1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_bit.h"
13 #include "xfs_sb.h"
14 #include "xfs_mount.h"
15 #include "xfs_defer.h"
16 #include "xfs_da_format.h"
17 #include "xfs_da_btree.h"
18 #include "xfs_inode.h"
19 #include "xfs_trans.h"
20 #include "xfs_log.h"
21 #include "xfs_log_priv.h"
22 #include "xfs_log_recover.h"
23 #include "xfs_inode_item.h"
24 #include "xfs_extfree_item.h"
25 #include "xfs_trans_priv.h"
26 #include "xfs_alloc.h"
27 #include "xfs_ialloc.h"
28 #include "xfs_quota.h"
29 #include "xfs_cksum.h"
30 #include "xfs_trace.h"
31 #include "xfs_icache.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_error.h"
34 #include "xfs_dir2.h"
35 #include "xfs_rmap_item.h"
36 #include "xfs_buf_item.h"
37 #include "xfs_refcount_item.h"
38 #include "xfs_bmap_item.h"
39
40 #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
41
42 STATIC int
43 xlog_find_zeroed(
44 struct xlog *,
45 xfs_daddr_t *);
46 STATIC int
47 xlog_clear_stale_blocks(
48 struct xlog *,
49 xfs_lsn_t);
50 #if defined(DEBUG)
51 STATIC void
52 xlog_recover_check_summary(
53 struct xlog *);
54 #else
55 #define xlog_recover_check_summary(log)
56 #endif
57 STATIC int
58 xlog_do_recovery_pass(
59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
60
61 /*
62 * This structure is used during recovery to record the buf log items which
63 * have been canceled and should not be replayed.
64 */
65 struct xfs_buf_cancel {
66 xfs_daddr_t bc_blkno;
67 uint bc_len;
68 int bc_refcount;
69 struct list_head bc_list;
70 };
71
72 /*
73 * Sector aligned buffer routines for buffer create/read/write/access
74 */
75
76 /*
77 * Verify the log-relative block number and length in basic blocks are valid for
78 * an operation involving the given XFS log buffer. Returns true if the fields
79 * are valid, false otherwise.
80 */
81 static inline bool
xlog_verify_bp(struct xlog * log,xfs_daddr_t blk_no,int bbcount)82 xlog_verify_bp(
83 struct xlog *log,
84 xfs_daddr_t blk_no,
85 int bbcount)
86 {
87 if (blk_no < 0 || blk_no >= log->l_logBBsize)
88 return false;
89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
90 return false;
91 return true;
92 }
93
94 /*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
99 STATIC xfs_buf_t *
xlog_get_bp(struct xlog * log,int nbblks)100 xlog_get_bp(
101 struct xlog *log,
102 int nbblks)
103 {
104 struct xfs_buf *bp;
105
106 /*
107 * Pass log block 0 since we don't have an addr yet, buffer will be
108 * verified on read.
109 */
110 if (!xlog_verify_bp(log, 0, nbblks)) {
111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
112 nbblks);
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
114 return NULL;
115 }
116
117 /*
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
120 * requested size to accommodate the basic blocks required
121 * for complete log sectors.
122 *
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
131 * there's space to accommodate this possibility.
132 */
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
136
137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
138 if (bp)
139 xfs_buf_unlock(bp);
140 return bp;
141 }
142
143 STATIC void
xlog_put_bp(xfs_buf_t * bp)144 xlog_put_bp(
145 xfs_buf_t *bp)
146 {
147 xfs_buf_free(bp);
148 }
149
150 /*
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
153 */
154 STATIC char *
xlog_align(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)155 xlog_align(
156 struct xlog *log,
157 xfs_daddr_t blk_no,
158 int nbblks,
159 struct xfs_buf *bp)
160 {
161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
162
163 ASSERT(offset + nbblks <= bp->b_length);
164 return bp->b_addr + BBTOB(offset);
165 }
166
167
168 /*
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
170 */
171 STATIC int
xlog_bread_noalign(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)172 xlog_bread_noalign(
173 struct xlog *log,
174 xfs_daddr_t blk_no,
175 int nbblks,
176 struct xfs_buf *bp)
177 {
178 int error;
179
180 if (!xlog_verify_bp(log, blk_no, nbblks)) {
181 xfs_warn(log->l_mp,
182 "Invalid log block/length (0x%llx, 0x%x) for buffer",
183 blk_no, nbblks);
184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
185 return -EFSCORRUPTED;
186 }
187
188 blk_no = round_down(blk_no, log->l_sectBBsize);
189 nbblks = round_up(nbblks, log->l_sectBBsize);
190
191 ASSERT(nbblks > 0);
192 ASSERT(nbblks <= bp->b_length);
193
194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
195 bp->b_flags |= XBF_READ;
196 bp->b_io_length = nbblks;
197 bp->b_error = 0;
198
199 error = xfs_buf_submit(bp);
200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
201 xfs_buf_ioerror_alert(bp, __func__);
202 return error;
203 }
204
205 STATIC int
xlog_bread(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,char ** offset)206 xlog_bread(
207 struct xlog *log,
208 xfs_daddr_t blk_no,
209 int nbblks,
210 struct xfs_buf *bp,
211 char **offset)
212 {
213 int error;
214
215 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
216 if (error)
217 return error;
218
219 *offset = xlog_align(log, blk_no, nbblks, bp);
220 return 0;
221 }
222
223 /*
224 * Read at an offset into the buffer. Returns with the buffer in it's original
225 * state regardless of the result of the read.
226 */
227 STATIC int
xlog_bread_offset(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp,char * offset)228 xlog_bread_offset(
229 struct xlog *log,
230 xfs_daddr_t blk_no, /* block to read from */
231 int nbblks, /* blocks to read */
232 struct xfs_buf *bp,
233 char *offset)
234 {
235 char *orig_offset = bp->b_addr;
236 int orig_len = BBTOB(bp->b_length);
237 int error, error2;
238
239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
240 if (error)
241 return error;
242
243 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
244
245 /* must reset buffer pointer even on error */
246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
247 if (error)
248 return error;
249 return error2;
250 }
251
252 /*
253 * Write out the buffer at the given block for the given number of blocks.
254 * The buffer is kept locked across the write and is returned locked.
255 * This can only be used for synchronous log writes.
256 */
257 STATIC int
xlog_bwrite(struct xlog * log,xfs_daddr_t blk_no,int nbblks,struct xfs_buf * bp)258 xlog_bwrite(
259 struct xlog *log,
260 xfs_daddr_t blk_no,
261 int nbblks,
262 struct xfs_buf *bp)
263 {
264 int error;
265
266 if (!xlog_verify_bp(log, blk_no, nbblks)) {
267 xfs_warn(log->l_mp,
268 "Invalid log block/length (0x%llx, 0x%x) for buffer",
269 blk_no, nbblks);
270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
271 return -EFSCORRUPTED;
272 }
273
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
276
277 ASSERT(nbblks > 0);
278 ASSERT(nbblks <= bp->b_length);
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
281 xfs_buf_hold(bp);
282 xfs_buf_lock(bp);
283 bp->b_io_length = nbblks;
284 bp->b_error = 0;
285
286 error = xfs_bwrite(bp);
287 if (error)
288 xfs_buf_ioerror_alert(bp, __func__);
289 xfs_buf_relse(bp);
290 return error;
291 }
292
293 #ifdef DEBUG
294 /*
295 * dump debug superblock and log record information
296 */
297 STATIC void
xlog_header_check_dump(xfs_mount_t * mp,xlog_rec_header_t * head)298 xlog_header_check_dump(
299 xfs_mount_t *mp,
300 xlog_rec_header_t *head)
301 {
302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
304 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
306 }
307 #else
308 #define xlog_header_check_dump(mp, head)
309 #endif
310
311 /*
312 * check log record header for recovery
313 */
314 STATIC int
xlog_header_check_recover(xfs_mount_t * mp,xlog_rec_header_t * head)315 xlog_header_check_recover(
316 xfs_mount_t *mp,
317 xlog_rec_header_t *head)
318 {
319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
320
321 /*
322 * IRIX doesn't write the h_fmt field and leaves it zeroed
323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
324 * a dirty log created in IRIX.
325 */
326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
327 xfs_warn(mp,
328 "dirty log written in incompatible format - can't recover");
329 xlog_header_check_dump(mp, head);
330 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
331 XFS_ERRLEVEL_HIGH, mp);
332 return -EFSCORRUPTED;
333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
334 xfs_warn(mp,
335 "dirty log entry has mismatched uuid - can't recover");
336 xlog_header_check_dump(mp, head);
337 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
338 XFS_ERRLEVEL_HIGH, mp);
339 return -EFSCORRUPTED;
340 }
341 return 0;
342 }
343
344 /*
345 * read the head block of the log and check the header
346 */
347 STATIC int
xlog_header_check_mount(xfs_mount_t * mp,xlog_rec_header_t * head)348 xlog_header_check_mount(
349 xfs_mount_t *mp,
350 xlog_rec_header_t *head)
351 {
352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
353
354 if (uuid_is_null(&head->h_fs_uuid)) {
355 /*
356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
357 * h_fs_uuid is null, we assume this log was last mounted
358 * by IRIX and continue.
359 */
360 xfs_warn(mp, "null uuid in log - IRIX style log");
361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
362 xfs_warn(mp, "log has mismatched uuid - can't recover");
363 xlog_header_check_dump(mp, head);
364 XFS_ERROR_REPORT("xlog_header_check_mount",
365 XFS_ERRLEVEL_HIGH, mp);
366 return -EFSCORRUPTED;
367 }
368 return 0;
369 }
370
371 STATIC void
xlog_recover_iodone(struct xfs_buf * bp)372 xlog_recover_iodone(
373 struct xfs_buf *bp)
374 {
375 if (bp->b_error) {
376 /*
377 * We're not going to bother about retrying
378 * this during recovery. One strike!
379 */
380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
384 }
385 }
386
387 /*
388 * On v5 supers, a bli could be attached to update the metadata LSN.
389 * Clean it up.
390 */
391 if (bp->b_log_item)
392 xfs_buf_item_relse(bp);
393 ASSERT(bp->b_log_item == NULL);
394
395 bp->b_iodone = NULL;
396 xfs_buf_ioend(bp);
397 }
398
399 /*
400 * This routine finds (to an approximation) the first block in the physical
401 * log which contains the given cycle. It uses a binary search algorithm.
402 * Note that the algorithm can not be perfect because the disk will not
403 * necessarily be perfect.
404 */
405 STATIC int
xlog_find_cycle_start(struct xlog * log,struct xfs_buf * bp,xfs_daddr_t first_blk,xfs_daddr_t * last_blk,uint cycle)406 xlog_find_cycle_start(
407 struct xlog *log,
408 struct xfs_buf *bp,
409 xfs_daddr_t first_blk,
410 xfs_daddr_t *last_blk,
411 uint cycle)
412 {
413 char *offset;
414 xfs_daddr_t mid_blk;
415 xfs_daddr_t end_blk;
416 uint mid_cycle;
417 int error;
418
419 end_blk = *last_blk;
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 while (mid_blk != first_blk && mid_blk != end_blk) {
422 error = xlog_bread(log, mid_blk, 1, bp, &offset);
423 if (error)
424 return error;
425 mid_cycle = xlog_get_cycle(offset);
426 if (mid_cycle == cycle)
427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
428 else
429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
430 mid_blk = BLK_AVG(first_blk, end_blk);
431 }
432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
433 (mid_blk == end_blk && mid_blk-1 == first_blk));
434
435 *last_blk = end_blk;
436
437 return 0;
438 }
439
440 /*
441 * Check that a range of blocks does not contain stop_on_cycle_no.
442 * Fill in *new_blk with the block offset where such a block is
443 * found, or with -1 (an invalid block number) if there is no such
444 * block in the range. The scan needs to occur from front to back
445 * and the pointer into the region must be updated since a later
446 * routine will need to perform another test.
447 */
448 STATIC int
xlog_find_verify_cycle(struct xlog * log,xfs_daddr_t start_blk,int nbblks,uint stop_on_cycle_no,xfs_daddr_t * new_blk)449 xlog_find_verify_cycle(
450 struct xlog *log,
451 xfs_daddr_t start_blk,
452 int nbblks,
453 uint stop_on_cycle_no,
454 xfs_daddr_t *new_blk)
455 {
456 xfs_daddr_t i, j;
457 uint cycle;
458 xfs_buf_t *bp;
459 xfs_daddr_t bufblks;
460 char *buf = NULL;
461 int error = 0;
462
463 /*
464 * Greedily allocate a buffer big enough to handle the full
465 * range of basic blocks we'll be examining. If that fails,
466 * try a smaller size. We need to be able to read at least
467 * a log sector, or we're out of luck.
468 */
469 bufblks = 1 << ffs(nbblks);
470 while (bufblks > log->l_logBBsize)
471 bufblks >>= 1;
472 while (!(bp = xlog_get_bp(log, bufblks))) {
473 bufblks >>= 1;
474 if (bufblks < log->l_sectBBsize)
475 return -ENOMEM;
476 }
477
478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
479 int bcount;
480
481 bcount = min(bufblks, (start_blk + nbblks - i));
482
483 error = xlog_bread(log, i, bcount, bp, &buf);
484 if (error)
485 goto out;
486
487 for (j = 0; j < bcount; j++) {
488 cycle = xlog_get_cycle(buf);
489 if (cycle == stop_on_cycle_no) {
490 *new_blk = i+j;
491 goto out;
492 }
493
494 buf += BBSIZE;
495 }
496 }
497
498 *new_blk = -1;
499
500 out:
501 xlog_put_bp(bp);
502 return error;
503 }
504
505 /*
506 * Potentially backup over partial log record write.
507 *
508 * In the typical case, last_blk is the number of the block directly after
509 * a good log record. Therefore, we subtract one to get the block number
510 * of the last block in the given buffer. extra_bblks contains the number
511 * of blocks we would have read on a previous read. This happens when the
512 * last log record is split over the end of the physical log.
513 *
514 * extra_bblks is the number of blocks potentially verified on a previous
515 * call to this routine.
516 */
517 STATIC int
xlog_find_verify_log_record(struct xlog * log,xfs_daddr_t start_blk,xfs_daddr_t * last_blk,int extra_bblks)518 xlog_find_verify_log_record(
519 struct xlog *log,
520 xfs_daddr_t start_blk,
521 xfs_daddr_t *last_blk,
522 int extra_bblks)
523 {
524 xfs_daddr_t i;
525 xfs_buf_t *bp;
526 char *offset = NULL;
527 xlog_rec_header_t *head = NULL;
528 int error = 0;
529 int smallmem = 0;
530 int num_blks = *last_blk - start_blk;
531 int xhdrs;
532
533 ASSERT(start_blk != 0 || *last_blk != start_blk);
534
535 if (!(bp = xlog_get_bp(log, num_blks))) {
536 if (!(bp = xlog_get_bp(log, 1)))
537 return -ENOMEM;
538 smallmem = 1;
539 } else {
540 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
541 if (error)
542 goto out;
543 offset += ((num_blks - 1) << BBSHIFT);
544 }
545
546 for (i = (*last_blk) - 1; i >= 0; i--) {
547 if (i < start_blk) {
548 /* valid log record not found */
549 xfs_warn(log->l_mp,
550 "Log inconsistent (didn't find previous header)");
551 ASSERT(0);
552 error = -EIO;
553 goto out;
554 }
555
556 if (smallmem) {
557 error = xlog_bread(log, i, 1, bp, &offset);
558 if (error)
559 goto out;
560 }
561
562 head = (xlog_rec_header_t *)offset;
563
564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
565 break;
566
567 if (!smallmem)
568 offset -= BBSIZE;
569 }
570
571 /*
572 * We hit the beginning of the physical log & still no header. Return
573 * to caller. If caller can handle a return of -1, then this routine
574 * will be called again for the end of the physical log.
575 */
576 if (i == -1) {
577 error = 1;
578 goto out;
579 }
580
581 /*
582 * We have the final block of the good log (the first block
583 * of the log record _before_ the head. So we check the uuid.
584 */
585 if ((error = xlog_header_check_mount(log->l_mp, head)))
586 goto out;
587
588 /*
589 * We may have found a log record header before we expected one.
590 * last_blk will be the 1st block # with a given cycle #. We may end
591 * up reading an entire log record. In this case, we don't want to
592 * reset last_blk. Only when last_blk points in the middle of a log
593 * record do we update last_blk.
594 */
595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
596 uint h_size = be32_to_cpu(head->h_size);
597
598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
599 if (h_size % XLOG_HEADER_CYCLE_SIZE)
600 xhdrs++;
601 } else {
602 xhdrs = 1;
603 }
604
605 if (*last_blk - i + extra_bblks !=
606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
607 *last_blk = i;
608
609 out:
610 xlog_put_bp(bp);
611 return error;
612 }
613
614 /*
615 * Head is defined to be the point of the log where the next log write
616 * could go. This means that incomplete LR writes at the end are
617 * eliminated when calculating the head. We aren't guaranteed that previous
618 * LR have complete transactions. We only know that a cycle number of
619 * current cycle number -1 won't be present in the log if we start writing
620 * from our current block number.
621 *
622 * last_blk contains the block number of the first block with a given
623 * cycle number.
624 *
625 * Return: zero if normal, non-zero if error.
626 */
627 STATIC int
xlog_find_head(struct xlog * log,xfs_daddr_t * return_head_blk)628 xlog_find_head(
629 struct xlog *log,
630 xfs_daddr_t *return_head_blk)
631 {
632 xfs_buf_t *bp;
633 char *offset;
634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
635 int num_scan_bblks;
636 uint first_half_cycle, last_half_cycle;
637 uint stop_on_cycle;
638 int error, log_bbnum = log->l_logBBsize;
639
640 /* Is the end of the log device zeroed? */
641 error = xlog_find_zeroed(log, &first_blk);
642 if (error < 0) {
643 xfs_warn(log->l_mp, "empty log check failed");
644 return error;
645 }
646 if (error == 1) {
647 *return_head_blk = first_blk;
648
649 /* Is the whole lot zeroed? */
650 if (!first_blk) {
651 /* Linux XFS shouldn't generate totally zeroed logs -
652 * mkfs etc write a dummy unmount record to a fresh
653 * log so we can store the uuid in there
654 */
655 xfs_warn(log->l_mp, "totally zeroed log");
656 }
657
658 return 0;
659 }
660
661 first_blk = 0; /* get cycle # of 1st block */
662 bp = xlog_get_bp(log, 1);
663 if (!bp)
664 return -ENOMEM;
665
666 error = xlog_bread(log, 0, 1, bp, &offset);
667 if (error)
668 goto bp_err;
669
670 first_half_cycle = xlog_get_cycle(offset);
671
672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
673 error = xlog_bread(log, last_blk, 1, bp, &offset);
674 if (error)
675 goto bp_err;
676
677 last_half_cycle = xlog_get_cycle(offset);
678 ASSERT(last_half_cycle != 0);
679
680 /*
681 * If the 1st half cycle number is equal to the last half cycle number,
682 * then the entire log is stamped with the same cycle number. In this
683 * case, head_blk can't be set to zero (which makes sense). The below
684 * math doesn't work out properly with head_blk equal to zero. Instead,
685 * we set it to log_bbnum which is an invalid block number, but this
686 * value makes the math correct. If head_blk doesn't changed through
687 * all the tests below, *head_blk is set to zero at the very end rather
688 * than log_bbnum. In a sense, log_bbnum and zero are the same block
689 * in a circular file.
690 */
691 if (first_half_cycle == last_half_cycle) {
692 /*
693 * In this case we believe that the entire log should have
694 * cycle number last_half_cycle. We need to scan backwards
695 * from the end verifying that there are no holes still
696 * containing last_half_cycle - 1. If we find such a hole,
697 * then the start of that hole will be the new head. The
698 * simple case looks like
699 * x | x ... | x - 1 | x
700 * Another case that fits this picture would be
701 * x | x + 1 | x ... | x
702 * In this case the head really is somewhere at the end of the
703 * log, as one of the latest writes at the beginning was
704 * incomplete.
705 * One more case is
706 * x | x + 1 | x ... | x - 1 | x
707 * This is really the combination of the above two cases, and
708 * the head has to end up at the start of the x-1 hole at the
709 * end of the log.
710 *
711 * In the 256k log case, we will read from the beginning to the
712 * end of the log and search for cycle numbers equal to x-1.
713 * We don't worry about the x+1 blocks that we encounter,
714 * because we know that they cannot be the head since the log
715 * started with x.
716 */
717 head_blk = log_bbnum;
718 stop_on_cycle = last_half_cycle - 1;
719 } else {
720 /*
721 * In this case we want to find the first block with cycle
722 * number matching last_half_cycle. We expect the log to be
723 * some variation on
724 * x + 1 ... | x ... | x
725 * The first block with cycle number x (last_half_cycle) will
726 * be where the new head belongs. First we do a binary search
727 * for the first occurrence of last_half_cycle. The binary
728 * search may not be totally accurate, so then we scan back
729 * from there looking for occurrences of last_half_cycle before
730 * us. If that backwards scan wraps around the beginning of
731 * the log, then we look for occurrences of last_half_cycle - 1
732 * at the end of the log. The cases we're looking for look
733 * like
734 * v binary search stopped here
735 * x + 1 ... | x | x + 1 | x ... | x
736 * ^ but we want to locate this spot
737 * or
738 * <---------> less than scan distance
739 * x + 1 ... | x ... | x - 1 | x
740 * ^ we want to locate this spot
741 */
742 stop_on_cycle = last_half_cycle;
743 if ((error = xlog_find_cycle_start(log, bp, first_blk,
744 &head_blk, last_half_cycle)))
745 goto bp_err;
746 }
747
748 /*
749 * Now validate the answer. Scan back some number of maximum possible
750 * blocks and make sure each one has the expected cycle number. The
751 * maximum is determined by the total possible amount of buffering
752 * in the in-core log. The following number can be made tighter if
753 * we actually look at the block size of the filesystem.
754 */
755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
756 if (head_blk >= num_scan_bblks) {
757 /*
758 * We are guaranteed that the entire check can be performed
759 * in one buffer.
760 */
761 start_blk = head_blk - num_scan_bblks;
762 if ((error = xlog_find_verify_cycle(log,
763 start_blk, num_scan_bblks,
764 stop_on_cycle, &new_blk)))
765 goto bp_err;
766 if (new_blk != -1)
767 head_blk = new_blk;
768 } else { /* need to read 2 parts of log */
769 /*
770 * We are going to scan backwards in the log in two parts.
771 * First we scan the physical end of the log. In this part
772 * of the log, we are looking for blocks with cycle number
773 * last_half_cycle - 1.
774 * If we find one, then we know that the log starts there, as
775 * we've found a hole that didn't get written in going around
776 * the end of the physical log. The simple case for this is
777 * x + 1 ... | x ... | x - 1 | x
778 * <---------> less than scan distance
779 * If all of the blocks at the end of the log have cycle number
780 * last_half_cycle, then we check the blocks at the start of
781 * the log looking for occurrences of last_half_cycle. If we
782 * find one, then our current estimate for the location of the
783 * first occurrence of last_half_cycle is wrong and we move
784 * back to the hole we've found. This case looks like
785 * x + 1 ... | x | x + 1 | x ...
786 * ^ binary search stopped here
787 * Another case we need to handle that only occurs in 256k
788 * logs is
789 * x + 1 ... | x ... | x+1 | x ...
790 * ^ binary search stops here
791 * In a 256k log, the scan at the end of the log will see the
792 * x + 1 blocks. We need to skip past those since that is
793 * certainly not the head of the log. By searching for
794 * last_half_cycle-1 we accomplish that.
795 */
796 ASSERT(head_blk <= INT_MAX &&
797 (xfs_daddr_t) num_scan_bblks >= head_blk);
798 start_blk = log_bbnum - (num_scan_bblks - head_blk);
799 if ((error = xlog_find_verify_cycle(log, start_blk,
800 num_scan_bblks - (int)head_blk,
801 (stop_on_cycle - 1), &new_blk)))
802 goto bp_err;
803 if (new_blk != -1) {
804 head_blk = new_blk;
805 goto validate_head;
806 }
807
808 /*
809 * Scan beginning of log now. The last part of the physical
810 * log is good. This scan needs to verify that it doesn't find
811 * the last_half_cycle.
