1 /*
2  * fs/direct-io.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * O_DIRECT
7  *
8  * 04Jul2002	Andrew Morton
9  *		Initial version
10  * 11Sep2002	janetinc@us.ibm.com
11  * 		added readv/writev support.
12  * 29Oct2002	Andrew Morton
13  *		rewrote bio_add_page() support.
14  * 30Oct2002	pbadari@us.ibm.com
15  *		added support for non-aligned IO.
16  * 06Nov2002	pbadari@us.ibm.com
17  *		added asynchronous IO support.
18  * 21Jul2003	nathans@sgi.com
19  *		added IO completion notifier.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
39 #include <linux/prefetch.h>
40 
41 /*
42  * How many user pages to map in one call to get_user_pages().  This determines
43  * the size of a structure in the slab cache
44  */
45 #define DIO_PAGES	64
46 
47 /*
48  * Flags for dio_complete()
49  */
50 #define DIO_COMPLETE_ASYNC		0x01	/* This is async IO */
51 #define DIO_COMPLETE_INVALIDATE		0x02	/* Can invalidate pages */
52 
53 /*
54  * This code generally works in units of "dio_blocks".  A dio_block is
55  * somewhere between the hard sector size and the filesystem block size.  it
56  * is determined on a per-invocation basis.   When talking to the filesystem
57  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
58  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted
59  * to bio_block quantities by shifting left by blkfactor.
60  *
61  * If blkfactor is zero then the user's request was aligned to the filesystem's
62  * blocksize.
63  */
64 
65 /* dio_state only used in the submission path */
66 
67 struct dio_submit {
68 	struct bio *bio;		/* bio under assembly */
69 	unsigned blkbits;		/* doesn't change */
70 	unsigned blkfactor;		/* When we're using an alignment which
71 					   is finer than the filesystem's soft
72 					   blocksize, this specifies how much
73 					   finer.  blkfactor=2 means 1/4-block
74 					   alignment.  Does not change */
75 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has
76 					   been performed at the start of a
77 					   write */
78 	int pages_in_io;		/* approximate total IO pages */
79 	sector_t block_in_file;		/* Current offset into the underlying
80 					   file in dio_block units. */
81 	unsigned blocks_available;	/* At block_in_file.  changes */
82 	int reap_counter;		/* rate limit reaping */
83 	sector_t final_block_in_request;/* doesn't change */
84 	int boundary;			/* prev block is at a boundary */
85 	get_block_t *get_block;		/* block mapping function */
86 	dio_submit_t *submit_io;	/* IO submition function */
87 
88 	loff_t logical_offset_in_bio;	/* current first logical block in bio */
89 	sector_t final_block_in_bio;	/* current final block in bio + 1 */
90 	sector_t next_block_for_io;	/* next block to be put under IO,
91 					   in dio_blocks units */
92 
93 	/*
94 	 * Deferred addition of a page to the dio.  These variables are
95 	 * private to dio_send_cur_page(), submit_page_section() and
96 	 * dio_bio_add_page().
97 	 */
98 	struct page *cur_page;		/* The page */
99 	unsigned cur_page_offset;	/* Offset into it, in bytes */
100 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */
101 	sector_t cur_page_block;	/* Where it starts */
102 	loff_t cur_page_fs_offset;	/* Offset in file */
103 
104 	struct iov_iter *iter;
105 	/*
106 	 * Page queue.  These variables belong to dio_refill_pages() and
107 	 * dio_get_page().
108 	 */
109 	unsigned head;			/* next page to process */
110 	unsigned tail;			/* last valid page + 1 */
111 	size_t from, to;
112 };
113 
114 /* dio_state communicated between submission path and end_io */
115 struct dio {
116 	int flags;			/* doesn't change */
117 	int op;
118 	int op_flags;
119 	blk_qc_t bio_cookie;
120 	struct gendisk *bio_disk;
121 	struct inode *inode;
122 	loff_t i_size;			/* i_size when submitted */
123 	dio_iodone_t *end_io;		/* IO completion function */
124 
125 	void *private;			/* copy from map_bh.b_private */
126 
127 	/* BIO completion state */
128 	spinlock_t bio_lock;		/* protects BIO fields below */
129 	int page_errors;		/* errno from get_user_pages() */
130 	int is_async;			/* is IO async ? */
131 	bool defer_completion;		/* defer AIO completion to workqueue? */
132 	bool should_dirty;		/* if pages should be dirtied */
133 	int io_error;			/* IO error in completion path */
134 	unsigned long refcount;		/* direct_io_worker() and bios */
135 	struct bio *bio_list;		/* singly linked via bi_private */
136 	struct task_struct *waiter;	/* waiting task (NULL if none) */
137 
138 	/* AIO related stuff */
139 	struct kiocb *iocb;		/* kiocb */
140 	ssize_t result;                 /* IO result */
141 
142 	/*
143 	 * pages[] (and any fields placed after it) are not zeroed out at
144 	 * allocation time.  Don't add new fields after pages[] unless you
145 	 * wish that they not be zeroed.
146 	 */
147 	union {
148 		struct page *pages[DIO_PAGES];	/* page buffer */
149 		struct work_struct complete_work;/* deferred AIO completion */
150 	};
151 } ____cacheline_aligned_in_smp;
152 
153 static struct kmem_cache *dio_cache __read_mostly;
154 
155 /*
156  * How many pages are in the queue?
157  */
dio_pages_present(struct dio_submit * sdio)158 static inline unsigned dio_pages_present(struct dio_submit *sdio)
159 {
160 	return sdio->tail - sdio->head;
161 }
162 
163 /*
164  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time.
165  */
dio_refill_pages(struct dio * dio,struct dio_submit * sdio)166 static inline int dio_refill_pages(struct dio *dio, struct dio_submit *sdio)
167 {
168 	ssize_t ret;
169 
170 	ret = iov_iter_get_pages(sdio->iter, dio->pages, LONG_MAX, DIO_PAGES,
171 				&sdio->from);
172 
173 	if (ret < 0 && sdio->blocks_available && (dio->op == REQ_OP_WRITE)) {
174 		struct page *page = ZERO_PAGE(0);
175 		/*
176 		 * A memory fault, but the filesystem has some outstanding
177 		 * mapped blocks.  We need to use those blocks up to avoid
178 		 * leaking stale data in the file.
179 		 */
180 		if (dio->page_errors == 0)
181 			dio->page_errors = ret;
182 		get_page(page);
183 		dio->pages[0] = page;
184 		sdio->head = 0;
185 		sdio->tail = 1;
186 		sdio->from = 0;
187 		sdio->to = PAGE_SIZE;
188 		return 0;
189 	}
190 
191 	if (ret >= 0) {
192 		iov_iter_advance(sdio->iter, ret);
193 		ret += sdio->from;
194 		sdio->head = 0;
195 		sdio->tail = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
196 		sdio->to = ((ret - 1) & (PAGE_SIZE - 1)) + 1;
197 		return 0;
198 	}
199 	return ret;
200 }
201 
202 /*
203  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are
204  * buffered inside the dio so that we can call get_user_pages() against a
205  * decent number of pages, less frequently.  To provide nicer use of the
206  * L1 cache.
