1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * Copyright (c) 2016-2018 Christoph Hellwig.
5 * All Rights Reserved.
6 */
7 #include "xfs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_inode_item.h"
16 #include "xfs_alloc.h"
17 #include "xfs_error.h"
18 #include "xfs_iomap.h"
19 #include "xfs_trace.h"
20 #include "xfs_bmap.h"
21 #include "xfs_bmap_util.h"
22 #include "xfs_bmap_btree.h"
23 #include "xfs_reflink.h"
24 #include <linux/writeback.h>
25
26 /*
27 * structure owned by writepages passed to individual writepage calls
28 */
29 struct xfs_writepage_ctx {
30 struct xfs_bmbt_irec imap;
31 unsigned int io_type;
32 unsigned int cow_seq;
33 struct xfs_ioend *ioend;
34 };
35
36 struct block_device *
xfs_find_bdev_for_inode(struct inode * inode)37 xfs_find_bdev_for_inode(
38 struct inode *inode)
39 {
40 struct xfs_inode *ip = XFS_I(inode);
41 struct xfs_mount *mp = ip->i_mount;
42
43 if (XFS_IS_REALTIME_INODE(ip))
44 return mp->m_rtdev_targp->bt_bdev;
45 else
46 return mp->m_ddev_targp->bt_bdev;
47 }
48
49 struct dax_device *
xfs_find_daxdev_for_inode(struct inode * inode)50 xfs_find_daxdev_for_inode(
51 struct inode *inode)
52 {
53 struct xfs_inode *ip = XFS_I(inode);
54 struct xfs_mount *mp = ip->i_mount;
55
56 if (XFS_IS_REALTIME_INODE(ip))
57 return mp->m_rtdev_targp->bt_daxdev;
58 else
59 return mp->m_ddev_targp->bt_daxdev;
60 }
61
62 static void
xfs_finish_page_writeback(struct inode * inode,struct bio_vec * bvec,int error)63 xfs_finish_page_writeback(
64 struct inode *inode,
65 struct bio_vec *bvec,
66 int error)
67 {
68 struct iomap_page *iop = to_iomap_page(bvec->bv_page);
69
70 if (error) {
71 SetPageError(bvec->bv_page);
72 mapping_set_error(inode->i_mapping, -EIO);
73 }
74
75 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
76 ASSERT(!iop || atomic_read(&iop->write_count) > 0);
77
78 if (!iop || atomic_dec_and_test(&iop->write_count))
79 end_page_writeback(bvec->bv_page);
80 }
81
82 /*
83 * We're now finished for good with this ioend structure. Update the page
84 * state, release holds on bios, and finally free up memory. Do not use the
85 * ioend after this.
86 */
87 STATIC void
xfs_destroy_ioend(struct xfs_ioend * ioend,int error)88 xfs_destroy_ioend(
89 struct xfs_ioend *ioend,
90 int error)
91 {
92 struct inode *inode = ioend->io_inode;
93 struct bio *bio = &ioend->io_inline_bio;
94 struct bio *last = ioend->io_bio, *next;
95 u64 start = bio->bi_iter.bi_sector;
96 bool quiet = bio_flagged(bio, BIO_QUIET);
97
98 for (bio = &ioend->io_inline_bio; bio; bio = next) {
99 struct bio_vec *bvec;
100 int i;
101
102 /*
103 * For the last bio, bi_private points to the ioend, so we
104 * need to explicitly end the iteration here.
105 */
106 if (bio == last)
107 next = NULL;
108 else
109 next = bio->bi_private;
110
111 /* walk each page on bio, ending page IO on them */
112 bio_for_each_segment_all(bvec, bio, i)
113 xfs_finish_page_writeback(inode, bvec, error);
114 bio_put(bio);
115 }
116
117 if (unlikely(error && !quiet)) {
118 xfs_err_ratelimited(XFS_I(inode)->i_mount,
119 "writeback error on sector %llu", start);
120 }
121 }
122
123 /*
124 * Fast and loose check if this write could update the on-disk inode size.
125 */
xfs_ioend_is_append(struct xfs_ioend * ioend)126 static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
127 {
128 return ioend->io_offset + ioend->io_size >
129 XFS_I(ioend->io_inode)->i_d.di_size;
130 }
131
132 STATIC int
xfs_setfilesize_trans_alloc(struct xfs_ioend * ioend)133 xfs_setfilesize_trans_alloc(
134 struct xfs_ioend *ioend)
135 {
136 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
137 struct xfs_trans *tp;
138 int error;
139
140 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0,
141 XFS_TRANS_NOFS, &tp);
142 if (error)
143 return error;
144
145 ioend->io_append_trans = tp;
146
147 /*
148 * We may pass freeze protection with a transaction. So tell lockdep
149 * we released it.
150 */
151 __sb_writers_release(ioend->io_inode->i_sb, SB_FREEZE_FS);
152 /*
153 * We hand off the transaction to the completion thread now, so
154 * clear the flag here.