812 */
813 start_blk = 0;
814 ASSERT(head_blk <= INT_MAX);
815 if ((error = xlog_find_verify_cycle(log,
816 start_blk, (int)head_blk,
817 stop_on_cycle, &new_blk)))
818 goto bp_err;
819 if (new_blk != -1)
820 head_blk = new_blk;
821 }
822
823 validate_head:
824 /*
825 * Now we need to make sure head_blk is not pointing to a block in
826 * the middle of a log record.
827 */
828 num_scan_bblks = XLOG_REC_SHIFT(log);
829 if (head_blk >= num_scan_bblks) {
830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
831
832 /* start ptr at last block ptr before head_blk */
833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
834 if (error == 1)
835 error = -EIO;
836 if (error)
837 goto bp_err;
838 } else {
839 start_blk = 0;
840 ASSERT(head_blk <= INT_MAX);
841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
842 if (error < 0)
843 goto bp_err;
844 if (error == 1) {
845 /* We hit the beginning of the log during our search */
846 start_blk = log_bbnum - (num_scan_bblks - head_blk);
847 new_blk = log_bbnum;
848 ASSERT(start_blk <= INT_MAX &&
849 (xfs_daddr_t) log_bbnum-start_blk >= 0);
850 ASSERT(head_blk <= INT_MAX);
851 error = xlog_find_verify_log_record(log, start_blk,
852 &new_blk, (int)head_blk);
853 if (error == 1)
854 error = -EIO;
855 if (error)
856 goto bp_err;
857 if (new_blk != log_bbnum)
858 head_blk = new_blk;
859 } else if (error)
860 goto bp_err;
861 }
862
863 xlog_put_bp(bp);
864 if (head_blk == log_bbnum)
865 *return_head_blk = 0;
866 else
867 *return_head_blk = head_blk;
868 /*
869 * When returning here, we have a good block number. Bad block
870 * means that during a previous crash, we didn't have a clean break
871 * from cycle number N to cycle number N-1. In this case, we need
872 * to find the first block with cycle number N-1.
873 */
874 return 0;
875
876 bp_err:
877 xlog_put_bp(bp);
878
879 if (error)
880 xfs_warn(log->l_mp, "failed to find log head");
881 return error;
882 }
883
884 /*
885 * Seek backwards in the log for log record headers.
886 *
887 * Given a starting log block, walk backwards until we find the provided number
888 * of records or hit the provided tail block. The return value is the number of
889 * records encountered or a negative error code. The log block and buffer
890 * pointer of the last record seen are returned in rblk and rhead respectively.
891 */
892 STATIC int
xlog_rseek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,struct xfs_buf * bp,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)893 xlog_rseek_logrec_hdr(
894 struct xlog *log,
895 xfs_daddr_t head_blk,
896 xfs_daddr_t tail_blk,
897 int count,
898 struct xfs_buf *bp,
899 xfs_daddr_t *rblk,
900 struct xlog_rec_header **rhead,
901 bool *wrapped)
902 {
903 int i;
904 int error;
905 int found = 0;
906 char *offset = NULL;
907 xfs_daddr_t end_blk;
908
909 *wrapped = false;
910
911 /*
912 * Walk backwards from the head block until we hit the tail or the first
913 * block in the log.
914 */
915 end_blk = head_blk > tail_blk ? tail_blk : 0;
916 for (i = (int) head_blk - 1; i >= end_blk; i--) {
917 error = xlog_bread(log, i, 1, bp, &offset);
918 if (error)
919 goto out_error;
920
921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
922 *rblk = i;
923 *rhead = (struct xlog_rec_header *) offset;
924 if (++found == count)
925 break;
926 }
927 }
928
929 /*
930 * If we haven't hit the tail block or the log record header count,
931 * start looking again from the end of the physical log. Note that
932 * callers can pass head == tail if the tail is not yet known.
933 */
934 if (tail_blk >= head_blk && found != count) {
935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
936 error = xlog_bread(log, i, 1, bp, &offset);
937 if (error)
938 goto out_error;
939
940 if (*(__be32 *)offset ==
941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 *wrapped = true;
943 *rblk = i;
944 *rhead = (struct xlog_rec_header *) offset;
945 if (++found == count)
946 break;
947 }
948 }
949 }
950
951 return found;
952
953 out_error:
954 return error;
955 }
956
957 /*
958 * Seek forward in the log for log record headers.
959 *
960 * Given head and tail blocks, walk forward from the tail block until we find
961 * the provided number of records or hit the head block. The return value is the
962 * number of records encountered or a negative error code. The log block and
963 * buffer pointer of the last record seen are returned in rblk and rhead
964 * respectively.
965 */
966 STATIC int
xlog_seek_logrec_hdr(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int count,struct xfs_buf * bp,xfs_daddr_t * rblk,struct xlog_rec_header ** rhead,bool * wrapped)967 xlog_seek_logrec_hdr(
968 struct xlog *log,
969 xfs_daddr_t head_blk,
970 xfs_daddr_t tail_blk,
971 int count,
972 struct xfs_buf *bp,
973 xfs_daddr_t *rblk,
974 struct xlog_rec_header **rhead,
975 bool *wrapped)
976 {
977 int i;
978 int error;
979 int found = 0;
980 char *offset = NULL;
981 xfs_daddr_t end_blk;
982
983 *wrapped = false;
984
985 /*
986 * Walk forward from the tail block until we hit the head or the last
987 * block in the log.
988 */
989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
990 for (i = (int) tail_blk; i <= end_blk; i++) {
991 error = xlog_bread(log, i, 1, bp, &offset);
992 if (error)
993 goto out_error;
994
995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
996 *rblk = i;
997 *rhead = (struct xlog_rec_header *) offset;
998 if (++found == count)
999 break;
1000 }
1001 }
1002
1003 /*
1004 * If we haven't hit the head block or the log record header count,
1005 * start looking again from the start of the physical log.
1006 */
1007 if (tail_blk > head_blk && found != count) {
1008 for (i = 0; i < (int) head_blk; i++) {
1009 error = xlog_bread(log, i, 1, bp, &offset);
1010 if (error)
1011 goto out_error;
1012
1013 if (*(__be32 *)offset ==
1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1015 *wrapped = true;
1016 *rblk = i;
1017 *rhead = (struct xlog_rec_header *) offset;
1018 if (++found == count)
1019 break;
1020 }
1021 }
1022 }
1023
1024 return found;
1025
1026 out_error:
1027 return error;
1028 }
1029
1030 /*
1031 * Calculate distance from head to tail (i.e., unused space in the log).
1032 */
1033 static inline int
xlog_tail_distance(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)1034 xlog_tail_distance(
1035 struct xlog *log,
1036 xfs_daddr_t head_blk,
1037 xfs_daddr_t tail_blk)
1038 {
1039 if (head_blk < tail_blk)
1040 return tail_blk - head_blk;
1041
1042 return tail_blk + (log->l_logBBsize - head_blk);
1043 }
1044
1045 /*
1046 * Verify the log tail. This is particularly important when torn or incomplete
1047 * writes have been detected near the front of the log and the head has been
1048 * walked back accordingly.
1049 *
1050 * We also have to handle the case where the tail was pinned and the head
1051 * blocked behind the tail right before a crash. If the tail had been pushed
1052 * immediately prior to the crash and the subsequent checkpoint was only
1053 * partially written, it's possible it overwrote the last referenced tail in the
1054 * log with garbage. This is not a coherency problem because the tail must have
1055 * been pushed before it can be overwritten, but appears as log corruption to
1056 * recovery because we have no way to know the tail was updated if the
1057 * subsequent checkpoint didn't write successfully.
1058 *
1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1060 * offending record is within max iclog bufs from the head, walk the tail
1061 * forward and retry until a valid tail is found or corruption is detected out
1062 * of the range of a possible overwrite.
1063 */
1064 STATIC int
xlog_verify_tail(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t * tail_blk,int hsize)1065 xlog_verify_tail(
1066 struct xlog *log,
1067 xfs_daddr_t head_blk,
1068 xfs_daddr_t *tail_blk,
1069 int hsize)
1070 {
1071 struct xlog_rec_header *thead;
1072 struct xfs_buf *bp;
1073 xfs_daddr_t first_bad;
1074 int error = 0;
1075 bool wrapped;
1076 xfs_daddr_t tmp_tail;
1077 xfs_daddr_t orig_tail = *tail_blk;
1078
1079 bp = xlog_get_bp(log, 1);
1080 if (!bp)
1081 return -ENOMEM;
1082
1083 /*
1084 * Make sure the tail points to a record (returns positive count on
1085 * success).
1086 */
1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1088 &tmp_tail, &thead, &wrapped);
1089 if (error < 0)
1090 goto out;
1091 if (*tail_blk != tmp_tail)
1092 *tail_blk = tmp_tail;
1093
1094 /*
1095 * Run a CRC check from the tail to the head. We can't just check
1096 * MAX_ICLOGS records past the tail because the tail may point to stale
1097 * blocks cleared during the search for the head/tail. These blocks are
1098 * overwritten with zero-length records and thus record count is not a
1099 * reliable indicator of the iclog state before a crash.
1100 */
1101 first_bad = 0;
1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1103 XLOG_RECOVER_CRCPASS, &first_bad);
1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1105 int tail_distance;
1106
1107 /*
1108 * Is corruption within range of the head? If so, retry from
1109 * the next record. Otherwise return an error.
1110 */
1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1113 break;
1114
1115 /* skip to the next record; returns positive count on success */
1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1117 &tmp_tail, &thead, &wrapped);
1118 if (error < 0)
1119 goto out;
1120
1121 *tail_blk = tmp_tail;
1122 first_bad = 0;
1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1124 XLOG_RECOVER_CRCPASS, &first_bad);
1125 }
1126
1127 if (!error && *tail_blk != orig_tail)
1128 xfs_warn(log->l_mp,
1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1130 orig_tail, *tail_blk);
1131 out:
1132 xlog_put_bp(bp);
1133 return error;
1134 }
1135
1136 /*
1137 * Detect and trim torn writes from the head of the log.
1138 *
1139 * Storage without sector atomicity guarantees can result in torn writes in the
1140 * log in the event of a crash. Our only means to detect this scenario is via
1141 * CRC verification. While we can't always be certain that CRC verification
1142 * failure is due to a torn write vs. an unrelated corruption, we do know that
1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1145 * the log and treat failures in this range as torn writes as a matter of
1146 * policy. In the event of CRC failure, the head is walked back to the last good
1147 * record in the log and the tail is updated from that record and verified.
1148 */
1149 STATIC int
xlog_verify_head(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,struct xfs_buf * bp,xfs_daddr_t * rhead_blk,struct xlog_rec_header ** rhead,bool * wrapped)1150 xlog_verify_head(
1151 struct xlog *log,
1152 xfs_daddr_t *head_blk, /* in/out: unverified head */
1153 xfs_daddr_t *tail_blk, /* out: tail block */
1154 struct xfs_buf *bp,
1155 xfs_daddr_t *rhead_blk, /* start blk of last record */
1156 struct xlog_rec_header **rhead, /* ptr to last record */
1157 bool *wrapped) /* last rec. wraps phys. log */
1158 {
1159 struct xlog_rec_header *tmp_rhead;
1160 struct xfs_buf *tmp_bp;
1161 xfs_daddr_t first_bad;
1162 xfs_daddr_t tmp_rhead_blk;
1163 int found;
1164 int error;
1165 bool tmp_wrapped;
1166
1167 /*
1168 * Check the head of the log for torn writes. Search backwards from the
1169 * head until we hit the tail or the maximum number of log record I/Os
1170 * that could have been in flight at one time. Use a temporary buffer so
1171 * we don't trash the rhead/bp pointers from the caller.
1172 */
1173 tmp_bp = xlog_get_bp(log, 1);
1174 if (!tmp_bp)
1175 return -ENOMEM;
1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1178 &tmp_rhead, &tmp_wrapped);
1179 xlog_put_bp(tmp_bp);
1180 if (error < 0)
1181 return error;
1182
1183 /*
1184 * Now run a CRC verification pass over the records starting at the
1185 * block found above to the current head. If a CRC failure occurs, the
1186 * log block of the first bad record is saved in first_bad.
1187 */
1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1189 XLOG_RECOVER_CRCPASS, &first_bad);
1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1191 /*
1192 * We've hit a potential torn write. Reset the error and warn
1193 * about it.
1194 */
1195 error = 0;
1196 xfs_warn(log->l_mp,
1197 "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1198 first_bad, *head_blk);
1199
1200 /*
1201 * Get the header block and buffer pointer for the last good
1202 * record before the bad record.
1203 *
1204 * Note that xlog_find_tail() clears the blocks at the new head
1205 * (i.e., the records with invalid CRC) if the cycle number
1206 * matches the the current cycle.
1207 */
1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1209 rhead_blk, rhead, wrapped);
1210 if (found < 0)
1211 return found;
1212 if (found == 0) /* XXX: right thing to do here? */
1213 return -EIO;
1214
1215 /*
1216 * Reset the head block to the starting block of the first bad
1217 * log record and set the tail block based on the last good
1218 * record.
1219 *
1220 * Bail out if the updated head/tail match as this indicates
1221 * possible corruption outside of the acceptable
1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1223 */
1224 *head_blk = first_bad;
1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1226 if (*head_blk == *tail_blk) {
1227 ASSERT(0);
1228 return 0;
1229 }
1230 }
1231 if (error)
1232 return error;
1233
1234 return xlog_verify_tail(log, *head_blk, tail_blk,
1235 be32_to_cpu((*rhead)->h_size));
1236 }
1237
1238 /*
1239 * We need to make sure we handle log wrapping properly, so we can't use the
1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1241 * log.
1242 *
1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1244 * operation here and cast it back to a 64 bit daddr on return.
1245 */
1246 static inline xfs_daddr_t
xlog_wrap_logbno(struct xlog * log,xfs_daddr_t bno)1247 xlog_wrap_logbno(
1248 struct xlog *log,
1249 xfs_daddr_t bno)
1250 {
1251 int mod;
1252
1253 div_s64_rem(bno, log->l_logBBsize, &mod);
1254 return mod;
1255 }
1256
1257 /*
1258 * Check whether the head of the log points to an unmount record. In other
1259 * words, determine whether the log is clean. If so, update the in-core state
1260 * appropriately.
1261 */
1262 static int
xlog_check_unmount_rec(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,struct xfs_buf * bp,bool * clean)1263 xlog_check_unmount_rec(
1264 struct xlog *log,
1265 xfs_daddr_t *head_blk,
1266 xfs_daddr_t *tail_blk,
1267 struct xlog_rec_header *rhead,
1268 xfs_daddr_t rhead_blk,
1269 struct xfs_buf *bp,
1270 bool *clean)
1271 {
1272 struct xlog_op_header *op_head;
1273 xfs_daddr_t umount_data_blk;
1274 xfs_daddr_t after_umount_blk;
1275 int hblks;
1276 int error;
1277 char *offset;
1278
1279 *clean = false;
1280
1281 /*
1282 * Look for unmount record. If we find it, then we know there was a
1283 * clean unmount. Since 'i' could be the last block in the physical
1284 * log, we convert to a log block before comparing to the head_blk.
1285 *
1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1287 * below. We won't want to clear the unmount record if there is one, so
1288 * we pass the lsn of the unmount record rather than the block after it.
1289 */
1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1291 int h_size = be32_to_cpu(rhead->h_size);
1292 int h_version = be32_to_cpu(rhead->h_version);
1293
1294 if ((h_version & XLOG_VERSION_2) &&
1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1297 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1298 hblks++;
1299 } else {
1300 hblks = 1;
1301 }
1302 } else {
1303 hblks = 1;
1304 }
1305
1306 after_umount_blk = xlog_wrap_logbno(log,
1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1308
1309 if (*head_blk == after_umount_blk &&
1310 be32_to_cpu(rhead->h_num_logops) == 1) {
1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1313 if (error)
1314 return error;
1315
1316 op_head = (struct xlog_op_header *)offset;
1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1318 /*
1319 * Set tail and last sync so that newly written log
1320 * records will point recovery to after the current
1321 * unmount record.
1322 */
1323 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1324 log->l_curr_cycle, after_umount_blk);
1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1326 log->l_curr_cycle, after_umount_blk);
1327 *tail_blk = after_umount_blk;
1328
1329 *clean = true;
1330 }
1331 }
1332
1333 return 0;
1334 }
1335
1336 static void
xlog_set_state(struct xlog * log,xfs_daddr_t head_blk,struct xlog_rec_header * rhead,xfs_daddr_t rhead_blk,bool bump_cycle)1337 xlog_set_state(
1338 struct xlog *log,
1339 xfs_daddr_t head_blk,
1340 struct xlog_rec_header *rhead,
1341 xfs_daddr_t rhead_blk,
1342 bool bump_cycle)
1343 {
1344 /*
1345 * Reset log values according to the state of the log when we
1346 * crashed. In the case where head_blk == 0, we bump curr_cycle
1347 * one because the next write starts a new cycle rather than
1348 * continuing the cycle of the last good log record. At this
1349 * point we have guaranteed that all partial log records have been
1350 * accounted for. Therefore, we know that the last good log record
1351 * written was complete and ended exactly on the end boundary
1352 * of the physical log.
1353 */
1354 log->l_prev_block = rhead_blk;
1355 log->l_curr_block = (int)head_blk;
1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1357 if (bump_cycle)
1358 log->l_curr_cycle++;
1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1362 BBTOB(log->l_curr_block));
1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1364 BBTOB(log->l_curr_block));
1365 }
1366
1367 /*
1368 * Find the sync block number or the tail of the log.
1369 *
1370 * This will be the block number of the last record to have its
1371 * associated buffers synced to disk. Every log record header has
1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1373 * to get a sync block number. The only concern is to figure out which
1374 * log record header to believe.
1375 *
1376 * The following algorithm uses the log record header with the largest
1377 * lsn. The entire log record does not need to be valid. We only care
1378 * that the header is valid.
1379 *
1380 * We could speed up search by using current head_blk buffer, but it is not
1381 * available.
1382 */
1383 STATIC int
xlog_find_tail(struct xlog * log,xfs_daddr_t * head_blk,xfs_daddr_t * tail_blk)1384 xlog_find_tail(
1385 struct xlog *log,
1386 xfs_daddr_t *head_blk,
1387 xfs_daddr_t *tail_blk)
1388 {
1389 xlog_rec_header_t *rhead;
1390 char *offset = NULL;
1391 xfs_buf_t *bp;
1392 int error;
1393 xfs_daddr_t rhead_blk;
1394 xfs_lsn_t tail_lsn;
1395 bool wrapped = false;
1396 bool clean = false;
1397
1398 /*
1399 * Find previous log record
1400 */
1401 if ((error = xlog_find_head(log, head_blk)))
1402 return error;
1403 ASSERT(*head_blk < INT_MAX);
1404
1405 bp = xlog_get_bp(log, 1);
1406 if (!bp)
1407 return -ENOMEM;
1408 if (*head_blk == 0) { /* special case */
1409 error = xlog_bread(log, 0, 1, bp, &offset);
1410 if (error)
1411 goto done;
1412
1413 if (xlog_get_cycle(offset) == 0) {
1414 *tail_blk = 0;
1415 /* leave all other log inited values alone */
1416 goto done;
1417 }
1418 }
1419
1420 /*
1421 * Search backwards through the log looking for the log record header
1422 * block. This wraps all the way back around to the head so something is
1423 * seriously wrong if we can't find it.
1424 */
1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1426 &rhead_blk, &rhead, &wrapped);
1427 if (error < 0)
1428 return error;
1429 if (!error) {
1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1431 return -EIO;
1432 }
1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1434
1435 /*
1436 * Set the log state based on the current head record.
1437 */
1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1439 tail_lsn = atomic64_read(&log->l_tail_lsn);
1440
1441 /*
1442 * Look for an unmount record at the head of the log. This sets the log
1443 * state to determine whether recovery is necessary.
1444 */
1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1446 rhead_blk, bp, &clean);
1447 if (error)
1448 goto done;
1449
1450 /*
1451 * Verify the log head if the log is not clean (e.g., we have anything
1452 * but an unmount record at the head). This uses CRC verification to
1453 * detect and trim torn writes. If discovered, CRC failures are
1454 * considered torn writes and the log head is trimmed accordingly.
1455 *
1456 * Note that we can only run CRC verification when the log is dirty
1457 * because there's no guarantee that the log data behind an unmount
1458 * record is compatible with the current architecture.
1459 */
1460 if (!clean) {
1461 xfs_daddr_t orig_head = *head_blk;
1462
1463 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1464 &rhead_blk, &rhead, &wrapped);
1465 if (error)
1466 goto done;
1467
1468 /* update in-core state again if the head changed */
1469 if (*head_blk != orig_head) {
1470 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1471 wrapped);
1472 tail_lsn = atomic64_read(&log->l_tail_lsn);
1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1474 rhead, rhead_blk, bp,
1475 &clean);
1476 if (error)
1477 goto done;
1478 }
1479 }
1480
1481 /*
1482 * Note that the unmount was clean. If the unmount was not clean, we
1483 * need to know this to rebuild the superblock counters from the perag
1484 * headers if we have a filesystem using non-persistent counters.
1485 */
1486 if (clean)
1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1488
1489 /*
1490 * Make sure that there are no blocks in front of the head
1491 * with the same cycle number as the head. This can happen
1492 * because we allow multiple outstanding log writes concurrently,
1493 * and the later writes might make it out before earlier ones.
1494 *
1495 * We use the lsn from before modifying it so that we'll never
1496 * overwrite the unmount record after a clean unmount.
1497 *
1498 * Do this only if we are going to recover the filesystem
1499 *
1500 * NOTE: This used to say "if (!readonly)"
1501 * However on Linux, we can & do recover a read-only filesystem.
1502 * We only skip recovery if NORECOVERY is specified on mount,
1503 * in which case we would not be here.
1504 *
1505 * But... if the -device- itself is readonly, just skip this.
1506 * We can't recover this device anyway, so it won't matter.
1507 */
1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1509 error = xlog_clear_stale_blocks(log, tail_lsn);
1510
1511 done:
1512 xlog_put_bp(bp);
1513
1514 if (error)
1515 xfs_warn(log->l_mp, "failed to locate log tail");
1516 return error;
1517 }
1518
1519 /*
1520 * Is the log zeroed at all?
1521 *
1522 * The last binary search should be changed to perform an X block read
1523 * once X becomes small enough. You can then search linearly through
1524 * the X blocks. This will cut down on the number of reads we need to do.
1525 *
1526 * If the log is partially zeroed, this routine will pass back the blkno
1527 * of the first block with cycle number 0. It won't have a complete LR
1528 * preceding it.
1529 *
1530 * Return:
1531 * 0 => the log is completely written to
1532 * 1 => use *blk_no as the first block of the log
1533 * <0 => error has occurred
1534 */
1535 STATIC int
xlog_find_zeroed(struct xlog * log,xfs_daddr_t * blk_no)1536 xlog_find_zeroed(
1537 struct xlog *log,
1538 xfs_daddr_t *blk_no)
1539 {
1540 xfs_buf_t *bp;
1541 char *offset;
1542 uint first_cycle, last_cycle;
1543 xfs_daddr_t new_blk, last_blk, start_blk;
1544 xfs_daddr_t num_scan_bblks;
1545 int error, log_bbnum = log->l_logBBsize;
1546
1547 *blk_no = 0;
1548
1549 /* check totally zeroed log */
1550 bp = xlog_get_bp(log, 1);
1551 if (!bp)
1552 return -ENOMEM;
1553 error = xlog_bread(log, 0, 1, bp, &offset);
1554 if (error)
1555 goto bp_err;
1556
1557 first_cycle = xlog_get_cycle(offset);
1558 if (first_cycle == 0) { /* completely zeroed log */
1559 *blk_no = 0;
1560 xlog_put_bp(bp);
1561 return 1;
1562 }
1563
1564 /* check partially zeroed log */
1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1566 if (error)
1567 goto bp_err;
1568
1569 last_cycle = xlog_get_cycle(offset);
1570 if (last_cycle != 0) { /* log completely written to */
1571 xlog_put_bp(bp);
1572 return 0;
1573 }
1574
1575 /* we have a partially zeroed log */
1576 last_blk = log_bbnum-1;
1577 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1578 goto bp_err;
1579
1580 /*
1581 * Validate the answer. Because there is no way to guarantee that
1582 * the entire log is made up of log records which are the same size,
1583 * we scan over the defined maximum blocks. At this point, the maximum
1584 * is not chosen to mean anything special. XXXmiken
1585 */
1586 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1587 ASSERT(num_scan_bblks <= INT_MAX);
1588
1589 if (last_blk < num_scan_bblks)
1590 num_scan_bblks = last_blk;
1591 start_blk = last_blk - num_scan_bblks;
1592
1593 /*
1594 * We search for any instances of cycle number 0 that occur before
1595 * our current estimate of the head. What we're trying to detect is
1596 * 1 ... | 0 | 1 | 0...
