1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2014 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_inode.h"
17 #include "xfs_trans.h"
18 #include "xfs_alloc.h"
19 #include "xfs_btree.h"
20 #include "xfs_rmap.h"
21 #include "xfs_rmap_btree.h"
22 #include "xfs_trace.h"
23 #include "xfs_cksum.h"
24 #include "xfs_error.h"
25 #include "xfs_extent_busy.h"
26 #include "xfs_ag_resv.h"
27
28 /*
29 * Reverse map btree.
30 *
31 * This is a per-ag tree used to track the owner(s) of a given extent. With
32 * reflink it is possible for there to be multiple owners, which is a departure
33 * from classic XFS. Owner records for data extents are inserted when the
34 * extent is mapped and removed when an extent is unmapped. Owner records for
35 * all other block types (i.e. metadata) are inserted when an extent is
36 * allocated and removed when an extent is freed. There can only be one owner
37 * of a metadata extent, usually an inode or some other metadata structure like
38 * an AG btree.
39 *
40 * The rmap btree is part of the free space management, so blocks for the tree
41 * are sourced from the agfl. Hence we need transaction reservation support for
42 * this tree so that the freelist is always large enough. This also impacts on
43 * the minimum space we need to leave free in the AG.
44 *
45 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
46 * but it is the only way to enforce unique keys when a block can be owned by
47 * multiple files at any offset. There's no need to order/search by extent
48 * size for online updating/management of the tree. It is intended that most
49 * reverse lookups will be to find the owner(s) of a particular block, or to
50 * try to recover tree and file data from corrupt primary metadata.
51 */
52
53 static struct xfs_btree_cur *
xfs_rmapbt_dup_cursor(struct xfs_btree_cur * cur)54 xfs_rmapbt_dup_cursor(
55 struct xfs_btree_cur *cur)
56 {
57 return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
58 cur->bc_private.a.agbp, cur->bc_private.a.agno);
59 }
60
61 STATIC void
xfs_rmapbt_set_root(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr,int inc)62 xfs_rmapbt_set_root(
63 struct xfs_btree_cur *cur,
64 union xfs_btree_ptr *ptr,
65 int inc)
66 {
67 struct xfs_buf *agbp = cur->bc_private.a.agbp;
68 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
69 xfs_agnumber_t seqno = be32_to_cpu(agf->agf_seqno);
70 int btnum = cur->bc_btnum;
71 struct xfs_perag *pag = xfs_perag_get(cur->bc_mp, seqno);
72
73 ASSERT(ptr->s != 0);
74
75 agf->agf_roots[btnum] = ptr->s;
76 be32_add_cpu(&agf->agf_levels[btnum], inc);
77 pag->pagf_levels[btnum] += inc;
78 xfs_perag_put(pag);
79
80 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
81 }
82
83 STATIC int
xfs_rmapbt_alloc_block(struct xfs_btree_cur * cur,union xfs_btree_ptr * start,union xfs_btree_ptr * new,int * stat)84 xfs_rmapbt_alloc_block(
85 struct xfs_btree_cur *cur,
86 union xfs_btree_ptr *start,
87 union xfs_btree_ptr *new,
88 int *stat)
89 {
90 struct xfs_buf *agbp = cur->bc_private.a.agbp;
91 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
92 int error;
93 xfs_agblock_t bno;
94
95 /* Allocate the new block from the freelist. If we can't, give up. */
96 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_private.a.agbp,
97 &bno, 1);
98 if (error)
99 return error;
100
101 trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_private.a.agno,
102 bno, 1);
103 if (bno == NULLAGBLOCK) {
104 *stat = 0;
105 return 0;
106 }
107
108 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_private.a.agno, bno, 1,
109 false);
110
111 xfs_trans_agbtree_delta(cur->bc_tp, 1);
112 new->s = cpu_to_be32(bno);
113 be32_add_cpu(&agf->agf_rmap_blocks, 1);
114 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
