 struct xfs_inode *ip)
1481 {
1482 struct xfs_ifork *dfork;
1483 struct xfs_ifork *cfork;
1484
1485 if (!xfs_is_reflink_inode(ip))
1486 return;
1487 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1488 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1489 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1490 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1491 if (cfork->if_bytes == 0)
1492 xfs_inode_clear_cowblocks_tag(ip);
1493 }
1494
1495 /*
1496 * Free up the underlying blocks past new_size. The new size must be smaller
1497 * than the current size. This routine can be used both for the attribute and
1498 * data fork, and does not modify the inode size, which is left to the caller.
1499 *
1500 * The transaction passed to this routine must have made a permanent log
1501 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1502 * given transaction and start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here. Some transaction will be
1504 * returned to the caller to be committed. The incoming transaction must
1505 * already include the inode, and both inode locks must be held exclusively.
1506 * The inode must also be "held" within the transaction. On return the inode
1507 * will be "held" within the returned transaction. This routine does NOT
1508 * require any disk space to be reserved for it within the transaction.
1509 *
1510 * If we get an error, we must return with the inode locked and linked into the
1511 * current transaction. This keeps things simple for the higher level code,
1512 * because it always knows that the inode is locked and held in the transaction
1513 * that returns to it whether errors occur or not. We don't mark the inode
1514 * dirty on error so that transactions can be easily aborted if possible.
1515 */
1516 int
xfs_itruncate_extents_flags(struct xfs_trans ** tpp,struct xfs_inode * ip,int whichfork,xfs_fsize_t new_size,int flags)1517 xfs_itruncate_extents_flags(
1518 struct xfs_trans **tpp,
1519 struct xfs_inode *ip,
1520 int whichfork,
1521 xfs_fsize_t new_size,
1522 int flags)
1523 {
1524 struct xfs_mount *mp = ip->i_mount;
1525 struct xfs_trans *tp = *tpp;
1526 xfs_fileoff_t first_unmap_block;
1527 xfs_fileoff_t last_block;
1528 xfs_filblks_t unmap_len;
1529 int error = 0;
1530 int done = 0;
1531
1532 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1533 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1534 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1535 ASSERT(new_size <= XFS_ISIZE(ip));
1536 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1537 ASSERT(ip->i_itemp != NULL);
1538 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1539 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1540
1541 trace_xfs_itruncate_extents_start(ip, new_size);
1542
1543 flags |= xfs_bmapi_aflag(whichfork);
1544
1545 /*
1546 * Since it is possible for space to become allocated beyond
1547 * the end of the file (in a crash where the space is allocated
1548 * but the inode size is not yet updated), simply remove any
1549 * blocks which show up between the new EOF and the maximum
1550 * possible file size. If the first block to be removed is
1551 * beyond the maximum file size (ie it is the same as last_block),
1552 * then there is nothing to do.
1553 */
1554 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1555 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1556 if (first_unmap_block == last_block)
1557 return 0;
1558
1559 ASSERT(first_unmap_block < last_block);
1560 unmap_len = last_block - first_unmap_block + 1;
1561 while (!done) {
1562 ASSERT(tp->t_firstblock == NULLFSBLOCK);
1563 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
1564 XFS_ITRUNC_MAX_EXTENTS, &done);
1565 if (error)
1566 goto out;
1567
1568 /*
1569 * Duplicate the transaction that has the permanent
1570 * reservation and commit the old transaction.
1571 */
1572 error = xfs_defer_finish(&tp);
1573 if (error)
1574 goto out;
1575
1576 error = xfs_trans_roll_inode(&tp, ip);
1577 if (error)
1578 goto out;
1579 }
1580
1581 if (whichfork == XFS_DATA_FORK) {
1582 /* Remove all pending CoW reservations. */
1583 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1584 first_unmap_block, last_block, true);
1585 if (error)
1586 goto out;
1587
1588 xfs_itruncate_clear_reflink_flags(ip);
1589 }
1590
1591 /*
1592 * Always re-log the inode so that our permanent transaction can keep
1593 * on rolling it forward in the log.
1594 */
1595 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1596
1597 trace_xfs_itruncate_extents_end(ip, new_size);
1598
1599 out:
1600 *tpp = tp;
1601 return error;
1602 }
1603
1604 int
xfs_release(xfs_inode_t * ip)1605 xfs_release(
1606 xfs_inode_t *ip)
1607 {
1608 xfs_mount_t *mp = ip->i_mount;
1609 int error;
1610
1611 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1612 return 0;
1613
1614 /* If this is a read-only mount, don't do this (would generate I/O) */
1615 if (mp->m_flags & XFS_MOUNT_RDONLY)
1616 return 0;
1617
1618 if (!XFS_FORCED_SHUTDOWN(mp)) {
1619 int truncated;
1620
1621 /*
1622 * If we previously truncated this file and removed old data
1623 * in the process, we want to initiate "early" writeout on
1624 * the last close. This is an attempt to combat the notorious
1625 * NULL files problem which is particularly noticeable from a
1626 * truncate down, buffered (re-)write (delalloc), followed by
1627 * a crash. What we are effectively doing here is
1628 * significantly reducing the time window where we'd otherwise
1629 * be exposed to that problem.
1630 */
1631 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1632 if (truncated) {
1633 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1634 if (ip->i_delayed_blks > 0) {
1635 error = filemap_flush(VFS_I(ip)->i_mapping);
1636 if (error)
1637 return error;
1638 }
1639 }
1640 }
1641
1642 if (VFS_I(ip)->i_nlink == 0)
1643 return 0;
1644
1645 if (xfs_can_free_eofblocks(ip, false)) {
1646
1647 /*
1648 * Check if the inode is being opened, written and closed
1649 * frequently and we have delayed allocation blocks outstanding
1650 * (e.g. streaming writes from the NFS server), truncating the
1651 * blocks past EOF will cause fragmentation to occur.
1652 *
1653 * In this case don't do the truncation, but we have to be
1654 * careful how we detect this case. Blocks beyond EOF show up as
1655 * i_delayed_blks even when the inode is clean, so we need to
1656 * truncate them away first before checking for a dirty release.
1657 * Hence on the first dirty close we will still remove the
1658 * speculative allocation, but after that we will leave it in
1659 * place.
1660 */
1661 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1662 return 0;
1663 /*
1664 * If we can't get the iolock just skip truncating the blocks
1665 * past EOF because we could deadlock with the mmap_sem
1666 * otherwise. We'll get another chance to drop them once the
1667 * last reference to the inode is dropped, so we'll never leak
1668 * blocks permanently.
1669 */
1670 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1671 error = xfs_free_eofblocks(ip);
1672 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1673 if (error)
1674 return error;
1675 }
1676
1677 /* delalloc blocks after truncation means it really is dirty */
1678 if (ip->i_delayed_blks)
1679 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1680 }
1681 return 0;
1682 }
1683
1684 /*
1685 * xfs_inactive_truncate
1686 *
1687 * Called to perform a truncate when an inode becomes unlinked.
1688 */
1689 STATIC int
xfs_inactive_truncate(struct xfs_inode * ip)1690 xfs_inactive_truncate(
1691 struct xfs_inode *ip)
1692 {
1693 struct xfs_mount *mp = ip->i_mount;
1694 struct xfs_trans *tp;
1695 int error;
1696
1697 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1698 if (error) {
1699 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1700 return error;
1701 }
1702 xfs_ilock(ip, XFS_ILOCK_EXCL);
1703 xfs_trans_ijoin(tp, ip, 0);
1704
1705 /*
1706 * Log the inode size first to prevent stale data exposure in the event
1707 * of a system crash before the truncate completes. See the related
1708 * comment in xfs_vn_setattr_size() for details.
1709 */
1710 ip->i_d.di_size = 0;
1711 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1712
1713 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1714 if (error)
1715 goto error_trans_cancel;
1716
1717 ASSERT(ip->i_d.di_nextents == 0);
1718
1719 error = xfs_trans_commit(tp);
1720 if (error)
1721 goto error_unlock;
1722
1723 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1724 return 0;
1725
1726 error_trans_cancel:
1727 xfs_trans_cancel(tp);
1728 error_unlock:
1729 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1730 return error;
1731 }
1732
1733 /*
1734 * xfs_inactive_ifree()
1735 *
1736 * Perform the inode free when an inode is unlinked.