1597 * ^ binary search ends here
1598 */
1599 if ((error = xlog_find_verify_cycle(log, start_blk,
1600 (int)num_scan_bblks, 0, &new_blk)))
1601 goto bp_err;
1602 if (new_blk != -1)
1603 last_blk = new_blk;
1604
1605 /*
1606 * Potentially backup over partial log record write. We don't need
1607 * to search the end of the log because we know it is zero.
1608 */
1609 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1610 if (error == 1)
1611 error = -EIO;
1612 if (error)
1613 goto bp_err;
1614
1615 *blk_no = last_blk;
1616 bp_err:
1617 xlog_put_bp(bp);
1618 if (error)
1619 return error;
1620 return 1;
1621 }
1622
1623 /*
1624 * These are simple subroutines used by xlog_clear_stale_blocks() below
1625 * to initialize a buffer full of empty log record headers and write
1626 * them into the log.
1627 */
1628 STATIC void
xlog_add_record(struct xlog * log,char * buf,int cycle,int block,int tail_cycle,int tail_block)1629 xlog_add_record(
1630 struct xlog *log,
1631 char *buf,
1632 int cycle,
1633 int block,
1634 int tail_cycle,
1635 int tail_block)
1636 {
1637 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1638
1639 memset(buf, 0, BBSIZE);
1640 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1641 recp->h_cycle = cpu_to_be32(cycle);
1642 recp->h_version = cpu_to_be32(
1643 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1644 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1645 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1646 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1647 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1648 }
1649
1650 STATIC int
xlog_write_log_records(struct xlog * log,int cycle,int start_block,int blocks,int tail_cycle,int tail_block)1651 xlog_write_log_records(
1652 struct xlog *log,
1653 int cycle,
1654 int start_block,
1655 int blocks,
1656 int tail_cycle,
1657 int tail_block)
1658 {
1659 char *offset;
1660 xfs_buf_t *bp;
1661 int balign, ealign;
1662 int sectbb = log->l_sectBBsize;
1663 int end_block = start_block + blocks;
1664 int bufblks;
1665 int error = 0;
1666 int i, j = 0;
1667
1668 /*
1669 * Greedily allocate a buffer big enough to handle the full
1670 * range of basic blocks to be written. If that fails, try
1671 * a smaller size. We need to be able to write at least a
1672 * log sector, or we're out of luck.
1673 */
1674 bufblks = 1 << ffs(blocks);
1675 while (bufblks > log->l_logBBsize)
1676 bufblks >>= 1;
1677 while (!(bp = xlog_get_bp(log, bufblks))) {
1678 bufblks >>= 1;
1679 if (bufblks < sectbb)
1680 return -ENOMEM;
1681 }
1682
1683 /* We may need to do a read at the start to fill in part of
1684 * the buffer in the starting sector not covered by the first
1685 * write below.
1686 */
1687 balign = round_down(start_block, sectbb);
1688 if (balign != start_block) {
1689 error = xlog_bread_noalign(log, start_block, 1, bp);
1690 if (error)
1691 goto out_put_bp;
1692
1693 j = start_block - balign;
1694 }
1695
1696 for (i = start_block; i < end_block; i += bufblks) {
1697 int bcount, endcount;
1698
1699 bcount = min(bufblks, end_block - start_block);
1700 endcount = bcount - j;
1701
1702 /* We may need to do a read at the end to fill in part of
1703 * the buffer in the final sector not covered by the write.
1704 * If this is the same sector as the above read, skip it.
1705 */
1706 ealign = round_down(end_block, sectbb);
1707 if (j == 0 && (start_block + endcount > ealign)) {
1708 offset = bp->b_addr + BBTOB(ealign - start_block);
1709 error = xlog_bread_offset(log, ealign, sectbb,
1710 bp, offset);
1711 if (error)
1712 break;
1713
1714 }
1715
1716 offset = xlog_align(log, start_block, endcount, bp);
1717 for (; j < endcount; j++) {
1718 xlog_add_record(log, offset, cycle, i+j,
1719 tail_cycle, tail_block);
1720 offset += BBSIZE;
1721 }
1722 error = xlog_bwrite(log, start_block, endcount, bp);
1723 if (error)
1724 break;
1725 start_block += endcount;
1726 j = 0;
1727 }
1728
1729 out_put_bp:
1730 xlog_put_bp(bp);
1731 return error;
1732 }
1733
1734 /*
1735 * This routine is called to blow away any incomplete log writes out
1736 * in front of the log head. We do this so that we won't become confused
1737 * if we come up, write only a little bit more, and then crash again.
1738 * If we leave the partial log records out there, this situation could
1739 * cause us to think those partial writes are valid blocks since they
1740 * have the current cycle number. We get rid of them by overwriting them
1741 * with empty log records with the old cycle number rather than the
1742 * current one.
1743 *
1744 * The tail lsn is passed in rather than taken from
1745 * the log so that we will not write over the unmount record after a
1746 * clean unmount in a 512 block log. Doing so would leave the log without
1747 * any valid log records in it until a new one was written. If we crashed
1748 * during that time we would not be able to recover.
1749 */
1750 STATIC int
xlog_clear_stale_blocks(struct xlog * log,xfs_lsn_t tail_lsn)1751 xlog_clear_stale_blocks(
1752 struct xlog *log,
1753 xfs_lsn_t tail_lsn)
1754 {
1755 int tail_cycle, head_cycle;
1756 int tail_block, head_block;
1757 int tail_distance, max_distance;
1758 int distance;
1759 int error;
1760
1761 tail_cycle = CYCLE_LSN(tail_lsn);
1762 tail_block = BLOCK_LSN(tail_lsn);
1763 head_cycle = log->l_curr_cycle;
1764 head_block = log->l_curr_block;
1765
1766 /*
1767 * Figure out the distance between the new head of the log
1768 * and the tail. We want to write over any blocks beyond the
1769 * head that we may have written just before the crash, but
1770 * we don't want to overwrite the tail of the log.
1771 */
1772 if (head_cycle == tail_cycle) {
1773 /*
1774 * The tail is behind the head in the physical log,
1775 * so the distance from the head to the tail is the
1776 * distance from the head to the end of the log plus
1777 * the distance from the beginning of the log to the
1778 * tail.
1779 */
1780 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1781 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1782 XFS_ERRLEVEL_LOW, log->l_mp);
1783 return -EFSCORRUPTED;
1784 }
1785 tail_distance = tail_block + (log->l_logBBsize - head_block);
1786 } else {
1787 /*
1788 * The head is behind the tail in the physical log,
1789 * so the distance from the head to the tail is just
1790 * the tail block minus the head block.
1791 */
1792 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1793 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1794 XFS_ERRLEVEL_LOW, log->l_mp);
1795 return -EFSCORRUPTED;
1796 }
1797 tail_distance = tail_block - head_block;
1798 }
1799
1800 /*
1801 * If the head is right up against the tail, we can't clear
1802 * anything.
1803 */
1804 if (tail_distance <= 0) {
1805 ASSERT(tail_distance == 0);
1806 return 0;
1807 }
1808
1809 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1810 /*
1811 * Take the smaller of the maximum amount of outstanding I/O
1812 * we could have and the distance to the tail to clear out.
1813 * We take the smaller so that we don't overwrite the tail and
1814 * we don't waste all day writing from the head to the tail
1815 * for no reason.
1816 */
1817 max_distance = min(max_distance, tail_distance);
1818
1819 if ((head_block + max_distance) <= log->l_logBBsize) {
1820 /*
1821 * We can stomp all the blocks we need to without
1822 * wrapping around the end of the log. Just do it
1823 * in a single write. Use the cycle number of the
1824 * current cycle minus one so that the log will look like:
1825 * n ... | n - 1 ...
1826 */
1827 error = xlog_write_log_records(log, (head_cycle - 1),
1828 head_block, max_distance, tail_cycle,
1829 tail_block);
1830 if (error)
1831 return error;
1832 } else {
1833 /*
1834 * We need to wrap around the end of the physical log in
1835 * order to clear all the blocks. Do it in two separate
1836 * I/Os. The first write should be from the head to the
1837 * end of the physical log, and it should use the current
1838 * cycle number minus one just like above.
1839 */
1840 distance = log->l_logBBsize - head_block;
1841 error = xlog_write_log_records(log, (head_cycle - 1),
1842 head_block, distance, tail_cycle,
1843 tail_block);
1844
1845 if (error)
1846 return error;
1847
1848 /*
1849 * Now write the blocks at the start of the physical log.
1850 * This writes the remainder of the blocks we want to clear.
1851 * It uses the current cycle number since we're now on the
1852 * same cycle as the head so that we get:
1853 * n ... n ... | n - 1 ...
1854 * ^^^^^ blocks we're writing
1855 */
1856 distance = max_distance - (log->l_logBBsize - head_block);
1857 error = xlog_write_log_records(log, head_cycle, 0, distance,
1858 tail_cycle, tail_block);
1859 if (error)
1860 return error;
1861 }
1862
1863 return 0;
1864 }
1865
1866 /******************************************************************************
1867 *
1868 * Log recover routines
1869 *
1870 ******************************************************************************
1871 */
1872
1873 /*
1874 * Sort the log items in the transaction.
1875 *
1876 * The ordering constraints are defined by the inode allocation and unlink
1877 * behaviour. The rules are:
1878 *
1879 * 1. Every item is only logged once in a given transaction. Hence it
1880 * represents the last logged state of the item. Hence ordering is
1881 * dependent on the order in which operations need to be performed so
1882 * required initial conditions are always met.
1883 *
1884 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1885 * there's nothing to replay from them so we can simply cull them
1886 * from the transaction. However, we can't do that until after we've
1887 * replayed all the other items because they may be dependent on the
1888 * cancelled buffer and replaying the cancelled buffer can remove it
1889 * form the cancelled buffer table. Hence they have tobe done last.
1890 *
1891 * 3. Inode allocation buffers must be replayed before inode items that
1892 * read the buffer and replay changes into it. For filesystems using the
1893 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1894 * treated the same as inode allocation buffers as they create and
1895 * initialise the buffers directly.
1896 *
1897 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1898 * This ensures that inodes are completely flushed to the inode buffer
1899 * in a "free" state before we remove the unlinked inode list pointer.
1900 *
1901 * Hence the ordering needs to be inode allocation buffers first, inode items
1902 * second, inode unlink buffers third and cancelled buffers last.
1903 *
1904 * But there's a problem with that - we can't tell an inode allocation buffer
1905 * apart from a regular buffer, so we can't separate them. We can, however,
1906 * tell an inode unlink buffer from the others, and so we can separate them out
1907 * from all the other buffers and move them to last.
1908 *
1909 * Hence, 4 lists, in order from head to tail:
1910 * - buffer_list for all buffers except cancelled/inode unlink buffers
1911 * - item_list for all non-buffer items
1912 * - inode_buffer_list for inode unlink buffers
1913 * - cancel_list for the cancelled buffers
1914 *
1915 * Note that we add objects to the tail of the lists so that first-to-last
1916 * ordering is preserved within the lists. Adding objects to the head of the
1917 * list means when we traverse from the head we walk them in last-to-first
1918 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1919 * but for all other items there may be specific ordering that we need to
1920 * preserve.
1921 */
1922 STATIC int
xlog_recover_reorder_trans(struct xlog * log,struct xlog_recover * trans,int pass)1923 xlog_recover_reorder_trans(
1924 struct xlog *log,
1925 struct xlog_recover *trans,
1926 int pass)
1927 {
1928 xlog_recover_item_t *item, *n;
1929 int error = 0;
1930 LIST_HEAD(sort_list);
1931 LIST_HEAD(cancel_list);
1932 LIST_HEAD(buffer_list);
1933 LIST_HEAD(inode_buffer_list);
1934 LIST_HEAD(inode_list);
1935
1936 list_splice_init(&trans->r_itemq, &sort_list);
1937 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1938 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1939
1940 switch (ITEM_TYPE(item)) {
1941 case XFS_LI_ICREATE:
1942 list_move_tail(&item->ri_list, &buffer_list);
1943 break;
1944 case XFS_LI_BUF:
1945 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
1946 trace_xfs_log_recover_item_reorder_head(log,
1947 trans, item, pass);
1948 list_move(&item->ri_list, &cancel_list);
1949 break;
1950 }
1951 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1952 list_move(&item->ri_list, &inode_buffer_list);
1953 break;
1954 }
1955 list_move_tail(&item->ri_list, &buffer_list);
1956 break;
1957 case XFS_LI_INODE:
1958 case XFS_LI_DQUOT:
1959 case XFS_LI_QUOTAOFF:
1960 case XFS_LI_EFD:
1961 case XFS_LI_EFI:
1962 case XFS_LI_RUI:
1963 case XFS_LI_RUD:
1964 case XFS_LI_CUI:
1965 case XFS_LI_CUD:
1966 case XFS_LI_BUI:
1967 case XFS_LI_BUD:
1968 trace_xfs_log_recover_item_reorder_tail(log,
1969 trans, item, pass);
1970 list_move_tail(&item->ri_list, &inode_list);
1971 break;
1972 default:
1973 xfs_warn(log->l_mp,
1974 "%s: unrecognized type of log operation",
1975 __func__);
1976 ASSERT(0);
1977 /*
1978 * return the remaining items back to the transaction
1979 * item list so they can be freed in caller.
1980 */
1981 if (!list_empty(&sort_list))
1982 list_splice_init(&sort_list, &trans->r_itemq);
1983 error = -EIO;
1984 goto out;
1985 }
1986 }
1987 out:
1988 ASSERT(list_empty(&sort_list));
1989 if (!list_empty(&buffer_list))
1990 list_splice(&buffer_list, &trans->r_itemq);
1991 if (!list_empty(&inode_list))
1992 list_splice_tail(&inode_list, &trans->r_itemq);
1993 if (!list_empty(&inode_buffer_list))
1994 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1995 if (!list_empty(&cancel_list))
1996 list_splice_tail(&cancel_list, &trans->r_itemq);
1997 return error;
1998 }
1999
2000 /*
2001 * Build up the table of buf cancel records so that we don't replay
2002 * cancelled data in the second pass. For buffer records that are
2003 * not cancel records, there is nothing to do here so we just return.
2004 *
2005 * If we get a cancel record which is already in the table, this indicates
2006 * that the buffer was cancelled multiple times. In order to ensure
2007 * that during pass 2 we keep the record in the table until we reach its
2008 * last occurrence in the log, we keep a reference count in the cancel
2009 * record in the table to tell us how many times we expect to see this
2010 * record during the second pass.
2011 */
2012 STATIC int
xlog_recover_buffer_pass1(struct xlog * log,struct xlog_recover_item * item)2013 xlog_recover_buffer_pass1(
2014 struct xlog *log,
2015 struct xlog_recover_item *item)
2016 {
2017 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2018 struct list_head *bucket;
2019 struct xfs_buf_cancel *bcp;
2020
2021 /*
2022 * If this isn't a cancel buffer item, then just return.
2023 */
2024 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
2025 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
2026 return 0;
2027 }
2028
2029 /*
2030 * Insert an xfs_buf_cancel record into the hash table of them.
2031 * If there is already an identical record, bump its reference count.
2032 */
2033 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2034 list_for_each_entry(bcp, bucket, bc_list) {
2035 if (bcp->bc_blkno == buf_f->blf_blkno &&
2036 bcp->bc_len == buf_f->blf_len) {
2037 bcp->bc_refcount++;
2038 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
2039 return 0;
2040 }
2041 }
2042
2043 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2044 bcp->bc_blkno = buf_f->blf_blkno;
2045 bcp->bc_len = buf_f->blf_len;
2046 bcp->bc_refcount = 1;
2047 list_add_tail(&bcp->bc_list, bucket);
2048
2049 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
2050 return 0;
2051 }
2052
2053 /*
2054 * Check to see whether the buffer being recovered has a corresponding
2055 * entry in the buffer cancel record table. If it is, return the cancel
2056 * buffer structure to the caller.
2057 */
2058 STATIC struct xfs_buf_cancel *
xlog_peek_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,unsigned short flags)2059 xlog_peek_buffer_cancelled(
2060 struct xlog *log,
2061 xfs_daddr_t blkno,
2062 uint len,
2063 unsigned short flags)
2064 {
2065 struct list_head *bucket;
2066 struct xfs_buf_cancel *bcp;
2067
2068 if (!log->l_buf_cancel_table) {
2069 /* empty table means no cancelled buffers in the log */
2070 ASSERT(!(flags & XFS_BLF_CANCEL));
2071 return NULL;
2072 }
2073
2074 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2075 list_for_each_entry(bcp, bucket, bc_list) {
2076 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
2077 return bcp;
2078 }
2079
2080 /*
2081 * We didn't find a corresponding entry in the table, so return 0 so
2082 * that the buffer is NOT cancelled.
2083 */
2084 ASSERT(!(flags & XFS_BLF_CANCEL));
2085 return NULL;
2086 }
2087
2088 /*
2089 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2090 * otherwise return 0. If the buffer is actually a buffer cancel item
2091 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2092 * table and remove it from the table if this is the last reference.
2093 *
2094 * We remove the cancel record from the table when we encounter its last
2095 * occurrence in the log so that if the same buffer is re-used again after its
2096 * last cancellation we actually replay the changes made at that point.
2097 */
2098 STATIC int
xlog_check_buffer_cancelled(struct xlog * log,xfs_daddr_t blkno,uint len,unsigned short flags)2099 xlog_check_buffer_cancelled(
2100 struct xlog *log,
2101 xfs_daddr_t blkno,
2102 uint len,
2103 unsigned short flags)
2104 {
2105 struct xfs_buf_cancel *bcp;
2106
2107 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2108 if (!bcp)
2109 return 0;
2110
2111 /*
2112 * We've go a match, so return 1 so that the recovery of this buffer
2113 * is cancelled. If this buffer is actually a buffer cancel log
2114 * item, then decrement the refcount on the one in the table and
2115 * remove it if this is the last reference.
2116 */
2117 if (flags & XFS_BLF_CANCEL) {
2118 if (--bcp->bc_refcount == 0) {
2119 list_del(&bcp->bc_list);
2120 kmem_free(bcp);
2121 }
2122 }
2123 return 1;
2124 }
2125
2126 /*
2127 * Perform recovery for a buffer full of inodes. In these buffers, the only
2128 * data which should be recovered is that which corresponds to the
2129 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2130 * data for the inodes is always logged through the inodes themselves rather
2131 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
2132 *
2133 * The only time when buffers full of inodes are fully recovered is when the
2134 * buffer is full of newly allocated inodes. In this case the buffer will
2135 * not be marked as an inode buffer and so will be sent to
2136 * xlog_recover_do_reg_buffer() below during recovery.
2137 */
2138 STATIC int
xlog_recover_do_inode_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f)2139 xlog_recover_do_inode_buffer(
2140 struct xfs_mount *mp,
2141 xlog_recover_item_t *item,
2142 struct xfs_buf *bp,
2143 xfs_buf_log_format_t *buf_f)
2144 {
2145 int i;
2146 int item_index = 0;
2147 int bit = 0;
2148 int nbits = 0;
2149 int reg_buf_offset = 0;
2150 int reg_buf_bytes = 0;
2151 int next_unlinked_offset;
2152 int inodes_per_buf;
2153 xfs_agino_t *logged_nextp;
2154 xfs_agino_t *buffer_nextp;
2155
2156 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
2157
2158 /*
2159 * Post recovery validation only works properly on CRC enabled
2160 * filesystems.
2161 */
2162 if (xfs_sb_version_hascrc(&mp->m_sb))
2163 bp->b_ops = &xfs_inode_buf_ops;
2164
2165 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
2166 for (i = 0; i < inodes_per_buf; i++) {
2167 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2168 offsetof(xfs_dinode_t, di_next_unlinked);
2169
2170 while (next_unlinked_offset >=
2171 (reg_buf_offset + reg_buf_bytes)) {
2172 /*
2173 * The next di_next_unlinked field is beyond
2174 * the current logged region. Find the next
2175 * logged region that contains or is beyond
2176 * the current di_next_unlinked field.
2177 */
2178 bit += nbits;
2179 bit = xfs_next_bit(buf_f->blf_data_map,
2180 buf_f->blf_map_size, bit);
2181
2182 /*
2183 * If there are no more logged regions in the
2184 * buffer, then we're done.
2185 */
2186 if (bit == -1)
2187 return 0;
2188
2189 nbits = xfs_contig_bits(buf_f->blf_data_map,
2190 buf_f->blf_map_size, bit);
2191 ASSERT(nbits > 0);
2192 reg_buf_offset = bit << XFS_BLF_SHIFT;
2193 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
2194 item_index++;
2195 }
2196
2197 /*
2198 * If the current logged region starts after the current
2199 * di_next_unlinked field, then move on to the next
2200 * di_next_unlinked field.
2201 */
2202 if (next_unlinked_offset < reg_buf_offset)
2203 continue;
2204
2205 ASSERT(item->ri_buf[item_index].i_addr != NULL);
2206 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
2207 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2208 BBTOB(bp->b_io_length));
2209
2210 /*
2211 * The current logged region contains a copy of the
2212 * current di_next_unlinked field. Extract its value
2213 * and copy it to the buffer copy.
2214 */
2215 logged_nextp = item->ri_buf[item_index].i_addr +
2216 next_unlinked_offset - reg_buf_offset;
2217 if (unlikely(*logged_nextp == 0)) {
2218 xfs_alert(mp,
2219 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
2220 "Trying to replay bad (0) inode di_next_unlinked field.",
2221 item, bp);
2222 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2223 XFS_ERRLEVEL_LOW, mp);
2224 return -EFSCORRUPTED;
2225 }
2226
2227 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
2228 *buffer_nextp = *logged_nextp;
2229
2230 /*
2231 * If necessary, recalculate the CRC in the on-disk inode. We
2232 * have to leave the inode in a consistent state for whoever
2233 * reads it next....
2234 */
2235 xfs_dinode_calc_crc(mp,
2236 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2237
2238 }
2239
2240 return 0;
2241 }
2242
2243 /*
2244 * V5 filesystems know the age of the buffer on disk being recovered. We can
2245 * have newer objects on disk than we are replaying, and so for these cases we
2246 * don't want to replay the current change as that will make the buffer contents
2247 * temporarily invalid on disk.
2248 *
2249 * The magic number might not match the buffer type we are going to recover
2250 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2251 * extract the LSN of the existing object in the buffer based on it's current
2252 * magic number. If we don't recognise the magic number in the buffer, then
2253 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2254 * so can recover the buffer.
2255 *
2256 * Note: we cannot rely solely on magic number matches to determine that the
2257 * buffer has a valid LSN - we also need to verify that it belongs to this
2258 * filesystem, so we need to extract the object's LSN and compare it to that
2259 * which we read from the superblock. If the UUIDs don't match, then we've got a
2260 * stale metadata block from an old filesystem instance that we need to recover
2261 * over the top of.