115
116 xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_private.a.agno);
117
118 *stat = 1;
119 return 0;
120 }
121
122 STATIC int
xfs_rmapbt_free_block(struct xfs_btree_cur * cur,struct xfs_buf * bp)123 xfs_rmapbt_free_block(
124 struct xfs_btree_cur *cur,
125 struct xfs_buf *bp)
126 {
127 struct xfs_buf *agbp = cur->bc_private.a.agbp;
128 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
129 xfs_agblock_t bno;
130 int error;
131
132 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
133 trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_private.a.agno,
134 bno, 1);
135 be32_add_cpu(&agf->agf_rmap_blocks, -1);
136 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
137 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
138 if (error)
139 return error;
140
141 xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
142 XFS_EXTENT_BUSY_SKIP_DISCARD);
143 xfs_trans_agbtree_delta(cur->bc_tp, -1);
144
145 xfs_ag_resv_rmapbt_free(cur->bc_mp, cur->bc_private.a.agno);
146
147 return 0;
148 }
149
150 STATIC int
xfs_rmapbt_get_minrecs(struct xfs_btree_cur * cur,int level)151 xfs_rmapbt_get_minrecs(
152 struct xfs_btree_cur *cur,
153 int level)
154 {
155 return cur->bc_mp->m_rmap_mnr[level != 0];
156 }
157
158 STATIC int
xfs_rmapbt_get_maxrecs(struct xfs_btree_cur * cur,int level)159 xfs_rmapbt_get_maxrecs(
160 struct xfs_btree_cur *cur,
161 int level)
162 {
163 return cur->bc_mp->m_rmap_mxr[level != 0];
164 }
165
166 STATIC void
xfs_rmapbt_init_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)167 xfs_rmapbt_init_key_from_rec(
168 union xfs_btree_key *key,
169 union xfs_btree_rec *rec)
170 {
171 key->rmap.rm_startblock = rec->rmap.rm_startblock;
172 key->rmap.rm_owner = rec->rmap.rm_owner;
173 key->rmap.rm_offset = rec->rmap.rm_offset;
174 }
175
176 /*
177 * The high key for a reverse mapping record can be computed by shifting
178 * the startblock and offset to the highest value that would still map
179 * to that record. In practice this means that we add blockcount-1 to
180 * the startblock for all records, and if the record is for a data/attr
181 * fork mapping, we add blockcount-1 to the offset too.
182 */
183 STATIC void
xfs_rmapbt_init_high_key_from_rec(union xfs_btree_key * key,union xfs_btree_rec * rec)184 xfs_rmapbt_init_high_key_from_rec(
185 union xfs_btree_key *key,
186 union xfs_btree_rec *rec)
187 {
188 uint64_t off;
189 int adj;
190
191 adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
192
193 key->rmap.rm_startblock = rec->rmap.rm_startblock;
194 be32_add_cpu(&key->rmap.rm_startblock, adj);
195 key->rmap.rm_owner = rec->rmap.rm_owner;
196 key->rmap.rm_offset = rec->rmap.rm_offset;
197 if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
198 XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
199 return;
200 off = be64_to_cpu(key->rmap.rm_offset);
201 off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
202 key->rmap.rm_offset = cpu_to_be64(off);
203 }
204
205 STATIC void
xfs_rmapbt_init_rec_from_cur(struct xfs_btree_cur * cur,union xfs_btree_rec * rec)206 xfs_rmapbt_init_rec_from_cur(
207 struct xfs_btree_cur *cur,
208 union xfs_btree_rec *rec)
209 {
210 rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
211 rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
212 rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
213 rec->rmap.rm_offset = cpu_to_be64(
214 xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
215 }
216
217 STATIC void
xfs_rmapbt_init_ptr_from_cur(struct xfs_btree_cur * cur,union xfs_btree_ptr * ptr)218 xfs_rmapbt_init_ptr_from_cur(
219 struct xfs_btree_cur *cur,
220 union xfs_btree_ptr *ptr)
221 {
222 struct xfs_agf *agf = XFS_BUF_TO_AGF(cur->bc_private.a.agbp);
223