155 */
156 current_restore_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
157 return 0;
158 }
159
160 /*
161 * Update on-disk file size now that data has been written to disk.
162 */
163 STATIC int
__xfs_setfilesize(struct xfs_inode * ip,struct xfs_trans * tp,xfs_off_t offset,size_t size)164 __xfs_setfilesize(
165 struct xfs_inode *ip,
166 struct xfs_trans *tp,
167 xfs_off_t offset,
168 size_t size)
169 {
170 xfs_fsize_t isize;
171
172 xfs_ilock(ip, XFS_ILOCK_EXCL);
173 isize = xfs_new_eof(ip, offset + size);
174 if (!isize) {
175 xfs_iunlock(ip, XFS_ILOCK_EXCL);
176 xfs_trans_cancel(tp);
177 return 0;
178 }
179
180 trace_xfs_setfilesize(ip, offset, size);
181
182 ip->i_d.di_size = isize;
183 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
184 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
185
186 return xfs_trans_commit(tp);
187 }
188
189 int
xfs_setfilesize(struct xfs_inode * ip,xfs_off_t offset,size_t size)190 xfs_setfilesize(
191 struct xfs_inode *ip,
192 xfs_off_t offset,
193 size_t size)
194 {
195 struct xfs_mount *mp = ip->i_mount;
196 struct xfs_trans *tp;
197 int error;
198
199 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
200 if (error)
201 return error;
202
203 return __xfs_setfilesize(ip, tp, offset, size);
204 }
205
206 STATIC int
xfs_setfilesize_ioend(struct xfs_ioend * ioend,int error)207 xfs_setfilesize_ioend(
208 struct xfs_ioend *ioend,
209 int error)
210 {
211 struct xfs_inode *ip = XFS_I(ioend->io_inode);
212 struct xfs_trans *tp = ioend->io_append_trans;
213
214 /*
215 * The transaction may have been allocated in the I/O submission thread,
216 * thus we need to mark ourselves as being in a transaction manually.
217 * Similarly for freeze protection.
218 */
219 current_set_flags_nested(&tp->t_pflags, PF_MEMALLOC_NOFS);
220 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS);
221
222 /* we abort the update if there was an IO error */
223 if (error) {
224 xfs_trans_cancel(tp);
225 return error;
226 }
227
228 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
229 }
230
231 /*
232 * IO write completion.
233 */
234 STATIC void
xfs_end_io(struct work_struct * work)235 xfs_end_io(
236 struct work_struct *work)
237 {
238 struct xfs_ioend *ioend =
239 container_of(work, struct xfs_ioend, io_work);
240 struct xfs_inode *ip = XFS_I(ioend->io_inode);
241 xfs_off_t offset = ioend->io_offset;
242 size_t size = ioend->io_size;
243 int error;
244
245 /*
246 * Just clean up the in-memory strutures if the fs has been shut down.
247 */
248 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
249 error = -EIO;
250 goto done;
251 }
252
253 /*
254 * Clean up any COW blocks on an I/O error.
255 */
256 error = blk_status_to_errno(ioend->io_bio->bi_status);
257 if (unlikely(error)) {
258 switch (ioend->io_type) {
259 case XFS_IO_COW:
260 xfs_reflink_cancel_cow_range(ip, offset, size, true);
261 break;
262 }
263
264 goto done;
265 }
266
267 /*
268 * Success: commit the COW or unwritten blocks if needed.
269 */
270 switch (ioend->io_type) {
271 case XFS_IO_COW:
272 error = xfs_reflink_end_cow(ip, offset, size);
273 break;
274 case XFS_IO_UNWRITTEN:
275 /* writeback should never update isize */
276 error = xfs_iomap_write_unwritten(ip, offset, size, false);
277 break;
278 default:
279 ASSERT(!xfs_ioend_is_append(ioend) || ioend->io_append_trans);
280 break;
281 }
282
283 done:
284 if (ioend->io_append_trans)
285 error = xfs_setfilesize_ioend(ioend, error);
286 xfs_destroy_ioend(ioend, error);
287 }
288
289 STATIC void
xfs_end_bio(struct bio * bio)290 xfs_end_bio(
291 struct bio *bio)
292 {
293 struct xfs_ioend *ioend = bio->bi_private;
294 struct xfs_mount *mp = XFS_I(ioend->io_inode)->i_mount;
295
296 if (ioend->io_type == XFS_IO_UNWRITTEN || ioend->io_type == XFS_IO_COW)
297 queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
298 else if (ioend->io_append_trans)
299 queue_work(mp->m_data_workqueue, &ioend->io_work);
300 else
301 xfs_destroy_ioend(ioend, blk_status_to_errno(bio->bi_status));
302 }
303
304 STATIC int
xfs_map_blocks(struct xfs_writepage_ctx * wpc,struct inode * inode,loff_t offset)305 xfs_map_blocks(
306 struct xfs_writepage_ctx *wpc,
307 struct inode *inode,
308 loff_t offset)
309 {
310 struct xfs_inode *ip = XFS_I(inode);
311 struct xfs_mount *mp = ip->i_mount;
312 ssize_t count = i_blocksize(inode);
313 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset), end_fsb;
314 xfs_fileoff_t cow_fsb = NULLFILEOFF;
315 struct xfs_bmbt_irec imap;
316 int whichfork = XFS_DATA_FORK;
317 struct xfs_iext_cursor icur;
318 bool imap_valid;
319 int error = 0;
320
321 /*
322 * We have to make sure the cached mapping is within EOF to protect
323 * against eofblocks trimming on file release leaving us with a stale
324 * mapping. Otherwise, a page for a subsequent file extending buffered
325 * write could get picked up by this writeback cycle and written to the
326 * wrong blocks.