1737 */
1738 STATIC int
xfs_inactive_ifree(struct xfs_inode * ip)1739 xfs_inactive_ifree(
1740 struct xfs_inode *ip)
1741 {
1742 struct xfs_mount *mp = ip->i_mount;
1743 struct xfs_trans *tp;
1744 int error;
1745
1746 /*
1747 * We try to use a per-AG reservation for any block needed by the finobt
1748 * tree, but as the finobt feature predates the per-AG reservation
1749 * support a degraded file system might not have enough space for the
1750 * reservation at mount time. In that case try to dip into the reserved
1751 * pool and pray.
1752 *
1753 * Send a warning if the reservation does happen to fail, as the inode
1754 * now remains allocated and sits on the unlinked list until the fs is
1755 * repaired.
1756 */
1757 if (unlikely(mp->m_finobt_nores)) {
1758 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1759 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1760 &tp);
1761 } else {
1762 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1763 }
1764 if (error) {
1765 if (error == -ENOSPC) {
1766 xfs_warn_ratelimited(mp,
1767 "Failed to remove inode(s) from unlinked list. "
1768 "Please free space, unmount and run xfs_repair.");
1769 } else {
1770 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1771 }
1772 return error;
1773 }
1774
1775 /*
1776 * We do not hold the inode locked across the entire rolling transaction
1777 * here. We only need to hold it for the first transaction that
1778 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1779 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1780 * here breaks the relationship between cluster buffer invalidation and
1781 * stale inode invalidation on cluster buffer item journal commit
1782 * completion, and can result in leaving dirty stale inodes hanging
1783 * around in memory.
1784 *
1785 * We have no need for serialising this inode operation against other
1786 * operations - we freed the inode and hence reallocation is required
1787 * and that will serialise on reallocating the space the deferops need
1788 * to free. Hence we can unlock the inode on the first commit of
1789 * the transaction rather than roll it right through the deferops. This
1790 * avoids relogging the XFS_ISTALE inode.
1791 *
1792 * We check that xfs_ifree() hasn't grown an internal transaction roll
1793 * by asserting that the inode is still locked when it returns.
1794 */
1795 xfs_ilock(ip, XFS_ILOCK_EXCL);
1796 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1797
1798 error = xfs_ifree(tp, ip);
1799 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1800 if (error) {
1801 /*
1802 * If we fail to free the inode, shut down. The cancel
1803 * might do that, we need to make sure. Otherwise the
1804 * inode might be lost for a long time or forever.
1805 */
1806 if (!XFS_FORCED_SHUTDOWN(mp)) {
1807 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1808 __func__, error);
1809 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1810 }
1811 xfs_trans_cancel(tp);
1812 return error;
1813 }
1814
1815 /*
1816 * Credit the quota account(s). The inode is gone.
1817 */
1818 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1819
1820 /*
1821 * Just ignore errors at this point. There is nothing we can do except
1822 * to try to keep going. Make sure it's not a silent error.
1823 */
1824 error = xfs_trans_commit(tp);
1825 if (error)
1826 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1827 __func__, error);
1828
1829 return 0;
1830 }
1831
1832 /*
1833 * xfs_inactive
1834 *
1835 * This is called when the vnode reference count for the vnode
1836 * goes to zero. If the file has been unlinked, then it must
1837 * now be truncated. Also, we clear all of the read-ahead state
1838 * kept for the inode here since the file is now closed.
1839 */
1840 void
xfs_inactive(xfs_inode_t * ip)1841 xfs_inactive(
1842 xfs_inode_t *ip)
1843 {
1844 struct xfs_mount *mp;
1845 int error;
1846 int truncate = 0;
1847
1848 /*
1849 * If the inode is already free, then there can be nothing
1850 * to clean up here.
1851 */
1852 if (VFS_I(ip)->i_mode == 0) {
1853 ASSERT(ip->i_df.if_broot_bytes == 0);
1854 return;
1855 }
1856
1857 mp = ip->i_mount;
1858 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
1859
1860 /* If this is a read-only mount, don't do this (would generate I/O) */
1861 if (mp->m_flags & XFS_MOUNT_RDONLY)
1862 return;
1863
1864 /* Try to clean out the cow blocks if there are any. */
1865 if (xfs_inode_has_cow_data(ip))
1866 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1867
1868 if (VFS_I(ip)->i_nlink != 0) {
1869 /*
1870 * force is true because we are evicting an inode from the
1871 * cache. Post-eof blocks must be freed, lest we end up with
1872 * broken free space accounting.
1873 *
1874 * Note: don't bother with iolock here since lockdep complains
1875 * about acquiring it in reclaim context. We have the only
1876 * reference to the inode at this point anyways.
1877 */
1878 if (xfs_can_free_eofblocks(ip, true))
1879 xfs_free_eofblocks(ip);
1880
1881 return;
1882 }
1883
1884 if (S_ISREG(VFS_I(ip)->i_mode) &&
1885 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1886 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1887 truncate = 1;
1888
1889 error = xfs_qm_dqattach(ip);
1890 if (error)
1891 return;
1892
1893 if (S_ISLNK(VFS_I(ip)->i_mode))
1894 error = xfs_inactive_symlink(ip);
1895 else if (truncate)
1896 error = xfs_inactive_truncate(ip);
1897 if (error)
1898 return;
1899
1900 /*
1901 * If there are attributes associated with the file then blow them away
1902 * now. The code calls a routine that recursively deconstructs the
1903 * attribute fork. If also blows away the in-core attribute fork.
1904 */
1905 if (XFS_IFORK_Q(ip)) {
1906 error = xfs_attr_inactive(ip);
1907 if (error)
1908 return;
1909 }
1910
1911 ASSERT(!ip->i_afp);
1912 ASSERT(ip->i_d.di_anextents == 0);
1913 ASSERT(ip->i_d.di_forkoff == 0);
1914
1915 /*
1916 * Free the inode.
1917 */
1918 error = xfs_inactive_ifree(ip);
1919 if (error)
1920 return;
1921
1922 /*
1923 * Release the dquots held by inode, if any.
1924 */
1925 xfs_qm_dqdetach(ip);
1926 }
1927
1928 /*
1929 * This is called when the inode's link count has gone to 0 or we are creating
1930 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
1931 *
1932 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1933 * list when the inode is freed.
1934 */
1935 STATIC int
xfs_iunlink(struct xfs_trans * tp,struct xfs_inode * ip)1936 xfs_iunlink(
1937 struct xfs_trans *tp,
1938 struct xfs_inode *ip)
1939 {
1940 xfs_mount_t *mp = tp->t_mountp;
1941 xfs_agi_t *agi;
1942 xfs_dinode_t *dip;
1943 xfs_buf_t *agibp;
1944 xfs_buf_t *ibp;
1945 xfs_agino_t agino;
1946 short bucket_index;
1947 int offset;
1948 int error;
1949
1950 ASSERT(VFS_I(ip)->i_nlink == 0);
1951 ASSERT(VFS_I(ip)->i_mode != 0);
1952
1953 /*
1954 * Get the agi buffer first. It ensures lock ordering
1955 * on the list.
1956 */
1957 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1958 if (error)
1959 return error;
1960 agi = XFS_BUF_TO_AGI(agibp);
1961
1962 /*
1963 * Get the index into the agi hash table for the
1964 * list this inode will go on.
1965 */
1966 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1967 ASSERT(agino != 0);
1968 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1969 ASSERT(agi->agi_unlinked[bucket_index]);
1970 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1971
1972 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1973 /*
1974 * There is already another inode in the bucket we need
1975 * to add ourselves to. Add us at the front of the list.
1976 * Here we put the head pointer into our next pointer,
1977 * and then we fall through to point the head at us.
1978 */
1979 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1980 0, 0);
1981 if (error)
1982 return error;
1983
1984 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1985 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1986 offset = ip->i_imap.im_boffset +
1987 offsetof(xfs_dinode_t, di_next_unlinked);
1988
1989 /* need to recalc the inode CRC if appropriate */
1990 xfs_dinode_calc_crc(mp, dip);
1991
1992 xfs_trans_inode_buf(tp, ibp);
1993 xfs_trans_log_buf(tp, ibp, offset,
1994 (offset + sizeof(xfs_agino_t) - 1));
1995 xfs_inobp_check(mp, ibp);
1996 }
1997
1998 /*
1999 * Point the bucket head pointer at the inode being inserted.
2000 */
2001 ASSERT(agino != 0);
2002 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2003 offset = offsetof(xfs_agi_t, agi_unlinked) +
2004 (sizeof(xfs_agino_t) * bucket_index);
2005 xfs_trans_log_buf(tp, agibp, offset,
2006 (offset + sizeof(xfs_agino_t) - 1));
2007 return 0;
2008 }
2009
2010 /*
2011 * Pull the on-disk inode from the AGI unlinked list.
