1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SHA1 routine optimized to do word accesses rather than byte accesses,
4  * and to avoid unnecessary copies into the context array.
5  *
6  * This was based on the git SHA1 implementation.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/cryptohash.h>
13 #include <linux/string.h>
14 #include <asm/unaligned.h>
15 
16 /*
17  * If you have 32 registers or more, the compiler can (and should)
18  * try to change the array[] accesses into registers. However, on
19  * machines with less than ~25 registers, that won't really work,
20  * and at least gcc will make an unholy mess of it.
21  *
22  * So to avoid that mess which just slows things down, we force
23  * the stores to memory to actually happen (we might be better off
24  * with a 'W(t)=(val);asm("":"+m" (W(t))' there instead, as
25  * suggested by Artur Skawina - that will also make gcc unable to
26  * try to do the silly "optimize away loads" part because it won't
27  * see what the value will be).
28  *
29  * Ben Herrenschmidt reports that on PPC, the C version comes close
30  * to the optimized asm with this (ie on PPC you don't want that
31  * 'volatile', since there are lots of registers).
32  *
33  * On ARM we get the best code generation by forcing a full memory barrier
34  * between each SHA_ROUND, otherwise gcc happily get wild with spilling and
35  * the stack frame size simply explode and performance goes down the drain.
36  */
37 
38 #ifdef CONFIG_X86
39   #define setW(x, val) (*(volatile __u32 *)&W(x) = (val))
40 #elif defined(CONFIG_ARM)
41   #define setW(x, val) do { W(x) = (val); __asm__("":::"memory"); } while (0)
42 #else
43   #define setW(x, val) (W(x) = (val))
44 #endif
45 
46 /* This "rolls" over the 512-bit array */
47 #define W(x) (array[(x)&15])
48 
49 /*
50  * Where do we get the source from? The first 16 iterations get it from
51  * the input data, the next mix it from the 512-bit array.
52  */
53 #define SHA_SRC(t) get_unaligned_be32((__u32 *)data + t)
54 #define SHA_MIX(t) rol32(W(t+13) ^ W(t+8) ^ W(t+2) ^ W(t), 1)
55 
56 #define SHA_ROUND(t, input, fn, constant, A, B, C, D, E) do { \
57 	__u32 TEMP = input(t); setW(t, TEMP); \
58 	E += TEMP + rol32(A,5) + (fn) + (constant); \
59 	B = ror32(B, 2); \
60 	TEMP = E; E = D; D = C; C = B; B = A; A = TEMP; } while (0)
61 
62 #define T_0_15(t, A, B, C, D, E)  SHA_ROUND(t, SHA_SRC, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
63 #define T_16_19(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (((C^D)&B)^D) , 0x5a827999, A, B, C, D, E )
64 #define T_20_39(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) , 0x6ed9eba1, A, B, C, D, E )
65 #define T_40_59(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, ((B&C)+(D&(B^C))) , 0x8f1bbcdc, A, B, C, D, E )
66 #define T_60_79(t, A, B, C, D, E) SHA_ROUND(t, SHA_MIX, (B^C^D) ,  0xca62c1d6, A, B, C, D, E )
67 
68 /**
69  * sha_transform - single block SHA1 transform
70  *
71  * @digest: 160 bit digest to update
72  * @data:   512 bits of data to hash
73  * @array:  16 words of workspace (see note)
74  *
75  * This function generates a SHA1 digest for a single 512-bit block.
76  * Be warned, it does not handle padding and message digest, do not
77  * confuse it with the full FIPS 180-1 digest algorithm for variable
78  * length messages.
79  *
80  * Note: If the hash is security sensitive, the caller should be sure
81  * to clear the workspace. This is left to the caller to avoid
82  * unnecessary clears between chained hashing operations.
83  */
sha_transform(__u32 * digest,const char * data,__u32 * array)84 void sha_transform(__u32 *digest, const char *data, __u32 *array)
85 {
86 	__u32 A, B, C, D, E;
87 	unsigned int i = 0;
88 
89 	A = digest[0];
90 	B = digest[1];
91 	C = digest[2];
92 	D = digest[3];
93 	E = digest[4];
94 
95 	/* Round 1 - iterations 0-16 take their input from 'data' */
96 	for (; i < 16; ++i)
97 		T_0_15(i, A, B, C, D, E);
98 
99 	/* Round 1 - tail. Input from 512-bit mixing array */
100 	for (; i < 20; ++i)
101 		T_16_19(i, A, B, C, D, E);
102 
103 	/* Round 2 */
104 	for (; i < 40; ++i)
105 		T_20_39(i, A, B, C, D, E);
106 
107 	/* Round 3 */
108 	for (; i < 60; ++i)
109 		T_40_59(i, A, B, C, D, E);
110 
111 	/* Round 4 */
112 	for (; i < 80; ++i)
113 		T_60_79(i, A, B, C, D, E);
114 
115 	digest[0] += A;
116 	digest[1] += B;
117 	digest[2] += C;
118 	digest[3] += D;
119 	digest[4] += E;
120 }
121 EXPORT_SYMBOL(sha_transform);
122 
123 /**
124  * sha_init - initialize the vectors for a SHA1 digest
125  * @buf: vector to initialize
126  */
sha_init(__u32 * buf)127 void sha_init(__u32 *buf)
128 {
129 	buf[0] = 0x67452301;
130 	buf[1] = 0xefcdab89;
131 	buf[2] = 0x98badcfe;
132 	buf[3] = 0x10325476;
133 	buf[4] = 0xc3d2e1f0;
134 }
135 EXPORT_SYMBOL(sha_init);
136