327 *
328 * Note that what we really want here is a generic mapping invalidation
329 * mechanism to protect us from arbitrary extent modifying contexts, not
330 * just eofblocks.
331 */
332 xfs_trim_extent_eof(&wpc->imap, ip);
333
334 /*
335 * COW fork blocks can overlap data fork blocks even if the blocks
336 * aren't shared. COW I/O always takes precedent, so we must always
337 * check for overlap on reflink inodes unless the mapping is already a
338 * COW one, or the COW fork hasn't changed from the last time we looked
339 * at it.
340 *
341 * It's safe to check the COW fork if_seq here without the ILOCK because
342 * we've indirectly protected against concurrent updates: writeback has
343 * the page locked, which prevents concurrent invalidations by reflink
344 * and directio and prevents concurrent buffered writes to the same
345 * page. Changes to if_seq always happen under i_lock, which protects
346 * against concurrent updates and provides a memory barrier on the way
347 * out that ensures that we always see the current value.
348 */
349 imap_valid = offset_fsb >= wpc->imap.br_startoff &&
350 offset_fsb < wpc->imap.br_startoff + wpc->imap.br_blockcount;
351 if (imap_valid &&
352 (!xfs_inode_has_cow_data(ip) ||
353 wpc->io_type == XFS_IO_COW ||
354 wpc->cow_seq == READ_ONCE(ip->i_cowfp->if_seq)))
355 return 0;
356
357 if (XFS_FORCED_SHUTDOWN(mp))
358 return -EIO;
359
360 /*
361 * If we don't have a valid map, now it's time to get a new one for this
362 * offset. This will convert delayed allocations (including COW ones)
363 * into real extents. If we return without a valid map, it means we
364 * landed in a hole and we skip the block.
365 */
366 xfs_ilock(ip, XFS_ILOCK_SHARED);
367 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
368 (ip->i_df.if_flags & XFS_IFEXTENTS));
369 ASSERT(offset <= mp->m_super->s_maxbytes);
370
371 if (offset > mp->m_super->s_maxbytes - count)
372 count = mp->m_super->s_maxbytes - offset;
373 end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
374
375 /*
376 * Check if this is offset is covered by a COW extents, and if yes use
377 * it directly instead of looking up anything in the data fork.
378 */
379 if (xfs_inode_has_cow_data(ip) &&
380 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
381 cow_fsb = imap.br_startoff;
382 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
383 wpc->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
384 xfs_iunlock(ip, XFS_ILOCK_SHARED);
385 /*
386 * Truncate can race with writeback since writeback doesn't
387 * take the iolock and truncate decreases the file size before
388 * it starts truncating the pages between new_size and old_size.
389 * Therefore, we can end up in the situation where writeback
390 * gets a CoW fork mapping but the truncate makes the mapping
391 * invalid and we end up in here trying to get a new mapping.
392 * bail out here so that we simply never get a valid mapping
393 * and so we drop the write altogether. The page truncation
394 * will kill the contents anyway.
395 */
396 if (offset > i_size_read(inode)) {
397 wpc->io_type = XFS_IO_HOLE;
398 return 0;
399 }
400 whichfork = XFS_COW_FORK;
401 wpc->io_type = XFS_IO_COW;
402 goto allocate_blocks;
403 }
404
405 /*
406 * Map valid and no COW extent in the way? We're done.
407 */
408 if (imap_valid) {
409 xfs_iunlock(ip, XFS_ILOCK_SHARED);
410 return 0;
411 }
412
413 /*
414 * If we don't have a valid map, now it's time to get a new one for this
415 * offset. This will convert delayed allocations (including COW ones)
416 * into real extents.