2012 */
2013 STATIC int
xfs_iunlink_remove(xfs_trans_t * tp,xfs_inode_t * ip)2014 xfs_iunlink_remove(
2015 xfs_trans_t *tp,
2016 xfs_inode_t *ip)
2017 {
2018 xfs_ino_t next_ino;
2019 xfs_mount_t *mp;
2020 xfs_agi_t *agi;
2021 xfs_dinode_t *dip;
2022 xfs_buf_t *agibp;
2023 xfs_buf_t *ibp;
2024 xfs_agnumber_t agno;
2025 xfs_agino_t agino;
2026 xfs_agino_t next_agino;
2027 xfs_buf_t *last_ibp;
2028 xfs_dinode_t *last_dip = NULL;
2029 short bucket_index;
2030 int offset, last_offset = 0;
2031 int error;
2032
2033 mp = tp->t_mountp;
2034 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2035
2036 /*
2037 * Get the agi buffer first. It ensures lock ordering
2038 * on the list.
2039 */
2040 error = xfs_read_agi(mp, tp, agno, &agibp);
2041 if (error)
2042 return error;
2043
2044 agi = XFS_BUF_TO_AGI(agibp);
2045
2046 /*
2047 * Get the index into the agi hash table for the
2048 * list this inode will go on.
2049 */
2050 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2051 if (!xfs_verify_agino(mp, agno, agino))
2052 return -EFSCORRUPTED;
2053 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2054 if (!xfs_verify_agino(mp, agno,
2055 be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2056 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2057 agi, sizeof(*agi));
2058 return -EFSCORRUPTED;
2059 }
2060
2061 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2062 /*
2063 * We're at the head of the list. Get the inode's on-disk
2064 * buffer to see if there is anyone after us on the list.
2065 * Only modify our next pointer if it is not already NULLAGINO.
2066 * This saves us the overhead of dealing with the buffer when
2067 * there is no need to change it.
2068 */
2069 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2070 0, 0);
2071 if (error) {
2072 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2073 __func__, error);
2074 return error;
2075 }
2076 next_agino = be32_to_cpu(dip->di_next_unlinked);
2077 ASSERT(next_agino != 0);
2078 if (next_agino != NULLAGINO) {
2079 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2080 offset = ip->i_imap.im_boffset +
2081 offsetof(xfs_dinode_t, di_next_unlinked);
2082
2083 /* need to recalc the inode CRC if appropriate */
2084 xfs_dinode_calc_crc(mp, dip);
2085
2086 xfs_trans_inode_buf(tp, ibp);
2087 xfs_trans_log_buf(tp, ibp, offset,
2088 (offset + sizeof(xfs_agino_t) - 1));
2089 xfs_inobp_check(mp, ibp);
2090 } else {
2091 xfs_trans_brelse(tp, ibp);
2092 }
2093 /*
2094 * Point the bucket head pointer at the next inode.
2095 */
2096 ASSERT(next_agino != 0);
2097 ASSERT(next_agino != agino);
2098 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2099 offset = offsetof(xfs_agi_t, agi_unlinked) +
2100 (sizeof(xfs_agino_t) * bucket_index);
2101 xfs_trans_log_buf(tp, agibp, offset,
2102 (offset + sizeof(xfs_agino_t) - 1));
2103 } else {
2104 /*
2105 * We need to search the list for the inode being freed.
2106 */
2107 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2108 last_ibp = NULL;
2109 while (next_agino != agino) {
2110 struct xfs_imap imap;
2111
2112 if (last_ibp)
2113 xfs_trans_brelse(tp, last_ibp);
2114
2115 imap.im_blkno = 0;
2116 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2117
2118 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2119 if (error) {
2120 xfs_warn(mp,
2121 "%s: xfs_imap returned error %d.",
2122 __func__, error);
2123 return error;
2124 }
2125
2126 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2127 &last_ibp, 0, 0);
2128 if (error) {
2129 xfs_warn(mp,
2130 "%s: xfs_imap_to_bp returned error %d.",
2131 __func__, error);
2132 return error;
2133 }
2134
2135 last_offset = imap.im_boffset;
2136 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2137 if (!xfs_verify_agino(mp, agno, next_agino)) {
2138 XFS_CORRUPTION_ERROR(__func__,
2139 XFS_ERRLEVEL_LOW, mp,
2140 last_dip, sizeof(*last_dip));
2141 return -EFSCORRUPTED;
2142 }
2143 }
2144
2145 /*
2146 * Now last_ibp points to the buffer previous to us on the
2147 * unlinked list. Pull us from the list.
2148 */
2149 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2150 0, 0);
2151 if (error) {
2152 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2153 __func__, error);
2154 return error;
2155 }
2156 next_agino = be32_to_cpu(dip->di_next_unlinked);
2157 ASSERT(next_agino != 0);
2158 ASSERT(next_agino != agino);
2159 if (next_agino != NULLAGINO) {
2160 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2161 offset = ip->i_imap.im_boffset +
2162 offsetof(xfs_dinode_t, di_next_unlinked);
2163
2164 /* need to recalc the inode CRC if appropriate */
2165 xfs_dinode_calc_crc(mp, dip);
2166
2167 xfs_trans_inode_buf(tp, ibp);
2168 xfs_trans_log_buf(tp, ibp, offset,
2169 (offset + sizeof(xfs_agino_t) - 1));
2170 xfs_inobp_check(mp, ibp);
2171 } else {
2172 xfs_trans_brelse(tp, ibp);
2173 }
2174 /*
2175 * Point the previous inode on the list to the next inode.
2176 */
2177 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2178 ASSERT(next_agino != 0);
2179 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2180
2181 /* need to recalc the inode CRC if appropriate */
2182 xfs_dinode_calc_crc(mp, last_dip);
2183
2184 xfs_trans_inode_buf(tp, last_ibp);
2185 xfs_trans_log_buf(tp, last_ibp, offset,
2186 (offset + sizeof(xfs_agino_t) - 1));
2187 xfs_inobp_check(mp, last_ibp);
2188 }
2189 return 0;
2190 }
2191
2192 /*
2193 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2194 * inodes that are in memory - they all must be marked stale and attached to
2195 * the cluster buffer.
2196 */
2197 STATIC int
xfs_ifree_cluster(xfs_inode_t * free_ip,xfs_trans_t * tp,struct xfs_icluster * xic)2198 xfs_ifree_cluster(
2199 xfs_inode_t *free_ip,
2200 xfs_trans_t *tp,
2201 struct xfs_icluster *xic)
2202 {
2203 xfs_mount_t *mp = free_ip->i_mount;
2204 int blks_per_cluster;
2205 int inodes_per_cluster;
2206 int nbufs;
2207 int i, j;
2208 int ioffset;
2209 xfs_daddr_t blkno;
2210 xfs_buf_t *bp;
2211 xfs_inode_t *ip;
2212 xfs_inode_log_item_t *iip;
2213 struct xfs_log_item *lip;
2214 struct xfs_perag *pag;
2215 xfs_ino_t inum;
2216
2217 inum = xic->first_ino;
2218 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2219 blks_per_cluster = xfs_icluster_size_fsb(mp);
2220 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2221 nbufs = mp->m_ialloc_blks / blks_per_cluster;
2222
2223 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2224 /*
2225 * The allocation bitmap tells us which inodes of the chunk were
2226 * physically allocated. Skip the cluster if an inode falls into
2227 * a sparse region.
2228 */
2229 ioffset = inum - xic->first_ino;
2230 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2231 ASSERT(ioffset % inodes_per_cluster == 0);
2232 continue;
2233 }
2234
2235 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2236 XFS_INO_TO_AGBNO(mp, inum));
2237
2238 /*
2239 * We obtain and lock the backing buffer first in the process
2240 * here, as we have to ensure that any dirty inode that we
2241 * can't get the flush lock on is attached to the buffer.
2242 * If we scan the in-memory inodes first, then buffer IO can
2243 * complete before we get a lock on it, and hence we may fail
2244 * to mark all the active inodes on the buffer stale.
2245 */
2246 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2247 mp->m_bsize * blks_per_cluster,
2248 XBF_UNMAPPED);
2249
2250 if (!bp)
2251 return -ENOMEM;
2252
2253 /*
2254 * This buffer may not have been correctly initialised as we
2255 * didn't read it from disk. That's not important because we are
2256 * only using to mark the buffer as stale in the log, and to
2257 * attach stale cached inodes on it. That means it will never be
2258 * dispatched for IO. If it is, we want to know about it, and we
2259 * want it to fail. We can acheive this by adding a write
2260 * verifier to the buffer.