2262 */
2263 static xfs_lsn_t
xlog_recover_get_buf_lsn(struct xfs_mount * mp,struct xfs_buf * bp)2264 xlog_recover_get_buf_lsn(
2265 struct xfs_mount *mp,
2266 struct xfs_buf *bp)
2267 {
2268 uint32_t magic32;
2269 uint16_t magic16;
2270 uint16_t magicda;
2271 void *blk = bp->b_addr;
2272 uuid_t *uuid;
2273 xfs_lsn_t lsn = -1;
2274
2275 /* v4 filesystems always recover immediately */
2276 if (!xfs_sb_version_hascrc(&mp->m_sb))
2277 goto recover_immediately;
2278
2279 magic32 = be32_to_cpu(*(__be32 *)blk);
2280 switch (magic32) {
2281 case XFS_ABTB_CRC_MAGIC:
2282 case XFS_ABTC_CRC_MAGIC:
2283 case XFS_ABTB_MAGIC:
2284 case XFS_ABTC_MAGIC:
2285 case XFS_RMAP_CRC_MAGIC:
2286 case XFS_REFC_CRC_MAGIC:
2287 case XFS_IBT_CRC_MAGIC:
2288 case XFS_IBT_MAGIC: {
2289 struct xfs_btree_block *btb = blk;
2290
2291 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2292 uuid = &btb->bb_u.s.bb_uuid;
2293 break;
2294 }
2295 case XFS_BMAP_CRC_MAGIC:
2296 case XFS_BMAP_MAGIC: {
2297 struct xfs_btree_block *btb = blk;
2298
2299 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2300 uuid = &btb->bb_u.l.bb_uuid;
2301 break;
2302 }
2303 case XFS_AGF_MAGIC:
2304 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2305 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2306 break;
2307 case XFS_AGFL_MAGIC:
2308 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2309 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2310 break;
2311 case XFS_AGI_MAGIC:
2312 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2313 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2314 break;
2315 case XFS_SYMLINK_MAGIC:
2316 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2317 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2318 break;
2319 case XFS_DIR3_BLOCK_MAGIC:
2320 case XFS_DIR3_DATA_MAGIC:
2321 case XFS_DIR3_FREE_MAGIC:
2322 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2323 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2324 break;
2325 case XFS_ATTR3_RMT_MAGIC:
2326 /*
2327 * Remote attr blocks are written synchronously, rather than
2328 * being logged. That means they do not contain a valid LSN
2329 * (i.e. transactionally ordered) in them, and hence any time we
2330 * see a buffer to replay over the top of a remote attribute
2331 * block we should simply do so.
2332 */
2333 goto recover_immediately;
2334 case XFS_SB_MAGIC:
2335 /*
2336 * superblock uuids are magic. We may or may not have a
2337 * sb_meta_uuid on disk, but it will be set in the in-core
2338 * superblock. We set the uuid pointer for verification
2339 * according to the superblock feature mask to ensure we check
2340 * the relevant UUID in the superblock.
2341 */
2342 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2343 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2344 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2345 else
2346 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2347 break;
2348 default:
2349 break;
2350 }
2351
2352 if (lsn != (xfs_lsn_t)-1) {
2353 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
2354 goto recover_immediately;
2355 return lsn;
2356 }
2357
2358 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2359 switch (magicda) {
2360 case XFS_DIR3_LEAF1_MAGIC:
2361 case XFS_DIR3_LEAFN_MAGIC:
2362 case XFS_DA3_NODE_MAGIC:
2363 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2364 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2365 break;
2366 default:
2367 break;
2368 }
2369
2370 if (lsn != (xfs_lsn_t)-1) {
2371 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2372 goto recover_immediately;
2373 return lsn;
2374 }
2375
2376 /*
2377 * We do individual object checks on dquot and inode buffers as they
2378 * have their own individual LSN records. Also, we could have a stale
2379 * buffer here, so we have to at least recognise these buffer types.
2380 *
2381 * A notd complexity here is inode unlinked list processing - it logs
2382 * the inode directly in the buffer, but we don't know which inodes have
2383 * been modified, and there is no global buffer LSN. Hence we need to
2384 * recover all inode buffer types immediately. This problem will be
2385 * fixed by logical logging of the unlinked list modifications.
2386 */
2387 magic16 = be16_to_cpu(*(__be16 *)blk);
2388 switch (magic16) {
2389 case XFS_DQUOT_MAGIC:
2390 case XFS_DINODE_MAGIC:
2391 goto recover_immediately;
2392 default:
2393 break;
2394 }
2395
2396 /* unknown buffer contents, recover immediately */
2397
2398 recover_immediately:
2399 return (xfs_lsn_t)-1;
2400
2401 }
2402
2403 /*
2404 * Validate the recovered buffer is of the correct type and attach the
2405 * appropriate buffer operations to them for writeback. Magic numbers are in a
2406 * few places:
2407 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2408 * the first 32 bits of the buffer (most blocks),
2409 * inside a struct xfs_da_blkinfo at the start of the buffer.
2410 */
2411 static void
xlog_recover_validate_buf_type(struct xfs_mount * mp,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f,xfs_lsn_t current_lsn)2412 xlog_recover_validate_buf_type(
2413 struct xfs_mount *mp,
2414 struct xfs_buf *bp,
2415 xfs_buf_log_format_t *buf_f,
2416 xfs_lsn_t current_lsn)
2417 {
2418 struct xfs_da_blkinfo *info = bp->b_addr;
2419 uint32_t magic32;
2420 uint16_t magic16;
2421 uint16_t magicda;
2422 char *warnmsg = NULL;
2423
2424 /*
2425 * We can only do post recovery validation on items on CRC enabled
2426 * fielsystems as we need to know when the buffer was written to be able
2427 * to determine if we should have replayed the item. If we replay old
2428 * metadata over a newer buffer, then it will enter a temporarily
2429 * inconsistent state resulting in verification failures. Hence for now
2430 * just avoid the verification stage for non-crc filesystems
2431 */
2432 if (!xfs_sb_version_hascrc(&mp->m_sb))
2433 return;
2434
2435 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2436 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2437 magicda = be16_to_cpu(info->magic);
2438 switch (xfs_blft_from_flags(buf_f)) {
2439 case XFS_BLFT_BTREE_BUF:
2440 switch (magic32) {
2441 case XFS_ABTB_CRC_MAGIC:
2442 case XFS_ABTC_CRC_MAGIC:
2443 case XFS_ABTB_MAGIC:
2444 case XFS_ABTC_MAGIC:
2445 bp->b_ops = &xfs_allocbt_buf_ops;
2446 break;
2447 case XFS_IBT_CRC_MAGIC:
2448 case XFS_FIBT_CRC_MAGIC:
2449 case XFS_IBT_MAGIC:
2450 case XFS_FIBT_MAGIC:
2451 bp->b_ops = &xfs_inobt_buf_ops;
2452 break;
2453 case XFS_BMAP_CRC_MAGIC:
2454 case XFS_BMAP_MAGIC:
2455 bp->b_ops = &xfs_bmbt_buf_ops;
2456 break;
2457 case XFS_RMAP_CRC_MAGIC:
2458 bp->b_ops = &xfs_rmapbt_buf_ops;
2459 break;
2460 case XFS_REFC_CRC_MAGIC:
2461 bp->b_ops = &xfs_refcountbt_buf_ops;
2462 break;
2463 default:
2464 warnmsg = "Bad btree block magic!";
2465 break;
2466 }
2467 break;
2468 case XFS_BLFT_AGF_BUF:
2469 if (magic32 != XFS_AGF_MAGIC) {
2470 warnmsg = "Bad AGF block magic!";
2471 break;
2472 }
2473 bp->b_ops = &xfs_agf_buf_ops;
2474 break;
2475 case XFS_BLFT_AGFL_BUF:
2476 if (magic32 != XFS_AGFL_MAGIC) {
2477 warnmsg = "Bad AGFL block magic!";
2478 break;
2479 }
2480 bp->b_ops = &xfs_agfl_buf_ops;
2481 break;
2482 case XFS_BLFT_AGI_BUF:
2483 if (magic32 != XFS_AGI_MAGIC) {
2484 warnmsg = "Bad AGI block magic!";
2485 break;
2486 }
2487 bp->b_ops = &xfs_agi_buf_ops;
2488 break;
2489 case XFS_BLFT_UDQUOT_BUF:
2490 case XFS_BLFT_PDQUOT_BUF:
2491 case XFS_BLFT_GDQUOT_BUF:
2492 #ifdef CONFIG_XFS_QUOTA
2493 if (magic16 != XFS_DQUOT_MAGIC) {
2494 warnmsg = "Bad DQUOT block magic!";
2495 break;
2496 }
2497 bp->b_ops = &xfs_dquot_buf_ops;
2498 #else
2499 xfs_alert(mp,
2500 "Trying to recover dquots without QUOTA support built in!");
2501 ASSERT(0);
2502 #endif
2503 break;
2504 case XFS_BLFT_DINO_BUF:
2505 if (magic16 != XFS_DINODE_MAGIC) {
2506 warnmsg = "Bad INODE block magic!";
2507 break;
2508 }
2509 bp->b_ops = &xfs_inode_buf_ops;
2510 break;
2511 case XFS_BLFT_SYMLINK_BUF:
2512 if (magic32 != XFS_SYMLINK_MAGIC) {
2513 warnmsg = "Bad symlink block magic!";
2514 break;
2515 }
2516 bp->b_ops = &xfs_symlink_buf_ops;
2517 break;
2518 case XFS_BLFT_DIR_BLOCK_BUF:
2519 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2520 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2521 warnmsg = "Bad dir block magic!";
2522 break;
2523 }
2524 bp->b_ops = &xfs_dir3_block_buf_ops;
2525 break;
2526 case XFS_BLFT_DIR_DATA_BUF:
2527 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2528 magic32 != XFS_DIR3_DATA_MAGIC) {
2529 warnmsg = "Bad dir data magic!";
2530 break;
2531 }
2532 bp->b_ops = &xfs_dir3_data_buf_ops;
2533 break;
2534 case XFS_BLFT_DIR_FREE_BUF:
2535 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2536 magic32 != XFS_DIR3_FREE_MAGIC) {
2537 warnmsg = "Bad dir3 free magic!";
2538 break;
2539 }
2540 bp->b_ops = &xfs_dir3_free_buf_ops;
2541 break;
2542 case XFS_BLFT_DIR_LEAF1_BUF:
2543 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2544 magicda != XFS_DIR3_LEAF1_MAGIC) {
2545 warnmsg = "Bad dir leaf1 magic!";
2546 break;
2547 }
2548 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2549 break;
2550 case XFS_BLFT_DIR_LEAFN_BUF:
2551 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2552 magicda != XFS_DIR3_LEAFN_MAGIC) {
2553 warnmsg = "Bad dir leafn magic!";
2554 break;
2555 }
2556 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2557 break;
2558 case XFS_BLFT_DA_NODE_BUF:
2559 if (magicda != XFS_DA_NODE_MAGIC &&
2560 magicda != XFS_DA3_NODE_MAGIC) {
2561 warnmsg = "Bad da node magic!";
2562 break;
2563 }
2564 bp->b_ops = &xfs_da3_node_buf_ops;
2565 break;
2566 case XFS_BLFT_ATTR_LEAF_BUF:
2567 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2568 magicda != XFS_ATTR3_LEAF_MAGIC) {
2569 warnmsg = "Bad attr leaf magic!";
2570 break;
2571 }
2572 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2573 break;
2574 case XFS_BLFT_ATTR_RMT_BUF:
2575 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
2576 warnmsg = "Bad attr remote magic!";
2577 break;
2578 }
2579 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2580 break;
2581 case XFS_BLFT_SB_BUF:
2582 if (magic32 != XFS_SB_MAGIC) {
2583 warnmsg = "Bad SB block magic!";
2584 break;
2585 }
2586 bp->b_ops = &xfs_sb_buf_ops;
2587 break;
2588 #ifdef CONFIG_XFS_RT
2589 case XFS_BLFT_RTBITMAP_BUF:
2590 case XFS_BLFT_RTSUMMARY_BUF:
2591 /* no magic numbers for verification of RT buffers */
2592 bp->b_ops = &xfs_rtbuf_ops;
2593 break;
2594 #endif /* CONFIG_XFS_RT */
2595 default:
2596 xfs_warn(mp, "Unknown buffer type %d!",
2597 xfs_blft_from_flags(buf_f));
2598 break;
2599 }
2600
2601 /*
2602 * Nothing else to do in the case of a NULL current LSN as this means
2603 * the buffer is more recent than the change in the log and will be
2604 * skipped.
2605 */
2606 if (current_lsn == NULLCOMMITLSN)
2607 return;
2608
2609 if (warnmsg) {
2610 xfs_warn(mp, warnmsg);
2611 ASSERT(0);
2612 }
2613
2614 /*
2615 * We must update the metadata LSN of the buffer as it is written out to
2616 * ensure that older transactions never replay over this one and corrupt
2617 * the buffer. This can occur if log recovery is interrupted at some
2618 * point after the current transaction completes, at which point a
2619 * subsequent mount starts recovery from the beginning.
2620 *
2621 * Write verifiers update the metadata LSN from log items attached to
2622 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2623 * the verifier. We'll clean it up in our ->iodone() callback.
2624 */
2625 if (bp->b_ops) {
2626 struct xfs_buf_log_item *bip;
2627
2628 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2629 bp->b_iodone = xlog_recover_iodone;
2630 xfs_buf_item_init(bp, mp);
2631 bip = bp->b_log_item;
2632 bip->bli_item.li_lsn = current_lsn;
2633 }
2634 }
2635
2636 /*
2637 * Perform a 'normal' buffer recovery. Each logged region of the
2638 * buffer should be copied over the corresponding region in the
2639 * given buffer. The bitmap in the buf log format structure indicates
2640 * where to place the logged data.
2641 */
2642 STATIC void
xlog_recover_do_reg_buffer(struct xfs_mount * mp,xlog_recover_item_t * item,struct xfs_buf * bp,xfs_buf_log_format_t * buf_f,xfs_lsn_t current_lsn)2643 xlog_recover_do_reg_buffer(
2644 struct xfs_mount *mp,
2645 xlog_recover_item_t *item,
2646 struct xfs_buf *bp,
2647 xfs_buf_log_format_t *buf_f,
2648 xfs_lsn_t current_lsn)
2649 {
2650 int i;
2651 int bit;
2652 int nbits;
2653 xfs_failaddr_t fa;
2654
2655 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2656
2657 bit = 0;
2658 i = 1; /* 0 is the buf format structure */
2659 while (1) {
2660 bit = xfs_next_bit(buf_f->blf_data_map,
2661 buf_f->blf_map_size, bit);
2662 if (bit == -1)
2663 break;
2664 nbits = xfs_contig_bits(buf_f->blf_data_map,
2665 buf_f->blf_map_size, bit);
2666 ASSERT(nbits > 0);
2667 ASSERT(item->ri_buf[i].i_addr != NULL);
2668 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2669 ASSERT(BBTOB(bp->b_io_length) >=
2670 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2671
2672 /*
2673 * The dirty regions logged in the buffer, even though
2674 * contiguous, may span multiple chunks. This is because the
2675 * dirty region may span a physical page boundary in a buffer
2676 * and hence be split into two separate vectors for writing into
2677 * the log. Hence we need to trim nbits back to the length of
2678 * the current region being copied out of the log.
2679 */
2680 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2681 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2682
2683 /*
2684 * Do a sanity check if this is a dquot buffer. Just checking
2685 * the first dquot in the buffer should do. XXXThis is
2686 * probably a good thing to do for other buf types also.
2687 */
2688 fa = NULL;
2689 if (buf_f->blf_flags &
2690 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2691 if (item->ri_buf[i].i_addr == NULL) {
2692 xfs_alert(mp,
2693 "XFS: NULL dquot in %s.", __func__);
2694 goto next;
2695 }
2696 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2697 xfs_alert(mp,
2698 "XFS: dquot too small (%d) in %s.",
2699 item->ri_buf[i].i_len, __func__);
2700 goto next;
2701 }
2702 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2703 -1, 0);
2704 if (fa) {
2705 xfs_alert(mp,
2706 "dquot corrupt at %pS trying to replay into block 0x%llx",
2707 fa, bp->b_bn);
2708 goto next;
2709 }
2710 }
2711
2712 memcpy(xfs_buf_offset(bp,
2713 (uint)bit << XFS_BLF_SHIFT), /* dest */
2714 item->ri_buf[i].i_addr, /* source */
2715 nbits<<XFS_BLF_SHIFT); /* length */
2716 next:
2717 i++;
2718 bit += nbits;
2719 }
2720
2721 /* Shouldn't be any more regions */
2722 ASSERT(i == item->ri_total);
2723
2724 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
2725 }
2726
2727 /*
2728 * Perform a dquot buffer recovery.
2729 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
2730 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2731 * Else, treat it as a regular buffer and do recovery.
2732 *
2733 * Return false if the buffer was tossed and true if we recovered the buffer to
2734 * indicate to the caller if the buffer needs writing.
2735 */
2736 STATIC bool
xlog_recover_do_dquot_buffer(struct xfs_mount * mp,struct xlog * log,struct xlog_recover_item * item,struct xfs_buf * bp,struct xfs_buf_log_format * buf_f)2737 xlog_recover_do_dquot_buffer(
2738 struct xfs_mount *mp,
2739 struct xlog *log,
2740 struct xlog_recover_item *item,
2741 struct xfs_buf *bp,
2742 struct xfs_buf_log_format *buf_f)
2743 {
2744 uint type;
2745
2746 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2747
2748 /*
2749 * Filesystems are required to send in quota flags at mount time.
2750 */
2751 if (!mp->m_qflags)
2752 return false;
2753
2754 type = 0;
2755 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
2756 type |= XFS_DQ_USER;
2757 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
2758 type |= XFS_DQ_PROJ;
2759 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
2760 type |= XFS_DQ_GROUP;
2761 /*
2762 * This type of quotas was turned off, so ignore this buffer
2763 */
2764 if (log->l_quotaoffs_flag & type)
2765 return false;
2766
2767 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
2768 return true;
2769 }
2770
2771 /*
2772 * This routine replays a modification made to a buffer at runtime.
2773 * There are actually two types of buffer, regular and inode, which
2774 * are handled differently. Inode buffers are handled differently
2775 * in that we only recover a specific set of data from them, namely
2776 * the inode di_next_unlinked fields. This is because all other inode
2777 * data is actually logged via inode records and any data we replay
2778 * here which overlaps that may be stale.
2779 *
2780 * When meta-data buffers are freed at run time we log a buffer item
2781 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
2782 * of the buffer in the log should not be replayed at recovery time.
2783 * This is so that if the blocks covered by the buffer are reused for
2784 * file data before we crash we don't end up replaying old, freed
2785 * meta-data into a user's file.
2786 *
2787 * To handle the cancellation of buffer log items, we make two passes
2788 * over the log during recovery. During the first we build a table of
2789 * those buffers which have been cancelled, and during the second we
2790 * only replay those buffers which do not have corresponding cancel
2791 * records in the table. See xlog_recover_buffer_pass[1,2] above
2792 * for more details on the implementation of the table of cancel records.
2793 */
2794 STATIC int
xlog_recover_buffer_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2795 xlog_recover_buffer_pass2(
2796 struct xlog *log,
2797 struct list_head *buffer_list,
2798 struct xlog_recover_item *item,
2799 xfs_lsn_t current_lsn)
2800 {
2801 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
2802 xfs_mount_t *mp = log->l_mp;
2803 xfs_buf_t *bp;
2804 int error;
2805 uint buf_flags;
2806 xfs_lsn_t lsn;
2807
2808 /*
2809 * In this pass we only want to recover all the buffers which have
2810 * not been cancelled and are not cancellation buffers themselves.
2811 */
2812 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2813 buf_f->blf_len, buf_f->blf_flags)) {
2814 trace_xfs_log_recover_buf_cancel(log, buf_f);
2815 return 0;
2816 }
2817
2818 trace_xfs_log_recover_buf_recover(log, buf_f);
2819
2820 buf_flags = 0;
2821 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2822 buf_flags |= XBF_UNMAPPED;
2823
2824 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
2825 buf_flags, NULL);
2826 if (!bp)
2827 return -ENOMEM;
2828 error = bp->b_error;
2829 if (error) {
2830 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
2831 goto out_release;
2832 }
2833
2834 /*
2835 * Recover the buffer only if we get an LSN from it and it's less than
2836 * the lsn of the transaction we are replaying.
2837 *
2838 * Note that we have to be extremely careful of readahead here.
2839 * Readahead does not attach verfiers to the buffers so if we don't
2840 * actually do any replay after readahead because of the LSN we found
2841 * in the buffer if more recent than that current transaction then we
2842 * need to attach the verifier directly. Failure to do so can lead to
2843 * future recovery actions (e.g. EFI and unlinked list recovery) can
2844 * operate on the buffers and they won't get the verifier attached. This
2845 * can lead to blocks on disk having the correct content but a stale
2846 * CRC.
2847 *
2848 * It is safe to assume these clean buffers are currently up to date.
2849 * If the buffer is dirtied by a later transaction being replayed, then
2850 * the verifier will be reset to match whatever recover turns that
2851 * buffer into.
2852 */
2853 lsn = xlog_recover_get_buf_lsn(mp, bp);
2854 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2855 trace_xfs_log_recover_buf_skip(log, buf_f);
2856 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
2857 goto out_release;
2858 }
2859
2860 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
2861 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
2862 if (error)
2863 goto out_release;
2864 } else if (buf_f->blf_flags &
2865 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2866 bool dirty;
2867
2868 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2869 if (!dirty)
2870 goto out_release;
2871 } else {
2872 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
2873 }
2874
2875 /*
2876 * Perform delayed write on the buffer. Asynchronous writes will be
2877 * slower when taking into account all the buffers to be flushed.
2878 *
2879 * Also make sure that only inode buffers with good sizes stay in
2880 * the buffer cache. The kernel moves inodes in buffers of 1 block
2881 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
2882 * buffers in the log can be a different size if the log was generated
2883 * by an older kernel using unclustered inode buffers or a newer kernel
2884 * running with a different inode cluster size. Regardless, if the
2885 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
2886 * for *our* value of mp->m_inode_cluster_size, then we need to keep
2887 * the buffer out of the buffer cache so that the buffer won't
2888 * overlap with future reads of those inodes.
2889 */
2890 if (XFS_DINODE_MAGIC ==
2891 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
2892 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize,
2893 (uint32_t)log->l_mp->m_inode_cluster_size))) {
2894 xfs_buf_stale(bp);
2895 error = xfs_bwrite(bp);
2896 } else {
2897 ASSERT(bp->b_target->bt_mount == mp);
2898 bp->b_iodone = xlog_recover_iodone;
2899 xfs_buf_delwri_queue(bp, buffer_list);
2900 }
2901
2902 out_release:
2903 xfs_buf_relse(bp);
2904 return error;
2905 }
2906
2907 /*
2908 * Inode fork owner changes
2909 *
2910 * If we have been told that we have to reparent the inode fork, it's because an
2911 * extent swap operation on a CRC enabled filesystem has been done and we are
2912 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2913 * owners of it.
2914 *
2915 * The complexity here is that we don't have an inode context to work with, so
2916 * after we've replayed the inode we need to instantiate one. This is where the
2917 * fun begins.
2918 *
2919 * We are in the middle of log recovery, so we can't run transactions. That
2920 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2921 * that will result in the corresponding iput() running the inode through
2922 * xfs_inactive(). If we've just replayed an inode core that changes the link
2923 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2924 * transactions (bad!).
2925 *
2926 * So, to avoid this, we instantiate an inode directly from the inode core we've
2927 * just recovered. We have the buffer still locked, and all we really need to
2928 * instantiate is the inode core and the forks being modified. We can do this
2929 * manually, then run the inode btree owner change, and then tear down the
2930 * xfs_inode without having to run any transactions at all.
2931 *
2932 * Also, because we don't have a transaction context available here but need to
2933 * gather all the buffers we modify for writeback so we pass the buffer_list
2934 * instead for the operation to use.
