1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_inode.h"
14 #include "xfs_trans.h"
15 #include "xfs_buf_item.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_error.h"
18 #include "xfs_trace.h"
19 
20 /*
21  * Check to see if a buffer matching the given parameters is already
22  * a part of the given transaction.
23  */
24 STATIC struct xfs_buf *
xfs_trans_buf_item_match(struct xfs_trans * tp,struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps)25 xfs_trans_buf_item_match(
26 	struct xfs_trans	*tp,
27 	struct xfs_buftarg	*target,
28 	struct xfs_buf_map	*map,
29 	int			nmaps)
30 {
31 	struct xfs_log_item	*lip;
32 	struct xfs_buf_log_item	*blip;
33 	int			len = 0;
34 	int			i;
35 
36 	for (i = 0; i < nmaps; i++)
37 		len += map[i].bm_len;
38 
39 	list_for_each_entry(lip, &tp->t_items, li_trans) {
40 		blip = (struct xfs_buf_log_item *)lip;
41 		if (blip->bli_item.li_type == XFS_LI_BUF &&
42 		    blip->bli_buf->b_target == target &&
43 		    XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
44 		    blip->bli_buf->b_length == len) {
45 			ASSERT(blip->bli_buf->b_map_count == nmaps);
46 			return blip->bli_buf;
47 		}
48 	}
49 
50 	return NULL;
51 }
52 
53 /*
54  * Add the locked buffer to the transaction.
55  *
56  * The buffer must be locked, and it cannot be associated with any
57  * transaction.
58  *
59  * If the buffer does not yet have a buf log item associated with it,
60  * then allocate one for it.  Then add the buf item to the transaction.
61  */
62 STATIC void
_xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp,int reset_recur)63 _xfs_trans_bjoin(
64 	struct xfs_trans	*tp,
65 	struct xfs_buf		*bp,
66 	int			reset_recur)
67 {
68 	struct xfs_buf_log_item	*bip;
69 
70 	ASSERT(bp->b_transp == NULL);
71 
72 	/*
73 	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
74 	 * it doesn't have one yet, then allocate one and initialize it.
75 	 * The checks to see if one is there are in xfs_buf_item_init().
76 	 */
77 	xfs_buf_item_init(bp, tp->t_mountp);
78 	bip = bp->b_log_item;
79 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
80 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
81 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
82 	if (reset_recur)
83 		bip->bli_recur = 0;
84 
85 	/*
86 	 * Take a reference for this transaction on the buf item.
87 	 */
88 	atomic_inc(&bip->bli_refcount);
89 
90 	/*
91 	 * Attach the item to the transaction so we can find it in
92 	 * xfs_trans_get_buf() and friends.
93 	 */
94 	xfs_trans_add_item(tp, &bip->bli_item);
95 	bp->b_transp = tp;
96 
97 }
98 
99 void
xfs_trans_bjoin(struct xfs_trans * tp,struct xfs_buf * bp)100 xfs_trans_bjoin(
101 	struct xfs_trans	*tp,
102 	struct xfs_buf		*bp)
103 {
104 	_xfs_trans_bjoin(tp, bp, 0);
105 	trace_xfs_trans_bjoin(bp->b_log_item);
106 }
107 
108 /*
109  * Get and lock the buffer for the caller if it is not already
110  * locked within the given transaction.  If it is already locked
111  * within the transaction, just increment its lock recursion count
112  * and return a pointer to it.
113  *
114  * If the transaction pointer is NULL, make this just a normal
115  * get_buf() call.