2261 */
2262 bp->b_ops = &xfs_inode_buf_ops;
2263
2264 /*
2265 * Walk the inodes already attached to the buffer and mark them
2266 * stale. These will all have the flush locks held, so an
2267 * in-memory inode walk can't lock them. By marking them all
2268 * stale first, we will not attempt to lock them in the loop
2269 * below as the XFS_ISTALE flag will be set.
2270 */
2271 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
2272 if (lip->li_type == XFS_LI_INODE) {
2273 iip = (xfs_inode_log_item_t *)lip;
2274 ASSERT(iip->ili_logged == 1);
2275 lip->li_cb = xfs_istale_done;
2276 xfs_trans_ail_copy_lsn(mp->m_ail,
2277 &iip->ili_flush_lsn,
2278 &iip->ili_item.li_lsn);
2279 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2280 }
2281 }
2282
2283
2284 /*
2285 * For each inode in memory attempt to add it to the inode
2286 * buffer and set it up for being staled on buffer IO
2287 * completion. This is safe as we've locked out tail pushing
2288 * and flushing by locking the buffer.
2289 *
2290 * We have already marked every inode that was part of a
2291 * transaction stale above, which means there is no point in
2292 * even trying to lock them.
2293 */
2294 for (i = 0; i < inodes_per_cluster; i++) {
2295 retry:
2296 rcu_read_lock();
2297 ip = radix_tree_lookup(&pag->pag_ici_root,
2298 XFS_INO_TO_AGINO(mp, (inum + i)));
2299
2300 /* Inode not in memory, nothing to do */
2301 if (!ip) {
2302 rcu_read_unlock();
2303 continue;
2304 }
2305
2306 /*
2307 * because this is an RCU protected lookup, we could
2308 * find a recently freed or even reallocated inode
2309 * during the lookup. We need to check under the
2310 * i_flags_lock for a valid inode here. Skip it if it
2311 * is not valid, the wrong inode or stale.
2312 */
2313 spin_lock(&ip->i_flags_lock);
2314 if (ip->i_ino != inum + i ||
2315 __xfs_iflags_test(ip, XFS_ISTALE)) {
2316 spin_unlock(&ip->i_flags_lock);
2317 rcu_read_unlock();
2318 continue;
2319 }
2320 spin_unlock(&ip->i_flags_lock);
2321
2322 /*
2323 * Don't try to lock/unlock the current inode, but we
2324 * _cannot_ skip the other inodes that we did not find
2325 * in the list attached to the buffer and are not
2326 * already marked stale. If we can't lock it, back off
2327 * and retry.
2328 */
2329 if (ip != free_ip) {
2330 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2331 rcu_read_unlock();
2332 delay(1);
2333 goto retry;
2334 }
2335
2336 /*
2337 * Check the inode number again in case we're
2338 * racing with freeing in xfs_reclaim_inode().
2339 * See the comments in that function for more
2340 * information as to why the initial check is
2341 * not sufficient.
2342 */
2343 if (ip->i_ino != inum + i) {
2344 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2345 rcu_read_unlock();
2346 continue;
2347 }
2348 }
2349 rcu_read_unlock();
2350
2351 xfs_iflock(ip);
2352 xfs_iflags_set(ip, XFS_ISTALE);
2353
2354 /*
2355 * we don't need to attach clean inodes or those only
2356 * with unlogged changes (which we throw away, anyway).
2357 */
2358 iip = ip->i_itemp;
2359 if (!iip || xfs_inode_clean(ip)) {
2360 ASSERT(ip != free_ip);
2361 xfs_ifunlock(ip);
2362 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2363 continue;
2364 }
2365
2366 iip->ili_last_fields = iip->ili_fields;
2367 iip->ili_fields = 0;
2368 iip->ili_fsync_fields = 0;
2369 iip->ili_logged = 1;
2370 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2371 &iip->ili_item.li_lsn);
2372
2373 xfs_buf_attach_iodone(bp, xfs_istale_done,
2374 &iip->ili_item);
2375
2376 if (ip != free_ip)
2377 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2378 }
2379
2380 xfs_trans_stale_inode_buf(tp, bp);
2381 xfs_trans_binval(tp, bp);
2382 }
2383
2384 xfs_perag_put(pag);
2385 return 0;
2386 }
2387
2388 /*
2389 * Free any local-format buffers sitting around before we reset to
2390 * extents format.
2391 */
2392 static inline void
xfs_ifree_local_data(struct xfs_inode * ip,int whichfork)2393 xfs_ifree_local_data(
2394 struct xfs_inode *ip,
2395 int whichfork)
2396 {
2397 struct xfs_ifork *ifp;
2398
2399 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2400 return;
2401
2402 ifp = XFS_IFORK_PTR(ip, whichfork);
2403 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2404 }
2405
2406 /*
2407 * This is called to return an inode to the inode free list.
2408 * The inode should already be truncated to 0 length and have
2409 * no pages associated with it. This routine also assumes that
2410 * the inode is already a part of the transaction.
2411 *
2412 * The on-disk copy of the inode will have been added to the list
2413 * of unlinked inodes in the AGI. We need to remove the inode from
2414 * that list atomically with respect to freeing it here.
2415 */
2416 int
xfs_ifree(struct xfs_trans * tp,struct xfs_inode * ip)2417 xfs_ifree(
2418 struct xfs_trans *tp,
2419 struct xfs_inode *ip)
2420 {
2421 int error;
2422 struct xfs_icluster xic = { 0 };
2423
2424 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2425 ASSERT(VFS_I(ip)->i_nlink == 0);
2426 ASSERT(ip->i_d.di_nextents == 0);
2427 ASSERT(ip->i_d.di_anextents == 0);
2428 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2429 ASSERT(ip->i_d.di_nblocks == 0);
2430
2431 /*
2432 * Pull the on-disk inode from the AGI unlinked list.
2433 */
2434 error = xfs_iunlink_remove(tp, ip);
2435 if (error)
2436 return error;
2437
2438 error = xfs_difree(tp, ip->i_ino, &xic);
2439 if (error)
2440 return error;
2441
2442 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2443 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2444
2445 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
2446 ip->i_d.di_flags = 0;
2447 ip->i_d.di_flags2 = 0;
2448 ip->i_d.di_dmevmask = 0;
2449 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2450 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2451 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2452
2453 /* Don't attempt to replay owner changes for a deleted inode */
2454 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2455
2456 /*
2457 * Bump the generation count so no one will be confused
2458 * by reincarnations of this inode.
2459 */
2460 VFS_I(ip)->i_generation++;
2461 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2462
2463 if (xic.deleted)
2464 error = xfs_ifree_cluster(ip, tp, &xic);
2465
2466 return error;
2467 }
2468
2469 /*
2470 * This is called to unpin an inode. The caller must have the inode locked
2471 * in at least shared mode so that the buffer cannot be subsequently pinned
2472 * once someone is waiting for it to be unpinned.
2473 */
2474 static void
xfs_iunpin(struct xfs_inode * ip)2475 xfs_iunpin(
2476 struct xfs_inode *ip)
2477 {
2478 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2479
2480 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2481
2482 /* Give the log a push to start the unpinning I/O */
2483 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
2484
2485 }
2486
2487 static void
__xfs_iunpin_wait(struct xfs_inode * ip)2488 __xfs_iunpin_wait(
2489 struct xfs_inode *ip)
2490 {
2491 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2492 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2493
2494 xfs_iunpin(ip);
2495
2496 do {
2497 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2498 if (xfs_ipincount(ip))
2499 io_schedule();
2500 } while (xfs_ipincount(ip));
2501 finish_wait(wq, &wait.wq_entry);
2502 }
2503
2504 void
xfs_iunpin_wait(struct xfs_inode * ip)2505 xfs_iunpin_wait(
2506 struct xfs_inode *ip)
2507 {
2508 if (xfs_ipincount(ip))
2509 __xfs_iunpin_wait(ip);
2510 }
2511
2512 /*
2513 * Removing an inode from the namespace involves removing the directory entry
2514 * and dropping the link count on the inode. Removing the directory entry can
2515 * result in locking an AGF (directory blocks were freed) and removing a link
2516 * count can result in placing the inode on an unlinked list which results in
2517 * locking an AGI.
2518 *
2519 * The big problem here is that we have an ordering constraint on AGF and AGI
2520 * locking - inode allocation locks the AGI, then can allocate a new extent for
2521 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2522 * removes the inode from the unlinked list, requiring that we lock the AGI
2523 * first, and then freeing the inode can result in an inode chunk being freed
2524 * and hence freeing disk space requiring that we lock an AGF.