417 */
418 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
419 imap.br_startoff = end_fsb; /* fake a hole past EOF */
420 xfs_iunlock(ip, XFS_ILOCK_SHARED);
421
422 if (imap.br_startoff > offset_fsb) {
423 /* landed in a hole or beyond EOF */
424 imap.br_blockcount = imap.br_startoff - offset_fsb;
425 imap.br_startoff = offset_fsb;
426 imap.br_startblock = HOLESTARTBLOCK;
427 wpc->io_type = XFS_IO_HOLE;
428 } else {
429 /*
430 * Truncate to the next COW extent if there is one. This is the
431 * only opportunity to do this because we can skip COW fork
432 * lookups for the subsequent blocks in the mapping; however,
433 * the requirement to treat the COW range separately remains.
434 */
435 if (cow_fsb != NULLFILEOFF &&
436 cow_fsb < imap.br_startoff + imap.br_blockcount)
437 imap.br_blockcount = cow_fsb - imap.br_startoff;
438
439 if (isnullstartblock(imap.br_startblock)) {
440 /* got a delalloc extent */
441 wpc->io_type = XFS_IO_DELALLOC;
442 goto allocate_blocks;
443 }
444
445 if (imap.br_state == XFS_EXT_UNWRITTEN)
446 wpc->io_type = XFS_IO_UNWRITTEN;
447 else
448 wpc->io_type = XFS_IO_OVERWRITE;
449 }
450
451 wpc->imap = imap;
452 xfs_trim_extent_eof(&wpc->imap, ip);
453 trace_xfs_map_blocks_found(ip, offset, count, wpc->io_type, &imap);
454 return 0;
455 allocate_blocks:
456 error = xfs_iomap_write_allocate(ip, whichfork, offset, &imap,
457 &wpc->cow_seq);
458 if (error)
459 return error;
460 ASSERT(whichfork == XFS_COW_FORK || cow_fsb == NULLFILEOFF ||
461 imap.br_startoff + imap.br_blockcount <= cow_fsb);
462 wpc->imap = imap;
463 xfs_trim_extent_eof(&wpc->imap, ip);
464 trace_xfs_map_blocks_alloc(ip, offset, count, wpc->io_type, &imap);
465 return 0;
466 }
467
468 /*
469 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
470 * it, and we submit that bio. The ioend may be used for multiple bio
471 * submissions, so we only want to allocate an append transaction for the ioend
472 * once. In the case of multiple bio submission, each bio will take an IO
473 * reference to the ioend to ensure that the ioend completion is only done once
474 * all bios have been submitted and the ioend is really done.
475 *
476 * If @fail is non-zero, it means that we have a situation where some part of
477 * the submission process has failed after we have marked paged for writeback
478 * and unlocked them. In this situation, we need to fail the bio and ioend
479 * rather than submit it to IO. This typically only happens on a filesystem
480 * shutdown.
481 */
482 STATIC int
xfs_submit_ioend(struct writeback_control * wbc,struct xfs_ioend * ioend,int status)483 xfs_submit_ioend(
484 struct writeback_control *wbc,
485 struct xfs_ioend *ioend,
486 int status)
487 {
488 /* Convert CoW extents to regular */
489 if (!status && ioend->io_type == XFS_IO_COW) {
490 /*
491 * Yuk. This can do memory allocation, but is not a
492 * transactional operation so everything is done in GFP_KERNEL
493 * context. That can deadlock, because we hold pages in
494 * writeback state and GFP_KERNEL allocations can block on them.
495 * Hence we must operate in nofs conditions here.
496 */
497 unsigned nofs_flag;
498
499 nofs_flag = memalloc_nofs_save();
500 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
501 ioend->io_offset, ioend->io_size);
502 memalloc_nofs_restore(nofs_flag);
503 }
504
505 /* Reserve log space if we might write beyond the on-disk inode size. */
506 if (!status &&
507 ioend->io_type != XFS_IO_UNWRITTEN &&
508 xfs_ioend_is_append(ioend) &&
509 !ioend->io_append_trans)
510 status = xfs_setfilesize_trans_alloc(ioend);
511
512 ioend->io_bio->bi_private = ioend;
513 ioend->io_bio->bi_end_io = xfs_end_bio;
514 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
515
516 /*
517 * If we are failing the IO now, just mark the ioend with an
518 * error and finish it. This will run IO completion immediately
519 * as there is only one reference to the ioend at this point in
520 * time.
521 */
522 if (status) {
523 ioend->io_bio->bi_status = errno_to_blk_status(status);
524 bio_endio(ioend->io_bio);
525 return status;
526 }
527
528 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
529 submit_bio(ioend->io_bio);
530 return 0;
531 }
532
533 static struct xfs_ioend *
xfs_alloc_ioend(struct inode * inode,unsigned int type,xfs_off_t offset,struct block_device * bdev,sector_t sector)534 xfs_alloc_ioend(
535 struct inode *inode,
536 unsigned int type,
537 xfs_off_t offset,
538 struct block_device *bdev,
539 sector_t sector)
540 {
541 struct xfs_ioend *ioend;
542 struct bio *bio;
543
544 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &xfs_ioend_bioset);
545 bio_set_dev(bio, bdev);
546 bio->bi_iter.bi_sector = sector;
547
548 ioend = container_of(bio, struct xfs_ioend, io_inline_bio);
549 INIT_LIST_HEAD(&ioend->io_list);
550 ioend->io_type = type;
551 ioend->io_inode = inode;
552 ioend->io_size = 0;
553 ioend->io_offset = offset;
554 INIT_WORK(&ioend->io_work, xfs_end_io);
555 ioend->io_append_trans = NULL;
556 ioend->io_bio = bio;
557 return ioend;
558 }
559
560 /*
561 * Allocate a new bio, and chain the old bio to the new one.