116  */
117 struct xfs_buf *
xfs_trans_get_buf_map(struct xfs_trans * tp,struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags)118 xfs_trans_get_buf_map(
119 	struct xfs_trans	*tp,
120 	struct xfs_buftarg	*target,
121 	struct xfs_buf_map	*map,
122 	int			nmaps,
123 	xfs_buf_flags_t		flags)
124 {
125 	xfs_buf_t		*bp;
126 	struct xfs_buf_log_item	*bip;
127 
128 	if (!tp)
129 		return xfs_buf_get_map(target, map, nmaps, flags);
130 
131 	/*
132 	 * If we find the buffer in the cache with this transaction
133 	 * pointer in its b_fsprivate2 field, then we know we already
134 	 * have it locked.  In this case we just increment the lock
135 	 * recursion count and return the buffer to the caller.
136 	 */
137 	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
138 	if (bp != NULL) {
139 		ASSERT(xfs_buf_islocked(bp));
140 		if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
141 			xfs_buf_stale(bp);
142 			bp->b_flags |= XBF_DONE;
143 		}
144 
145 		ASSERT(bp->b_transp == tp);
146 		bip = bp->b_log_item;
147 		ASSERT(bip != NULL);
148 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
149 		bip->bli_recur++;
150 		trace_xfs_trans_get_buf_recur(bip);
151 		return bp;
152 	}
153 
154 	bp = xfs_buf_get_map(target, map, nmaps, flags);
155 	if (bp == NULL) {
156 		return NULL;
157 	}
158 
159 	ASSERT(!bp->b_error);
160 
161 	_xfs_trans_bjoin(tp, bp, 1);
162 	trace_xfs_trans_get_buf(bp->b_log_item);
163 	return bp;
164 }
165 
166 /*
167  * Get and lock the superblock buffer of this file system for the
168  * given transaction.
169  *
170  * We don't need to use incore_match() here, because the superblock
171  * buffer is a private buffer which we keep a pointer to in the
172  * mount structure.
173  */
174 xfs_buf_t *
xfs_trans_getsb(xfs_trans_t * tp,struct xfs_mount * mp,int flags)175 xfs_trans_getsb(
176 	xfs_trans_t		*tp,
177 	struct xfs_mount	*mp,
178 	int			flags)
179 {
180 	xfs_buf_t		*bp;
181 	struct xfs_buf_log_item	*bip;
182 
183 	/*
184 	 * Default to just trying to lock the superblock buffer
185 	 * if tp is NULL.
186 	 */
187 	if (tp == NULL)
188 		return xfs_getsb(mp, flags);
189 
190 	/*
191 	 * If the superblock buffer already has this transaction
192 	 * pointer in its b_fsprivate2 field, then we know we already
193 	 * have it locked.  In this case we just increment the lock
194 	 * recursion count and return the buffer to the caller.
195 	 */
196 	bp = mp->m_sb_bp;
197 	if (bp->b_transp == tp) {
198 		bip = bp->b_log_item;
199 		ASSERT(bip != NULL);
200 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
201 		bip->bli_recur++;
202 		trace_xfs_trans_getsb_recur(bip);
203 		return bp;
204 	}
205 
206 	bp = xfs_getsb(mp, flags);
207 	if (bp == NULL)
208 		return NULL;
209 
210 	_xfs_trans_bjoin(tp, bp, 1);
211 	trace_xfs_trans_getsb(bp->b_log_item);
212 	return bp;
213 }
214 
215 /*
216  * Get and lock the buffer for the caller if it is not already
217  * locked within the given transaction.  If it has not yet been
218  * read in, read it from disk. If it is already locked
219  * within the transaction and already read in, just increment its
220  * lock recursion count and return a pointer to it.
221  *
222  * If the transaction pointer is NULL, make this just a normal
223  * read_buf() call.