224 ASSERT(cur->bc_private.a.agno == be32_to_cpu(agf->agf_seqno));
225
226 ptr->s = agf->agf_roots[cur->bc_btnum];
227 }
228
229 STATIC int64_t
xfs_rmapbt_key_diff(struct xfs_btree_cur * cur,union xfs_btree_key * key)230 xfs_rmapbt_key_diff(
231 struct xfs_btree_cur *cur,
232 union xfs_btree_key *key)
233 {
234 struct xfs_rmap_irec *rec = &cur->bc_rec.r;
235 struct xfs_rmap_key *kp = &key->rmap;
236 __u64 x, y;
237 int64_t d;
238
239 d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
240 if (d)
241 return d;
242
243 x = be64_to_cpu(kp->rm_owner);
244 y = rec->rm_owner;
245 if (x > y)
246 return 1;
247 else if (y > x)
248 return -1;
249
250 x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
251 y = rec->rm_offset;
252 if (x > y)
253 return 1;
254 else if (y > x)
255 return -1;
256 return 0;
257 }
258
259 STATIC int64_t
xfs_rmapbt_diff_two_keys(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)260 xfs_rmapbt_diff_two_keys(
261 struct xfs_btree_cur *cur,
262 union xfs_btree_key *k1,
263 union xfs_btree_key *k2)
264 {
265 struct xfs_rmap_key *kp1 = &k1->rmap;
266 struct xfs_rmap_key *kp2 = &k2->rmap;
267 int64_t d;
268 __u64 x, y;
269
270 d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
271 be32_to_cpu(kp2->rm_startblock);
272 if (d)
273 return d;
274
275 x = be64_to_cpu(kp1->rm_owner);
276 y = be64_to_cpu(kp2->rm_owner);
277 if (x > y)
278 return 1;
279 else if (y > x)
280 return -1;
281
282 x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
283 y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
284 if (x > y)
285 return 1;
286 else if (y > x)
287 return -1;
288 return 0;
289 }
290
291 static xfs_failaddr_t
xfs_rmapbt_verify(struct xfs_buf * bp)292 xfs_rmapbt_verify(
293 struct xfs_buf *bp)
294 {
295 struct xfs_mount *mp = bp->b_target->bt_mount;
296 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
297 struct xfs_perag *pag = bp->b_pag;
298 xfs_failaddr_t fa;
299 unsigned int level;
300
301 /*
302 * magic number and level verification
303 *
304 * During growfs operations, we can't verify the exact level or owner as
305 * the perag is not fully initialised and hence not attached to the
306 * buffer. In this case, check against the maximum tree depth.
307 *
308 * Similarly, during log recovery we will have a perag structure
309 * attached, but the agf information will not yet have been initialised
310 * from the on disk AGF. Again, we can only check against maximum limits
311 * in this case.
312 */
313 if (block->bb_magic != cpu_to_be32(XFS_RMAP_CRC_MAGIC))
314 return __this_address;
315
316 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
317 return __this_address;
318 fa = xfs_btree_sblock_v5hdr_verify(bp);
319 if (fa)
320 return fa;
321
322 level = be16_to_cpu(block->bb_level);
323 if (pag && pag->pagf_init) {
324 if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
325 return __this_address;
326 } else if (level >= mp->m_rmap_maxlevels)
327 return __this_address;
328
329 return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
330 }
331
332 static void
xfs_rmapbt_read_verify(struct xfs_buf * bp)333 xfs_rmapbt_read_verify(
334 struct xfs_buf *bp)
335 {
336 xfs_failaddr_t fa;
337
338 if (!xfs_btree_sblock_verify_crc(bp))
339 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
340 else {
341 fa = xfs_rmapbt_verify(bp);
342 if (fa)
343 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
344 }
345
346 if (bp->b_error)
347 trace_xfs_btree_corrupt(bp, _RET_IP_);
348 }
349
350 static void
xfs_rmapbt_write_verify(struct xfs_buf * bp)351 xfs_rmapbt_write_verify(
352 struct xfs_buf *bp)
353 {
354 xfs_failaddr_t fa;
355
356 fa = xfs_rmapbt_verify(bp);
357 if (fa) {
358 trace_xfs_btree_corrupt(bp, _RET_IP_);
359 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