562 *
563 * Note that we have to do perform the chaining in this unintuitive order
564 * so that the bi_private linkage is set up in the right direction for the
565 * traversal in xfs_destroy_ioend().
566 */
567 static void
xfs_chain_bio(struct xfs_ioend * ioend,struct writeback_control * wbc,struct block_device * bdev,sector_t sector)568 xfs_chain_bio(
569 struct xfs_ioend *ioend,
570 struct writeback_control *wbc,
571 struct block_device *bdev,
572 sector_t sector)
573 {
574 struct bio *new;
575
576 new = bio_alloc(GFP_NOFS, BIO_MAX_PAGES);
577 bio_set_dev(new, bdev);
578 new->bi_iter.bi_sector = sector;
579 bio_chain(ioend->io_bio, new);
580 bio_get(ioend->io_bio); /* for xfs_destroy_ioend */
581 ioend->io_bio->bi_opf = REQ_OP_WRITE | wbc_to_write_flags(wbc);
582 ioend->io_bio->bi_write_hint = ioend->io_inode->i_write_hint;
583 submit_bio(ioend->io_bio);
584 ioend->io_bio = new;
585 }
586
587 /*
588 * Test to see if we have an existing ioend structure that we could append to
589 * first, otherwise finish off the current ioend and start another.
590 */
591 STATIC void
xfs_add_to_ioend(struct inode * inode,xfs_off_t offset,struct page * page,struct iomap_page * iop,struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct list_head * iolist)592 xfs_add_to_ioend(
593 struct inode *inode,
594 xfs_off_t offset,
595 struct page *page,
596 struct iomap_page *iop,
597 struct xfs_writepage_ctx *wpc,
598 struct writeback_control *wbc,
599 struct list_head *iolist)
600 {
601 struct xfs_inode *ip = XFS_I(inode);
602 struct xfs_mount *mp = ip->i_mount;
603 struct block_device *bdev = xfs_find_bdev_for_inode(inode);
604 unsigned len = i_blocksize(inode);
605 unsigned poff = offset & (PAGE_SIZE - 1);
606 sector_t sector;
607
608 sector = xfs_fsb_to_db(ip, wpc->imap.br_startblock) +
609 ((offset - XFS_FSB_TO_B(mp, wpc->imap.br_startoff)) >> 9);
610
611 if (!wpc->ioend || wpc->io_type != wpc->ioend->io_type ||
612 sector != bio_end_sector(wpc->ioend->io_bio) ||
613 offset != wpc->ioend->io_offset + wpc->ioend->io_size) {
614 if (wpc->ioend)
615 list_add(&wpc->ioend->io_list, iolist);
616 wpc->ioend = xfs_alloc_ioend(inode, wpc->io_type, offset,
617 bdev, sector);
618 }
619
620 if (!__bio_try_merge_page(wpc->ioend->io_bio, page, len, poff)) {
621 if (iop)
622 atomic_inc(&iop->write_count);
623 if (bio_full(wpc->ioend->io_bio))
624 xfs_chain_bio(wpc->ioend, wbc, bdev, sector);
625 __bio_add_page(wpc->ioend->io_bio, page, len, poff);
626 }
627
628 wpc->ioend->io_size += len;
629 }
630
631 STATIC void
xfs_vm_invalidatepage(struct page * page,unsigned int offset,unsigned int length)632 xfs_vm_invalidatepage(
633 struct page *page,
634 unsigned int offset,
635 unsigned int length)
636 {
637 trace_xfs_invalidatepage(page->mapping->host, page, offset, length);
638 iomap_invalidatepage(page, offset, length);
639 }
640
641 /*
642 * If the page has delalloc blocks on it, we need to punch them out before we
643 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
644 * inode that can trip up a later direct I/O read operation on the same region.
645 *
646 * We prevent this by truncating away the delalloc regions on the page. Because
647 * they are delalloc, we can do this without needing a transaction. Indeed - if
648 * we get ENOSPC errors, we have to be able to do this truncation without a
649 * transaction as there is no space left for block reservation (typically why we
650 * see a ENOSPC in writeback).