224  */
225 int
xfs_trans_read_buf_map(struct xfs_mount * mp,struct xfs_trans * tp,struct xfs_buftarg * target,struct xfs_buf_map * map,int nmaps,xfs_buf_flags_t flags,struct xfs_buf ** bpp,const struct xfs_buf_ops * ops)226 xfs_trans_read_buf_map(
227 	struct xfs_mount	*mp,
228 	struct xfs_trans	*tp,
229 	struct xfs_buftarg	*target,
230 	struct xfs_buf_map	*map,
231 	int			nmaps,
232 	xfs_buf_flags_t		flags,
233 	struct xfs_buf		**bpp,
234 	const struct xfs_buf_ops *ops)
235 {
236 	struct xfs_buf		*bp = NULL;
237 	struct xfs_buf_log_item	*bip;
238 	int			error;
239 
240 	*bpp = NULL;
241 	/*
242 	 * If we find the buffer in the cache with this transaction
243 	 * pointer in its b_fsprivate2 field, then we know we already
244 	 * have it locked.  If it is already read in we just increment
245 	 * the lock recursion count and return the buffer to the caller.
246 	 * If the buffer is not yet read in, then we read it in, increment
247 	 * the lock recursion count, and return it to the caller.
248 	 */
249 	if (tp)
250 		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251 	if (bp) {
252 		ASSERT(xfs_buf_islocked(bp));
253 		ASSERT(bp->b_transp == tp);
254 		ASSERT(bp->b_log_item != NULL);
255 		ASSERT(!bp->b_error);
256 		ASSERT(bp->b_flags & XBF_DONE);
257 
258 		/*
259 		 * We never locked this buf ourselves, so we shouldn't
260 		 * brelse it either. Just get out.
261 		 */
262 		if (XFS_FORCED_SHUTDOWN(mp)) {
263 			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264 			return -EIO;
265 		}
266 
267 		bip = bp->b_log_item;
268 		bip->bli_recur++;
269 
270 		ASSERT(atomic_read(&bip->bli_refcount) > 0);
271 		trace_xfs_trans_read_buf_recur(bip);
272 		*bpp = bp;
273 		return 0;
274 	}
275 
276 	bp = xfs_buf_read_map(target, map, nmaps, flags, ops);
277 	if (!bp) {
278 		if (!(flags & XBF_TRYLOCK))
279 			return -ENOMEM;
280 		return tp ? 0 : -EAGAIN;
281 	}
282 
283 	/*
284 	 * If we've had a read error, then the contents of the buffer are
285 	 * invalid and should not be used. To ensure that a followup read tries
286 	 * to pull the buffer from disk again, we clear the XBF_DONE flag and
287 	 * mark the buffer stale. This ensures that anyone who has a current
288 	 * reference to the buffer will interpret it's contents correctly and
289 	 * future cache lookups will also treat it as an empty, uninitialised
290 	 * buffer.
291 	 */
292 	if (bp->b_error) {
293 		error = bp->b_error;
294 		if (!XFS_FORCED_SHUTDOWN(mp))
295 			xfs_buf_ioerror_alert(bp, __func__);
296 		bp->b_flags &= ~XBF_DONE;
297 		xfs_buf_stale(bp);
298 
299 		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
300 			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
301 		xfs_buf_relse(bp);
302 
303 		/* bad CRC means corrupted metadata */
304 		if (error == -EFSBADCRC)
305 			error = -EFSCORRUPTED;
306 		return error;
307 	}
308 
309 	if (XFS_FORCED_SHUTDOWN(mp)) {
310 		xfs_buf_relse(bp);
311 		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
312 		return -EIO;
313 	}
314 
315 	if (tp) {
316 		_xfs_trans_bjoin(tp, bp, 1);
317 		trace_xfs_trans_read_buf(bp->b_log_item);
318 	}
319 	*bpp = bp;
320 	return 0;
321 
322 }
323 
324 /*
325  * Release a buffer previously joined to the transaction. If the buffer is
326  * modified within this transaction, decrement the recursion count but do not
327  * release the buffer even if the count goes to 0. If the buffer is not modified
328  * within the transaction, decrement the recursion count and release the buffer
329  * if the recursion count goes to 0.
330  *
331  * If the buffer is to be released and it was not already dirty before this
332  * transaction began, then also free the buf_log_item associated with it.