207  */
dio_get_page(struct dio * dio,struct dio_submit * sdio)208 static inline struct page *dio_get_page(struct dio *dio,
209 					struct dio_submit *sdio)
210 {
211 	if (dio_pages_present(sdio) == 0) {
212 		int ret;
213 
214 		ret = dio_refill_pages(dio, sdio);
215 		if (ret)
216 			return ERR_PTR(ret);
217 		BUG_ON(dio_pages_present(sdio) == 0);
218 	}
219 	return dio->pages[sdio->head];
220 }
221 
222 /*
223  * Warn about a page cache invalidation failure during a direct io write.
224  */
dio_warn_stale_pagecache(struct file * filp)225 void dio_warn_stale_pagecache(struct file *filp)
226 {
227 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
228 	char pathname[128];
229 	struct inode *inode = file_inode(filp);
230 	char *path;
231 
232 	errseq_set(&inode->i_mapping->wb_err, -EIO);
233 	if (__ratelimit(&_rs)) {
234 		path = file_path(filp, pathname, sizeof(pathname));
235 		if (IS_ERR(path))
236 			path = "(unknown)";
237 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
238 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
239 			current->comm);
240 	}
241 }
242 
243 /**
244  * dio_complete() - called when all DIO BIO I/O has been completed
245  * @offset: the byte offset in the file of the completed operation
246  *
247  * This drops i_dio_count, lets interested parties know that a DIO operation
248  * has completed, and calculates the resulting return code for the operation.
249  *
250  * It lets the filesystem know if it registered an interest earlier via
251  * get_block.  Pass the private field of the map buffer_head so that
252  * filesystems can use it to hold additional state between get_block calls and
253  * dio_complete.
254  */
dio_complete(struct dio * dio,ssize_t ret,unsigned int flags)255 static ssize_t dio_complete(struct dio *dio, ssize_t ret, unsigned int flags)
256 {
257 	loff_t offset = dio->iocb->ki_pos;
258 	ssize_t transferred = 0;
259 	int err;
260 
261 	/*
262 	 * AIO submission can race with bio completion to get here while
263 	 * expecting to have the last io completed by bio completion.
264 	 * In that case -EIOCBQUEUED is in fact not an error we want
265 	 * to preserve through this call.
266 	 */
267 	if (ret == -EIOCBQUEUED)
268 		ret = 0;
269 
270 	if (dio->result) {
271 		transferred = dio->result;
272 
273 		/* Check for short read case */
274 		if ((dio->op == REQ_OP_READ) &&
275 		    ((offset + transferred) > dio->i_size))
276 			transferred = dio->i_size - offset;
277 		/* ignore EFAULT if some IO has been done */
278 		if (unlikely(ret == -EFAULT) && transferred)
279 			ret = 0;
280 	}
281 
282 	if (ret == 0)
283 		ret = dio->page_errors;
284 	if (ret == 0)
285 		ret = dio->io_error;
286 	if (ret == 0)
287 		ret = transferred;
288 
289 	if (dio->end_io) {
290 		// XXX: ki_pos??
291 		err = dio->end_io(dio->iocb, offset, ret, dio->private);
292 		if (err)
293 			ret = err;
294 	}
295 
296 	/*
297 	 * Try again to invalidate clean pages which might have been cached by
298 	 * non-direct readahead, or faulted in by get_user_pages() if the source
299 	 * of the write was an mmap'ed region of the file we're writing.  Either
300 	 * one is a pretty crazy thing to do, so we don't support it 100%.  If
301 	 * this invalidation fails, tough, the write still worked...
302 	 *
303 	 * And this page cache invalidation has to be after dio->end_io(), as
304 	 * some filesystems convert unwritten extents to real allocations in
305 	 * end_io() when necessary, otherwise a racing buffer read would cache
306 	 * zeros from unwritten extents.
307 	 */
308 	if (flags & DIO_COMPLETE_INVALIDATE &&
309 	    ret > 0 && dio->op == REQ_OP_WRITE &&
310 	    dio->inode->i_mapping->nrpages) {
311 		err = invalidate_inode_pages2_range(dio->inode->i_mapping,
312 					offset >> PAGE_SHIFT,
313 					(offset + ret - 1) >> PAGE_SHIFT);
314 		if (err)
315 			dio_warn_stale_pagecache(dio->iocb->ki_filp);
316 	}
317 
318 	inode_dio_end(dio->inode);
319 
320 	if (flags & DIO_COMPLETE_ASYNC) {
321 		/*
322 		 * generic_write_sync expects ki_pos to have been updated
323 		 * already, but the submission path only does this for
324 		 * synchronous I/O.
325 		 */
326 		dio->iocb->ki_pos += transferred;
327 
328 		if (ret > 0 && dio->op == REQ_OP_WRITE)
329 			ret = generic_write_sync(dio->iocb, ret);
330 		dio->iocb->ki_complete(dio->iocb, ret, 0);
331 	}
332 
333 	kmem_cache_free(dio_cache, dio);
334 	return ret;
335 }
336 
dio_aio_complete_work(struct work_struct * work)337 static void dio_aio_complete_work(struct work_struct *work)
338 {
339 	struct dio *dio = container_of(work, struct dio, complete_work);
340 
341 	dio_complete(dio, 0, DIO_COMPLETE_ASYNC | DIO_COMPLETE_INVALIDATE);
342 }
343 
344 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio);
345 
346 /*
347  * Asynchronous IO callback.
348  */
dio_bio_end_aio(struct bio * bio)349 static void dio_bio_end_aio(struct bio *bio)
350 {
351 	struct dio *dio = bio->bi_private;
352 	unsigned long remaining;
353 	unsigned long flags;
354 	bool defer_completion = false;
355 
356 	/* cleanup the bio */
357 	dio_bio_complete(dio, bio);
358 
359 	spin_lock_irqsave(&dio->bio_lock, flags);
360 	remaining = --dio->refcount;
361 	if (remaining == 1 && dio->waiter)
362 		wake_up_process(dio->waiter);
363 	spin_unlock_irqrestore(&dio->bio_lock, flags);
364 
365 	if (remaining == 0) {
366 		/*
367 		 * Defer completion when defer_completion is set or
368 		 * when the inode has pages mapped and this is AIO write.
369 		 * We need to invalidate those pages because there is a
370 		 * chance they contain stale data in the case buffered IO
371 		 * went in between AIO submission and completion into the
372 		 * same region.
373 		 */
374 		if (dio->result)
375 			defer_completion = dio->defer_completion ||
376 					   (dio->op == REQ_OP_WRITE &&
377 					    dio->inode->i_mapping->nrpages);
378 		if (defer_completion) {
379 			INIT_WORK(&dio->complete_work, dio_aio_complete_work);
380 			queue_work(dio->inode->i_sb->s_dio_done_wq,
381 				   &dio->complete_work);
382 		} else {
383 			dio_complete(dio, 0, DIO_COMPLETE_ASYNC);
384 		}
385 	}
386 }
387 
388 /*
389  * The BIO completion handler simply queues the BIO up for the process-context
390  * handler.