2935 */
2936
2937 STATIC int
xfs_recover_inode_owner_change(struct xfs_mount * mp,struct xfs_dinode * dip,struct xfs_inode_log_format * in_f,struct list_head * buffer_list)2938 xfs_recover_inode_owner_change(
2939 struct xfs_mount *mp,
2940 struct xfs_dinode *dip,
2941 struct xfs_inode_log_format *in_f,
2942 struct list_head *buffer_list)
2943 {
2944 struct xfs_inode *ip;
2945 int error;
2946
2947 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2948
2949 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2950 if (!ip)
2951 return -ENOMEM;
2952
2953 /* instantiate the inode */
2954 xfs_inode_from_disk(ip, dip);
2955 ASSERT(ip->i_d.di_version >= 3);
2956
2957 error = xfs_iformat_fork(ip, dip);
2958 if (error)
2959 goto out_free_ip;
2960
2961 if (!xfs_inode_verify_forks(ip)) {
2962 error = -EFSCORRUPTED;
2963 goto out_free_ip;
2964 }
2965
2966 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2967 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2968 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2969 ip->i_ino, buffer_list);
2970 if (error)
2971 goto out_free_ip;
2972 }
2973
2974 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2975 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2976 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2977 ip->i_ino, buffer_list);
2978 if (error)
2979 goto out_free_ip;
2980 }
2981
2982 out_free_ip:
2983 xfs_inode_free(ip);
2984 return error;
2985 }
2986
2987 STATIC int
xlog_recover_inode_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)2988 xlog_recover_inode_pass2(
2989 struct xlog *log,
2990 struct list_head *buffer_list,
2991 struct xlog_recover_item *item,
2992 xfs_lsn_t current_lsn)
2993 {
2994 struct xfs_inode_log_format *in_f;
2995 xfs_mount_t *mp = log->l_mp;
2996 xfs_buf_t *bp;
2997 xfs_dinode_t *dip;
2998 int len;
2999 char *src;
3000 char *dest;
3001 int error;
3002 int attr_index;
3003 uint fields;
3004 struct xfs_log_dinode *ldip;
3005 uint isize;
3006 int need_free = 0;
3007
3008 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3009 in_f = item->ri_buf[0].i_addr;
3010 } else {
3011 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
3012 need_free = 1;
3013 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3014 if (error)
3015 goto error;
3016 }
3017
3018 /*
3019 * Inode buffers can be freed, look out for it,
3020 * and do not replay the inode.
3021 */
3022 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3023 in_f->ilf_len, 0)) {
3024 error = 0;
3025 trace_xfs_log_recover_inode_cancel(log, in_f);
3026 goto error;
3027 }
3028 trace_xfs_log_recover_inode_recover(log, in_f);
3029
3030 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
3031 &xfs_inode_buf_ops);
3032 if (!bp) {
3033 error = -ENOMEM;
3034 goto error;
3035 }
3036 error = bp->b_error;
3037 if (error) {
3038 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
3039 goto out_release;
3040 }
3041 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
3042 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
3043
3044 /*
3045 * Make sure the place we're flushing out to really looks
3046 * like an inode!
3047 */
3048 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
3049 xfs_alert(mp,
3050 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
3051 __func__, dip, bp, in_f->ilf_ino);
3052 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
3053 XFS_ERRLEVEL_LOW, mp);
3054 error = -EFSCORRUPTED;
3055 goto out_release;
3056 }
3057 ldip = item->ri_buf[1].i_addr;
3058 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
3059 xfs_alert(mp,
3060 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
3061 __func__, item, in_f->ilf_ino);
3062 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
3063 XFS_ERRLEVEL_LOW, mp);
3064 error = -EFSCORRUPTED;
3065 goto out_release;
3066 }
3067
3068 /*
3069 * If the inode has an LSN in it, recover the inode only if it's less
3070 * than the lsn of the transaction we are replaying. Note: we still
3071 * need to replay an owner change even though the inode is more recent
3072 * than the transaction as there is no guarantee that all the btree
3073 * blocks are more recent than this transaction, too.
3074 */
3075 if (dip->di_version >= 3) {
3076 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3077
3078 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3079 trace_xfs_log_recover_inode_skip(log, in_f);
3080 error = 0;
3081 goto out_owner_change;
3082 }
3083 }
3084
3085 /*
3086 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3087 * are transactional and if ordering is necessary we can determine that
3088 * more accurately by the LSN field in the V3 inode core. Don't trust
3089 * the inode versions we might be changing them here - use the
3090 * superblock flag to determine whether we need to look at di_flushiter
3091 * to skip replay when the on disk inode is newer than the log one
3092 */
3093 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
3094 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
3095 /*
3096 * Deal with the wrap case, DI_MAX_FLUSH is less
3097 * than smaller numbers
3098 */
3099 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
3100 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
3101 /* do nothing */
3102 } else {
3103 trace_xfs_log_recover_inode_skip(log, in_f);
3104 error = 0;
3105 goto out_release;
3106 }
3107 }
3108
3109 /* Take the opportunity to reset the flush iteration count */
3110 ldip->di_flushiter = 0;
3111
3112 if (unlikely(S_ISREG(ldip->di_mode))) {
3113 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3114 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
3115 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
3116 XFS_ERRLEVEL_LOW, mp, ldip,
3117 sizeof(*ldip));
3118 xfs_alert(mp,
3119 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3120 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3121 __func__, item, dip, bp, in_f->ilf_ino);
3122 error = -EFSCORRUPTED;
3123 goto out_release;
3124 }
3125 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3126 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3127 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3128 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
3129 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
3130 XFS_ERRLEVEL_LOW, mp, ldip,
3131 sizeof(*ldip));
3132 xfs_alert(mp,
3133 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3134 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
3135 __func__, item, dip, bp, in_f->ilf_ino);
3136 error = -EFSCORRUPTED;
3137 goto out_release;
3138 }
3139 }
3140 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
3141 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
3142 XFS_ERRLEVEL_LOW, mp, ldip,
3143 sizeof(*ldip));
3144 xfs_alert(mp,
3145 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3146 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
3147 __func__, item, dip, bp, in_f->ilf_ino,
3148 ldip->di_nextents + ldip->di_anextents,
3149 ldip->di_nblocks);
3150 error = -EFSCORRUPTED;
3151 goto out_release;
3152 }
3153 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
3154 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
3155 XFS_ERRLEVEL_LOW, mp, ldip,
3156 sizeof(*ldip));
3157 xfs_alert(mp,
3158 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3159 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
3160 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
3161 error = -EFSCORRUPTED;
3162 goto out_release;
3163 }
3164 isize = xfs_log_dinode_size(ldip->di_version);
3165 if (unlikely(item->ri_buf[1].i_len > isize)) {
3166 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
3167 XFS_ERRLEVEL_LOW, mp, ldip,
3168 sizeof(*ldip));
3169 xfs_alert(mp,
3170 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
3171 __func__, item->ri_buf[1].i_len, item);
3172 error = -EFSCORRUPTED;
3173 goto out_release;
3174 }
3175
3176 /* recover the log dinode inode into the on disk inode */
3177 xfs_log_dinode_to_disk(ldip, dip);
3178
3179 fields = in_f->ilf_fields;
3180 if (fields & XFS_ILOG_DEV)
3181 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
3182
3183 if (in_f->ilf_size == 2)
3184 goto out_owner_change;
3185 len = item->ri_buf[2].i_len;
3186 src = item->ri_buf[2].i_addr;
3187 ASSERT(in_f->ilf_size <= 4);
3188 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3189 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3190 (len == in_f->ilf_dsize));
3191
3192 switch (fields & XFS_ILOG_DFORK) {
3193 case XFS_ILOG_DDATA:
3194 case XFS_ILOG_DEXT:
3195 memcpy(XFS_DFORK_DPTR(dip), src, len);
3196 break;
3197
3198 case XFS_ILOG_DBROOT:
3199 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
3200 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
3201 XFS_DFORK_DSIZE(dip, mp));
3202 break;
3203
3204 default:
3205 /*
3206 * There are no data fork flags set.
3207 */
3208 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3209 break;
3210 }
3211
3212 /*
3213 * If we logged any attribute data, recover it. There may or
3214 * may not have been any other non-core data logged in this
3215 * transaction.
3216 */
3217 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3218 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3219 attr_index = 3;
3220 } else {
3221 attr_index = 2;
3222 }
3223 len = item->ri_buf[attr_index].i_len;
3224 src = item->ri_buf[attr_index].i_addr;
3225 ASSERT(len == in_f->ilf_asize);
3226
3227 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3228 case XFS_ILOG_ADATA:
3229 case XFS_ILOG_AEXT:
3230 dest = XFS_DFORK_APTR(dip);
3231 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3232 memcpy(dest, src, len);
3233 break;
3234
3235 case XFS_ILOG_ABROOT:
3236 dest = XFS_DFORK_APTR(dip);
3237 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3238 len, (xfs_bmdr_block_t*)dest,
3239 XFS_DFORK_ASIZE(dip, mp));
3240 break;
3241
3242 default:
3243 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
3244 ASSERT(0);
3245 error = -EIO;
3246 goto out_release;
3247 }
3248 }
3249
3250 out_owner_change:
3251 /* Recover the swapext owner change unless inode has been deleted */
3252 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3253 (dip->di_mode != 0))
3254 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3255 buffer_list);
3256 /* re-generate the checksum. */
3257 xfs_dinode_calc_crc(log->l_mp, dip);
3258
3259 ASSERT(bp->b_target->bt_mount == mp);
3260 bp->b_iodone = xlog_recover_iodone;
3261 xfs_buf_delwri_queue(bp, buffer_list);
3262
3263 out_release:
3264 xfs_buf_relse(bp);
3265 error:
3266 if (need_free)
3267 kmem_free(in_f);
3268 return error;
3269 }
3270
3271 /*
3272 * Recover QUOTAOFF records. We simply make a note of it in the xlog
3273 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3274 * of that type.
3275 */
3276 STATIC int
xlog_recover_quotaoff_pass1(struct xlog * log,struct xlog_recover_item * item)3277 xlog_recover_quotaoff_pass1(
3278 struct xlog *log,
3279 struct xlog_recover_item *item)
3280 {
3281 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
3282 ASSERT(qoff_f);
3283
3284 /*
3285 * The logitem format's flag tells us if this was user quotaoff,
3286 * group/project quotaoff or both.
3287 */
3288 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3289 log->l_quotaoffs_flag |= XFS_DQ_USER;
3290 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3291 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
3292 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3293 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3294
3295 return 0;
3296 }
3297
3298 /*
3299 * Recover a dquot record
3300 */
3301 STATIC int
xlog_recover_dquot_pass2(struct xlog * log,struct list_head * buffer_list,struct xlog_recover_item * item,xfs_lsn_t current_lsn)3302 xlog_recover_dquot_pass2(
3303 struct xlog *log,
3304 struct list_head *buffer_list,
3305 struct xlog_recover_item *item,
3306 xfs_lsn_t current_lsn)
3307 {
3308 xfs_mount_t *mp = log->l_mp;
3309 xfs_buf_t *bp;
3310 struct xfs_disk_dquot *ddq, *recddq;
3311 xfs_failaddr_t fa;
3312 int error;
3313 xfs_dq_logformat_t *dq_f;
3314 uint type;
3315
3316
3317 /*
3318 * Filesystems are required to send in quota flags at mount time.
3319 */
3320 if (mp->m_qflags == 0)
3321 return 0;
3322
3323 recddq = item->ri_buf[1].i_addr;
3324 if (recddq == NULL) {
3325 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
3326 return -EIO;
3327 }
3328 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
3329 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
3330 item->ri_buf[1].i_len, __func__);
3331 return -EIO;
3332 }
3333
3334 /*
3335 * This type of quotas was turned off, so ignore this record.
3336 */
3337 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3338 ASSERT(type);
3339 if (log->l_quotaoffs_flag & type)
3340 return 0;
3341
3342 /*
3343 * At this point we know that quota was _not_ turned off.
3344 * Since the mount flags are not indicating to us otherwise, this
3345 * must mean that quota is on, and the dquot needs to be replayed.
3346 * Remember that we may not have fully recovered the superblock yet,
3347 * so we can't do the usual trick of looking at the SB quota bits.
3348 *
3349 * The other possibility, of course, is that the quota subsystem was
3350 * removed since the last mount - ENOSYS.
3351 */
3352 dq_f = item->ri_buf[0].i_addr;
3353 ASSERT(dq_f);
3354 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
3355 if (fa) {
3356 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3357 dq_f->qlf_id, fa);
3358 return -EIO;
3359 }
3360 ASSERT(dq_f->qlf_len == 1);
3361
3362 /*
3363 * At this point we are assuming that the dquots have been allocated
3364 * and hence the buffer has valid dquots stamped in it. It should,
3365 * therefore, pass verifier validation. If the dquot is bad, then the
3366 * we'll return an error here, so we don't need to specifically check
3367 * the dquot in the buffer after the verifier has run.
3368 */
3369 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
3370 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3371 &xfs_dquot_buf_ops);
3372 if (error)
3373 return error;
3374
3375 ASSERT(bp);
3376 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
3377
3378 /*
3379 * If the dquot has an LSN in it, recover the dquot only if it's less
3380 * than the lsn of the transaction we are replaying.
3381 */
3382 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3383 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3384 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3385
3386 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3387 goto out_release;
3388 }
3389 }
3390
3391 memcpy(ddq, recddq, item->ri_buf[1].i_len);
3392 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3393 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3394 XFS_DQUOT_CRC_OFF);
3395 }
3396
3397 ASSERT(dq_f->qlf_size == 2);
3398 ASSERT(bp->b_target->bt_mount == mp);
3399 bp->b_iodone = xlog_recover_iodone;
3400 xfs_buf_delwri_queue(bp, buffer_list);
3401
3402 out_release:
3403 xfs_buf_relse(bp);
3404 return 0;
3405 }
3406
3407 /*
3408 * This routine is called to create an in-core extent free intent
3409 * item from the efi format structure which was logged on disk.
3410 * It allocates an in-core efi, copies the extents from the format
3411 * structure into it, and adds the efi to the AIL with the given
3412 * LSN.
3413 */
3414 STATIC int
xlog_recover_efi_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3415 xlog_recover_efi_pass2(
3416 struct xlog *log,
3417 struct xlog_recover_item *item,
3418 xfs_lsn_t lsn)
3419 {
3420 int error;
3421 struct xfs_mount *mp = log->l_mp;
3422 struct xfs_efi_log_item *efip;
3423 struct xfs_efi_log_format *efi_formatp;
3424
3425 efi_formatp = item->ri_buf[0].i_addr;
3426
3427 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
3428 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3429 if (error) {
3430 xfs_efi_item_free(efip);
3431 return error;
3432 }
3433 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
3434
3435 spin_lock(&log->l_ailp->ail_lock);
3436 /*
3437 * The EFI has two references. One for the EFD and one for EFI to ensure
3438 * it makes it into the AIL. Insert the EFI into the AIL directly and
3439 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3440 * AIL lock.
3441 */
3442 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
3443 xfs_efi_release(efip);
3444 return 0;
3445 }
3446
3447
3448 /*
3449 * This routine is called when an EFD format structure is found in a committed
3450 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3451 * was still in the log. To do this it searches the AIL for the EFI with an id
3452 * equal to that in the EFD format structure. If we find it we drop the EFD
3453 * reference, which removes the EFI from the AIL and frees it.
3454 */
3455 STATIC int
xlog_recover_efd_pass2(struct xlog * log,struct xlog_recover_item * item)3456 xlog_recover_efd_pass2(
3457 struct xlog *log,
3458 struct xlog_recover_item *item)
3459 {
3460 xfs_efd_log_format_t *efd_formatp;
3461 xfs_efi_log_item_t *efip = NULL;
3462 xfs_log_item_t *lip;
3463 uint64_t efi_id;
3464 struct xfs_ail_cursor cur;
3465 struct xfs_ail *ailp = log->l_ailp;
3466
3467 efd_formatp = item->ri_buf[0].i_addr;
3468 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3469 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3470 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3471 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
3472 efi_id = efd_formatp->efd_efi_id;
3473
3474 /*
3475 * Search for the EFI with the id in the EFD format structure in the
3476 * AIL.
3477 */
3478 spin_lock(&ailp->ail_lock);
3479 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3480 while (lip != NULL) {
3481 if (lip->li_type == XFS_LI_EFI) {
3482 efip = (xfs_efi_log_item_t *)lip;
3483 if (efip->efi_format.efi_id == efi_id) {
3484 /*
3485 * Drop the EFD reference to the EFI. This
3486 * removes the EFI from the AIL and frees it.
3487 */
3488 spin_unlock(&ailp->ail_lock);
3489 xfs_efi_release(efip);
3490 spin_lock(&ailp->ail_lock);
3491 break;
3492 }
3493 }
3494 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3495 }
3496
3497 xfs_trans_ail_cursor_done(&cur);
3498 spin_unlock(&ailp->ail_lock);
3499
3500 return 0;
3501 }
3502
3503 /*
3504 * This routine is called to create an in-core extent rmap update
3505 * item from the rui format structure which was logged on disk.
3506 * It allocates an in-core rui, copies the extents from the format
3507 * structure into it, and adds the rui to the AIL with the given
3508 * LSN.
3509 */
3510 STATIC int
xlog_recover_rui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3511 xlog_recover_rui_pass2(
3512 struct xlog *log,
3513 struct xlog_recover_item *item,
3514 xfs_lsn_t lsn)
3515 {
3516 int error;
3517 struct xfs_mount *mp = log->l_mp;
3518 struct xfs_rui_log_item *ruip;
3519 struct xfs_rui_log_format *rui_formatp;
3520
3521 rui_formatp = item->ri_buf[0].i_addr;
3522
3523 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3524 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3525 if (error) {
3526 xfs_rui_item_free(ruip);
3527 return error;
3528 }
3529 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3530
3531 spin_lock(&log->l_ailp->ail_lock);
3532 /*
3533 * The RUI has two references. One for the RUD and one for RUI to ensure
3534 * it makes it into the AIL. Insert the RUI into the AIL directly and
3535 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3536 * AIL lock.
3537 */
3538 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3539 xfs_rui_release(ruip);
3540 return 0;
3541 }
3542
3543
3544 /*
3545 * This routine is called when an RUD format structure is found in a committed
3546 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3547 * was still in the log. To do this it searches the AIL for the RUI with an id
3548 * equal to that in the RUD format structure. If we find it we drop the RUD
3549 * reference, which removes the RUI from the AIL and frees it.
3550 */
3551 STATIC int
xlog_recover_rud_pass2(struct xlog * log,struct xlog_recover_item * item)3552 xlog_recover_rud_pass2(
3553 struct xlog *log,
3554 struct xlog_recover_item *item)
3555 {
3556 struct xfs_rud_log_format *rud_formatp;
3557 struct xfs_rui_log_item *ruip = NULL;
3558 struct xfs_log_item *lip;
3559 uint64_t rui_id;
3560 struct xfs_ail_cursor cur;
3561 struct xfs_ail *ailp = log->l_ailp;
3562
3563 rud_formatp = item->ri_buf[0].i_addr;
3564 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
3565 rui_id = rud_formatp->rud_rui_id;
3566
3567 /*
3568 * Search for the RUI with the id in the RUD format structure in the
3569 * AIL.
3570 */
3571 spin_lock(&ailp->ail_lock);
3572 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3573 while (lip != NULL) {
3574 if (lip->li_type == XFS_LI_RUI) {
3575 ruip = (struct xfs_rui_log_item *)lip;
3576 if (ruip->rui_format.rui_id == rui_id) {
3577 /*
3578 * Drop the RUD reference to the RUI. This
3579 * removes the RUI from the AIL and frees it.
3580 */
3581 spin_unlock(&ailp->ail_lock);
3582 xfs_rui_release(ruip);
3583 spin_lock(&ailp->ail_lock);
3584 break;
3585 }
3586 }
3587 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3588 }
3589
3590 xfs_trans_ail_cursor_done(&cur);
3591 spin_unlock(&ailp->ail_lock);
3592
3593 return 0;
3594 }
3595
3596 /*
3597 * Copy an CUI format buffer from the given buf, and into the destination
3598 * CUI format structure. The CUI/CUD items were designed not to need any
3599 * special alignment handling.
3600 */
3601 static int
xfs_cui_copy_format(struct xfs_log_iovec * buf,struct xfs_cui_log_format * dst_cui_fmt)3602 xfs_cui_copy_format(
3603 struct xfs_log_iovec *buf,
3604 struct xfs_cui_log_format *dst_cui_fmt)
3605 {
3606 struct xfs_cui_log_format *src_cui_fmt;
3607 uint len;
3608
3609 src_cui_fmt = buf->i_addr;
3610 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3611
3612 if (buf->i_len == len) {
3613 memcpy(dst_cui_fmt, src_cui_fmt, len);
3614 return 0;
3615 }
3616 return -EFSCORRUPTED;
3617 }
3618
3619 /*
3620 * This routine is called to create an in-core extent refcount update
3621 * item from the cui format structure which was logged on disk.
3622 * It allocates an in-core cui, copies the extents from the format
3623 * structure into it, and adds the cui to the AIL with the given
3624 * LSN.
3625 */
3626 STATIC int
xlog_recover_cui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3627 xlog_recover_cui_pass2(
3628 struct xlog *log,
3629 struct xlog_recover_item *item,
3630 xfs_lsn_t lsn)
3631 {
3632 int error;
3633 struct xfs_mount *mp = log->l_mp;
3634 struct xfs_cui_log_item *cuip;
3635 struct xfs_cui_log_format *cui_formatp;
3636
3637 cui_formatp = item->ri_buf[0].i_addr;
3638
3639 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3640 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3641 if (error) {
3642 xfs_cui_item_free(cuip);
3643 return error;
3644 }
3645 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3646
3647 spin_lock(&log->l_ailp->ail_lock);
3648 /*
3649 * The CUI has two references. One for the CUD and one for CUI to ensure
3650 * it makes it into the AIL. Insert the CUI into the AIL directly and
3651 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3652 * AIL lock.
3653 */
3654 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3655 xfs_cui_release(cuip);
3656 return 0;
3657 }
3658
3659
3660 /*
3661 * This routine is called when an CUD format structure is found in a committed
3662 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3663 * was still in the log. To do this it searches the AIL for the CUI with an id
3664 * equal to that in the CUD format structure. If we find it we drop the CUD
3665 * reference, which removes the CUI from the AIL and frees it.
3666 */
3667 STATIC int
xlog_recover_cud_pass2(struct xlog * log,struct xlog_recover_item * item)3668 xlog_recover_cud_pass2(
3669 struct xlog *log,
3670 struct xlog_recover_item *item)
3671 {
3672 struct xfs_cud_log_format *cud_formatp;
3673 struct xfs_cui_log_item *cuip = NULL;
3674 struct xfs_log_item *lip;
3675 uint64_t cui_id;
3676 struct xfs_ail_cursor cur;
3677 struct xfs_ail *ailp = log->l_ailp;
3678
3679 cud_formatp = item->ri_buf[0].i_addr;
3680 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3681 return -EFSCORRUPTED;
3682 cui_id = cud_formatp->cud_cui_id;
3683
3684 /*
3685 * Search for the CUI with the id in the CUD format structure in the
3686 * AIL.
3687 */
3688 spin_lock(&ailp->ail_lock);
3689 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3690 while (lip != NULL) {
3691 if (lip->li_type == XFS_LI_CUI) {
3692 cuip = (struct xfs_cui_log_item *)lip;
3693 if (cuip->cui_format.cui_id == cui_id) {
3694 /*
3695 * Drop the CUD reference to the CUI. This
3696 * removes the CUI from the AIL and frees it.
3697 */
3698 spin_unlock(&ailp->ail_lock);
3699 xfs_cui_release(cuip);
3700 spin_lock(&ailp->ail_lock);
3701 break;
3702 }
3703 }
3704 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3705 }
3706
3707 xfs_trans_ail_cursor_done(&cur);
3708 spin_unlock(&ailp->ail_lock);
3709
3710 return 0;
3711 }
3712
3713 /*
3714 * Copy an BUI format buffer from the given buf, and into the destination
3715 * BUI format structure. The BUI/BUD items were designed not to need any
3716 * special alignment handling.