360 return;
361 }
362 xfs_btree_sblock_calc_crc(bp);
363
364 }
365
366 const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
367 .name = "xfs_rmapbt",
368 .verify_read = xfs_rmapbt_read_verify,
369 .verify_write = xfs_rmapbt_write_verify,
370 .verify_struct = xfs_rmapbt_verify,
371 };
372
373 STATIC int
xfs_rmapbt_keys_inorder(struct xfs_btree_cur * cur,union xfs_btree_key * k1,union xfs_btree_key * k2)374 xfs_rmapbt_keys_inorder(
375 struct xfs_btree_cur *cur,
376 union xfs_btree_key *k1,
377 union xfs_btree_key *k2)
378 {
379 uint32_t x;
380 uint32_t y;
381 uint64_t a;
382 uint64_t b;
383
384 x = be32_to_cpu(k1->rmap.rm_startblock);
385 y = be32_to_cpu(k2->rmap.rm_startblock);
386 if (x < y)
387 return 1;
388 else if (x > y)
389 return 0;
390 a = be64_to_cpu(k1->rmap.rm_owner);
391 b = be64_to_cpu(k2->rmap.rm_owner);
392 if (a < b)
393 return 1;
394 else if (a > b)
395 return 0;
396 a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
397 b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
398 if (a <= b)
399 return 1;
400 return 0;
401 }
402
403 STATIC int
xfs_rmapbt_recs_inorder(struct xfs_btree_cur * cur,union xfs_btree_rec * r1,union xfs_btree_rec * r2)404 xfs_rmapbt_recs_inorder(
405 struct xfs_btree_cur *cur,
406 union xfs_btree_rec *r1,
407 union xfs_btree_rec *r2)
408 {
409 uint32_t x;
410 uint32_t y;
411 uint64_t a;
412 uint64_t b;
413
414 x = be32_to_cpu(r1->rmap.rm_startblock);
415 y = be32_to_cpu(r2->rmap.rm_startblock);
416 if (x < y)
417 return 1;
418 else if (x > y)
419 return 0;
420 a = be64_to_cpu(r1->rmap.rm_owner);
421 b = be64_to_cpu(r2->rmap.rm_owner);
422 if (a < b)
423 return 1;
424 else if (a > b)
425 return 0;
426 a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
427 b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
428 if (a <= b)
429 return 1;
430 return 0;
431 }
432
433 static const struct xfs_btree_ops xfs_rmapbt_ops = {
434 .rec_len = sizeof(struct xfs_rmap_rec),
435 .key_len = 2 * sizeof(struct xfs_rmap_key),
436
437 .dup_cursor = xfs_rmapbt_dup_cursor,
438 .set_root = xfs_rmapbt_set_root,
439 .alloc_block = xfs_rmapbt_alloc_block,
440 .free_block = xfs_rmapbt_free_block,
441 .get_minrecs = xfs_rmapbt_get_minrecs,
442 .get_maxrecs = xfs_rmapbt_get_maxrecs,
443 .init_key_from_rec = xfs_rmapbt_init_key_from_rec,
444 .init_high_key_from_rec = xfs_rmapbt_init_high_key_from_rec,
445 .init_rec_from_cur = xfs_rmapbt_init_rec_from_cur,
446 .init_ptr_from_cur = xfs_rmapbt_init_ptr_from_cur,
447 .key_diff = xfs_rmapbt_key_diff,
448 .buf_ops = &xfs_rmapbt_buf_ops,
449 .diff_two_keys = xfs_rmapbt_diff_two_keys,
450 .keys_inorder = xfs_rmapbt_keys_inorder,
451 .recs_inorder = xfs_rmapbt_recs_inorder,
452 };
453
454 /*
455 * Allocate a new allocation btree cursor.
456 */
457 struct xfs_btree_cur *
xfs_rmapbt_init_cursor(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buf * agbp,xfs_agnumber_t agno)458 xfs_rmapbt_init_cursor(
459 struct xfs_mount *mp,
460 struct xfs_trans *tp,
461 struct xfs_buf *agbp,
462 xfs_agnumber_t agno)
463 {
464 struct xfs_agf *agf = XFS_BUF_TO_AGF(agbp);
465 struct xfs_btree_cur *cur;
466
467 cur = kmem_zone_zalloc(xfs_btree_cur_zone, KM_NOFS);
468 cur->bc_tp = tp;
469 cur->bc_mp = mp;
470 /* Overlapping btree; 2 keys per pointer. */
471 cur->bc_btnum = XFS_BTNUM_RMAP;
472 cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
473 cur->bc_blocklog = mp->m_sb.sb_blocklog;
474 cur->bc_ops = &xfs_rmapbt_ops;
475 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
476 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
477
478 cur->bc_private.a.agbp = agbp;
479 cur->bc_private.a.agno = agno;
480
481 return cur;
482 }
483
484 /*
485 * Calculate number of records in an rmap btree block.