651 */
652 STATIC void
xfs_aops_discard_page(struct page * page)653 xfs_aops_discard_page(
654 struct page *page)
655 {
656 struct inode *inode = page->mapping->host;
657 struct xfs_inode *ip = XFS_I(inode);
658 struct xfs_mount *mp = ip->i_mount;
659 loff_t offset = page_offset(page);
660 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, offset);
661 int error;
662
663 if (XFS_FORCED_SHUTDOWN(mp))
664 goto out_invalidate;
665
666 xfs_alert(mp,
667 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.",
668 page, ip->i_ino, offset);
669
670 error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
671 PAGE_SIZE / i_blocksize(inode));
672 if (error && !XFS_FORCED_SHUTDOWN(mp))
673 xfs_alert(mp, "page discard unable to remove delalloc mapping.");
674 out_invalidate:
675 xfs_vm_invalidatepage(page, 0, PAGE_SIZE);
676 }
677
678 /*
679 * We implement an immediate ioend submission policy here to avoid needing to
680 * chain multiple ioends and hence nest mempool allocations which can violate
681 * forward progress guarantees we need to provide. The current ioend we are
682 * adding blocks to is cached on the writepage context, and if the new block
683 * does not append to the cached ioend it will create a new ioend and cache that
684 * instead.
685 *
686 * If a new ioend is created and cached, the old ioend is returned and queued
687 * locally for submission once the entire page is processed or an error has been
688 * detected. While ioends are submitted immediately after they are completed,
689 * batching optimisations are provided by higher level block plugging.
690 *
691 * At the end of a writeback pass, there will be a cached ioend remaining on the
692 * writepage context that the caller will need to submit.
693 */
694 static int
xfs_writepage_map(struct xfs_writepage_ctx * wpc,struct writeback_control * wbc,struct inode * inode,struct page * page,uint64_t end_offset)695 xfs_writepage_map(
696 struct xfs_writepage_ctx *wpc,
697 struct writeback_control *wbc,
698 struct inode *inode,
699 struct page *page,
700 uint64_t end_offset)
701 {
702 LIST_HEAD(submit_list);
703 struct iomap_page *iop = to_iomap_page(page);
704 unsigned len = i_blocksize(inode);
705 struct xfs_ioend *ioend, *next;
706 uint64_t file_offset; /* file offset of page */
707 int error = 0, count = 0, i;
708
709 ASSERT(iop || i_blocksize(inode) == PAGE_SIZE);
710 ASSERT(!iop || atomic_read(&iop->write_count) == 0);
711
712 /*
713 * Walk through the page to find areas to write back. If we run off the
714 * end of the current map or find the current map invalid, grab a new
715 * one.
716 */
717 for (i = 0, file_offset = page_offset(page);
718 i < (PAGE_SIZE >> inode->i_blkbits) && file_offset < end_offset;
719 i++, file_offset += len) {
720 if (iop && !test_bit(i, iop->uptodate))
721 continue;
722
723 error = xfs_map_blocks(wpc, inode, file_offset);
724 if (error)
725 break;
726 if (wpc->io_type == XFS_IO_HOLE)
727 continue;
728 xfs_add_to_ioend(inode, file_offset, page, iop, wpc, wbc,
729 &submit_list);
730 count++;
731 }
732
733 ASSERT(wpc->ioend || list_empty(&submit_list));
734 ASSERT(PageLocked(page));
735 ASSERT(!PageWriteback(page));
736
737 /*
738 * On error, we have to fail the ioend here because we may have set
739 * pages under writeback, we have to make sure we run IO completion to
740 * mark the error state of the IO appropriately, so we can't cancel the
741 * ioend directly here. That means we have to mark this page as under
742 * writeback if we included any blocks from it in the ioend chain so
743 * that completion treats it correctly.
744 *
745 * If we didn't include the page in the ioend, the on error we can
746 * simply discard and unlock it as there are no other users of the page
747 * now. The caller will still need to trigger submission of outstanding
748 * ioends on the writepage context so they are treated correctly on
749 * error.
750 */
751 if (unlikely(error)) {
752 if (!count) {
753 xfs_aops_discard_page(page);
754 ClearPageUptodate(page);
755 unlock_page(page);
756 goto done;
757 }
758
759 /*
760 * If the page was not fully cleaned, we need to ensure that the
761 * higher layers come back to it correctly. That means we need
762 * to keep the page dirty, and for WB_SYNC_ALL writeback we need
763 * to ensure the PAGECACHE_TAG_TOWRITE index mark is not removed
764 * so another attempt to write this page in this writeback sweep
765 * will be made.
766 */
767 set_page_writeback_keepwrite(page);
768 } else {
769 clear_page_dirty_for_io(page);
770 set_page_writeback(page);
771 }
772
773 unlock_page(page);
774
775 /*
776 * Preserve the original error if there was one, otherwise catch
777 * submission errors here and propagate into subsequent ioend
778 * submissions.