3717 */
3718 static int
xfs_bui_copy_format(struct xfs_log_iovec * buf,struct xfs_bui_log_format * dst_bui_fmt)3719 xfs_bui_copy_format(
3720 struct xfs_log_iovec *buf,
3721 struct xfs_bui_log_format *dst_bui_fmt)
3722 {
3723 struct xfs_bui_log_format *src_bui_fmt;
3724 uint len;
3725
3726 src_bui_fmt = buf->i_addr;
3727 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3728
3729 if (buf->i_len == len) {
3730 memcpy(dst_bui_fmt, src_bui_fmt, len);
3731 return 0;
3732 }
3733 return -EFSCORRUPTED;
3734 }
3735
3736 /*
3737 * This routine is called to create an in-core extent bmap update
3738 * item from the bui format structure which was logged on disk.
3739 * It allocates an in-core bui, copies the extents from the format
3740 * structure into it, and adds the bui to the AIL with the given
3741 * LSN.
3742 */
3743 STATIC int
xlog_recover_bui_pass2(struct xlog * log,struct xlog_recover_item * item,xfs_lsn_t lsn)3744 xlog_recover_bui_pass2(
3745 struct xlog *log,
3746 struct xlog_recover_item *item,
3747 xfs_lsn_t lsn)
3748 {
3749 int error;
3750 struct xfs_mount *mp = log->l_mp;
3751 struct xfs_bui_log_item *buip;
3752 struct xfs_bui_log_format *bui_formatp;
3753
3754 bui_formatp = item->ri_buf[0].i_addr;
3755
3756 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3757 return -EFSCORRUPTED;
3758 buip = xfs_bui_init(mp);
3759 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3760 if (error) {
3761 xfs_bui_item_free(buip);
3762 return error;
3763 }
3764 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3765
3766 spin_lock(&log->l_ailp->ail_lock);
3767 /*
3768 * The RUI has two references. One for the RUD and one for RUI to ensure
3769 * it makes it into the AIL. Insert the RUI into the AIL directly and
3770 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3771 * AIL lock.
3772 */
3773 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3774 xfs_bui_release(buip);
3775 return 0;
3776 }
3777
3778
3779 /*
3780 * This routine is called when an BUD format structure is found in a committed
3781 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3782 * was still in the log. To do this it searches the AIL for the BUI with an id
3783 * equal to that in the BUD format structure. If we find it we drop the BUD
3784 * reference, which removes the BUI from the AIL and frees it.
3785 */
3786 STATIC int
xlog_recover_bud_pass2(struct xlog * log,struct xlog_recover_item * item)3787 xlog_recover_bud_pass2(
3788 struct xlog *log,
3789 struct xlog_recover_item *item)
3790 {
3791 struct xfs_bud_log_format *bud_formatp;
3792 struct xfs_bui_log_item *buip = NULL;
3793 struct xfs_log_item *lip;
3794 uint64_t bui_id;
3795 struct xfs_ail_cursor cur;
3796 struct xfs_ail *ailp = log->l_ailp;
3797
3798 bud_formatp = item->ri_buf[0].i_addr;
3799 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3800 return -EFSCORRUPTED;
3801 bui_id = bud_formatp->bud_bui_id;
3802
3803 /*
3804 * Search for the BUI with the id in the BUD format structure in the
3805 * AIL.
3806 */
3807 spin_lock(&ailp->ail_lock);
3808 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3809 while (lip != NULL) {
3810 if (lip->li_type == XFS_LI_BUI) {
3811 buip = (struct xfs_bui_log_item *)lip;
3812 if (buip->bui_format.bui_id == bui_id) {
3813 /*
3814 * Drop the BUD reference to the BUI. This
3815 * removes the BUI from the AIL and frees it.
3816 */
3817 spin_unlock(&ailp->ail_lock);
3818 xfs_bui_release(buip);
3819 spin_lock(&ailp->ail_lock);
3820 break;
3821 }
3822 }
3823 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3824 }
3825
3826 xfs_trans_ail_cursor_done(&cur);
3827 spin_unlock(&ailp->ail_lock);
3828
3829 return 0;
3830 }
3831
3832 /*
3833 * This routine is called when an inode create format structure is found in a
3834 * committed transaction in the log. It's purpose is to initialise the inodes
3835 * being allocated on disk. This requires us to get inode cluster buffers that
3836 * match the range to be initialised, stamped with inode templates and written
3837 * by delayed write so that subsequent modifications will hit the cached buffer
3838 * and only need writing out at the end of recovery.
3839 */
3840 STATIC int
xlog_recover_do_icreate_pass2(struct xlog * log,struct list_head * buffer_list,xlog_recover_item_t * item)3841 xlog_recover_do_icreate_pass2(
3842 struct xlog *log,
3843 struct list_head *buffer_list,
3844 xlog_recover_item_t *item)
3845 {
3846 struct xfs_mount *mp = log->l_mp;
3847 struct xfs_icreate_log *icl;
3848 xfs_agnumber_t agno;
3849 xfs_agblock_t agbno;
3850 unsigned int count;
3851 unsigned int isize;
3852 xfs_agblock_t length;
3853 int blks_per_cluster;
3854 int bb_per_cluster;
3855 int cancel_count;
3856 int nbufs;
3857 int i;
3858
3859 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3860 if (icl->icl_type != XFS_LI_ICREATE) {
3861 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3862 return -EINVAL;
3863 }
3864
3865 if (icl->icl_size != 1) {
3866 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3867 return -EINVAL;
3868 }
3869
3870 agno = be32_to_cpu(icl->icl_ag);
3871 if (agno >= mp->m_sb.sb_agcount) {
3872 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3873 return -EINVAL;
3874 }
3875 agbno = be32_to_cpu(icl->icl_agbno);
3876 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3877 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3878 return -EINVAL;
3879 }
3880 isize = be32_to_cpu(icl->icl_isize);
3881 if (isize != mp->m_sb.sb_inodesize) {
3882 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3883 return -EINVAL;
3884 }
3885 count = be32_to_cpu(icl->icl_count);
3886 if (!count) {
3887 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3888 return -EINVAL;
3889 }
3890 length = be32_to_cpu(icl->icl_length);
3891 if (!length || length >= mp->m_sb.sb_agblocks) {
3892 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3893 return -EINVAL;
3894 }
3895
3896 /*
3897 * The inode chunk is either full or sparse and we only support
3898 * m_ialloc_min_blks sized sparse allocations at this time.
3899 */
3900 if (length != mp->m_ialloc_blks &&
3901 length != mp->m_ialloc_min_blks) {
3902 xfs_warn(log->l_mp,
3903 "%s: unsupported chunk length", __FUNCTION__);
3904 return -EINVAL;
3905 }
3906
3907 /* verify inode count is consistent with extent length */
3908 if ((count >> mp->m_sb.sb_inopblog) != length) {
3909 xfs_warn(log->l_mp,
3910 "%s: inconsistent inode count and chunk length",
3911 __FUNCTION__);
3912 return -EINVAL;
3913 }
3914
3915 /*
3916 * The icreate transaction can cover multiple cluster buffers and these
3917 * buffers could have been freed and reused. Check the individual
3918 * buffers for cancellation so we don't overwrite anything written after
3919 * a cancellation.
3920 */
3921 blks_per_cluster = xfs_icluster_size_fsb(mp);
3922 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3923 nbufs = length / blks_per_cluster;
3924 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3925 xfs_daddr_t daddr;
3926
3927 daddr = XFS_AGB_TO_DADDR(mp, agno,
3928 agbno + i * blks_per_cluster);
3929 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3930 cancel_count++;
3931 }
3932
3933 /*
3934 * We currently only use icreate for a single allocation at a time. This
3935 * means we should expect either all or none of the buffers to be
3936 * cancelled. Be conservative and skip replay if at least one buffer is
3937 * cancelled, but warn the user that something is awry if the buffers
3938 * are not consistent.
3939 *
3940 * XXX: This must be refined to only skip cancelled clusters once we use
3941 * icreate for multiple chunk allocations.
3942 */
3943 ASSERT(!cancel_count || cancel_count == nbufs);
3944 if (cancel_count) {
3945 if (cancel_count != nbufs)
3946 xfs_warn(mp,
3947 "WARNING: partial inode chunk cancellation, skipped icreate.");
3948 trace_xfs_log_recover_icreate_cancel(log, icl);
3949 return 0;
3950 }
3951
3952 trace_xfs_log_recover_icreate_recover(log, icl);
3953 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3954 length, be32_to_cpu(icl->icl_gen));
3955 }
3956
3957 STATIC void
xlog_recover_buffer_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3958 xlog_recover_buffer_ra_pass2(
3959 struct xlog *log,
3960 struct xlog_recover_item *item)
3961 {
3962 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3963 struct xfs_mount *mp = log->l_mp;
3964
3965 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
3966 buf_f->blf_len, buf_f->blf_flags)) {
3967 return;
3968 }
3969
3970 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3971 buf_f->blf_len, NULL);
3972 }
3973
3974 STATIC void
xlog_recover_inode_ra_pass2(struct xlog * log,struct xlog_recover_item * item)3975 xlog_recover_inode_ra_pass2(
3976 struct xlog *log,
3977 struct xlog_recover_item *item)
3978 {
3979 struct xfs_inode_log_format ilf_buf;
3980 struct xfs_inode_log_format *ilfp;
3981 struct xfs_mount *mp = log->l_mp;
3982 int error;
3983
3984 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3985 ilfp = item->ri_buf[0].i_addr;
3986 } else {
3987 ilfp = &ilf_buf;
3988 memset(ilfp, 0, sizeof(*ilfp));
3989 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3990 if (error)
3991 return;
3992 }
3993
3994 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
3995 return;
3996
3997 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
3998 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
3999 }
4000
4001 STATIC void
xlog_recover_dquot_ra_pass2(struct xlog * log,struct xlog_recover_item * item)4002 xlog_recover_dquot_ra_pass2(
4003 struct xlog *log,
4004 struct xlog_recover_item *item)
4005 {
4006 struct xfs_mount *mp = log->l_mp;
4007 struct xfs_disk_dquot *recddq;
4008 struct xfs_dq_logformat *dq_f;
4009 uint type;
4010 int len;
4011
4012
4013 if (mp->m_qflags == 0)
4014 return;
4015
4016 recddq = item->ri_buf[1].i_addr;
4017 if (recddq == NULL)
4018 return;
4019 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4020 return;
4021
4022 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4023 ASSERT(type);
4024 if (log->l_quotaoffs_flag & type)
4025 return;
4026
4027 dq_f = item->ri_buf[0].i_addr;
4028 ASSERT(dq_f);
4029 ASSERT(dq_f->qlf_len == 1);
4030
4031 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4032 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4033 return;
4034
4035 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4036 &xfs_dquot_buf_ra_ops);
4037 }
4038
4039 STATIC void
xlog_recover_ra_pass2(struct xlog * log,struct xlog_recover_item * item)4040 xlog_recover_ra_pass2(
4041 struct xlog *log,
4042 struct xlog_recover_item *item)
4043 {
4044 switch (ITEM_TYPE(item)) {
4045 case XFS_LI_BUF:
4046 xlog_recover_buffer_ra_pass2(log, item);
4047 break;
4048 case XFS_LI_INODE:
4049 xlog_recover_inode_ra_pass2(log, item);
4050 break;
4051 case XFS_LI_DQUOT:
4052 xlog_recover_dquot_ra_pass2(log, item);
4053 break;
4054 case XFS_LI_EFI:
4055 case XFS_LI_EFD:
4056 case XFS_LI_QUOTAOFF:
4057 case XFS_LI_RUI:
4058 case XFS_LI_RUD:
4059 case XFS_LI_CUI:
4060 case XFS_LI_CUD:
4061 case XFS_LI_BUI:
4062 case XFS_LI_BUD:
4063 default:
4064 break;
4065 }
4066 }
4067
4068 STATIC int
xlog_recover_commit_pass1(struct xlog * log,struct xlog_recover * trans,struct xlog_recover_item * item)4069 xlog_recover_commit_pass1(
4070 struct xlog *log,
4071 struct xlog_recover *trans,
4072 struct xlog_recover_item *item)
4073 {
4074 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
4075
4076 switch (ITEM_TYPE(item)) {
4077 case XFS_LI_BUF:
4078 return xlog_recover_buffer_pass1(log, item);
4079 case XFS_LI_QUOTAOFF:
4080 return xlog_recover_quotaoff_pass1(log, item);
4081 case XFS_LI_INODE:
4082 case XFS_LI_EFI:
4083 case XFS_LI_EFD:
4084 case XFS_LI_DQUOT:
4085 case XFS_LI_ICREATE:
4086 case XFS_LI_RUI:
4087 case XFS_LI_RUD:
4088 case XFS_LI_CUI:
4089 case XFS_LI_CUD:
4090 case XFS_LI_BUI:
4091 case XFS_LI_BUD:
4092 /* nothing to do in pass 1 */
4093 return 0;
4094 default:
4095 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4096 __func__, ITEM_TYPE(item));
4097 ASSERT(0);
4098 return -EIO;
4099 }
4100 }
4101
4102 STATIC int
xlog_recover_commit_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct xlog_recover_item * item)4103 xlog_recover_commit_pass2(
4104 struct xlog *log,
4105 struct xlog_recover *trans,
4106 struct list_head *buffer_list,
4107 struct xlog_recover_item *item)
4108 {
4109 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4110
4111 switch (ITEM_TYPE(item)) {
4112 case XFS_LI_BUF:
4113 return xlog_recover_buffer_pass2(log, buffer_list, item,
4114 trans->r_lsn);
4115 case XFS_LI_INODE:
4116 return xlog_recover_inode_pass2(log, buffer_list, item,
4117 trans->r_lsn);
4118 case XFS_LI_EFI:
4119 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4120 case XFS_LI_EFD:
4121 return xlog_recover_efd_pass2(log, item);
4122 case XFS_LI_RUI:
4123 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4124 case XFS_LI_RUD:
4125 return xlog_recover_rud_pass2(log, item);
4126 case XFS_LI_CUI:
4127 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4128 case XFS_LI_CUD:
4129 return xlog_recover_cud_pass2(log, item);
4130 case XFS_LI_BUI:
4131 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4132 case XFS_LI_BUD:
4133 return xlog_recover_bud_pass2(log, item);
4134 case XFS_LI_DQUOT:
4135 return xlog_recover_dquot_pass2(log, buffer_list, item,
4136 trans->r_lsn);
4137 case XFS_LI_ICREATE:
4138 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
4139 case XFS_LI_QUOTAOFF:
4140 /* nothing to do in pass2 */
4141 return 0;
4142 default:
4143 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4144 __func__, ITEM_TYPE(item));
4145 ASSERT(0);
4146 return -EIO;
4147 }
4148 }
4149
4150 STATIC int
xlog_recover_items_pass2(struct xlog * log,struct xlog_recover * trans,struct list_head * buffer_list,struct list_head * item_list)4151 xlog_recover_items_pass2(
4152 struct xlog *log,
4153 struct xlog_recover *trans,
4154 struct list_head *buffer_list,
4155 struct list_head *item_list)
4156 {
4157 struct xlog_recover_item *item;
4158 int error = 0;
4159
4160 list_for_each_entry(item, item_list, ri_list) {
4161 error = xlog_recover_commit_pass2(log, trans,
4162 buffer_list, item);
4163 if (error)
4164 return error;
4165 }
4166
4167 return error;
4168 }
4169
4170 /*
4171 * Perform the transaction.
4172 *
4173 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4174 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4175 */
4176 STATIC int
xlog_recover_commit_trans(struct xlog * log,struct xlog_recover * trans,int pass,struct list_head * buffer_list)4177 xlog_recover_commit_trans(
4178 struct xlog *log,
4179 struct xlog_recover *trans,
4180 int pass,
4181 struct list_head *buffer_list)
4182 {
4183 int error = 0;
4184 int items_queued = 0;
4185 struct xlog_recover_item *item;
4186 struct xlog_recover_item *next;
4187 LIST_HEAD (ra_list);
4188 LIST_HEAD (done_list);
4189
4190 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
4191
4192 hlist_del_init(&trans->r_list);
4193
4194 error = xlog_recover_reorder_trans(log, trans, pass);
4195 if (error)
4196 return error;
4197
4198 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
4199 switch (pass) {
4200 case XLOG_RECOVER_PASS1:
4201 error = xlog_recover_commit_pass1(log, trans, item);
4202 break;
4203 case XLOG_RECOVER_PASS2:
4204 xlog_recover_ra_pass2(log, item);
4205 list_move_tail(&item->ri_list, &ra_list);
4206 items_queued++;
4207 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4208 error = xlog_recover_items_pass2(log, trans,
4209 buffer_list, &ra_list);
4210 list_splice_tail_init(&ra_list, &done_list);
4211 items_queued = 0;
4212 }
4213
4214 break;
4215 default:
4216 ASSERT(0);
4217 }
4218
4219 if (error)
4220 goto out;
4221 }
4222
4223 out:
4224 if (!list_empty(&ra_list)) {
4225 if (!error)
4226 error = xlog_recover_items_pass2(log, trans,
4227 buffer_list, &ra_list);
4228 list_splice_tail_init(&ra_list, &done_list);
4229 }
4230
4231 if (!list_empty(&done_list))
4232 list_splice_init(&done_list, &trans->r_itemq);
4233
4234 return error;
4235 }
4236
4237 STATIC void
xlog_recover_add_item(struct list_head * head)4238 xlog_recover_add_item(
4239 struct list_head *head)
4240 {
4241 xlog_recover_item_t *item;
4242
4243 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4244 INIT_LIST_HEAD(&item->ri_list);
4245 list_add_tail(&item->ri_list, head);
4246 }
4247
4248 STATIC int
xlog_recover_add_to_cont_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)4249 xlog_recover_add_to_cont_trans(
4250 struct xlog *log,
4251 struct xlog_recover *trans,
4252 char *dp,
4253 int len)
4254 {
4255 xlog_recover_item_t *item;
4256 char *ptr, *old_ptr;
4257 int old_len;
4258
4259 /*
4260 * If the transaction is empty, the header was split across this and the
4261 * previous record. Copy the rest of the header.
4262 */
4263 if (list_empty(&trans->r_itemq)) {
4264 ASSERT(len <= sizeof(struct xfs_trans_header));
4265 if (len > sizeof(struct xfs_trans_header)) {
4266 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4267 return -EIO;
4268 }
4269
4270 xlog_recover_add_item(&trans->r_itemq);
4271 ptr = (char *)&trans->r_theader +
4272 sizeof(struct xfs_trans_header) - len;
4273 memcpy(ptr, dp, len);
4274 return 0;
4275 }
4276
4277 /* take the tail entry */
4278 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4279
4280 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4281 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4282
4283 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
4284 memcpy(&ptr[old_len], dp, len);
4285 item->ri_buf[item->ri_cnt-1].i_len += len;
4286 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4287 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
4288 return 0;
4289 }
4290
4291 /*
4292 * The next region to add is the start of a new region. It could be
4293 * a whole region or it could be the first part of a new region. Because
4294 * of this, the assumption here is that the type and size fields of all
4295 * format structures fit into the first 32 bits of the structure.
4296 *
4297 * This works because all regions must be 32 bit aligned. Therefore, we
4298 * either have both fields or we have neither field. In the case we have
4299 * neither field, the data part of the region is zero length. We only have
4300 * a log_op_header and can throw away the header since a new one will appear
4301 * later. If we have at least 4 bytes, then we can determine how many regions
4302 * will appear in the current log item.
4303 */
4304 STATIC int
xlog_recover_add_to_trans(struct xlog * log,struct xlog_recover * trans,char * dp,int len)4305 xlog_recover_add_to_trans(
4306 struct xlog *log,
4307 struct xlog_recover *trans,
4308 char *dp,
4309 int len)
4310 {
4311 struct xfs_inode_log_format *in_f; /* any will do */
4312 xlog_recover_item_t *item;
4313 char *ptr;
4314
4315 if (!len)
4316 return 0;
4317 if (list_empty(&trans->r_itemq)) {
4318 /* we need to catch log corruptions here */
4319 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4320 xfs_warn(log->l_mp, "%s: bad header magic number",
4321 __func__);
4322 ASSERT(0);
4323 return -EIO;
4324 }
4325
4326 if (len > sizeof(struct xfs_trans_header)) {
4327 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4328 ASSERT(0);
4329 return -EIO;
4330 }
4331
4332 /*
4333 * The transaction header can be arbitrarily split across op
4334 * records. If we don't have the whole thing here, copy what we
4335 * do have and handle the rest in the next record.
4336 */
4337 if (len == sizeof(struct xfs_trans_header))
4338 xlog_recover_add_item(&trans->r_itemq);
4339 memcpy(&trans->r_theader, dp, len);
4340 return 0;
4341 }
4342
4343 ptr = kmem_alloc(len, KM_SLEEP);
4344 memcpy(ptr, dp, len);
4345 in_f = (struct xfs_inode_log_format *)ptr;
4346
4347 /* take the tail entry */
4348 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4349 if (item->ri_total != 0 &&
4350 item->ri_total == item->ri_cnt) {
4351 /* tail item is in use, get a new one */
4352 xlog_recover_add_item(&trans->r_itemq);
4353 item = list_entry(trans->r_itemq.prev,
4354 xlog_recover_item_t, ri_list);
4355 }
4356
4357 if (item->ri_total == 0) { /* first region to be added */
4358 if (in_f->ilf_size == 0 ||
4359 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4360 xfs_warn(log->l_mp,
4361 "bad number of regions (%d) in inode log format",
4362 in_f->ilf_size);
4363 ASSERT(0);
4364 kmem_free(ptr);
4365 return -EIO;
4366 }
4367
4368 item->ri_total = in_f->ilf_size;
4369 item->ri_buf =
4370 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4371 KM_SLEEP);
4372 }
4373 ASSERT(item->ri_total > item->ri_cnt);
4374 /* Description region is ri_buf[0] */
4375 item->ri_buf[item->ri_cnt].i_addr = ptr;
4376 item->ri_buf[item->ri_cnt].i_len = len;
4377 item->ri_cnt++;
4378 trace_xfs_log_recover_item_add(log, trans, item, 0);
4379 return 0;
4380 }
4381
4382 /*
4383 * Free up any resources allocated by the transaction
4384 *
4385 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4386 */
4387 STATIC void
xlog_recover_free_trans(struct xlog_recover * trans)4388 xlog_recover_free_trans(
4389 struct xlog_recover *trans)
4390 {
4391 xlog_recover_item_t *item, *n;
4392 int i;
4393
4394 hlist_del_init(&trans->r_list);
4395
4396 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4397 /* Free the regions in the item. */
4398 list_del(&item->ri_list);
4399 for (i = 0; i < item->ri_cnt; i++)
4400 kmem_free(item->ri_buf[i].i_addr);
4401 /* Free the item itself */
4402 kmem_free(item->ri_buf);
4403 kmem_free(item);
4404 }
4405 /* Free the transaction recover structure */
4406 kmem_free(trans);
4407 }
4408
4409 /*
4410 * On error or completion, trans is freed.
4411 */
4412 STATIC int
xlog_recovery_process_trans(struct xlog * log,struct xlog_recover * trans,char * dp,unsigned int len,unsigned int flags,int pass,struct list_head * buffer_list)4413 xlog_recovery_process_trans(
4414 struct xlog *log,
4415 struct xlog_recover *trans,
4416 char *dp,
4417 unsigned int len,
4418 unsigned int flags,
4419 int pass,
4420 struct list_head *buffer_list)
4421 {
4422 int error = 0;
4423 bool freeit = false;
4424
4425 /* mask off ophdr transaction container flags */
4426 flags &= ~XLOG_END_TRANS;
4427 if (flags & XLOG_WAS_CONT_TRANS)
4428 flags &= ~XLOG_CONTINUE_TRANS;
4429
4430 /*
4431 * Callees must not free the trans structure. We'll decide if we need to
4432 * free it or not based on the operation being done and it's result.