2525 *
2526 * Hence the ordering that is imposed by other parts of the code is AGI before
2527 * AGF. This means we cannot remove the directory entry before we drop the inode
2528 * reference count and put it on the unlinked list as this results in a lock
2529 * order of AGF then AGI, and this can deadlock against inode allocation and
2530 * freeing. Therefore we must drop the link counts before we remove the
2531 * directory entry.
2532 *
2533 * This is still safe from a transactional point of view - it is not until we
2534 * get to xfs_defer_finish() that we have the possibility of multiple
2535 * transactions in this operation. Hence as long as we remove the directory
2536 * entry and drop the link count in the first transaction of the remove
2537 * operation, there are no transactional constraints on the ordering here.
2538 */
2539 int
xfs_remove(xfs_inode_t * dp,struct xfs_name * name,xfs_inode_t * ip)2540 xfs_remove(
2541 xfs_inode_t *dp,
2542 struct xfs_name *name,
2543 xfs_inode_t *ip)
2544 {
2545 xfs_mount_t *mp = dp->i_mount;
2546 xfs_trans_t *tp = NULL;
2547 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2548 int error = 0;
2549 uint resblks;
2550
2551 trace_xfs_remove(dp, name);
2552
2553 if (XFS_FORCED_SHUTDOWN(mp))
2554 return -EIO;
2555
2556 error = xfs_qm_dqattach(dp);
2557 if (error)
2558 goto std_return;
2559
2560 error = xfs_qm_dqattach(ip);
2561 if (error)
2562 goto std_return;
2563
2564 /*
2565 * We try to get the real space reservation first,
2566 * allowing for directory btree deletion(s) implying
2567 * possible bmap insert(s). If we can't get the space
2568 * reservation then we use 0 instead, and avoid the bmap
2569 * btree insert(s) in the directory code by, if the bmap
2570 * insert tries to happen, instead trimming the LAST
2571 * block from the directory.
2572 */
2573 resblks = XFS_REMOVE_SPACE_RES(mp);
2574 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2575 if (error == -ENOSPC) {
2576 resblks = 0;
2577 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2578 &tp);
2579 }
2580 if (error) {
2581 ASSERT(error != -ENOSPC);
2582 goto std_return;
2583 }
2584
2585 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
2586
2587 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2588 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2589
2590 /*
2591 * If we're removing a directory perform some additional validation.
2592 */
2593 if (is_dir) {
2594 ASSERT(VFS_I(ip)->i_nlink >= 2);
2595 if (VFS_I(ip)->i_nlink != 2) {
2596 error = -ENOTEMPTY;
2597 goto out_trans_cancel;
2598 }
2599 if (!xfs_dir_isempty(ip)) {
2600 error = -ENOTEMPTY;
2601 goto out_trans_cancel;
2602 }
2603
2604 /* Drop the link from ip's "..". */
2605 error = xfs_droplink(tp, dp);
2606 if (error)
2607 goto out_trans_cancel;
2608
2609 /* Drop the "." link from ip to self. */
2610 error = xfs_droplink(tp, ip);
2611 if (error)
2612 goto out_trans_cancel;
2613 } else {
2614 /*
2615 * When removing a non-directory we need to log the parent
2616 * inode here. For a directory this is done implicitly
2617 * by the xfs_droplink call for the ".." entry.
2618 */
2619 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2620 }
2621 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2622
2623 /* Drop the link from dp to ip. */
2624 error = xfs_droplink(tp, ip);
2625 if (error)
2626 goto out_trans_cancel;
2627
2628 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
2629 if (error) {
2630 ASSERT(error != -ENOENT);
2631 goto out_trans_cancel;
2632 }
2633
2634 /*
2635 * If this is a synchronous mount, make sure that the
2636 * remove transaction goes to disk before returning to
2637 * the user.
2638 */
2639 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2640 xfs_trans_set_sync(tp);
2641
2642 error = xfs_trans_commit(tp);
2643 if (error)
2644 goto std_return;
2645
2646 if (is_dir && xfs_inode_is_filestream(ip))
2647 xfs_filestream_deassociate(ip);
2648
2649 return 0;
2650
2651 out_trans_cancel:
2652 xfs_trans_cancel(tp);
2653 std_return:
2654 return error;
2655 }
2656
2657 /*
2658 * Enter all inodes for a rename transaction into a sorted array.
2659 */
2660 #define __XFS_SORT_INODES 5
2661 STATIC void
xfs_sort_for_rename(struct xfs_inode * dp1,struct xfs_inode * dp2,struct xfs_inode * ip1,struct xfs_inode * ip2,struct xfs_inode * wip,struct xfs_inode ** i_tab,int * num_inodes)2662 xfs_sort_for_rename(
2663 struct xfs_inode *dp1, /* in: old (source) directory inode */
2664 struct xfs_inode *dp2, /* in: new (target) directory inode */
2665 struct xfs_inode *ip1, /* in: inode of old entry */
2666 struct xfs_inode *ip2, /* in: inode of new entry */
2667 struct xfs_inode *wip, /* in: whiteout inode */
2668 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2669 int *num_inodes) /* in/out: inodes in array */
2670 {
2671 int i, j;
2672
2673 ASSERT(*num_inodes == __XFS_SORT_INODES);
2674 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2675
2676 /*
2677 * i_tab contains a list of pointers to inodes. We initialize
2678 * the table here & we'll sort it. We will then use it to
2679 * order the acquisition of the inode locks.
2680 *
2681 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2682 */
2683 i = 0;
2684 i_tab[i++] = dp1;
2685 i_tab[i++] = dp2;
2686 i_tab[i++] = ip1;
2687 if (ip2)
2688 i_tab[i++] = ip2;
2689 if (wip)
2690 i_tab[i++] = wip;
2691 *num_inodes = i;
2692
2693 /*
2694 * Sort the elements via bubble sort. (Remember, there are at
2695 * most 5 elements to sort, so this is adequate.)
2696 */
2697 for (i = 0; i < *num_inodes; i++) {
2698 for (j = 1; j < *num_inodes; j++) {
2699 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2700 struct xfs_inode *temp = i_tab[j];
2701 i_tab[j] = i_tab[j-1];
2702 i_tab[j-1] = temp;
2703 }
2704 }
2705 }
2706 }
2707
2708 static int
xfs_finish_rename(struct xfs_trans * tp)2709 xfs_finish_rename(
2710 struct xfs_trans *tp)
2711 {
2712 /*
2713 * If this is a synchronous mount, make sure that the rename transaction
2714 * goes to disk before returning to the user.
2715 */
2716 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2717 xfs_trans_set_sync(tp);
2718
2719 return xfs_trans_commit(tp);
2720 }
2721
2722 /*
2723 * xfs_cross_rename()
2724 *
2725 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2726 */
2727 STATIC int
xfs_cross_rename(struct xfs_trans * tp,struct xfs_inode * dp1,struct xfs_name * name1,struct xfs_inode * ip1,struct xfs_inode * dp2,struct xfs_name * name2,struct xfs_inode * ip2,int spaceres)2728 xfs_cross_rename(
2729 struct xfs_trans *tp,
2730 struct xfs_inode *dp1,
2731 struct xfs_name *name1,
2732 struct xfs_inode *ip1,
2733 struct xfs_inode *dp2,
2734 struct xfs_name *name2,
2735 struct xfs_inode *ip2,
2736 int spaceres)
2737 {
2738 int error = 0;
2739 int ip1_flags = 0;
2740 int ip2_flags = 0;
2741 int dp2_flags = 0;
2742
2743 /* Swap inode number for dirent in first parent */
2744 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
2745 if (error)
2746 goto out_trans_abort;
2747
2748 /* Swap inode number for dirent in second parent */
2749 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
2750 if (error)
2751 goto out_trans_abort;
2752
2753 /*
2754 * If we're renaming one or more directories across different parents,
2755 * update the respective ".." entries (and link counts) to match the new
2756 * parents.