391  *
392  * During I/O bi_private points at the dio.  After I/O, bi_private is used to
393  * implement a singly-linked list of completed BIOs, at dio->bio_list.
394  */
dio_bio_end_io(struct bio * bio)395 static void dio_bio_end_io(struct bio *bio)
396 {
397 	struct dio *dio = bio->bi_private;
398 	unsigned long flags;
399 
400 	spin_lock_irqsave(&dio->bio_lock, flags);
401 	bio->bi_private = dio->bio_list;
402 	dio->bio_list = bio;
403 	if (--dio->refcount == 1 && dio->waiter)
404 		wake_up_process(dio->waiter);
405 	spin_unlock_irqrestore(&dio->bio_lock, flags);
406 }
407 
408 /**
409  * dio_end_io - handle the end io action for the given bio
410  * @bio: The direct io bio thats being completed
411  *
412  * This is meant to be called by any filesystem that uses their own dio_submit_t
413  * so that the DIO specific endio actions are dealt with after the filesystem
414  * has done it's completion work.
415  */
dio_end_io(struct bio * bio)416 void dio_end_io(struct bio *bio)
417 {
418 	struct dio *dio = bio->bi_private;
419 
420 	if (dio->is_async)
421 		dio_bio_end_aio(bio);
422 	else
423 		dio_bio_end_io(bio);
424 }
425 EXPORT_SYMBOL_GPL(dio_end_io);
426 
427 static inline void
dio_bio_alloc(struct dio * dio,struct dio_submit * sdio,struct block_device * bdev,sector_t first_sector,int nr_vecs)428 dio_bio_alloc(struct dio *dio, struct dio_submit *sdio,
429 	      struct block_device *bdev,
430 	      sector_t first_sector, int nr_vecs)
431 {
432 	struct bio *bio;
433 
434 	/*
435 	 * bio_alloc() is guaranteed to return a bio when allowed to sleep and
436 	 * we request a valid number of vectors.
437 	 */
438 	bio = bio_alloc(GFP_KERNEL, nr_vecs);
439 
440 	bio_set_dev(bio, bdev);
441 	bio->bi_iter.bi_sector = first_sector;
442 	bio_set_op_attrs(bio, dio->op, dio->op_flags);
443 	if (dio->is_async)
444 		bio->bi_end_io = dio_bio_end_aio;
445 	else
446 		bio->bi_end_io = dio_bio_end_io;
447 
448 	bio->bi_write_hint = dio->iocb->ki_hint;
449 
450 	sdio->bio = bio;
451 	sdio->logical_offset_in_bio = sdio->cur_page_fs_offset;
452 }
453 
454 /*
455  * In the AIO read case we speculatively dirty the pages before starting IO.
456  * During IO completion, any of these pages which happen to have been written
457  * back will be redirtied by bio_check_pages_dirty().
458  *
459  * bios hold a dio reference between submit_bio and ->end_io.
460  */
dio_bio_submit(struct dio * dio,struct dio_submit * sdio)461 static inline void dio_bio_submit(struct dio *dio, struct dio_submit *sdio)
462 {
463 	struct bio *bio = sdio->bio;
464 	unsigned long flags;
465 
466 	bio->bi_private = dio;
467 
468 	spin_lock_irqsave(&dio->bio_lock, flags);
469 	dio->refcount++;
470 	spin_unlock_irqrestore(&dio->bio_lock, flags);
471 
472 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty)
473 		bio_set_pages_dirty(bio);
474 
475 	dio->bio_disk = bio->bi_disk;
476 
477 	if (sdio->submit_io) {
478 		sdio->submit_io(bio, dio->inode, sdio->logical_offset_in_bio);
479 		dio->bio_cookie = BLK_QC_T_NONE;
480 	} else
481 		dio->bio_cookie = submit_bio(bio);
482 
483 	sdio->bio = NULL;
484 	sdio->boundary = 0;
485 	sdio->logical_offset_in_bio = 0;
486 }
487 
488 /*
489  * Release any resources in case of a failure
490  */
dio_cleanup(struct dio * dio,struct dio_submit * sdio)491 static inline void dio_cleanup(struct dio *dio, struct dio_submit *sdio)
492 {
493 	while (sdio->head < sdio->tail)
494 		put_page(dio->pages[sdio->head++]);
495 }
496 
497 /*
498  * Wait for the next BIO to complete.  Remove it and return it.  NULL is
499  * returned once all BIOs have been completed.  This must only be called once
500  * all bios have been issued so that dio->refcount can only decrease.  This
501  * requires that that the caller hold a reference on the dio.
502  */
dio_await_one(struct dio * dio)503 static struct bio *dio_await_one(struct dio *dio)
504 {
505 	unsigned long flags;
506 	struct bio *bio = NULL;
507 
508 	spin_lock_irqsave(&dio->bio_lock, flags);
509 
510 	/*
511 	 * Wait as long as the list is empty and there are bios in flight.  bio
512 	 * completion drops the count, maybe adds to the list, and wakes while
513 	 * holding the bio_lock so we don't need set_current_state()'s barrier
514 	 * and can call it after testing our condition.
515 	 */
516 	while (dio->refcount > 1 && dio->bio_list == NULL) {
517 		__set_current_state(TASK_UNINTERRUPTIBLE);
518 		dio->waiter = current;
519 		spin_unlock_irqrestore(&dio->bio_lock, flags);
520 		if (!(dio->iocb->ki_flags & IOCB_HIPRI) ||
521 		    !blk_poll(dio->bio_disk->queue, dio->bio_cookie))
522 			io_schedule();
523 		/* wake up sets us TASK_RUNNING */
524 		spin_lock_irqsave(&dio->bio_lock, flags);
525 		dio->waiter = NULL;
526 	}
527 	if (dio->bio_list) {
528 		bio = dio->bio_list;
529 		dio->bio_list = bio->bi_private;
530 	}
531 	spin_unlock_irqrestore(&dio->bio_lock, flags);
532 	return bio;
533 }
534 
535 /*
536  * Process one completed BIO.  No locks are held.
537  */
dio_bio_complete(struct dio * dio,struct bio * bio)538 static blk_status_t dio_bio_complete(struct dio *dio, struct bio *bio)
539 {
540 	struct bio_vec *bvec;
541 	unsigned i;
542 	blk_status_t err = bio->bi_status;
543 
544 	if (err) {
545 		if (err == BLK_STS_AGAIN && (bio->bi_opf & REQ_NOWAIT))
546 			dio->io_error = -EAGAIN;
547 		else
548 			dio->io_error = -EIO;
549 	}
550 
551 	if (dio->is_async && dio->op == REQ_OP_READ && dio->should_dirty) {
552 		bio_check_pages_dirty(bio);	/* transfers ownership */
553 	} else {
554 		bio_for_each_segment_all(bvec, bio, i) {
555 			struct page *page = bvec->bv_page;
556 
557 			if (dio->op == REQ_OP_READ && !PageCompound(page) &&
558 					dio->should_dirty)
559 				set_page_dirty_lock(page);
560 			put_page(page);
561 		}
562 		bio_put(bio);
563 	}
564 	return err;
565 }
566 
567 /*
568  * Wait on and process all in-flight BIOs.  This must only be called once
569  * all bios have been issued so that the refcount can only decrease.