4433 */
4434 switch (flags) {
4435 /* expected flag values */
4436 case 0:
4437 case XLOG_CONTINUE_TRANS:
4438 error = xlog_recover_add_to_trans(log, trans, dp, len);
4439 break;
4440 case XLOG_WAS_CONT_TRANS:
4441 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4442 break;
4443 case XLOG_COMMIT_TRANS:
4444 error = xlog_recover_commit_trans(log, trans, pass,
4445 buffer_list);
4446 /* success or fail, we are now done with this transaction. */
4447 freeit = true;
4448 break;
4449
4450 /* unexpected flag values */
4451 case XLOG_UNMOUNT_TRANS:
4452 /* just skip trans */
4453 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
4454 freeit = true;
4455 break;
4456 case XLOG_START_TRANS:
4457 default:
4458 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4459 ASSERT(0);
4460 error = -EIO;
4461 break;
4462 }
4463 if (error || freeit)
4464 xlog_recover_free_trans(trans);
4465 return error;
4466 }
4467
4468 /*
4469 * Lookup the transaction recovery structure associated with the ID in the
4470 * current ophdr. If the transaction doesn't exist and the start flag is set in
4471 * the ophdr, then allocate a new transaction for future ID matches to find.
4472 * Either way, return what we found during the lookup - an existing transaction
4473 * or nothing.
4474 */
4475 STATIC struct xlog_recover *
xlog_recover_ophdr_to_trans(struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead)4476 xlog_recover_ophdr_to_trans(
4477 struct hlist_head rhash[],
4478 struct xlog_rec_header *rhead,
4479 struct xlog_op_header *ohead)
4480 {
4481 struct xlog_recover *trans;
4482 xlog_tid_t tid;
4483 struct hlist_head *rhp;
4484
4485 tid = be32_to_cpu(ohead->oh_tid);
4486 rhp = &rhash[XLOG_RHASH(tid)];
4487 hlist_for_each_entry(trans, rhp, r_list) {
4488 if (trans->r_log_tid == tid)
4489 return trans;
4490 }
4491
4492 /*
4493 * skip over non-start transaction headers - we could be
4494 * processing slack space before the next transaction starts
4495 */
4496 if (!(ohead->oh_flags & XLOG_START_TRANS))
4497 return NULL;
4498
4499 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4500
4501 /*
4502 * This is a new transaction so allocate a new recovery container to
4503 * hold the recovery ops that will follow.
4504 */
4505 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4506 trans->r_log_tid = tid;
4507 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4508 INIT_LIST_HEAD(&trans->r_itemq);
4509 INIT_HLIST_NODE(&trans->r_list);
4510 hlist_add_head(&trans->r_list, rhp);
4511
4512 /*
4513 * Nothing more to do for this ophdr. Items to be added to this new
4514 * transaction will be in subsequent ophdr containers.
4515 */
4516 return NULL;
4517 }
4518
4519 STATIC int
xlog_recover_process_ophdr(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,struct xlog_op_header * ohead,char * dp,char * end,int pass,struct list_head * buffer_list)4520 xlog_recover_process_ophdr(
4521 struct xlog *log,
4522 struct hlist_head rhash[],
4523 struct xlog_rec_header *rhead,
4524 struct xlog_op_header *ohead,
4525 char *dp,
4526 char *end,
4527 int pass,
4528 struct list_head *buffer_list)
4529 {
4530 struct xlog_recover *trans;
4531 unsigned int len;
4532 int error;
4533
4534 /* Do we understand who wrote this op? */
4535 if (ohead->oh_clientid != XFS_TRANSACTION &&
4536 ohead->oh_clientid != XFS_LOG) {
4537 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4538 __func__, ohead->oh_clientid);
4539 ASSERT(0);
4540 return -EIO;
4541 }
4542
4543 /*
4544 * Check the ophdr contains all the data it is supposed to contain.
4545 */
4546 len = be32_to_cpu(ohead->oh_len);
4547 if (dp + len > end) {
4548 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4549 WARN_ON(1);
4550 return -EIO;
4551 }
4552
4553 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4554 if (!trans) {
4555 /* nothing to do, so skip over this ophdr */
4556 return 0;
4557 }
4558
4559 /*
4560 * The recovered buffer queue is drained only once we know that all
4561 * recovery items for the current LSN have been processed. This is
4562 * required because:
4563 *
4564 * - Buffer write submission updates the metadata LSN of the buffer.
4565 * - Log recovery skips items with a metadata LSN >= the current LSN of
4566 * the recovery item.
4567 * - Separate recovery items against the same metadata buffer can share
4568 * a current LSN. I.e., consider that the LSN of a recovery item is
4569 * defined as the starting LSN of the first record in which its
4570 * transaction appears, that a record can hold multiple transactions,
4571 * and/or that a transaction can span multiple records.
4572 *
4573 * In other words, we are allowed to submit a buffer from log recovery
4574 * once per current LSN. Otherwise, we may incorrectly skip recovery
4575 * items and cause corruption.
4576 *
4577 * We don't know up front whether buffers are updated multiple times per
4578 * LSN. Therefore, track the current LSN of each commit log record as it
4579 * is processed and drain the queue when it changes. Use commit records
4580 * because they are ordered correctly by the logging code.
4581 */
4582 if (log->l_recovery_lsn != trans->r_lsn &&
4583 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4584 error = xfs_buf_delwri_submit(buffer_list);
4585 if (error)
4586 return error;
4587 log->l_recovery_lsn = trans->r_lsn;
4588 }
4589
4590 return xlog_recovery_process_trans(log, trans, dp, len,
4591 ohead->oh_flags, pass, buffer_list);
4592 }
4593
4594 /*
4595 * There are two valid states of the r_state field. 0 indicates that the
4596 * transaction structure is in a normal state. We have either seen the
4597 * start of the transaction or the last operation we added was not a partial
4598 * operation. If the last operation we added to the transaction was a
4599 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4600 *
4601 * NOTE: skip LRs with 0 data length.
4602 */
4603 STATIC int
xlog_recover_process_data(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)4604 xlog_recover_process_data(
4605 struct xlog *log,
4606 struct hlist_head rhash[],
4607 struct xlog_rec_header *rhead,
4608 char *dp,
4609 int pass,
4610 struct list_head *buffer_list)
4611 {
4612 struct xlog_op_header *ohead;
4613 char *end;
4614 int num_logops;
4615 int error;
4616
4617 end = dp + be32_to_cpu(rhead->h_len);
4618 num_logops = be32_to_cpu(rhead->h_num_logops);
4619
4620 /* check the log format matches our own - else we can't recover */
4621 if (xlog_header_check_recover(log->l_mp, rhead))
4622 return -EIO;
4623
4624 trace_xfs_log_recover_record(log, rhead, pass);
4625 while ((dp < end) && num_logops) {
4626
4627 ohead = (struct xlog_op_header *)dp;
4628 dp += sizeof(*ohead);
4629 ASSERT(dp <= end);
4630
4631 /* errors will abort recovery */
4632 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
4633 dp, end, pass, buffer_list);
4634 if (error)
4635 return error;
4636
4637 dp += be32_to_cpu(ohead->oh_len);
4638 num_logops--;
4639 }
4640 return 0;
4641 }
4642
4643 /* Recover the EFI if necessary. */
4644 STATIC int
xlog_recover_process_efi(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4645 xlog_recover_process_efi(
4646 struct xfs_mount *mp,
4647 struct xfs_ail *ailp,
4648 struct xfs_log_item *lip)
4649 {
4650 struct xfs_efi_log_item *efip;
4651 int error;
4652
4653 /*
4654 * Skip EFIs that we've already processed.
4655 */
4656 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4657 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4658 return 0;
4659
4660 spin_unlock(&ailp->ail_lock);
4661 error = xfs_efi_recover(mp, efip);
4662 spin_lock(&ailp->ail_lock);
4663
4664 return error;
4665 }
4666
4667 /* Release the EFI since we're cancelling everything. */
4668 STATIC void
xlog_recover_cancel_efi(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4669 xlog_recover_cancel_efi(
4670 struct xfs_mount *mp,
4671 struct xfs_ail *ailp,
4672 struct xfs_log_item *lip)
4673 {
4674 struct xfs_efi_log_item *efip;
4675
4676 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4677
4678 spin_unlock(&ailp->ail_lock);
4679 xfs_efi_release(efip);
4680 spin_lock(&ailp->ail_lock);
4681 }
4682
4683 /* Recover the RUI if necessary. */
4684 STATIC int
xlog_recover_process_rui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4685 xlog_recover_process_rui(
4686 struct xfs_mount *mp,
4687 struct xfs_ail *ailp,
4688 struct xfs_log_item *lip)
4689 {
4690 struct xfs_rui_log_item *ruip;
4691 int error;
4692
4693 /*
4694 * Skip RUIs that we've already processed.
4695 */
4696 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4697 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4698 return 0;
4699
4700 spin_unlock(&ailp->ail_lock);
4701 error = xfs_rui_recover(mp, ruip);
4702 spin_lock(&ailp->ail_lock);
4703
4704 return error;
4705 }
4706
4707 /* Release the RUI since we're cancelling everything. */
4708 STATIC void
xlog_recover_cancel_rui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4709 xlog_recover_cancel_rui(
4710 struct xfs_mount *mp,
4711 struct xfs_ail *ailp,
4712 struct xfs_log_item *lip)
4713 {
4714 struct xfs_rui_log_item *ruip;
4715
4716 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4717
4718 spin_unlock(&ailp->ail_lock);
4719 xfs_rui_release(ruip);
4720 spin_lock(&ailp->ail_lock);
4721 }
4722
4723 /* Recover the CUI if necessary. */
4724 STATIC int
xlog_recover_process_cui(struct xfs_trans * parent_tp,struct xfs_ail * ailp,struct xfs_log_item * lip)4725 xlog_recover_process_cui(
4726 struct xfs_trans *parent_tp,
4727 struct xfs_ail *ailp,
4728 struct xfs_log_item *lip)
4729 {
4730 struct xfs_cui_log_item *cuip;
4731 int error;
4732
4733 /*
4734 * Skip CUIs that we've already processed.
4735 */
4736 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4737 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4738 return 0;
4739
4740 spin_unlock(&ailp->ail_lock);
4741 error = xfs_cui_recover(parent_tp, cuip);
4742 spin_lock(&ailp->ail_lock);
4743
4744 return error;
4745 }
4746
4747 /* Release the CUI since we're cancelling everything. */
4748 STATIC void
xlog_recover_cancel_cui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4749 xlog_recover_cancel_cui(
4750 struct xfs_mount *mp,
4751 struct xfs_ail *ailp,
4752 struct xfs_log_item *lip)
4753 {
4754 struct xfs_cui_log_item *cuip;
4755
4756 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4757
4758 spin_unlock(&ailp->ail_lock);
4759 xfs_cui_release(cuip);
4760 spin_lock(&ailp->ail_lock);
4761 }
4762
4763 /* Recover the BUI if necessary. */
4764 STATIC int
xlog_recover_process_bui(struct xfs_trans * parent_tp,struct xfs_ail * ailp,struct xfs_log_item * lip)4765 xlog_recover_process_bui(
4766 struct xfs_trans *parent_tp,
4767 struct xfs_ail *ailp,
4768 struct xfs_log_item *lip)
4769 {
4770 struct xfs_bui_log_item *buip;
4771 int error;
4772
4773 /*
4774 * Skip BUIs that we've already processed.
4775 */
4776 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4777 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4778 return 0;
4779
4780 spin_unlock(&ailp->ail_lock);
4781 error = xfs_bui_recover(parent_tp, buip);
4782 spin_lock(&ailp->ail_lock);
4783
4784 return error;
4785 }
4786
4787 /* Release the BUI since we're cancelling everything. */
4788 STATIC void
xlog_recover_cancel_bui(struct xfs_mount * mp,struct xfs_ail * ailp,struct xfs_log_item * lip)4789 xlog_recover_cancel_bui(
4790 struct xfs_mount *mp,
4791 struct xfs_ail *ailp,
4792 struct xfs_log_item *lip)
4793 {
4794 struct xfs_bui_log_item *buip;
4795
4796 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4797
4798 spin_unlock(&ailp->ail_lock);
4799 xfs_bui_release(buip);
4800 spin_lock(&ailp->ail_lock);
4801 }
4802
4803 /* Is this log item a deferred action intent? */
xlog_item_is_intent(struct xfs_log_item * lip)4804 static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4805 {
4806 switch (lip->li_type) {
4807 case XFS_LI_EFI:
4808 case XFS_LI_RUI:
4809 case XFS_LI_CUI:
4810 case XFS_LI_BUI:
4811 return true;
4812 default:
4813 return false;
4814 }
4815 }
4816
4817 /* Take all the collected deferred ops and finish them in order. */
4818 static int
xlog_finish_defer_ops(struct xfs_trans * parent_tp)4819 xlog_finish_defer_ops(
4820 struct xfs_trans *parent_tp)
4821 {
4822 struct xfs_mount *mp = parent_tp->t_mountp;
4823 struct xfs_trans *tp;
4824 int64_t freeblks;
4825 uint resblks;
4826 int error;
4827
4828 /*
4829 * We're finishing the defer_ops that accumulated as a result of
4830 * recovering unfinished intent items during log recovery. We
4831 * reserve an itruncate transaction because it is the largest
4832 * permanent transaction type. Since we're the only user of the fs
4833 * right now, take 93% (15/16) of the available free blocks. Use
4834 * weird math to avoid a 64-bit division.
4835 */
4836 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4837 if (freeblks <= 0)
4838 return -ENOSPC;
4839 resblks = min_t(int64_t, UINT_MAX, freeblks);
4840 resblks = (resblks * 15) >> 4;
4841 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4842 0, XFS_TRANS_RESERVE, &tp);
4843 if (error)
4844 return error;
4845 /* transfer all collected dfops to this transaction */
4846 xfs_defer_move(tp, parent_tp);
4847
4848 return xfs_trans_commit(tp);
4849 }
4850
4851 /*
4852 * When this is called, all of the log intent items which did not have
4853 * corresponding log done items should be in the AIL. What we do now
4854 * is update the data structures associated with each one.
4855 *
4856 * Since we process the log intent items in normal transactions, they
4857 * will be removed at some point after the commit. This prevents us
4858 * from just walking down the list processing each one. We'll use a
4859 * flag in the intent item to skip those that we've already processed
4860 * and use the AIL iteration mechanism's generation count to try to
4861 * speed this up at least a bit.
4862 *
4863 * When we start, we know that the intents are the only things in the
4864 * AIL. As we process them, however, other items are added to the
4865 * AIL.
4866 */
4867 STATIC int
xlog_recover_process_intents(struct xlog * log)4868 xlog_recover_process_intents(
4869 struct xlog *log)
4870 {
4871 struct xfs_trans *parent_tp;
4872 struct xfs_ail_cursor cur;
4873 struct xfs_log_item *lip;
4874 struct xfs_ail *ailp;
4875 int error;
4876 #if defined(DEBUG) || defined(XFS_WARN)
4877 xfs_lsn_t last_lsn;
4878 #endif
4879
4880 /*
4881 * The intent recovery handlers commit transactions to complete recovery
4882 * for individual intents, but any new deferred operations that are
4883 * queued during that process are held off until the very end. The
4884 * purpose of this transaction is to serve as a container for deferred
4885 * operations. Each intent recovery handler must transfer dfops here
4886 * before its local transaction commits, and we'll finish the entire
4887 * list below.
4888 */
4889 error = xfs_trans_alloc_empty(log->l_mp, &parent_tp);
4890 if (error)
4891 return error;
4892
4893 ailp = log->l_ailp;
4894 spin_lock(&ailp->ail_lock);
4895 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4896 #if defined(DEBUG) || defined(XFS_WARN)
4897 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
4898 #endif
4899 while (lip != NULL) {
4900 /*
4901 * We're done when we see something other than an intent.
4902 * There should be no intents left in the AIL now.
4903 */
4904 if (!xlog_item_is_intent(lip)) {
4905 #ifdef DEBUG
4906 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4907 ASSERT(!xlog_item_is_intent(lip));
4908 #endif
4909 break;
4910 }
4911
4912 /*
4913 * We should never see a redo item with a LSN higher than
4914 * the last transaction we found in the log at the start
4915 * of recovery.
4916 */
4917 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
4918
4919 /*
4920 * NOTE: If your intent processing routine can create more
4921 * deferred ops, you /must/ attach them to the dfops in this
4922 * routine or else those subsequent intents will get
4923 * replayed in the wrong order!
4924 */
4925 switch (lip->li_type) {
4926 case XFS_LI_EFI:
4927 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4928 break;
4929 case XFS_LI_RUI:
4930 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4931 break;
4932 case XFS_LI_CUI:
4933 error = xlog_recover_process_cui(parent_tp, ailp, lip);
4934 break;
4935 case XFS_LI_BUI:
4936 error = xlog_recover_process_bui(parent_tp, ailp, lip);
4937 break;
4938 }
4939 if (error)
4940 goto out;
4941 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4942 }
4943 out:
4944 xfs_trans_ail_cursor_done(&cur);
4945 spin_unlock(&ailp->ail_lock);
4946 if (!error)
4947 error = xlog_finish_defer_ops(parent_tp);
4948 xfs_trans_cancel(parent_tp);
4949
4950 return error;
4951 }
4952
4953 /*
4954 * A cancel occurs when the mount has failed and we're bailing out.
4955 * Release all pending log intent items so they don't pin the AIL.
4956 */
4957 STATIC int
xlog_recover_cancel_intents(struct xlog * log)4958 xlog_recover_cancel_intents(
4959 struct xlog *log)
4960 {
4961 struct xfs_log_item *lip;
4962 int error = 0;
4963 struct xfs_ail_cursor cur;
4964 struct xfs_ail *ailp;
4965
4966 ailp = log->l_ailp;
4967 spin_lock(&ailp->ail_lock);
4968 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4969 while (lip != NULL) {
4970 /*
4971 * We're done when we see something other than an intent.
4972 * There should be no intents left in the AIL now.
4973 */
4974 if (!xlog_item_is_intent(lip)) {
4975 #ifdef DEBUG
4976 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
4977 ASSERT(!xlog_item_is_intent(lip));
4978 #endif
4979 break;
4980 }
4981
4982 switch (lip->li_type) {
4983 case XFS_LI_EFI:
4984 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4985 break;
4986 case XFS_LI_RUI:
4987 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4988 break;
4989 case XFS_LI_CUI:
4990 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4991 break;
4992 case XFS_LI_BUI:
4993 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4994 break;
4995 }
4996
4997 lip = xfs_trans_ail_cursor_next(ailp, &cur);
4998 }
4999
5000 xfs_trans_ail_cursor_done(&cur);
5001 spin_unlock(&ailp->ail_lock);
5002 return error;
5003 }
5004
5005 /*
5006 * This routine performs a transaction to null out a bad inode pointer
5007 * in an agi unlinked inode hash bucket.
5008 */
5009 STATIC void
xlog_recover_clear_agi_bucket(xfs_mount_t * mp,xfs_agnumber_t agno,int bucket)5010 xlog_recover_clear_agi_bucket(
5011 xfs_mount_t *mp,
5012 xfs_agnumber_t agno,
5013 int bucket)
5014 {
5015 xfs_trans_t *tp;
5016 xfs_agi_t *agi;
5017 xfs_buf_t *agibp;
5018 int offset;
5019 int error;
5020
5021 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
5022 if (error)
5023 goto out_error;
5024
5025 error = xfs_read_agi(mp, tp, agno, &agibp);
5026 if (error)
5027 goto out_abort;
5028
5029 agi = XFS_BUF_TO_AGI(agibp);
5030 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
5031 offset = offsetof(xfs_agi_t, agi_unlinked) +
5032 (sizeof(xfs_agino_t) * bucket);
5033 xfs_trans_log_buf(tp, agibp, offset,
5034 (offset + sizeof(xfs_agino_t) - 1));
5035
5036 error = xfs_trans_commit(tp);
5037 if (error)
5038 goto out_error;
5039 return;
5040
5041 out_abort:
5042 xfs_trans_cancel(tp);
5043 out_error:
5044 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
5045 return;
5046 }
5047
5048 STATIC xfs_agino_t
xlog_recover_process_one_iunlink(struct xfs_mount * mp,xfs_agnumber_t agno,xfs_agino_t agino,int bucket)5049 xlog_recover_process_one_iunlink(
5050 struct xfs_mount *mp,
5051 xfs_agnumber_t agno,
5052 xfs_agino_t agino,
5053 int bucket)
5054 {
5055 struct xfs_buf *ibp;
5056 struct xfs_dinode *dip;
5057 struct xfs_inode *ip;
5058 xfs_ino_t ino;
5059 int error;
5060
5061 ino = XFS_AGINO_TO_INO(mp, agno, agino);
5062 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
5063 if (error)
5064 goto fail;
5065
5066 /*
5067 * Get the on disk inode to find the next inode in the bucket.
5068 */
5069 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
5070 if (error)
5071 goto fail_iput;
5072
5073 xfs_iflags_clear(ip, XFS_IRECOVERY);
5074 ASSERT(VFS_I(ip)->i_nlink == 0);
5075 ASSERT(VFS_I(ip)->i_mode != 0);
5076
5077 /* setup for the next pass */
5078 agino = be32_to_cpu(dip->di_next_unlinked);
5079 xfs_buf_relse(ibp);
5080
5081 /*
5082 * Prevent any DMAPI event from being sent when the reference on
5083 * the inode is dropped.
5084 */
5085 ip->i_d.di_dmevmask = 0;
5086
5087 xfs_irele(ip);
5088 return agino;
5089
5090 fail_iput:
5091 xfs_irele(ip);
5092 fail:
5093 /*
5094 * We can't read in the inode this bucket points to, or this inode
5095 * is messed up. Just ditch this bucket of inodes. We will lose
5096 * some inodes and space, but at least we won't hang.
5097 *
5098 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5099 * clear the inode pointer in the bucket.
5100 */
5101 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5102 return NULLAGINO;
5103 }
5104
5105 /*
5106 * xlog_iunlink_recover
5107 *
5108 * This is called during recovery to process any inodes which
5109 * we unlinked but not freed when the system crashed. These
5110 * inodes will be on the lists in the AGI blocks. What we do
5111 * here is scan all the AGIs and fully truncate and free any
5112 * inodes found on the lists. Each inode is removed from the
5113 * lists when it has been fully truncated and is freed. The
5114 * freeing of the inode and its removal from the list must be
5115 * atomic.
5116 */
5117 STATIC void
xlog_recover_process_iunlinks(struct xlog * log)5118 xlog_recover_process_iunlinks(
5119 struct xlog *log)
5120 {
5121 xfs_mount_t *mp;
5122 xfs_agnumber_t agno;
5123 xfs_agi_t *agi;
5124 xfs_buf_t *agibp;
5125 xfs_agino_t agino;
5126 int bucket;
5127 int error;
5128
5129 mp = log->l_mp;
5130
5131 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5132 /*
5133 * Find the agi for this ag.
5134 */
5135 error = xfs_read_agi(mp, NULL, agno, &agibp);
5136 if (error) {
5137 /*
5138 * AGI is b0rked. Don't process it.
5139 *
5140 * We should probably mark the filesystem as corrupt
5141 * after we've recovered all the ag's we can....
5142 */
5143 continue;
5144 }
5145 /*
5146 * Unlock the buffer so that it can be acquired in the normal
5147 * course of the transaction to truncate and free each inode.
5148 * Because we are not racing with anyone else here for the AGI
5149 * buffer, we don't even need to hold it locked to read the
5150 * initial unlinked bucket entries out of the buffer. We keep
5151 * buffer reference though, so that it stays pinned in memory
5152 * while we need the buffer.
5153 */
5154 agi = XFS_BUF_TO_AGI(agibp);
5155 xfs_buf_unlock(agibp);
5156
5157 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
5158 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
5159 while (agino != NULLAGINO) {
5160 agino = xlog_recover_process_one_iunlink(mp,
5161 agno, agino, bucket);
5162 }
5163 }
5164 xfs_buf_rele(agibp);
5165 }
5166 }
5167
5168 STATIC int
xlog_unpack_data(struct xlog_rec_header * rhead,char * dp,struct xlog * log)5169 xlog_unpack_data(
5170 struct xlog_rec_header *rhead,
5171 char *dp,
5172 struct xlog *log)
5173 {
5174 int i, j, k;
5175
5176 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
5177 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
5178 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
5179 dp += BBSIZE;
5180 }
5181
5182 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5183 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
5184 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
5185 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5186 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5187 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
5188 dp += BBSIZE;
5189 }
5190 }
5191
5192 return 0;
5193 }
5194
5195 /*
5196 * CRC check, unpack and process a log record.