333  *
334  * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
335  */
336 void
xfs_trans_brelse(struct xfs_trans * tp,struct xfs_buf * bp)337 xfs_trans_brelse(
338 	struct xfs_trans	*tp,
339 	struct xfs_buf		*bp)
340 {
341 	struct xfs_buf_log_item	*bip = bp->b_log_item;
342 
343 	ASSERT(bp->b_transp == tp);
344 
345 	if (!tp) {
346 		xfs_buf_relse(bp);
347 		return;
348 	}
349 
350 	trace_xfs_trans_brelse(bip);
351 	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
352 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
353 
354 	/*
355 	 * If the release is for a recursive lookup, then decrement the count
356 	 * and return.
357 	 */
358 	if (bip->bli_recur > 0) {
359 		bip->bli_recur--;
360 		return;
361 	}
362 
363 	/*
364 	 * If the buffer is invalidated or dirty in this transaction, we can't
365 	 * release it until we commit.
366 	 */
367 	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
368 		return;
369 	if (bip->bli_flags & XFS_BLI_STALE)
370 		return;
371 
372 	/*
373 	 * Unlink the log item from the transaction and clear the hold flag, if
374 	 * set. We wouldn't want the next user of the buffer to get confused.
375 	 */
376 	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
377 	xfs_trans_del_item(&bip->bli_item);
378 	bip->bli_flags &= ~XFS_BLI_HOLD;
379 
380 	/* drop the reference to the bli */
381 	xfs_buf_item_put(bip);
382 
383 	bp->b_transp = NULL;
384 	xfs_buf_relse(bp);
385 }
386 
387 /*
388  * Mark the buffer as not needing to be unlocked when the buf item's
389  * iop_unlock() routine is called.  The buffer must already be locked
390  * and associated with the given transaction.
391  */
392 /* ARGSUSED */
393 void
xfs_trans_bhold(xfs_trans_t * tp,xfs_buf_t * bp)394 xfs_trans_bhold(
395 	xfs_trans_t		*tp,
396 	xfs_buf_t		*bp)
397 {
398 	struct xfs_buf_log_item	*bip = bp->b_log_item;
399 
400 	ASSERT(bp->b_transp == tp);
401 	ASSERT(bip != NULL);
402 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
403 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
404 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
405 
406 	bip->bli_flags |= XFS_BLI_HOLD;
407 	trace_xfs_trans_bhold(bip);
408 }
409 
410 /*
411  * Cancel the previous buffer hold request made on this buffer
412  * for this transaction.
413  */
414 void
xfs_trans_bhold_release(xfs_trans_t * tp,xfs_buf_t * bp)415 xfs_trans_bhold_release(
416 	xfs_trans_t		*tp,
417 	xfs_buf_t		*bp)
418 {
419 	struct xfs_buf_log_item	*bip = bp->b_log_item;
420 
421 	ASSERT(bp->b_transp == tp);
422 	ASSERT(bip != NULL);
423 	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
424 	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
425 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
426 	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
427 
428 	bip->bli_flags &= ~XFS_BLI_HOLD;
429 	trace_xfs_trans_bhold_release(bip);
430 }
431 
432 /*
433  * Mark a buffer dirty in the transaction.
434  */
435 void
xfs_trans_dirty_buf(struct xfs_trans * tp,struct xfs_buf * bp)436 xfs_trans_dirty_buf(
437 	struct xfs_trans	*tp,
438 	struct xfs_buf		*bp)
439 {
440 	struct xfs_buf_log_item	*bip = bp->b_log_item;
441 
442 	ASSERT(bp->b_transp == tp);
443 	ASSERT(bip != NULL);
444 	ASSERT(bp->b_iodone == NULL ||
445 	       bp->b_iodone == xfs_buf_iodone_callbacks);
446 
447 	/*
448 	 * Mark the buffer as needing to be written out eventually,
449 	 * and set its iodone function to remove the buffer's buf log
450 	 * item from the AIL and free it when the buffer is flushed
451 	 * to disk.  See xfs_buf_attach_iodone() for more details
452 	 * on li_cb and xfs_buf_iodone_callbacks().