570  * This just waits for all bios to make it through dio_bio_complete.  IO
571  * errors are propagated through dio->io_error and should be propagated via
572  * dio_complete().
573  */
dio_await_completion(struct dio * dio)574 static void dio_await_completion(struct dio *dio)
575 {
576 	struct bio *bio;
577 	do {
578 		bio = dio_await_one(dio);
579 		if (bio)
580 			dio_bio_complete(dio, bio);
581 	} while (bio);
582 }
583 
584 /*
585  * A really large O_DIRECT read or write can generate a lot of BIOs.  So
586  * to keep the memory consumption sane we periodically reap any completed BIOs
587  * during the BIO generation phase.
588  *
589  * This also helps to limit the peak amount of pinned userspace memory.
590  */
dio_bio_reap(struct dio * dio,struct dio_submit * sdio)591 static inline int dio_bio_reap(struct dio *dio, struct dio_submit *sdio)
592 {
593 	int ret = 0;
594 
595 	if (sdio->reap_counter++ >= 64) {
596 		while (dio->bio_list) {
597 			unsigned long flags;
598 			struct bio *bio;
599 			int ret2;
600 
601 			spin_lock_irqsave(&dio->bio_lock, flags);
602 			bio = dio->bio_list;
603 			dio->bio_list = bio->bi_private;
604 			spin_unlock_irqrestore(&dio->bio_lock, flags);
605 			ret2 = blk_status_to_errno(dio_bio_complete(dio, bio));
606 			if (ret == 0)
607 				ret = ret2;
608 		}
609 		sdio->reap_counter = 0;
610 	}
611 	return ret;
612 }
613 
614 /*
615  * Create workqueue for deferred direct IO completions. We allocate the
616  * workqueue when it's first needed. This avoids creating workqueue for
617  * filesystems that don't need it and also allows us to create the workqueue
618  * late enough so the we can include s_id in the name of the workqueue.
619  */
sb_init_dio_done_wq(struct super_block * sb)620 int sb_init_dio_done_wq(struct super_block *sb)
621 {
622 	struct workqueue_struct *old;
623 	struct workqueue_struct *wq = alloc_workqueue("dio/%s",
624 						      WQ_MEM_RECLAIM, 0,
625 						      sb->s_id);
626 	if (!wq)
627 		return -ENOMEM;
628 	/*
629 	 * This has to be atomic as more DIOs can race to create the workqueue
630 	 */
631 	old = cmpxchg(&sb->s_dio_done_wq, NULL, wq);
632 	/* Someone created workqueue before us? Free ours... */
633 	if (old)
634 		destroy_workqueue(wq);
635 	return 0;
636 }
637 
dio_set_defer_completion(struct dio * dio)638 static int dio_set_defer_completion(struct dio *dio)
639 {
640 	struct super_block *sb = dio->inode->i_sb;
641 
642 	if (dio->defer_completion)
643 		return 0;
644 	dio->defer_completion = true;
645 	if (!sb->s_dio_done_wq)
646 		return sb_init_dio_done_wq(sb);
647 	return 0;
648 }
649 
650 /*
651  * Call into the fs to map some more disk blocks.  We record the current number
652  * of available blocks at sdio->blocks_available.  These are in units of the
653  * fs blocksize, i_blocksize(inode).
654  *
655  * The fs is allowed to map lots of blocks at once.  If it wants to do that,
656  * it uses the passed inode-relative block number as the file offset, as usual.
657  *
658  * get_block() is passed the number of i_blkbits-sized blocks which direct_io
659  * has remaining to do.  The fs should not map more than this number of blocks.
660  *
661  * If the fs has mapped a lot of blocks, it should populate bh->b_size to
662  * indicate how much contiguous disk space has been made available at
663  * bh->b_blocknr.
664  *
665  * If *any* of the mapped blocks are new, then the fs must set buffer_new().
666  * This isn't very efficient...
667  *
668  * In the case of filesystem holes: the fs may return an arbitrarily-large
669  * hole by returning an appropriate value in b_size and by clearing
670  * buffer_mapped().  However the direct-io code will only process holes one
671  * block at a time - it will repeatedly call get_block() as it walks the hole.
672  */
get_more_blocks(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)673 static int get_more_blocks(struct dio *dio, struct dio_submit *sdio,
674 			   struct buffer_head *map_bh)
675 {
676 	int ret;
677 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */
678 	sector_t fs_endblk;	/* Into file, in filesystem-sized blocks */
679 	unsigned long fs_count;	/* Number of filesystem-sized blocks */
680 	int create;
681 	unsigned int i_blkbits = sdio->blkbits + sdio->blkfactor;
682 	loff_t i_size;
683 
684 	/*
685 	 * If there was a memory error and we've overwritten all the
686 	 * mapped blocks then we can now return that memory error
687 	 */
688 	ret = dio->page_errors;
689 	if (ret == 0) {
690 		BUG_ON(sdio->block_in_file >= sdio->final_block_in_request);
691 		fs_startblk = sdio->block_in_file >> sdio->blkfactor;
692 		fs_endblk = (sdio->final_block_in_request - 1) >>
693 					sdio->blkfactor;
694 		fs_count = fs_endblk - fs_startblk + 1;
695 
696 		map_bh->b_state = 0;
697 		map_bh->b_size = fs_count << i_blkbits;
698 
699 		/*
700 		 * For writes that could fill holes inside i_size on a
701 		 * DIO_SKIP_HOLES filesystem we forbid block creations: only
702 		 * overwrites are permitted. We will return early to the caller
703 		 * once we see an unmapped buffer head returned, and the caller
704 		 * will fall back to buffered I/O.
705 		 *
706 		 * Otherwise the decision is left to the get_blocks method,
707 		 * which may decide to handle it or also return an unmapped
708 		 * buffer head.
709 		 */
710 		create = dio->op == REQ_OP_WRITE;
711 		if (dio->flags & DIO_SKIP_HOLES) {
712 			i_size = i_size_read(dio->inode);
713 			if (i_size && fs_startblk <= (i_size - 1) >> i_blkbits)
714 				create = 0;
715 		}
716 
717 		ret = (*sdio->get_block)(dio->inode, fs_startblk,
718 						map_bh, create);
719 
720 		/* Store for completion */
721 		dio->private = map_bh->b_private;
722 
723 		if (ret == 0 && buffer_defer_completion(map_bh))
724 			ret = dio_set_defer_completion(dio);
725 	}
726 	return ret;
727 }
728 
729 /*
730  * There is no bio.  Make one now.