5197 */
5198 STATIC int
xlog_recover_process(struct xlog * log,struct hlist_head rhash[],struct xlog_rec_header * rhead,char * dp,int pass,struct list_head * buffer_list)5199 xlog_recover_process(
5200 struct xlog *log,
5201 struct hlist_head rhash[],
5202 struct xlog_rec_header *rhead,
5203 char *dp,
5204 int pass,
5205 struct list_head *buffer_list)
5206 {
5207 int error;
5208 __le32 old_crc = rhead->h_crc;
5209 __le32 crc;
5210
5211
5212 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5213
5214 /*
5215 * Nothing else to do if this is a CRC verification pass. Just return
5216 * if this a record with a non-zero crc. Unfortunately, mkfs always
5217 * sets old_crc to 0 so we must consider this valid even on v5 supers.
5218 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5219 * know precisely what failed.
5220 */
5221 if (pass == XLOG_RECOVER_CRCPASS) {
5222 if (old_crc && crc != old_crc)
5223 return -EFSBADCRC;
5224 return 0;
5225 }
5226
5227 /*
5228 * We're in the normal recovery path. Issue a warning if and only if the
5229 * CRC in the header is non-zero. This is an advisory warning and the
5230 * zero CRC check prevents warnings from being emitted when upgrading
5231 * the kernel from one that does not add CRCs by default.
5232 */
5233 if (crc != old_crc) {
5234 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
5235 xfs_alert(log->l_mp,
5236 "log record CRC mismatch: found 0x%x, expected 0x%x.",
5237 le32_to_cpu(old_crc),
5238 le32_to_cpu(crc));
5239 xfs_hex_dump(dp, 32);
5240 }
5241
5242 /*
5243 * If the filesystem is CRC enabled, this mismatch becomes a
5244 * fatal log corruption failure.
5245 */
5246 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5247 return -EFSCORRUPTED;
5248 }
5249
5250 error = xlog_unpack_data(rhead, dp, log);
5251 if (error)
5252 return error;
5253
5254 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5255 buffer_list);
5256 }
5257
5258 STATIC int
xlog_valid_rec_header(struct xlog * log,struct xlog_rec_header * rhead,xfs_daddr_t blkno)5259 xlog_valid_rec_header(
5260 struct xlog *log,
5261 struct xlog_rec_header *rhead,
5262 xfs_daddr_t blkno)
5263 {
5264 int hlen;
5265
5266 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
5267 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5268 XFS_ERRLEVEL_LOW, log->l_mp);
5269 return -EFSCORRUPTED;
5270 }
5271 if (unlikely(
5272 (!rhead->h_version ||
5273 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
5274 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
5275 __func__, be32_to_cpu(rhead->h_version));
5276 return -EIO;
5277 }
5278
5279 /* LR body must have data or it wouldn't have been written */
5280 hlen = be32_to_cpu(rhead->h_len);
5281 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5282 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5283 XFS_ERRLEVEL_LOW, log->l_mp);
5284 return -EFSCORRUPTED;
5285 }
5286 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5287 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5288 XFS_ERRLEVEL_LOW, log->l_mp);
5289 return -EFSCORRUPTED;
5290 }
5291 return 0;
5292 }
5293
5294 /*
5295 * Read the log from tail to head and process the log records found.
5296 * Handle the two cases where the tail and head are in the same cycle
5297 * and where the active portion of the log wraps around the end of
5298 * the physical log separately. The pass parameter is passed through
5299 * to the routines called to process the data and is not looked at
5300 * here.
5301 */
5302 STATIC int
xlog_do_recovery_pass(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk,int pass,xfs_daddr_t * first_bad)5303 xlog_do_recovery_pass(
5304 struct xlog *log,
5305 xfs_daddr_t head_blk,
5306 xfs_daddr_t tail_blk,
5307 int pass,
5308 xfs_daddr_t *first_bad) /* out: first bad log rec */
5309 {
5310 xlog_rec_header_t *rhead;
5311 xfs_daddr_t blk_no, rblk_no;
5312 xfs_daddr_t rhead_blk;
5313 char *offset;
5314 xfs_buf_t *hbp, *dbp;
5315 int error = 0, h_size, h_len;
5316 int error2 = 0;
5317 int bblks, split_bblks;
5318 int hblks, split_hblks, wrapped_hblks;
5319 int i;
5320 struct hlist_head rhash[XLOG_RHASH_SIZE];
5321 LIST_HEAD (buffer_list);
5322
5323 ASSERT(head_blk != tail_blk);
5324 blk_no = rhead_blk = tail_blk;
5325
5326 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5327 INIT_HLIST_HEAD(&rhash[i]);
5328
5329 /*
5330 * Read the header of the tail block and get the iclog buffer size from
5331 * h_size. Use this to tell how many sectors make up the log header.
5332 */
5333 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
5334 /*
5335 * When using variable length iclogs, read first sector of
5336 * iclog header and extract the header size from it. Get a
5337 * new hbp that is the correct size.
5338 */
5339 hbp = xlog_get_bp(log, 1);
5340 if (!hbp)
5341 return -ENOMEM;
5342
5343 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5344 if (error)
5345 goto bread_err1;
5346
5347 rhead = (xlog_rec_header_t *)offset;
5348 error = xlog_valid_rec_header(log, rhead, tail_blk);
5349 if (error)
5350 goto bread_err1;
5351
5352 /*
5353 * xfsprogs has a bug where record length is based on lsunit but
5354 * h_size (iclog size) is hardcoded to 32k. Now that we
5355 * unconditionally CRC verify the unmount record, this means the
5356 * log buffer can be too small for the record and cause an
5357 * overrun.
5358 *
5359 * Detect this condition here. Use lsunit for the buffer size as
5360 * long as this looks like the mkfs case. Otherwise, return an
5361 * error to avoid a buffer overrun.
5362 */
5363 h_size = be32_to_cpu(rhead->h_size);
5364 h_len = be32_to_cpu(rhead->h_len);
5365 if (h_len > h_size) {
5366 if (h_len <= log->l_mp->m_logbsize &&
5367 be32_to_cpu(rhead->h_num_logops) == 1) {
5368 xfs_warn(log->l_mp,
5369 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5370 h_size, log->l_mp->m_logbsize);
5371 h_size = log->l_mp->m_logbsize;
5372 } else
5373 return -EFSCORRUPTED;
5374 }
5375
5376 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
5377 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5378 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5379 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5380 hblks++;
5381 xlog_put_bp(hbp);
5382 hbp = xlog_get_bp(log, hblks);
5383 } else {
5384 hblks = 1;
5385 }
5386 } else {
5387 ASSERT(log->l_sectBBsize == 1);
5388 hblks = 1;
5389 hbp = xlog_get_bp(log, 1);
5390 h_size = XLOG_BIG_RECORD_BSIZE;
5391 }
5392
5393 if (!hbp)
5394 return -ENOMEM;
5395 dbp = xlog_get_bp(log, BTOBB(h_size));
5396 if (!dbp) {
5397 xlog_put_bp(hbp);
5398 return -ENOMEM;
5399 }
5400
5401 memset(rhash, 0, sizeof(rhash));
5402 if (tail_blk > head_blk) {
5403 /*
5404 * Perform recovery around the end of the physical log.
5405 * When the head is not on the same cycle number as the tail,
5406 * we can't do a sequential recovery.
5407 */
5408 while (blk_no < log->l_logBBsize) {
5409 /*
5410 * Check for header wrapping around physical end-of-log
5411 */
5412 offset = hbp->b_addr;
5413 split_hblks = 0;
5414 wrapped_hblks = 0;
5415 if (blk_no + hblks <= log->l_logBBsize) {
5416 /* Read header in one read */
5417 error = xlog_bread(log, blk_no, hblks, hbp,
5418 &offset);
5419 if (error)
5420 goto bread_err2;
5421 } else {
5422 /* This LR is split across physical log end */
5423 if (blk_no != log->l_logBBsize) {
5424 /* some data before physical log end */
5425 ASSERT(blk_no <= INT_MAX);
5426 split_hblks = log->l_logBBsize - (int)blk_no;
5427 ASSERT(split_hblks > 0);
5428 error = xlog_bread(log, blk_no,
5429 split_hblks, hbp,
5430 &offset);
5431 if (error)
5432 goto bread_err2;
5433 }
5434
5435 /*
5436 * Note: this black magic still works with
5437 * large sector sizes (non-512) only because:
5438 * - we increased the buffer size originally
5439 * by 1 sector giving us enough extra space
5440 * for the second read;
5441 * - the log start is guaranteed to be sector
5442 * aligned;
5443 * - we read the log end (LR header start)
5444 * _first_, then the log start (LR header end)
5445 * - order is important.
5446 */
5447 wrapped_hblks = hblks - split_hblks;
5448 error = xlog_bread_offset(log, 0,
5449 wrapped_hblks, hbp,
5450 offset + BBTOB(split_hblks));
5451 if (error)
5452 goto bread_err2;
5453 }
5454 rhead = (xlog_rec_header_t *)offset;
5455 error = xlog_valid_rec_header(log, rhead,
5456 split_hblks ? blk_no : 0);
5457 if (error)
5458 goto bread_err2;
5459
5460 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5461 blk_no += hblks;
5462
5463 /*
5464 * Read the log record data in multiple reads if it
5465 * wraps around the end of the log. Note that if the
5466 * header already wrapped, blk_no could point past the
5467 * end of the log. The record data is contiguous in
5468 * that case.
5469 */
5470 if (blk_no + bblks <= log->l_logBBsize ||
5471 blk_no >= log->l_logBBsize) {
5472 rblk_no = xlog_wrap_logbno(log, blk_no);
5473 error = xlog_bread(log, rblk_no, bblks, dbp,
5474 &offset);
5475 if (error)
5476 goto bread_err2;
5477 } else {
5478 /* This log record is split across the
5479 * physical end of log */
5480 offset = dbp->b_addr;
5481 split_bblks = 0;
5482 if (blk_no != log->l_logBBsize) {
5483 /* some data is before the physical
5484 * end of log */
5485 ASSERT(!wrapped_hblks);
5486 ASSERT(blk_no <= INT_MAX);
5487 split_bblks =
5488 log->l_logBBsize - (int)blk_no;
5489 ASSERT(split_bblks > 0);
5490 error = xlog_bread(log, blk_no,
5491 split_bblks, dbp,
5492 &offset);
5493 if (error)
5494 goto bread_err2;
5495 }
5496
5497 /*
5498 * Note: this black magic still works with
5499 * large sector sizes (non-512) only because:
5500 * - we increased the buffer size originally
5501 * by 1 sector giving us enough extra space
5502 * for the second read;
5503 * - the log start is guaranteed to be sector
5504 * aligned;
5505 * - we read the log end (LR header start)
5506 * _first_, then the log start (LR header end)
5507 * - order is important.
5508 */
5509 error = xlog_bread_offset(log, 0,
5510 bblks - split_bblks, dbp,
5511 offset + BBTOB(split_bblks));
5512 if (error)
5513 goto bread_err2;
5514 }
5515
5516 error = xlog_recover_process(log, rhash, rhead, offset,
5517 pass, &buffer_list);
5518 if (error)
5519 goto bread_err2;
5520
5521 blk_no += bblks;
5522 rhead_blk = blk_no;
5523 }
5524
5525 ASSERT(blk_no >= log->l_logBBsize);
5526 blk_no -= log->l_logBBsize;
5527 rhead_blk = blk_no;
5528 }
5529
5530 /* read first part of physical log */
5531 while (blk_no < head_blk) {
5532 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5533 if (error)
5534 goto bread_err2;
5535
5536 rhead = (xlog_rec_header_t *)offset;
5537 error = xlog_valid_rec_header(log, rhead, blk_no);
5538 if (error)
5539 goto bread_err2;
5540
5541 /* blocks in data section */
5542 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5543 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5544 &offset);
5545 if (error)
5546 goto bread_err2;
5547
5548 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5549 &buffer_list);
5550 if (error)
5551 goto bread_err2;
5552
5553 blk_no += bblks + hblks;
5554 rhead_blk = blk_no;
5555 }
5556
5557 bread_err2:
5558 xlog_put_bp(dbp);
5559 bread_err1:
5560 xlog_put_bp(hbp);
5561
5562 /*
5563 * Submit buffers that have been added from the last record processed,
5564 * regardless of error status.
5565 */
5566 if (!list_empty(&buffer_list))
5567 error2 = xfs_buf_delwri_submit(&buffer_list);
5568
5569 if (error && first_bad)
5570 *first_bad = rhead_blk;
5571
5572 /*
5573 * Transactions are freed at commit time but transactions without commit
5574 * records on disk are never committed. Free any that may be left in the
5575 * hash table.
5576 */
5577 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5578 struct hlist_node *tmp;
5579 struct xlog_recover *trans;
5580
5581 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5582 xlog_recover_free_trans(trans);
5583 }
5584
5585 return error ? error : error2;
5586 }
5587
5588 /*
5589 * Do the recovery of the log. We actually do this in two phases.
5590 * The two passes are necessary in order to implement the function
5591 * of cancelling a record written into the log. The first pass
5592 * determines those things which have been cancelled, and the
5593 * second pass replays log items normally except for those which
5594 * have been cancelled. The handling of the replay and cancellations
5595 * takes place in the log item type specific routines.
5596 *
5597 * The table of items which have cancel records in the log is allocated
5598 * and freed at this level, since only here do we know when all of
5599 * the log recovery has been completed.
5600 */
5601 STATIC int
xlog_do_log_recovery(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)5602 xlog_do_log_recovery(
5603 struct xlog *log,
5604 xfs_daddr_t head_blk,
5605 xfs_daddr_t tail_blk)
5606 {
5607 int error, i;
5608
5609 ASSERT(head_blk != tail_blk);
5610
5611 /*
5612 * First do a pass to find all of the cancelled buf log items.
5613 * Store them in the buf_cancel_table for use in the second pass.
5614 */
5615 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5616 sizeof(struct list_head),
5617 KM_SLEEP);
5618 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5619 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5620
5621 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5622 XLOG_RECOVER_PASS1, NULL);
5623 if (error != 0) {
5624 kmem_free(log->l_buf_cancel_table);
5625 log->l_buf_cancel_table = NULL;
5626 return error;
5627 }
5628 /*
5629 * Then do a second pass to actually recover the items in the log.
5630 * When it is complete free the table of buf cancel items.
5631 */
5632 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
5633 XLOG_RECOVER_PASS2, NULL);
5634 #ifdef DEBUG
5635 if (!error) {
5636 int i;
5637
5638 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5639 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
5640 }
5641 #endif /* DEBUG */
5642
5643 kmem_free(log->l_buf_cancel_table);
5644 log->l_buf_cancel_table = NULL;
5645
5646 return error;
5647 }
5648
5649 /*
5650 * Do the actual recovery
5651 */
5652 STATIC int
xlog_do_recover(struct xlog * log,xfs_daddr_t head_blk,xfs_daddr_t tail_blk)5653 xlog_do_recover(
5654 struct xlog *log,
5655 xfs_daddr_t head_blk,
5656 xfs_daddr_t tail_blk)
5657 {
5658 struct xfs_mount *mp = log->l_mp;
5659 int error;
5660 xfs_buf_t *bp;
5661 xfs_sb_t *sbp;
5662
5663 trace_xfs_log_recover(log, head_blk, tail_blk);
5664
5665 /*
5666 * First replay the images in the log.
5667 */
5668 error = xlog_do_log_recovery(log, head_blk, tail_blk);
5669 if (error)
5670 return error;
5671
5672 /*
5673 * If IO errors happened during recovery, bail out.
5674 */
5675 if (XFS_FORCED_SHUTDOWN(mp)) {
5676 return -EIO;
5677 }
5678
5679 /*
5680 * We now update the tail_lsn since much of the recovery has completed
5681 * and there may be space available to use. If there were no extent
5682 * or iunlinks, we can free up the entire log and set the tail_lsn to
5683 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5684 * lsn of the last known good LR on disk. If there are extent frees
5685 * or iunlinks they will have some entries in the AIL; so we look at
5686 * the AIL to determine how to set the tail_lsn.
5687 */
5688 xlog_assign_tail_lsn(mp);
5689
5690 /*
5691 * Now that we've finished replaying all buffer and inode
5692 * updates, re-read in the superblock and reverify it.
5693 */
5694 bp = xfs_getsb(mp, 0);
5695 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
5696 ASSERT(!(bp->b_flags & XBF_WRITE));
5697 bp->b_flags |= XBF_READ;
5698 bp->b_ops = &xfs_sb_buf_ops;
5699
5700 error = xfs_buf_submit(bp);
5701 if (error) {
5702 if (!XFS_FORCED_SHUTDOWN(mp)) {
5703 xfs_buf_ioerror_alert(bp, __func__);
5704 ASSERT(0);
5705 }
5706 xfs_buf_relse(bp);
5707 return error;
5708 }
5709
5710 /* Convert superblock from on-disk format */
5711 sbp = &mp->m_sb;
5712 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
5713 xfs_buf_relse(bp);
5714
5715 /* re-initialise in-core superblock and geometry structures */
5716 xfs_reinit_percpu_counters(mp);
5717 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5718 if (error) {
5719 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5720 return error;
5721 }
5722 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5723
5724 xlog_recover_check_summary(log);
5725
5726 /* Normal transactions can now occur */
5727 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5728 return 0;
5729 }
5730
5731 /*
5732 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5733 *
5734 * Return error or zero.
5735 */
5736 int
xlog_recover(struct xlog * log)5737 xlog_recover(
5738 struct xlog *log)
5739 {
5740 xfs_daddr_t head_blk, tail_blk;
5741 int error;
5742
5743 /* find the tail of the log */
5744 error = xlog_find_tail(log, &head_blk, &tail_blk);
5745 if (error)
5746 return error;
5747
5748 /*
5749 * The superblock was read before the log was available and thus the LSN
5750 * could not be verified. Check the superblock LSN against the current
5751 * LSN now that it's known.
5752 */
5753 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5754 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5755 return -EINVAL;
5756
5757 if (tail_blk != head_blk) {
5758 /* There used to be a comment here:
5759 *
5760 * disallow recovery on read-only mounts. note -- mount
5761 * checks for ENOSPC and turns it into an intelligent
5762 * error message.
5763 * ...but this is no longer true. Now, unless you specify
5764 * NORECOVERY (in which case this function would never be
5765 * called), we just go ahead and recover. We do this all
5766 * under the vfs layer, so we can get away with it unless
5767 * the device itself is read-only, in which case we fail.
5768 */
5769 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
5770 return error;
5771 }
5772
5773 /*
5774 * Version 5 superblock log feature mask validation. We know the
5775 * log is dirty so check if there are any unknown log features
5776 * in what we need to recover. If there are unknown features
5777 * (e.g. unsupported transactions, then simply reject the
5778 * attempt at recovery before touching anything.
5779 */
5780 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5781 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5782 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5783 xfs_warn(log->l_mp,
5784 "Superblock has unknown incompatible log features (0x%x) enabled.",
5785 (log->l_mp->m_sb.sb_features_log_incompat &
5786 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
5787 xfs_warn(log->l_mp,
5788 "The log can not be fully and/or safely recovered by this kernel.");
5789 xfs_warn(log->l_mp,
5790 "Please recover the log on a kernel that supports the unknown features.");
5791 return -EINVAL;
5792 }
5793
5794 /*
5795 * Delay log recovery if the debug hook is set. This is debug
5796 * instrumention to coordinate simulation of I/O failures with
5797 * log recovery.
5798 */
5799 if (xfs_globals.log_recovery_delay) {
5800 xfs_notice(log->l_mp,
5801 "Delaying log recovery for %d seconds.",
5802 xfs_globals.log_recovery_delay);
5803 msleep(xfs_globals.log_recovery_delay * 1000);
5804 }
5805
5806 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5807 log->l_mp->m_logname ? log->l_mp->m_logname
5808 : "internal");
5809
5810 error = xlog_do_recover(log, head_blk, tail_blk);
5811 log->l_flags |= XLOG_RECOVERY_NEEDED;
5812 }
5813 return error;
5814 }
5815
5816 /*
5817 * In the first part of recovery we replay inodes and buffers and build
5818 * up the list of extent free items which need to be processed. Here
5819 * we process the extent free items and clean up the on disk unlinked
5820 * inode lists. This is separated from the first part of recovery so
5821 * that the root and real-time bitmap inodes can be read in from disk in
5822 * between the two stages. This is necessary so that we can free space
5823 * in the real-time portion of the file system.
5824 */
5825 int
xlog_recover_finish(struct xlog * log)5826 xlog_recover_finish(
5827 struct xlog *log)
5828 {
5829 /*
5830 * Now we're ready to do the transactions needed for the
5831 * rest of recovery. Start with completing all the extent
5832 * free intent records and then process the unlinked inode
5833 * lists. At this point, we essentially run in normal mode
5834 * except that we're still performing recovery actions
5835 * rather than accepting new requests.
5836 */
5837 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
5838 int error;
5839 error = xlog_recover_process_intents(log);
5840 if (error) {
5841 xfs_alert(log->l_mp, "Failed to recover intents");
5842 return error;
5843 }
5844
5845 /*
5846 * Sync the log to get all the intents out of the AIL.
5847 * This isn't absolutely necessary, but it helps in
5848 * case the unlink transactions would have problems
5849 * pushing the intents out of the way.
5850 */
5851 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
5852
5853 xlog_recover_process_iunlinks(log);
5854
5855 xlog_recover_check_summary(log);
5856
5857 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5858 log->l_mp->m_logname ? log->l_mp->m_logname
5859 : "internal");
5860 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5861 } else {
5862 xfs_info(log->l_mp, "Ending clean mount");
5863 }
5864 return 0;
5865 }
5866
5867 int
xlog_recover_cancel(struct xlog * log)5868 xlog_recover_cancel(
5869 struct xlog *log)
5870 {
5871 int error = 0;
5872
5873 if (log->l_flags & XLOG_RECOVERY_NEEDED)
5874 error = xlog_recover_cancel_intents(log);
5875
5876 return error;
5877 }
5878
5879 #if defined(DEBUG)
5880 /*
5881 * Read all of the agf and agi counters and check that they
5882 * are consistent with the superblock counters.
5883 */
5884 STATIC void
xlog_recover_check_summary(struct xlog * log)5885 xlog_recover_check_summary(
5886 struct xlog *log)
5887 {
5888 xfs_mount_t *mp;
5889 xfs_agf_t *agfp;
5890 xfs_buf_t *agfbp;
5891 xfs_buf_t *agibp;
5892 xfs_agnumber_t agno;
5893 uint64_t freeblks;
5894 uint64_t itotal;
5895 uint64_t ifree;
5896 int error;
5897
5898 mp = log->l_mp;
5899
5900 freeblks = 0LL;
5901 itotal = 0LL;
5902 ifree = 0LL;
5903 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5904 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5905 if (error) {
5906 xfs_alert(mp, "%s agf read failed agno %d error %d",
5907 __func__, agno, error);
5908 } else {
5909 agfp = XFS_BUF_TO_AGF(agfbp);
5910 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5911 be32_to_cpu(agfp->agf_flcount);
5912 xfs_buf_relse(agfbp);
5913 }
5914
5915 error = xfs_read_agi(mp, NULL, agno, &agibp);
5916 if (error) {
5917 xfs_alert(mp, "%s agi read failed agno %d error %d",
5918 __func__, agno, error);
5919 } else {
5920 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
5921
5922 itotal += be32_to_cpu(agi->agi_count);
5923 ifree += be32_to_cpu(agi->agi_freecount);
5924 xfs_buf_relse(agibp);
5925 }
5926 }
5927 }
5928 #endif /* DEBUG */
5929