2757 */
2758 if (dp1 != dp2) {
2759 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2760
2761 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2762 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2763 dp1->i_ino, spaceres);
2764 if (error)
2765 goto out_trans_abort;
2766
2767 /* transfer ip2 ".." reference to dp1 */
2768 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2769 error = xfs_droplink(tp, dp2);
2770 if (error)
2771 goto out_trans_abort;
2772 error = xfs_bumplink(tp, dp1);
2773 if (error)
2774 goto out_trans_abort;
2775 }
2776
2777 /*
2778 * Although ip1 isn't changed here, userspace needs
2779 * to be warned about the change, so that applications
2780 * relying on it (like backup ones), will properly
2781 * notify the change
2782 */
2783 ip1_flags |= XFS_ICHGTIME_CHG;
2784 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2785 }
2786
2787 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2788 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2789 dp2->i_ino, spaceres);
2790 if (error)
2791 goto out_trans_abort;
2792
2793 /* transfer ip1 ".." reference to dp2 */
2794 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2795 error = xfs_droplink(tp, dp1);
2796 if (error)
2797 goto out_trans_abort;
2798 error = xfs_bumplink(tp, dp2);
2799 if (error)
2800 goto out_trans_abort;
2801 }
2802
2803 /*
2804 * Although ip2 isn't changed here, userspace needs
2805 * to be warned about the change, so that applications
2806 * relying on it (like backup ones), will properly
2807 * notify the change
2808 */
2809 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2810 ip2_flags |= XFS_ICHGTIME_CHG;
2811 }
2812 }
2813
2814 if (ip1_flags) {
2815 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2816 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2817 }
2818 if (ip2_flags) {
2819 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2820 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2821 }
2822 if (dp2_flags) {
2823 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2824 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2825 }
2826 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2827 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2828 return xfs_finish_rename(tp);
2829
2830 out_trans_abort:
2831 xfs_trans_cancel(tp);
2832 return error;
2833 }
2834
2835 /*
2836 * xfs_rename_alloc_whiteout()
2837 *
2838 * Return a referenced, unlinked, unlocked inode that that can be used as a
2839 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2840 * crash between allocating the inode and linking it into the rename transaction
2841 * recovery will free the inode and we won't leak it.
2842 */
2843 static int
xfs_rename_alloc_whiteout(struct xfs_inode * dp,struct xfs_inode ** wip)2844 xfs_rename_alloc_whiteout(
2845 struct xfs_inode *dp,
2846 struct xfs_inode **wip)
2847 {
2848 struct xfs_inode *tmpfile;
2849 int error;
2850
2851 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2852 if (error)
2853 return error;
2854
2855 /*
2856 * Prepare the tmpfile inode as if it were created through the VFS.
2857 * Complete the inode setup and flag it as linkable. nlink is already
2858 * zero, so we can skip the drop_nlink.
2859 */
2860 xfs_setup_iops(tmpfile);
2861 xfs_finish_inode_setup(tmpfile);
2862 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2863
2864 *wip = tmpfile;
2865 return 0;
2866 }
2867
2868 /*
2869 * xfs_rename
2870 */
2871 int
xfs_rename(struct xfs_inode * src_dp,struct xfs_name * src_name,struct xfs_inode * src_ip,struct xfs_inode * target_dp,struct xfs_name * target_name,struct xfs_inode * target_ip,unsigned int flags)2872 xfs_rename(
2873 struct xfs_inode *src_dp,
2874 struct xfs_name *src_name,
2875 struct xfs_inode *src_ip,
2876 struct xfs_inode *target_dp,
2877 struct xfs_name *target_name,
2878 struct xfs_inode *target_ip,
2879 unsigned int flags)
2880 {
2881 struct xfs_mount *mp = src_dp->i_mount;
2882 struct xfs_trans *tp;
2883 struct xfs_inode *wip = NULL; /* whiteout inode */
2884 struct xfs_inode *inodes[__XFS_SORT_INODES];
2885 int num_inodes = __XFS_SORT_INODES;
2886 bool new_parent = (src_dp != target_dp);
2887 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2888 int spaceres;
2889 int error;
2890
2891 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2892
2893 if ((flags & RENAME_EXCHANGE) && !target_ip)
2894 return -EINVAL;
2895
2896 /*
2897 * If we are doing a whiteout operation, allocate the whiteout inode
2898 * we will be placing at the target and ensure the type is set
2899 * appropriately.
2900 */
2901 if (flags & RENAME_WHITEOUT) {
2902 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2903 if (error)
2904 return error;
2905
2906 /* setup target dirent info as whiteout */
2907 src_name->type = XFS_DIR3_FT_CHRDEV;
2908 }
2909
2910 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2911 inodes, &num_inodes);
2912
2913 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2914 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2915 if (error == -ENOSPC) {
2916 spaceres = 0;
2917 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2918 &tp);
2919 }
2920 if (error)
2921 goto out_release_wip;
2922
2923 /*
2924 * Attach the dquots to the inodes
2925 */
2926 error = xfs_qm_vop_rename_dqattach(inodes);
2927 if (error)
2928 goto out_trans_cancel;
2929
2930 /*
2931 * Lock all the participating inodes. Depending upon whether
2932 * the target_name exists in the target directory, and
2933 * whether the target directory is the same as the source
2934 * directory, we can lock from 2 to 4 inodes.
2935 */
2936 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2937
2938 /*
2939 * Join all the inodes to the transaction. From this point on,
2940 * we can rely on either trans_commit or trans_cancel to unlock
2941 * them.
2942 */
2943 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2944 if (new_parent)
2945 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2946 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2947 if (target_ip)
2948 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2949 if (wip)
2950 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2951
2952 /*
2953 * If we are using project inheritance, we only allow renames
2954 * into our tree when the project IDs are the same; else the
2955 * tree quota mechanism would be circumvented.
2956 */
2957 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2958 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2959 error = -EXDEV;
2960 goto out_trans_cancel;
2961 }
2962
2963 /* RENAME_EXCHANGE is unique from here on. */
2964 if (flags & RENAME_EXCHANGE)
2965 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2966 target_dp, target_name, target_ip,
2967 spaceres);
2968
2969 /*
2970 * Check for expected errors before we dirty the transaction
2971 * so we can return an error without a transaction abort.
2972 */
2973 if (target_ip == NULL) {
2974 /*
2975 * If there's no space reservation, check the entry will
2976 * fit before actually inserting it.
2977 */
2978 if (!spaceres) {
2979 error = xfs_dir_canenter(tp, target_dp, target_name);
2980 if (error)
2981 goto out_trans_cancel;
2982 }
2983 } else {
2984 /*
2985 * If target exists and it's a directory, check that whether
2986 * it can be destroyed.
2987 */
2988 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2989 (!xfs_dir_isempty(target_ip) ||
2990 (VFS_I(target_ip)->i_nlink > 2))) {
2991 error = -EEXIST;
2992 goto out_trans_cancel;
2993 }
2994 }
2995
2996 /*
2997 * Directory entry creation below may acquire the AGF. Remove
2998 * the whiteout from the unlinked list first to preserve correct
2999 * AGI/AGF locking order. This dirties the transaction so failures
3000 * after this point will abort and log recovery will clean up the
3001 * mess.
3002 *
3003 * For whiteouts, we need to bump the link count on the whiteout
3004 * inode. After this point, we have a real link, clear the tmpfile
3005 * state flag from the inode so it doesn't accidentally get misused
3006 * in future.
3007 */
3008 if (wip) {
3009 ASSERT(VFS_I(wip)->i_nlink == 0);
3010 error = xfs_iunlink_remove(tp, wip);
3011 if (error)
3012 goto out_trans_cancel;
3013
3014 xfs_bumplink(tp, wip);
3015 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3016 VFS_I(wip)->i_state &= ~I_LINKABLE;
3017 }
3018
3019 /*
3020 * Set up the target.
3021 */
3022 if (target_ip == NULL) {
3023 /*
3024 * If target does not exist and the rename crosses
3025 * directories, adjust the target directory link count
3026 * to account for the ".." reference from the new entry.
3027 */
3028 error = xfs_dir_createname(tp, target_dp, target_name,
3029 src_ip->i_ino, spaceres);
3030 if (error)
3031 goto out_trans_cancel;
3032
3033 xfs_trans_ichgtime(tp, target_dp,
3034 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3035
3036 if (new_parent && src_is_directory) {
3037 error = xfs_bumplink(tp, target_dp);
3038 if (error)
3039 goto out_trans_cancel;
3040 }
3041 } else { /* target_ip != NULL */
3042 /*
3043 * Link the source inode under the target name.
3044 * If the source inode is a directory and we are moving
3045 * it across directories, its ".." entry will be
3046 * inconsistent until we replace that down below.
3047 *
3048 * In case there is already an entry with the same
3049 * name at the destination directory, remove it first.
3050 */
3051 error = xfs_dir_replace(tp, target_dp, target_name,
3052 src_ip->i_ino, spaceres);
3053 if (error)
3054 goto out_trans_cancel;
3055
3056 xfs_trans_ichgtime(tp, target_dp,
3057 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3058
3059 /*
3060 * Decrement the link count on the target since the target
3061 * dir no longer points to it.