731  */
dio_new_bio(struct dio * dio,struct dio_submit * sdio,sector_t start_sector,struct buffer_head * map_bh)732 static inline int dio_new_bio(struct dio *dio, struct dio_submit *sdio,
733 		sector_t start_sector, struct buffer_head *map_bh)
734 {
735 	sector_t sector;
736 	int ret, nr_pages;
737 
738 	ret = dio_bio_reap(dio, sdio);
739 	if (ret)
740 		goto out;
741 	sector = start_sector << (sdio->blkbits - 9);
742 	nr_pages = min(sdio->pages_in_io, BIO_MAX_PAGES);
743 	BUG_ON(nr_pages <= 0);
744 	dio_bio_alloc(dio, sdio, map_bh->b_bdev, sector, nr_pages);
745 	sdio->boundary = 0;
746 out:
747 	return ret;
748 }
749 
750 /*
751  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If
752  * that was successful then update final_block_in_bio and take a ref against
753  * the just-added page.
754  *
755  * Return zero on success.  Non-zero means the caller needs to start a new BIO.
756  */
dio_bio_add_page(struct dio_submit * sdio)757 static inline int dio_bio_add_page(struct dio_submit *sdio)
758 {
759 	int ret;
760 
761 	ret = bio_add_page(sdio->bio, sdio->cur_page,
762 			sdio->cur_page_len, sdio->cur_page_offset);
763 	if (ret == sdio->cur_page_len) {
764 		/*
765 		 * Decrement count only, if we are done with this page
766 		 */
767 		if ((sdio->cur_page_len + sdio->cur_page_offset) == PAGE_SIZE)
768 			sdio->pages_in_io--;
769 		get_page(sdio->cur_page);
770 		sdio->final_block_in_bio = sdio->cur_page_block +
771 			(sdio->cur_page_len >> sdio->blkbits);
772 		ret = 0;
773 	} else {
774 		ret = 1;
775 	}
776 	return ret;
777 }
778 
779 /*
780  * Put cur_page under IO.  The section of cur_page which is described by
781  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page
782  * starts on-disk at cur_page_block.
783  *
784  * We take a ref against the page here (on behalf of its presence in the bio).
785  *
786  * The caller of this function is responsible for removing cur_page from the
787  * dio, and for dropping the refcount which came from that presence.
788  */
dio_send_cur_page(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)789 static inline int dio_send_cur_page(struct dio *dio, struct dio_submit *sdio,
790 		struct buffer_head *map_bh)
791 {
792 	int ret = 0;
793 
794 	if (sdio->bio) {
795 		loff_t cur_offset = sdio->cur_page_fs_offset;
796 		loff_t bio_next_offset = sdio->logical_offset_in_bio +
797 			sdio->bio->bi_iter.bi_size;
798 
799 		/*
800 		 * See whether this new request is contiguous with the old.
801 		 *
802 		 * Btrfs cannot handle having logically non-contiguous requests
803 		 * submitted.  For example if you have
804 		 *
805 		 * Logical:  [0-4095][HOLE][8192-12287]
806 		 * Physical: [0-4095]      [4096-8191]
807 		 *
808 		 * We cannot submit those pages together as one BIO.  So if our
809 		 * current logical offset in the file does not equal what would
810 		 * be the next logical offset in the bio, submit the bio we
811 		 * have.
812 		 */
813 		if (sdio->final_block_in_bio != sdio->cur_page_block ||
814 		    cur_offset != bio_next_offset)
815 			dio_bio_submit(dio, sdio);
816 	}
817 
818 	if (sdio->bio == NULL) {
819 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
820 		if (ret)
821 			goto out;
822 	}
823 
824 	if (dio_bio_add_page(sdio) != 0) {
825 		dio_bio_submit(dio, sdio);
826 		ret = dio_new_bio(dio, sdio, sdio->cur_page_block, map_bh);
827 		if (ret == 0) {
828 			ret = dio_bio_add_page(sdio);
829 			BUG_ON(ret != 0);
830 		}
831 	}
832 out:
833 	return ret;
834 }
835 
836 /*
837  * An autonomous function to put a chunk of a page under deferred IO.
838  *
839  * The caller doesn't actually know (or care) whether this piece of page is in
840  * a BIO, or is under IO or whatever.  We just take care of all possible
841  * situations here.  The separation between the logic of do_direct_IO() and
842  * that of submit_page_section() is important for clarity.  Please don't break.
843  *
844  * The chunk of page starts on-disk at blocknr.
845  *
846  * We perform deferred IO, by recording the last-submitted page inside our
847  * private part of the dio structure.  If possible, we just expand the IO
848  * across that page here.
849  *
850  * If that doesn't work out then we put the old page into the bio and add this
851  * page to the dio instead.
852  */
853 static inline int
submit_page_section(struct dio * dio,struct dio_submit * sdio,struct page * page,unsigned offset,unsigned len,sector_t blocknr,struct buffer_head * map_bh)854 submit_page_section(struct dio *dio, struct dio_submit *sdio, struct page *page,
855 		    unsigned offset, unsigned len, sector_t blocknr,
856 		    struct buffer_head *map_bh)
857 {
858 	int ret = 0;
859 	int boundary = sdio->boundary;	/* dio_send_cur_page may clear it */
860 
861 	if (dio->op == REQ_OP_WRITE) {
862 		/*
863 		 * Read accounting is performed in submit_bio()
864 		 */
865 		task_io_account_write(len);
866 	}
867 
868 	/*
869 	 * Can we just grow the current page's presence in the dio?
870 	 */
871 	if (sdio->cur_page == page &&
872 	    sdio->cur_page_offset + sdio->cur_page_len == offset &&
873 	    sdio->cur_page_block +
874 	    (sdio->cur_page_len >> sdio->blkbits) == blocknr) {
875 		sdio->cur_page_len += len;
876 		goto out;
877 	}
878 
879 	/*
880 	 * If there's a deferred page already there then send it.
881 	 */
882 	if (sdio->cur_page) {
883 		ret = dio_send_cur_page(dio, sdio, map_bh);
884 		put_page(sdio->cur_page);
885 		sdio->cur_page = NULL;
886 		if (ret)
887 			return ret;
888 	}
889 
890 	get_page(page);		/* It is in dio */
891 	sdio->cur_page = page;
892 	sdio->cur_page_offset = offset;
893 	sdio->cur_page_len = len;
894 	sdio->cur_page_block = blocknr;
895 	sdio->cur_page_fs_offset = sdio->block_in_file << sdio->blkbits;
896 out:
897 	/*
898 	 * If boundary then we want to schedule the IO now to
899 	 * avoid metadata seeks.
900 	 */
901 	if (boundary) {
902 		ret = dio_send_cur_page(dio, sdio, map_bh);
903 		if (sdio->bio)
904 			dio_bio_submit(dio, sdio);
905 		put_page(sdio->cur_page);
906 		sdio->cur_page = NULL;
907 	}
908 	return ret;
909 }
910 
911 /*
912  * If we are not writing the entire block and get_block() allocated
913  * the block for us, we need to fill-in the unused portion of the
914  * block with zeros. This happens only if user-buffer, fileoffset or
915  * io length is not filesystem block-size multiple.
916  *
917  * `end' is zero if we're doing the start of the IO, 1 at the end of the
918  * IO.