453 	 * If we end up aborting this transaction, we trap this buffer
454 	 * inside the b_bdstrat callback so that this won't get written to
455 	 * disk.
456 	 */
457 	bp->b_flags |= XBF_DONE;
458 
459 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
460 	bp->b_iodone = xfs_buf_iodone_callbacks;
461 	bip->bli_item.li_cb = xfs_buf_iodone;
462 
463 	/*
464 	 * If we invalidated the buffer within this transaction, then
465 	 * cancel the invalidation now that we're dirtying the buffer
466 	 * again.  There are no races with the code in xfs_buf_item_unpin(),
467 	 * because we have a reference to the buffer this entire time.
468 	 */
469 	if (bip->bli_flags & XFS_BLI_STALE) {
470 		bip->bli_flags &= ~XFS_BLI_STALE;
471 		ASSERT(bp->b_flags & XBF_STALE);
472 		bp->b_flags &= ~XBF_STALE;
473 		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
474 	}
475 	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
476 
477 	tp->t_flags |= XFS_TRANS_DIRTY;
478 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
479 }
480 
481 /*
482  * This is called to mark bytes first through last inclusive of the given
483  * buffer as needing to be logged when the transaction is committed.
484  * The buffer must already be associated with the given transaction.
485  *
486  * First and last are numbers relative to the beginning of this buffer,
487  * so the first byte in the buffer is numbered 0 regardless of the
488  * value of b_blkno.
489  */
490 void
xfs_trans_log_buf(struct xfs_trans * tp,struct xfs_buf * bp,uint first,uint last)491 xfs_trans_log_buf(
492 	struct xfs_trans	*tp,
493 	struct xfs_buf		*bp,
494 	uint			first,
495 	uint			last)
496 {
497 	struct xfs_buf_log_item	*bip = bp->b_log_item;
498 
499 	ASSERT(first <= last && last < BBTOB(bp->b_length));
500 	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
501 
502 	xfs_trans_dirty_buf(tp, bp);
503 
504 	trace_xfs_trans_log_buf(bip);
505 	xfs_buf_item_log(bip, first, last);
506 }
507 
508 
509 /*
510  * Invalidate a buffer that is being used within a transaction.
511  *
512  * Typically this is because the blocks in the buffer are being freed, so we
513  * need to prevent it from being written out when we're done.  Allowing it
514  * to be written again might overwrite data in the free blocks if they are
515  * reallocated to a file.
516  *
517  * We prevent the buffer from being written out by marking it stale.  We can't
518  * get rid of the buf log item at this point because the buffer may still be
519  * pinned by another transaction.  If that is the case, then we'll wait until
520  * the buffer is committed to disk for the last time (we can tell by the ref
521  * count) and free it in xfs_buf_item_unpin().  Until that happens we will
522  * keep the buffer locked so that the buffer and buf log item are not reused.
523  *
524  * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
525  * the buf item.  This will be used at recovery time to determine that copies
526  * of the buffer in the log before this should not be replayed.
527  *
528  * We mark the item descriptor and the transaction dirty so that we'll hold
529  * the buffer until after the commit.
530  *
531  * Since we're invalidating the buffer, we also clear the state about which
532  * parts of the buffer have been logged.  We also clear the flag indicating
533  * that this is an inode buffer since the data in the buffer will no longer
534  * be valid.
535  *
536  * We set the stale bit in the buffer as well since we're getting rid of it.
537  */
538 void
xfs_trans_binval(xfs_trans_t * tp,xfs_buf_t * bp)539 xfs_trans_binval(
540 	xfs_trans_t		*tp,
541 	xfs_buf_t		*bp)
542 {
543 	struct xfs_buf_log_item	*bip = bp->b_log_item;
544 	int			i;
545 
546 	ASSERT(bp->b_transp == tp);
547 	ASSERT(bip != NULL);
548 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
549 
550 	trace_xfs_trans_binval(bip);
551 
552 	if (bip->bli_flags & XFS_BLI_STALE) {
553 		/*
554 		 * If the buffer is already invalidated, then
555 		 * just return.