486 */
487 int
xfs_rmapbt_maxrecs(int blocklen,int leaf)488 xfs_rmapbt_maxrecs(
489 int blocklen,
490 int leaf)
491 {
492 blocklen -= XFS_RMAP_BLOCK_LEN;
493
494 if (leaf)
495 return blocklen / sizeof(struct xfs_rmap_rec);
496 return blocklen /
497 (2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
498 }
499
500 /* Compute the maximum height of an rmap btree. */
501 void
xfs_rmapbt_compute_maxlevels(struct xfs_mount * mp)502 xfs_rmapbt_compute_maxlevels(
503 struct xfs_mount *mp)
504 {
505 /*
506 * On a non-reflink filesystem, the maximum number of rmap
507 * records is the number of blocks in the AG, hence the max
508 * rmapbt height is log_$maxrecs($agblocks). However, with
509 * reflink each AG block can have up to 2^32 (per the refcount
510 * record format) owners, which means that theoretically we
511 * could face up to 2^64 rmap records.
512 *
513 * That effectively means that the max rmapbt height must be
514 * XFS_BTREE_MAXLEVELS. "Fortunately" we'll run out of AG
515 * blocks to feed the rmapbt long before the rmapbt reaches
516 * maximum height. The reflink code uses ag_resv_critical to
517 * disallow reflinking when less than 10% of the per-AG metadata
518 * block reservation since the fallback is a regular file copy.
519 */
520 if (xfs_sb_version_hasreflink(&mp->m_sb))
521 mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
522 else
523 mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
524 mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
525 }
526
527 /* Calculate the refcount btree size for some records. */
528 xfs_extlen_t
xfs_rmapbt_calc_size(struct xfs_mount * mp,unsigned long long len)529 xfs_rmapbt_calc_size(
530 struct xfs_mount *mp,
531 unsigned long long len)
532 {
533 return xfs_btree_calc_size(mp->m_rmap_mnr, len);
534 }
535
536 /*
537 * Calculate the maximum refcount btree size.
538 */
539 xfs_extlen_t
xfs_rmapbt_max_size(struct xfs_mount * mp,xfs_agblock_t agblocks)540 xfs_rmapbt_max_size(
541 struct xfs_mount *mp,
542 xfs_agblock_t agblocks)
543 {
544 /* Bail out if we're uninitialized, which can happen in mkfs. */
545 if (mp->m_rmap_mxr[0] == 0)
546 return 0;
547
548 return xfs_rmapbt_calc_size(mp, agblocks);
549 }
550
551 /*
552 * Figure out how many blocks to reserve and how many are used by this btree.
553 */
554 int
xfs_rmapbt_calc_reserves(struct xfs_mount * mp,struct xfs_trans * tp,xfs_agnumber_t agno,xfs_extlen_t * ask,xfs_extlen_t * used)555 xfs_rmapbt_calc_reserves(
556 struct xfs_mount *mp,
557 struct xfs_trans *tp,
558 xfs_agnumber_t agno,
559 xfs_extlen_t *ask,
560 xfs_extlen_t *used)
561 {
562 struct xfs_buf *agbp;
563 struct xfs_agf *agf;
564 xfs_agblock_t agblocks;
565 xfs_extlen_t tree_len;
566 int error;
567
568 if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
569 return 0;
570
571 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
572 if (error)
573 return error;
574
575 agf = XFS_BUF_TO_AGF(agbp);
576 agblocks = be32_to_cpu(agf->agf_length);
577 tree_len = be32_to_cpu(agf->agf_rmap_blocks);
578 xfs_trans_brelse(tp, agbp);
579
580 /* Reserve 1% of the AG or enough for 1 block per record. */
581 *ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
582 *used += tree_len;
583
584 return error;
585 }
586