919  */
dio_zero_block(struct dio * dio,struct dio_submit * sdio,int end,struct buffer_head * map_bh)920 static inline void dio_zero_block(struct dio *dio, struct dio_submit *sdio,
921 		int end, struct buffer_head *map_bh)
922 {
923 	unsigned dio_blocks_per_fs_block;
924 	unsigned this_chunk_blocks;	/* In dio_blocks */
925 	unsigned this_chunk_bytes;
926 	struct page *page;
927 
928 	sdio->start_zero_done = 1;
929 	if (!sdio->blkfactor || !buffer_new(map_bh))
930 		return;
931 
932 	dio_blocks_per_fs_block = 1 << sdio->blkfactor;
933 	this_chunk_blocks = sdio->block_in_file & (dio_blocks_per_fs_block - 1);
934 
935 	if (!this_chunk_blocks)
936 		return;
937 
938 	/*
939 	 * We need to zero out part of an fs block.  It is either at the
940 	 * beginning or the end of the fs block.
941 	 */
942 	if (end)
943 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
944 
945 	this_chunk_bytes = this_chunk_blocks << sdio->blkbits;
946 
947 	page = ZERO_PAGE(0);
948 	if (submit_page_section(dio, sdio, page, 0, this_chunk_bytes,
949 				sdio->next_block_for_io, map_bh))
950 		return;
951 
952 	sdio->next_block_for_io += this_chunk_blocks;
953 }
954 
955 /*
956  * Walk the user pages, and the file, mapping blocks to disk and generating
957  * a sequence of (page,offset,len,block) mappings.  These mappings are injected
958  * into submit_page_section(), which takes care of the next stage of submission
959  *
960  * Direct IO against a blockdev is different from a file.  Because we can
961  * happily perform page-sized but 512-byte aligned IOs.  It is important that
962  * blockdev IO be able to have fine alignment and large sizes.
963  *
964  * So what we do is to permit the ->get_block function to populate bh.b_size
965  * with the size of IO which is permitted at this offset and this i_blkbits.
966  *
967  * For best results, the blockdev should be set up with 512-byte i_blkbits and
968  * it should set b_size to PAGE_SIZE or more inside get_block().  This gives
969  * fine alignment but still allows this function to work in PAGE_SIZE units.
970  */
do_direct_IO(struct dio * dio,struct dio_submit * sdio,struct buffer_head * map_bh)971 static int do_direct_IO(struct dio *dio, struct dio_submit *sdio,
972 			struct buffer_head *map_bh)
973 {
974 	const unsigned blkbits = sdio->blkbits;
975 	const unsigned i_blkbits = blkbits + sdio->blkfactor;
976 	int ret = 0;
977 
978 	while (sdio->block_in_file < sdio->final_block_in_request) {
979 		struct page *page;
980 		size_t from, to;
981 
982 		page = dio_get_page(dio, sdio);
983 		if (IS_ERR(page)) {
984 			ret = PTR_ERR(page);
985 			goto out;
986 		}
987 		from = sdio->head ? 0 : sdio->from;
988 		to = (sdio->head == sdio->tail - 1) ? sdio->to : PAGE_SIZE;
989 		sdio->head++;
990 
991 		while (from < to) {
992 			unsigned this_chunk_bytes;	/* # of bytes mapped */
993 			unsigned this_chunk_blocks;	/* # of blocks */
994 			unsigned u;
995 
996 			if (sdio->blocks_available == 0) {
997 				/*
998 				 * Need to go and map some more disk
999 				 */
1000 				unsigned long blkmask;
1001 				unsigned long dio_remainder;
1002 
1003 				ret = get_more_blocks(dio, sdio, map_bh);
1004 				if (ret) {
1005 					put_page(page);
1006 					goto out;
1007 				}
1008 				if (!buffer_mapped(map_bh))
1009 					goto do_holes;
1010 
1011 				sdio->blocks_available =
1012 						map_bh->b_size >> blkbits;
1013 				sdio->next_block_for_io =
1014 					map_bh->b_blocknr << sdio->blkfactor;
1015 				if (buffer_new(map_bh)) {
1016 					clean_bdev_aliases(
1017 						map_bh->b_bdev,
1018 						map_bh->b_blocknr,
1019 						map_bh->b_size >> i_blkbits);
1020 				}
1021 
1022 				if (!sdio->blkfactor)
1023 					goto do_holes;
1024 
1025 				blkmask = (1 << sdio->blkfactor) - 1;
1026 				dio_remainder = (sdio->block_in_file & blkmask);
1027 
1028 				/*
1029 				 * If we are at the start of IO and that IO
1030 				 * starts partway into a fs-block,
1031 				 * dio_remainder will be non-zero.  If the IO
1032 				 * is a read then we can simply advance the IO
1033 				 * cursor to the first block which is to be
1034 				 * read.  But if the IO is a write and the
1035 				 * block was newly allocated we cannot do that;
1036 				 * the start of the fs block must be zeroed out
1037 				 * on-disk
1038 				 */
1039 				if (!buffer_new(map_bh))
1040 					sdio->next_block_for_io += dio_remainder;
1041 				sdio->blocks_available -= dio_remainder;
1042 			}
1043 do_holes:
1044 			/* Handle holes */
1045 			if (!buffer_mapped(map_bh)) {
1046 				loff_t i_size_aligned;
1047 
1048 				/* AKPM: eargh, -ENOTBLK is a hack */
1049 				if (dio->op == REQ_OP_WRITE) {
1050 					put_page(page);
1051 					return -ENOTBLK;
1052 				}
1053 
1054 				/*
1055 				 * Be sure to account for a partial block as the
1056 				 * last block in the file
1057 				 */
1058 				i_size_aligned = ALIGN(i_size_read(dio->inode),
1059 							1 << blkbits);
1060 				if (sdio->block_in_file >=
1061 						i_size_aligned >> blkbits) {
1062 					/* We hit eof */
1063 					put_page(page);
1064 					goto out;
1065 				}
1066 				zero_user(page, from, 1 << blkbits);
1067 				sdio->block_in_file++;
1068 				from += 1 << blkbits;
1069 				dio->result += 1 << blkbits;
1070 				goto next_block;
1071 			}
1072 
1073 			/*
1074 			 * If we're performing IO which has an alignment which
1075 			 * is finer than the underlying fs, go check to see if
1076 			 * we must zero out the start of this block.