3062 */
3063 error = xfs_droplink(tp, target_ip);
3064 if (error)
3065 goto out_trans_cancel;
3066
3067 if (src_is_directory) {
3068 /*
3069 * Drop the link from the old "." entry.
3070 */
3071 error = xfs_droplink(tp, target_ip);
3072 if (error)
3073 goto out_trans_cancel;
3074 }
3075 } /* target_ip != NULL */
3076
3077 /*
3078 * Remove the source.
3079 */
3080 if (new_parent && src_is_directory) {
3081 /*
3082 * Rewrite the ".." entry to point to the new
3083 * directory.
3084 */
3085 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3086 target_dp->i_ino, spaceres);
3087 ASSERT(error != -EEXIST);
3088 if (error)
3089 goto out_trans_cancel;
3090 }
3091
3092 /*
3093 * We always want to hit the ctime on the source inode.
3094 *
3095 * This isn't strictly required by the standards since the source
3096 * inode isn't really being changed, but old unix file systems did
3097 * it and some incremental backup programs won't work without it.
3098 */
3099 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3100 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3101
3102 /*
3103 * Adjust the link count on src_dp. This is necessary when
3104 * renaming a directory, either within one parent when
3105 * the target existed, or across two parent directories.
3106 */
3107 if (src_is_directory && (new_parent || target_ip != NULL)) {
3108
3109 /*
3110 * Decrement link count on src_directory since the
3111 * entry that's moved no longer points to it.
3112 */
3113 error = xfs_droplink(tp, src_dp);
3114 if (error)
3115 goto out_trans_cancel;
3116 }
3117
3118 /*
3119 * For whiteouts, we only need to update the source dirent with the
3120 * inode number of the whiteout inode rather than removing it
3121 * altogether.
3122 */
3123 if (wip) {
3124 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3125 spaceres);
3126 } else
3127 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3128 spaceres);
3129 if (error)
3130 goto out_trans_cancel;
3131
3132 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3133 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3134 if (new_parent)
3135 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3136
3137 error = xfs_finish_rename(tp);
3138 if (wip)
3139 xfs_irele(wip);
3140 return error;
3141
3142 out_trans_cancel:
3143 xfs_trans_cancel(tp);
3144 out_release_wip:
3145 if (wip)
3146 xfs_irele(wip);
3147 return error;
3148 }
3149
3150 STATIC int
xfs_iflush_cluster(struct xfs_inode * ip,struct xfs_buf * bp)3151 xfs_iflush_cluster(
3152 struct xfs_inode *ip,
3153 struct xfs_buf *bp)
3154 {
3155 struct xfs_mount *mp = ip->i_mount;
3156 struct xfs_perag *pag;
3157 unsigned long first_index, mask;
3158 unsigned long inodes_per_cluster;
3159 int cilist_size;
3160 struct xfs_inode **cilist;
3161 struct xfs_inode *cip;
3162 int nr_found;
3163 int clcount = 0;
3164 int i;
3165
3166 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3167
3168 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3169 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3170 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3171 if (!cilist)
3172 goto out_put;
3173
3174 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3175 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3176 rcu_read_lock();
3177 /* really need a gang lookup range call here */
3178 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3179 first_index, inodes_per_cluster);
3180 if (nr_found == 0)
3181 goto out_free;
3182
3183 for (i = 0; i < nr_found; i++) {
3184 cip = cilist[i];
3185 if (cip == ip)
3186 continue;
3187
3188 /*
3189 * because this is an RCU protected lookup, we could find a
3190 * recently freed or even reallocated inode during the lookup.
3191 * We need to check under the i_flags_lock for a valid inode
3192 * here. Skip it if it is not valid or the wrong inode.
3193 */
3194 spin_lock(&cip->i_flags_lock);
3195 if (!cip->i_ino ||
3196 __xfs_iflags_test(cip, XFS_ISTALE)) {
3197 spin_unlock(&cip->i_flags_lock);
3198 continue;
3199 }
3200
3201 /*
3202 * Once we fall off the end of the cluster, no point checking
3203 * any more inodes in the list because they will also all be
3204 * outside the cluster.
3205 */
3206 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3207 spin_unlock(&cip->i_flags_lock);
3208 break;
3209 }
3210 spin_unlock(&cip->i_flags_lock);
3211
3212 /*
3213 * Do an un-protected check to see if the inode is dirty and
3214 * is a candidate for flushing. These checks will be repeated
3215 * later after the appropriate locks are acquired.
3216 */
3217 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3218 continue;
3219
3220 /*
3221 * Try to get locks. If any are unavailable or it is pinned,
3222 * then this inode cannot be flushed and is skipped.
3223 */
3224
3225 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3226 continue;
3227 if (!xfs_iflock_nowait(cip)) {
3228 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3229 continue;
3230 }
3231 if (xfs_ipincount(cip)) {
3232 xfs_ifunlock(cip);
3233 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3234 continue;
3235 }
3236
3237
3238 /*
3239 * Check the inode number again, just to be certain we are not
3240 * racing with freeing in xfs_reclaim_inode(). See the comments
3241 * in that function for more information as to why the initial
3242 * check is not sufficient.
3243 */
3244 if (!cip->i_ino) {
3245 xfs_ifunlock(cip);
3246 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3247 continue;
3248 }
3249
3250 /*
3251 * arriving here means that this inode can be flushed. First
3252 * re-check that it's dirty before flushing.
3253 */
3254 if (!xfs_inode_clean(cip)) {
3255 int error;
3256 error = xfs_iflush_int(cip, bp);
3257 if (error) {
3258 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3259 goto cluster_corrupt_out;
3260 }
3261 clcount++;
3262 } else {
3263 xfs_ifunlock(cip);
3264 }
3265 xfs_iunlock(cip, XFS_ILOCK_SHARED);
3266 }
3267
3268 if (clcount) {
3269 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3270 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3271 }
3272
3273 out_free:
3274 rcu_read_unlock();
3275 kmem_free(cilist);
3276 out_put:
3277 xfs_perag_put(pag);
3278 return 0;
3279
3280
3281 cluster_corrupt_out:
3282 /*
3283 * Corruption detected in the clustering loop. Invalidate the
3284 * inode buffer and shut down the filesystem.
3285 */
3286 rcu_read_unlock();
3287 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3288
3289 /*
3290 * We'll always have an inode attached to the buffer for completion
3291 * process by the time we are called from xfs_iflush(). Hence we have
3292 * always need to do IO completion processing to abort the inodes
3293 * attached to the buffer. handle them just like the shutdown case in
3294 * xfs_buf_submit().
3295 */
3296 ASSERT(bp->b_iodone);
3297 bp->b_flags &= ~XBF_DONE;
3298 xfs_buf_stale(bp);
3299 xfs_buf_ioerror(bp, -EIO);
3300 xfs_buf_ioend(bp);
3301
3302 /* abort the corrupt inode, as it was not attached to the buffer */
3303 xfs_iflush_abort(cip, false);
3304 kmem_free(cilist);
3305 xfs_perag_put(pag);
3306 return -EFSCORRUPTED;
3307 }
3308
3309 /*
3310 * Flush dirty inode metadata into the backing buffer.
3311 *
3312 * The caller must have the inode lock and the inode flush lock held. The
3313 * inode lock will still be held upon return to the caller, and the inode
3314 * flush lock will be released after the inode has reached the disk.
3315 *
3316 * The caller must write out the buffer returned in *bpp and release it.
3317 */
3318 int
xfs_iflush(struct xfs_inode * ip,struct xfs_buf ** bpp)3319 xfs_iflush(
3320 struct xfs_inode *ip,
3321 struct xfs_buf **bpp)
3322 {
3323 struct xfs_mount *mp = ip->i_mount;
3324 struct xfs_buf *bp = NULL;
3325 struct xfs_dinode *dip;
3326 int error;
3327
3328 XFS_STATS_INC(mp, xs_iflush_count);
3329
3330 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3331 ASSERT(xfs_isiflocked(ip));
3332 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3333 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3334
3335 *bpp = NULL;
3336
3337 xfs_iunpin_wait(ip);
3338
3339 /*
3340 * For stale inodes we cannot rely on the backing buffer remaining
3341 * stale in cache for the remaining life of the stale inode and so
3342 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3343 * inodes below. We have to check this after ensuring the inode is
3344 * unpinned so that it is safe to reclaim the stale inode after the
3345 * flush call.