556 		 */
557 		ASSERT(bp->b_flags & XBF_STALE);
558 		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
559 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
560 		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
561 		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
562 		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
563 		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
564 		return;
565 	}
566 
567 	xfs_buf_stale(bp);
568 
569 	bip->bli_flags |= XFS_BLI_STALE;
570 	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
571 	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
572 	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
573 	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
574 	for (i = 0; i < bip->bli_format_count; i++) {
575 		memset(bip->bli_formats[i].blf_data_map, 0,
576 		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
577 	}
578 	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
579 	tp->t_flags |= XFS_TRANS_DIRTY;
580 }
581 
582 /*
583  * This call is used to indicate that the buffer contains on-disk inodes which
584  * must be handled specially during recovery.  They require special handling
585  * because only the di_next_unlinked from the inodes in the buffer should be
586  * recovered.  The rest of the data in the buffer is logged via the inodes
587  * themselves.
588  *
589  * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
590  * transferred to the buffer's log format structure so that we'll know what to
591  * do at recovery time.
592  */
593 void
xfs_trans_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)594 xfs_trans_inode_buf(
595 	xfs_trans_t		*tp,
596 	xfs_buf_t		*bp)
597 {
598 	struct xfs_buf_log_item	*bip = bp->b_log_item;
599 
600 	ASSERT(bp->b_transp == tp);
601 	ASSERT(bip != NULL);
602 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
603 
604 	bip->bli_flags |= XFS_BLI_INODE_BUF;
605 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
606 }
607 
608 /*
609  * This call is used to indicate that the buffer is going to
610  * be staled and was an inode buffer. This means it gets
611  * special processing during unpin - where any inodes
612  * associated with the buffer should be removed from ail.
613  * There is also special processing during recovery,
614  * any replay of the inodes in the buffer needs to be
615  * prevented as the buffer may have been reused.
616  */
617 void
xfs_trans_stale_inode_buf(xfs_trans_t * tp,xfs_buf_t * bp)618 xfs_trans_stale_inode_buf(
619 	xfs_trans_t		*tp,
620 	xfs_buf_t		*bp)
621 {
622 	struct xfs_buf_log_item	*bip = bp->b_log_item;
623 
624 	ASSERT(bp->b_transp == tp);
625 	ASSERT(bip != NULL);
626 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
627 
628 	bip->bli_flags |= XFS_BLI_STALE_INODE;
629 	bip->bli_item.li_cb = xfs_buf_iodone;
630 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
631 }
632 
633 /*
634  * Mark the buffer as being one which contains newly allocated
635  * inodes.  We need to make sure that even if this buffer is
636  * relogged as an 'inode buf' we still recover all of the inode
637  * images in the face of a crash.  This works in coordination with
638  * xfs_buf_item_committed() to ensure that the buffer remains in the
639  * AIL at its original location even after it has been relogged.
640  */
641 /* ARGSUSED */
642 void
xfs_trans_inode_alloc_buf(xfs_trans_t * tp,xfs_buf_t * bp)643 xfs_trans_inode_alloc_buf(
644 	xfs_trans_t		*tp,
645 	xfs_buf_t		*bp)
646 {
647 	struct xfs_buf_log_item	*bip = bp->b_log_item;
648 
649 	ASSERT(bp->b_transp == tp);
650 	ASSERT(bip != NULL);
651 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
652 
653 	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
654 	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
655 }
656 
657 /*
658  * Mark the buffer as ordered for this transaction. This means that the contents
659  * of the buffer are not recorded in the transaction but it is tracked in the
660  * AIL as though it was. This allows us to record logical changes in
661  * transactions rather than the physical changes we make to the buffer without
662  * changing writeback ordering constraints of metadata buffers.