1077 			 */
1078 			if (unlikely(sdio->blkfactor && !sdio->start_zero_done))
1079 				dio_zero_block(dio, sdio, 0, map_bh);
1080 
1081 			/*
1082 			 * Work out, in this_chunk_blocks, how much disk we
1083 			 * can add to this page
1084 			 */
1085 			this_chunk_blocks = sdio->blocks_available;
1086 			u = (to - from) >> blkbits;
1087 			if (this_chunk_blocks > u)
1088 				this_chunk_blocks = u;
1089 			u = sdio->final_block_in_request - sdio->block_in_file;
1090 			if (this_chunk_blocks > u)
1091 				this_chunk_blocks = u;
1092 			this_chunk_bytes = this_chunk_blocks << blkbits;
1093 			BUG_ON(this_chunk_bytes == 0);
1094 
1095 			if (this_chunk_blocks == sdio->blocks_available)
1096 				sdio->boundary = buffer_boundary(map_bh);
1097 			ret = submit_page_section(dio, sdio, page,
1098 						  from,
1099 						  this_chunk_bytes,
1100 						  sdio->next_block_for_io,
1101 						  map_bh);
1102 			if (ret) {
1103 				put_page(page);
1104 				goto out;
1105 			}
1106 			sdio->next_block_for_io += this_chunk_blocks;
1107 
1108 			sdio->block_in_file += this_chunk_blocks;
1109 			from += this_chunk_bytes;
1110 			dio->result += this_chunk_bytes;
1111 			sdio->blocks_available -= this_chunk_blocks;
1112 next_block:
1113 			BUG_ON(sdio->block_in_file > sdio->final_block_in_request);
1114 			if (sdio->block_in_file == sdio->final_block_in_request)
1115 				break;
1116 		}
1117 
1118 		/* Drop the ref which was taken in get_user_pages() */
1119 		put_page(page);
1120 	}
1121 out:
1122 	return ret;
1123 }
1124 
drop_refcount(struct dio * dio)1125 static inline int drop_refcount(struct dio *dio)
1126 {
1127 	int ret2;
1128 	unsigned long flags;
1129 
1130 	/*
1131 	 * Sync will always be dropping the final ref and completing the
1132 	 * operation.  AIO can if it was a broken operation described above or
1133 	 * in fact if all the bios race to complete before we get here.  In
1134 	 * that case dio_complete() translates the EIOCBQUEUED into the proper
1135 	 * return code that the caller will hand to ->complete().
1136 	 *
1137 	 * This is managed by the bio_lock instead of being an atomic_t so that
1138 	 * completion paths can drop their ref and use the remaining count to
1139 	 * decide to wake the submission path atomically.
1140 	 */
1141 	spin_lock_irqsave(&dio->bio_lock, flags);
1142 	ret2 = --dio->refcount;
1143 	spin_unlock_irqrestore(&dio->bio_lock, flags);
1144 	return ret2;
1145 }
1146 
1147 /*
1148  * This is a library function for use by filesystem drivers.
1149  *
1150  * The locking rules are governed by the flags parameter:
1151  *  - if the flags value contains DIO_LOCKING we use a fancy locking
1152  *    scheme for dumb filesystems.
1153  *    For writes this function is called under i_mutex and returns with
1154  *    i_mutex held, for reads, i_mutex is not held on entry, but it is
1155  *    taken and dropped again before returning.
1156  *  - if the flags value does NOT contain DIO_LOCKING we don't use any
1157  *    internal locking but rather rely on the filesystem to synchronize
1158  *    direct I/O reads/writes versus each other and truncate.
1159  *
1160  * To help with locking against truncate we incremented the i_dio_count
1161  * counter before starting direct I/O, and decrement it once we are done.
1162  * Truncate can wait for it to reach zero to provide exclusion.  It is
1163  * expected that filesystem provide exclusion between new direct I/O
1164  * and truncates.  For DIO_LOCKING filesystems this is done by i_mutex,
1165  * but other filesystems need to take care of this on their own.
1166  *
1167  * NOTE: if you pass "sdio" to anything by pointer make sure that function
1168  * is always inlined. Otherwise gcc is unable to split the structure into
1169  * individual fields and will generate much worse code. This is important
1170  * for the whole file.
1171  */
1172 static inline ssize_t
do_blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1173 do_blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1174 		      struct block_device *bdev, struct iov_iter *iter,
1175 		      get_block_t get_block, dio_iodone_t end_io,
1176 		      dio_submit_t submit_io, int flags)
1177 {
1178 	unsigned i_blkbits = READ_ONCE(inode->i_blkbits);
1179 	unsigned blkbits = i_blkbits;
1180 	unsigned blocksize_mask = (1 << blkbits) - 1;
1181 	ssize_t retval = -EINVAL;
1182 	const size_t count = iov_iter_count(iter);
1183 	loff_t offset = iocb->ki_pos;
1184 	const loff_t end = offset + count;
1185 	struct dio *dio;
1186 	struct dio_submit sdio = { 0, };
1187 	struct buffer_head map_bh = { 0, };
1188 	struct blk_plug plug;
1189 	unsigned long align = offset | iov_iter_alignment(iter);
1190 
1191 	/*
1192 	 * Avoid references to bdev if not absolutely needed to give
1193 	 * the early prefetch in the caller enough time.
1194 	 */
1195 
1196 	if (align & blocksize_mask) {
1197 		if (bdev)
1198 			blkbits = blksize_bits(bdev_logical_block_size(bdev));
1199 		blocksize_mask = (1 << blkbits) - 1;
1200 		if (align & blocksize_mask)
1201 			goto out;
1202 	}
1203 
1204 	/* watch out for a 0 len io from a tricksy fs */
1205 	if (iov_iter_rw(iter) == READ && !count)
1206 		return 0;
1207 
1208 	dio = kmem_cache_alloc(dio_cache, GFP_KERNEL);
1209 	retval = -ENOMEM;
1210 	if (!dio)
1211 		goto out;
1212 	/*
1213 	 * Believe it or not, zeroing out the page array caused a .5%
1214 	 * performance regression in a database benchmark.  So, we take
1215 	 * care to only zero out what's needed.
1216 	 */
1217 	memset(dio, 0, offsetof(struct dio, pages));
1218 
1219 	dio->flags = flags;
1220 	if (dio->flags & DIO_LOCKING) {
1221 		if (iov_iter_rw(iter) == READ) {
1222 			struct address_space *mapping =
1223 					iocb->ki_filp->f_mapping;
1224 
1225 			/* will be released by direct_io_worker */
1226 			inode_lock(inode);
1227 
1228 			retval = filemap_write_and_wait_range(mapping, offset,
1229 							      end - 1);
1230 			if (retval) {
1231 				inode_unlock(inode);
1232 				kmem_cache_free(dio_cache, dio);
1233 				goto out;
1234 			}
1235 		}
1236 	}
1237 
1238 	/* Once we sampled i_size check for reads beyond EOF */
1239 	dio->i_size = i_size_read(inode);
1240 	if (iov_iter_rw(iter) == READ && offset >= dio->i_size) {
1241 		if (dio->flags & DIO_LOCKING)
1242 			inode_unlock(inode);
1243 		kmem_cache_free(dio_cache, dio);
1244 		retval = 0;
1245 		goto out;
1246 	}
1247 
1248 	/*
1249 	 * For file extending writes updating i_size before data writeouts
1250 	 * complete can expose uninitialized blocks in dumb filesystems.
1251 	 * In that case we need to wait for I/O completion even if asked
1252 	 * for an asynchronous write.