779 */
780 list_for_each_entry_safe(ioend, next, &submit_list, io_list) {
781 int error2;
782
783 list_del_init(&ioend->io_list);
784 error2 = xfs_submit_ioend(wbc, ioend, error);
785 if (error2 && !error)
786 error = error2;
787 }
788
789 /*
790 * We can end up here with no error and nothing to write only if we race
791 * with a partial page truncate on a sub-page block sized filesystem.
792 */
793 if (!count)
794 end_page_writeback(page);
795 done:
796 mapping_set_error(page->mapping, error);
797 return error;
798 }
799
800 /*
801 * Write out a dirty page.
802 *
803 * For delalloc space on the page we need to allocate space and flush it.
804 * For unwritten space on the page we need to start the conversion to
805 * regular allocated space.
806 */
807 STATIC int
xfs_do_writepage(struct page * page,struct writeback_control * wbc,void * data)808 xfs_do_writepage(
809 struct page *page,
810 struct writeback_control *wbc,
811 void *data)
812 {
813 struct xfs_writepage_ctx *wpc = data;
814 struct inode *inode = page->mapping->host;
815 loff_t offset;
816 uint64_t end_offset;
817 pgoff_t end_index;
818
819 trace_xfs_writepage(inode, page, 0, 0);
820
821 /*
822 * Refuse to write the page out if we are called from reclaim context.
823 *
824 * This avoids stack overflows when called from deeply used stacks in
825 * random callers for direct reclaim or memcg reclaim. We explicitly
826 * allow reclaim from kswapd as the stack usage there is relatively low.
827 *
828 * This should never happen except in the case of a VM regression so
829 * warn about it.
830 */
831 if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
832 PF_MEMALLOC))
833 goto redirty;
834
835 /*
836 * Given that we do not allow direct reclaim to call us, we should
837 * never be called while in a filesystem transaction.
838 */
839 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC_NOFS))
840 goto redirty;
841
842 /*
843 * Is this page beyond the end of the file?
844 *
845 * The page index is less than the end_index, adjust the end_offset
846 * to the highest offset that this page should represent.
847 * -----------------------------------------------------
848 * | file mapping | <EOF> |
849 * -----------------------------------------------------
850 * | Page ... | Page N-2 | Page N-1 | Page N | |
851 * ^--------------------------------^----------|--------
852 * | desired writeback range | see else |
853 * ---------------------------------^------------------|
854 */
855 offset = i_size_read(inode);
856 end_index = offset >> PAGE_SHIFT;
857 if (page->index < end_index)
858 end_offset = (xfs_off_t)(page->index + 1) << PAGE_SHIFT;
859 else {
860 /*
861 * Check whether the page to write out is beyond or straddles
862 * i_size or not.
863 * -------------------------------------------------------
864 * | file mapping | <EOF> |
865 * -------------------------------------------------------
866 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
867 * ^--------------------------------^-----------|---------
868 * | | Straddles |
869 * ---------------------------------^-----------|--------|
870 */
871 unsigned offset_into_page = offset & (PAGE_SIZE - 1);
872
873 /*
874 * Skip the page if it is fully outside i_size, e.g. due to a
875 * truncate operation that is in progress. We must redirty the
876 * page so that reclaim stops reclaiming it. Otherwise
877 * xfs_vm_releasepage() is called on it and gets confused.
878 *
879 * Note that the end_index is unsigned long, it would overflow
880 * if the given offset is greater than 16TB on 32-bit system
881 * and if we do check the page is fully outside i_size or not
882 * via "if (page->index >= end_index + 1)" as "end_index + 1"
883 * will be evaluated to 0. Hence this page will be redirtied
884 * and be written out repeatedly which would result in an
885 * infinite loop, the user program that perform this operation
886 * will hang. Instead, we can verify this situation by checking
887 * if the page to write is totally beyond the i_size or if it's
888 * offset is just equal to the EOF.
889 */
890 if (page->index > end_index ||
891 (page->index == end_index && offset_into_page == 0))
892 goto redirty;
893
894 /*
895 * The page straddles i_size. It must be zeroed out on each
896 * and every writepage invocation because it may be mmapped.
897 * "A file is mapped in multiples of the page size. For a file
898 * that is not a multiple of the page size, the remaining
899 * memory is zeroed when mapped, and writes to that region are
900 * not written out to the file."