3346 */
3347 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3348 xfs_ifunlock(ip);
3349 return 0;
3350 }
3351
3352 /*
3353 * This may have been unpinned because the filesystem is shutting
3354 * down forcibly. If that's the case we must not write this inode
3355 * to disk, because the log record didn't make it to disk.
3356 *
3357 * We also have to remove the log item from the AIL in this case,
3358 * as we wait for an empty AIL as part of the unmount process.
3359 */
3360 if (XFS_FORCED_SHUTDOWN(mp)) {
3361 error = -EIO;
3362 goto abort_out;
3363 }
3364
3365 /*
3366 * Get the buffer containing the on-disk inode. We are doing a try-lock
3367 * operation here, so we may get an EAGAIN error. In that case, we
3368 * simply want to return with the inode still dirty.
3369 *
3370 * If we get any other error, we effectively have a corruption situation
3371 * and we cannot flush the inode, so we treat it the same as failing
3372 * xfs_iflush_int().
3373 */
3374 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3375 0);
3376 if (error == -EAGAIN) {
3377 xfs_ifunlock(ip);
3378 return error;
3379 }
3380 if (error)
3381 goto corrupt_out;
3382
3383 /*
3384 * First flush out the inode that xfs_iflush was called with.
3385 */
3386 error = xfs_iflush_int(ip, bp);
3387 if (error)
3388 goto corrupt_out;
3389
3390 /*
3391 * If the buffer is pinned then push on the log now so we won't
3392 * get stuck waiting in the write for too long.
3393 */
3394 if (xfs_buf_ispinned(bp))
3395 xfs_log_force(mp, 0);
3396
3397 /*
3398 * inode clustering: try to gather other inodes into this write
3399 *
3400 * Note: Any error during clustering will result in the filesystem
3401 * being shut down and completion callbacks run on the cluster buffer.
3402 * As we have already flushed and attached this inode to the buffer,
3403 * it has already been aborted and released by xfs_iflush_cluster() and
3404 * so we have no further error handling to do here.
3405 */
3406 error = xfs_iflush_cluster(ip, bp);
3407 if (error)
3408 return error;
3409
3410 *bpp = bp;
3411 return 0;
3412
3413 corrupt_out:
3414 if (bp)
3415 xfs_buf_relse(bp);
3416 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3417 abort_out:
3418 /* abort the corrupt inode, as it was not attached to the buffer */
3419 xfs_iflush_abort(ip, false);
3420 return error;
3421 }
3422
3423 /*
3424 * If there are inline format data / attr forks attached to this inode,
3425 * make sure they're not corrupt.
3426 */
3427 bool
xfs_inode_verify_forks(struct xfs_inode * ip)3428 xfs_inode_verify_forks(
3429 struct xfs_inode *ip)
3430 {
3431 struct xfs_ifork *ifp;
3432 xfs_failaddr_t fa;
3433
3434 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3435 if (fa) {
3436 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3437 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3438 ifp->if_u1.if_data, ifp->if_bytes, fa);
3439 return false;
3440 }
3441
3442 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3443 if (fa) {
3444 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3445 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3446 ifp ? ifp->if_u1.if_data : NULL,
3447 ifp ? ifp->if_bytes : 0, fa);
3448 return false;
3449 }
3450 return true;
3451 }
3452
3453 STATIC int
xfs_iflush_int(struct xfs_inode * ip,struct xfs_buf * bp)3454 xfs_iflush_int(
3455 struct xfs_inode *ip,
3456 struct xfs_buf *bp)
3457 {
3458 struct xfs_inode_log_item *iip = ip->i_itemp;
3459 struct xfs_dinode *dip;
3460 struct xfs_mount *mp = ip->i_mount;
3461
3462 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3463 ASSERT(xfs_isiflocked(ip));
3464 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3465 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3466 ASSERT(iip != NULL && iip->ili_fields != 0);
3467 ASSERT(ip->i_d.di_version > 1);
3468
3469 /* set *dip = inode's place in the buffer */
3470 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3471
3472 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3473 mp, XFS_ERRTAG_IFLUSH_1)) {
3474 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3475 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
3476 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3477 goto corrupt_out;
3478 }
3479 if (S_ISREG(VFS_I(ip)->i_mode)) {
3480 if (XFS_TEST_ERROR(
3481 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3482 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3483 mp, XFS_ERRTAG_IFLUSH_3)) {
3484 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3485 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
3486 __func__, ip->i_ino, ip);
3487 goto corrupt_out;
3488 }
3489 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3490 if (XFS_TEST_ERROR(
3491 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3492 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3493 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3494 mp, XFS_ERRTAG_IFLUSH_4)) {
3495 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3496 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
3497 __func__, ip->i_ino, ip);
3498 goto corrupt_out;
3499 }
3500 }
3501 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3502 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
3503 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3504 "%s: detected corrupt incore inode %Lu, "
3505 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
3506 __func__, ip->i_ino,
3507 ip->i_d.di_nextents + ip->i_d.di_anextents,
3508 ip->i_d.di_nblocks, ip);
3509 goto corrupt_out;
3510 }
3511 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3512 mp, XFS_ERRTAG_IFLUSH_6)) {
3513 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3514 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
3515 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3516 goto corrupt_out;
3517 }
3518
3519 /*
3520 * Inode item log recovery for v2 inodes are dependent on the
3521 * di_flushiter count for correct sequencing. We bump the flush
3522 * iteration count so we can detect flushes which postdate a log record
3523 * during recovery. This is redundant as we now log every change and
3524 * hence this can't happen but we need to still do it to ensure
3525 * backwards compatibility with old kernels that predate logging all
3526 * inode changes.
3527 */
3528 if (ip->i_d.di_version < 3)
3529 ip->i_d.di_flushiter++;
3530
3531 /* Check the inline fork data before we write out. */
3532 if (!xfs_inode_verify_forks(ip))
3533 goto corrupt_out;
3534
3535 /*
3536 * Copy the dirty parts of the inode into the on-disk inode. We always
3537 * copy out the core of the inode, because if the inode is dirty at all
3538 * the core must be.
3539 */
3540 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3541
3542 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3543 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3544 ip->i_d.di_flushiter = 0;
3545
3546 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3547 if (XFS_IFORK_Q(ip))
3548 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3549 xfs_inobp_check(mp, bp);
3550
3551 /*
3552 * We've recorded everything logged in the inode, so we'd like to clear
3553 * the ili_fields bits so we don't log and flush things unnecessarily.
3554 * However, we can't stop logging all this information until the data
3555 * we've copied into the disk buffer is written to disk. If we did we
3556 * might overwrite the copy of the inode in the log with all the data
3557 * after re-logging only part of it, and in the face of a crash we
3558 * wouldn't have all the data we need to recover.
3559 *
3560 * What we do is move the bits to the ili_last_fields field. When
3561 * logging the inode, these bits are moved back to the ili_fields field.
3562 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3563 * know that the information those bits represent is permanently on
3564 * disk. As long as the flush completes before the inode is logged
3565 * again, then both ili_fields and ili_last_fields will be cleared.
3566 *
3567 * We can play with the ili_fields bits here, because the inode lock
3568 * must be held exclusively in order to set bits there and the flush
3569 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3570 * done routine can tell whether or not to look in the AIL. Also, store
3571 * the current LSN of the inode so that we can tell whether the item has
3572 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3573 * need the AIL lock, because it is a 64 bit value that cannot be read
3574 * atomically.
3575 */
3576 iip->ili_last_fields = iip->ili_fields;
3577 iip->ili_fields = 0;
3578 iip->ili_fsync_fields = 0;
3579 iip->ili_logged = 1;
3580
3581 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3582 &iip->ili_item.li_lsn);
3583
3584 /*
3585 * Attach the function xfs_iflush_done to the inode's
3586 * buffer. This will remove the inode from the AIL
3587 * and unlock the inode's flush lock when the inode is
3588 * completely written to disk.
3589 */
3590 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3591
3592 /* generate the checksum. */
3593 xfs_dinode_calc_crc(mp, dip);
3594
3595 ASSERT(!list_empty(&bp->b_li_list));
3596 ASSERT(bp->b_iodone != NULL);
3597 return 0;
3598
3599 corrupt_out:
3600 return -EFSCORRUPTED;
3601 }
3602
3603 /* Release an inode. */
3604 void
xfs_irele(struct xfs_inode * ip)3605 xfs_irele(
3606 struct xfs_inode *ip)
3607 {
3608 trace_xfs_irele(ip, _RET_IP_);
3609 iput(VFS_I(ip));
3610 }
3611