663  */
664 bool
xfs_trans_ordered_buf(struct xfs_trans * tp,struct xfs_buf * bp)665 xfs_trans_ordered_buf(
666 	struct xfs_trans	*tp,
667 	struct xfs_buf		*bp)
668 {
669 	struct xfs_buf_log_item	*bip = bp->b_log_item;
670 
671 	ASSERT(bp->b_transp == tp);
672 	ASSERT(bip != NULL);
673 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
674 
675 	if (xfs_buf_item_dirty_format(bip))
676 		return false;
677 
678 	bip->bli_flags |= XFS_BLI_ORDERED;
679 	trace_xfs_buf_item_ordered(bip);
680 
681 	/*
682 	 * We don't log a dirty range of an ordered buffer but it still needs
683 	 * to be marked dirty and that it has been logged.
684 	 */
685 	xfs_trans_dirty_buf(tp, bp);
686 	return true;
687 }
688 
689 /*
690  * Set the type of the buffer for log recovery so that it can correctly identify
691  * and hence attach the correct buffer ops to the buffer after replay.
692  */
693 void
xfs_trans_buf_set_type(struct xfs_trans * tp,struct xfs_buf * bp,enum xfs_blft type)694 xfs_trans_buf_set_type(
695 	struct xfs_trans	*tp,
696 	struct xfs_buf		*bp,
697 	enum xfs_blft		type)
698 {
699 	struct xfs_buf_log_item	*bip = bp->b_log_item;
700 
701 	if (!tp)
702 		return;
703 
704 	ASSERT(bp->b_transp == tp);
705 	ASSERT(bip != NULL);
706 	ASSERT(atomic_read(&bip->bli_refcount) > 0);
707 
708 	xfs_blft_to_flags(&bip->__bli_format, type);
709 }
710 
711 void
xfs_trans_buf_copy_type(struct xfs_buf * dst_bp,struct xfs_buf * src_bp)712 xfs_trans_buf_copy_type(
713 	struct xfs_buf		*dst_bp,
714 	struct xfs_buf		*src_bp)
715 {
716 	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
717 	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
718 	enum xfs_blft		type;
719 
720 	type = xfs_blft_from_flags(&sbip->__bli_format);
721 	xfs_blft_to_flags(&dbip->__bli_format, type);
722 }
723 
724 /*
725  * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
726  * dquots. However, unlike in inode buffer recovery, dquot buffers get
727  * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
728  * The only thing that makes dquot buffers different from regular
729  * buffers is that we must not replay dquot bufs when recovering
730  * if a _corresponding_ quotaoff has happened. We also have to distinguish
731  * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
732  * can be turned off independently.
733  */
734 /* ARGSUSED */
735 void
xfs_trans_dquot_buf(xfs_trans_t * tp,xfs_buf_t * bp,uint type)736 xfs_trans_dquot_buf(
737 	xfs_trans_t		*tp,
738 	xfs_buf_t		*bp,
739 	uint			type)
740 {
741 	struct xfs_buf_log_item	*bip = bp->b_log_item;
742 
743 	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
744 	       type == XFS_BLF_PDQUOT_BUF ||
745 	       type == XFS_BLF_GDQUOT_BUF);
746 
747 	bip->__bli_format.blf_flags |= type;
748 
749 	switch (type) {
750 	case XFS_BLF_UDQUOT_BUF:
751 		type = XFS_BLFT_UDQUOT_BUF;
752 		break;
753 	case XFS_BLF_PDQUOT_BUF:
754 		type = XFS_BLFT_PDQUOT_BUF;
755 		break;
756 	case XFS_BLF_GDQUOT_BUF:
757 		type = XFS_BLFT_GDQUOT_BUF;
758 		break;
759 	default:
760 		type = XFS_BLFT_UNKNOWN_BUF;
761 		break;
762 	}
763 
764 	xfs_trans_buf_set_type(tp, bp, type);
765 }
766