901 */
902 zero_user_segment(page, offset_into_page, PAGE_SIZE);
903
904 /* Adjust the end_offset to the end of file */
905 end_offset = offset;
906 }
907
908 return xfs_writepage_map(wpc, wbc, inode, page, end_offset);
909
910 redirty:
911 redirty_page_for_writepage(wbc, page);
912 unlock_page(page);
913 return 0;
914 }
915
916 STATIC int
xfs_vm_writepage(struct page * page,struct writeback_control * wbc)917 xfs_vm_writepage(
918 struct page *page,
919 struct writeback_control *wbc)
920 {
921 struct xfs_writepage_ctx wpc = {
922 .io_type = XFS_IO_INVALID,
923 };
924 int ret;
925
926 ret = xfs_do_writepage(page, wbc, &wpc);
927 if (wpc.ioend)
928 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
929 return ret;
930 }
931
932 STATIC int
xfs_vm_writepages(struct address_space * mapping,struct writeback_control * wbc)933 xfs_vm_writepages(
934 struct address_space *mapping,
935 struct writeback_control *wbc)
936 {
937 struct xfs_writepage_ctx wpc = {
938 .io_type = XFS_IO_INVALID,
939 };
940 int ret;
941
942 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
943 ret = write_cache_pages(mapping, wbc, xfs_do_writepage, &wpc);
944 if (wpc.ioend)
945 ret = xfs_submit_ioend(wbc, wpc.ioend, ret);
946 return ret;
947 }
948
949 STATIC int
xfs_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)950 xfs_dax_writepages(
951 struct address_space *mapping,
952 struct writeback_control *wbc)
953 {
954 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
955 return dax_writeback_mapping_range(mapping,
956 xfs_find_bdev_for_inode(mapping->host), wbc);
957 }
958
959 STATIC int
xfs_vm_releasepage(struct page * page,gfp_t gfp_mask)960 xfs_vm_releasepage(
961 struct page *page,
962 gfp_t gfp_mask)
963 {
964 trace_xfs_releasepage(page->mapping->host, page, 0, 0);
965 return iomap_releasepage(page, gfp_mask);
966 }
967
968 STATIC sector_t
xfs_vm_bmap(struct address_space * mapping,sector_t block)969 xfs_vm_bmap(
970 struct address_space *mapping,
971 sector_t block)
972 {
973 struct xfs_inode *ip = XFS_I(mapping->host);
974
975 trace_xfs_vm_bmap(ip);
976
977 /*
978 * The swap code (ab-)uses ->bmap to get a block mapping and then
979 * bypasses the file system for actual I/O. We really can't allow
980 * that on reflinks inodes, so we have to skip out here. And yes,
981 * 0 is the magic code for a bmap error.
982 *
983 * Since we don't pass back blockdev info, we can't return bmap
984 * information for rt files either.
985 */
986 if (xfs_is_reflink_inode(ip) || XFS_IS_REALTIME_INODE(ip))
987 return 0;
988 return iomap_bmap(mapping, block, &xfs_iomap_ops);
989 }
990
991 STATIC int
xfs_vm_readpage(struct file * unused,struct page * page)992 xfs_vm_readpage(
993 struct file *unused,
994 struct page *page)
995 {
996 trace_xfs_vm_readpage(page->mapping->host, 1);
997 return iomap_readpage(page, &xfs_iomap_ops);
998 }
999
1000 STATIC int
xfs_vm_readpages(struct file * unused,struct address_space * mapping,struct list_head * pages,unsigned nr_pages)1001 xfs_vm_readpages(
1002 struct file *unused,
1003 struct address_space *mapping,
1004 struct list_head *pages,
1005 unsigned nr_pages)
1006 {
1007 trace_xfs_vm_readpages(mapping->host, nr_pages);
1008 return iomap_readpages(mapping, pages, nr_pages, &xfs_iomap_ops);
1009 }
1010
1011 static int
xfs_iomap_swapfile_activate(struct swap_info_struct * sis,struct file * swap_file,sector_t * span)1012 xfs_iomap_swapfile_activate(
1013 struct swap_info_struct *sis,
1014 struct file *swap_file,
1015 sector_t *span)
1016 {
1017 sis->bdev = xfs_find_bdev_for_inode(file_inode(swap_file));
1018 return iomap_swapfile_activate(sis, swap_file, span, &xfs_iomap_ops);
1019 }
1020
1021 const struct address_space_operations xfs_address_space_operations = {
1022 .readpage = xfs_vm_readpage,
1023 .readpages = xfs_vm_readpages,
1024 .writepage = xfs_vm_writepage,
1025 .writepages = xfs_vm_writepages,
1026 .set_page_dirty = iomap_set_page_dirty,
1027 .releasepage = xfs_vm_releasepage,
1028 .invalidatepage = xfs_vm_invalidatepage,
1029 .bmap = xfs_vm_bmap,
1030 .direct_IO = noop_direct_IO,
1031 .migratepage = iomap_migrate_page,
1032 .is_partially_uptodate = iomap_is_partially_uptodate,
1033 .error_remove_page = generic_error_remove_page,
1034 .swap_activate = xfs_iomap_swapfile_activate,
1035 };
1036
1037 const struct address_space_operations xfs_dax_aops = {
1038 .writepages = xfs_dax_writepages,
1039 .direct_IO = noop_direct_IO,
1040 .set_page_dirty = noop_set_page_dirty,
1041 .invalidatepage = noop_invalidatepage,
1042 .swap_activate = xfs_iomap_swapfile_activate,
1043 };
1044