1253 	 */
1254 	if (is_sync_kiocb(iocb))
1255 		dio->is_async = false;
1256 	else if (iov_iter_rw(iter) == WRITE && end > i_size_read(inode))
1257 		dio->is_async = false;
1258 	else
1259 		dio->is_async = true;
1260 
1261 	dio->inode = inode;
1262 	if (iov_iter_rw(iter) == WRITE) {
1263 		dio->op = REQ_OP_WRITE;
1264 		dio->op_flags = REQ_SYNC | REQ_IDLE;
1265 		if (iocb->ki_flags & IOCB_NOWAIT)
1266 			dio->op_flags |= REQ_NOWAIT;
1267 	} else {
1268 		dio->op = REQ_OP_READ;
1269 	}
1270 
1271 	/*
1272 	 * For AIO O_(D)SYNC writes we need to defer completions to a workqueue
1273 	 * so that we can call ->fsync.
1274 	 */
1275 	if (dio->is_async && iov_iter_rw(iter) == WRITE) {
1276 		retval = 0;
1277 		if (iocb->ki_flags & IOCB_DSYNC)
1278 			retval = dio_set_defer_completion(dio);
1279 		else if (!dio->inode->i_sb->s_dio_done_wq) {
1280 			/*
1281 			 * In case of AIO write racing with buffered read we
1282 			 * need to defer completion. We can't decide this now,
1283 			 * however the workqueue needs to be initialized here.
1284 			 */
1285 			retval = sb_init_dio_done_wq(dio->inode->i_sb);
1286 		}
1287 		if (retval) {
1288 			/*
1289 			 * We grab i_mutex only for reads so we don't have
1290 			 * to release it here
1291 			 */
1292 			kmem_cache_free(dio_cache, dio);
1293 			goto out;
1294 		}
1295 	}
1296 
1297 	/*
1298 	 * Will be decremented at I/O completion time.
1299 	 */
1300 	inode_dio_begin(inode);
1301 
1302 	retval = 0;
1303 	sdio.blkbits = blkbits;
1304 	sdio.blkfactor = i_blkbits - blkbits;
1305 	sdio.block_in_file = offset >> blkbits;
1306 
1307 	sdio.get_block = get_block;
1308 	dio->end_io = end_io;
1309 	sdio.submit_io = submit_io;
1310 	sdio.final_block_in_bio = -1;
1311 	sdio.next_block_for_io = -1;
1312 
1313 	dio->iocb = iocb;
1314 
1315 	spin_lock_init(&dio->bio_lock);
1316 	dio->refcount = 1;
1317 
1318 	dio->should_dirty = (iter->type == ITER_IOVEC);
1319 	sdio.iter = iter;
1320 	sdio.final_block_in_request = end >> blkbits;
1321 
1322 	/*
1323 	 * In case of non-aligned buffers, we may need 2 more
1324 	 * pages since we need to zero out first and last block.
1325 	 */
1326 	if (unlikely(sdio.blkfactor))
1327 		sdio.pages_in_io = 2;
1328 
1329 	sdio.pages_in_io += iov_iter_npages(iter, INT_MAX);
1330 
1331 	blk_start_plug(&plug);
1332 
1333 	retval = do_direct_IO(dio, &sdio, &map_bh);
1334 	if (retval)
1335 		dio_cleanup(dio, &sdio);
1336 
1337 	if (retval == -ENOTBLK) {
1338 		/*
1339 		 * The remaining part of the request will be
1340 		 * be handled by buffered I/O when we return
1341 		 */
1342 		retval = 0;
1343 	}
1344 	/*
1345 	 * There may be some unwritten disk at the end of a part-written
1346 	 * fs-block-sized block.  Go zero that now.
1347 	 */
1348 	dio_zero_block(dio, &sdio, 1, &map_bh);
1349 
1350 	if (sdio.cur_page) {
1351 		ssize_t ret2;
1352 
1353 		ret2 = dio_send_cur_page(dio, &sdio, &map_bh);
1354 		if (retval == 0)
1355 			retval = ret2;
1356 		put_page(sdio.cur_page);
1357 		sdio.cur_page = NULL;
1358 	}
1359 	if (sdio.bio)
1360 		dio_bio_submit(dio, &sdio);
1361 
1362 	blk_finish_plug(&plug);
1363 
1364 	/*
1365 	 * It is possible that, we return short IO due to end of file.
1366 	 * In that case, we need to release all the pages we got hold on.
1367 	 */
1368 	dio_cleanup(dio, &sdio);
1369 
1370 	/*
1371 	 * All block lookups have been performed. For READ requests
1372 	 * we can let i_mutex go now that its achieved its purpose
1373 	 * of protecting us from looking up uninitialized blocks.
1374 	 */
1375 	if (iov_iter_rw(iter) == READ && (dio->flags & DIO_LOCKING))
1376 		inode_unlock(dio->inode);
1377 
1378 	/*
1379 	 * The only time we want to leave bios in flight is when a successful
1380 	 * partial aio read or full aio write have been setup.  In that case
1381 	 * bio completion will call aio_complete.  The only time it's safe to
1382 	 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1383 	 * This had *better* be the only place that raises -EIOCBQUEUED.
1384 	 */
1385 	BUG_ON(retval == -EIOCBQUEUED);
1386 	if (dio->is_async && retval == 0 && dio->result &&
1387 	    (iov_iter_rw(iter) == READ || dio->result == count))
1388 		retval = -EIOCBQUEUED;
1389 	else
1390 		dio_await_completion(dio);
1391 
1392 	if (drop_refcount(dio) == 0) {
1393 		retval = dio_complete(dio, retval, DIO_COMPLETE_INVALIDATE);
1394 	} else
1395 		BUG_ON(retval != -EIOCBQUEUED);
1396 
1397 out:
1398 	return retval;
1399 }
1400 
__blockdev_direct_IO(struct kiocb * iocb,struct inode * inode,struct block_device * bdev,struct iov_iter * iter,get_block_t get_block,dio_iodone_t end_io,dio_submit_t submit_io,int flags)1401 ssize_t __blockdev_direct_IO(struct kiocb *iocb, struct inode *inode,
1402 			     struct block_device *bdev, struct iov_iter *iter,
1403 			     get_block_t get_block,
1404 			     dio_iodone_t end_io, dio_submit_t submit_io,
1405 			     int flags)
1406 {
1407 	/*
1408 	 * The block device state is needed in the end to finally
1409 	 * submit everything.  Since it's likely to be cache cold
1410 	 * prefetch it here as first thing to hide some of the
1411 	 * latency.
1412 	 *
1413 	 * Attempt to prefetch the pieces we likely need later.
1414 	 */
1415 	prefetch(&bdev->bd_disk->part_tbl);
1416 	prefetch(bdev->bd_queue);
1417 	prefetch((char *)bdev->bd_queue + SMP_CACHE_BYTES);
1418 
1419 	return do_blockdev_direct_IO(iocb, inode, bdev, iter, get_block,
1420 				     end_io, submit_io, flags);
1421 }
1422 
1423 EXPORT_SYMBOL(__blockdev_direct_IO);
1424 
dio_init(void)1425 static __init int dio_init(void)
1426 {
1427 	dio_cache = KMEM_CACHE(dio, SLAB_PANIC);
1428 	return 0;
1429 }
1430 module_init(dio_init)
1431