1 /*
2  * Intel & MS High Precision Event Timer Implementation.
3  *
4  * Copyright (C) 2003 Intel Corporation
5  *	Venki Pallipadi
6  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7  *	Bob Picco <robert.picco@hp.com>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/interrupt.h>
15 #include <linux/kernel.h>
16 #include <linux/types.h>
17 #include <linux/miscdevice.h>
18 #include <linux/major.h>
19 #include <linux/ioport.h>
20 #include <linux/fcntl.h>
21 #include <linux/init.h>
22 #include <linux/poll.h>
23 #include <linux/mm.h>
24 #include <linux/proc_fs.h>
25 #include <linux/spinlock.h>
26 #include <linux/sysctl.h>
27 #include <linux/wait.h>
28 #include <linux/sched/signal.h>
29 #include <linux/bcd.h>
30 #include <linux/seq_file.h>
31 #include <linux/bitops.h>
32 #include <linux/compat.h>
33 #include <linux/clocksource.h>
34 #include <linux/uaccess.h>
35 #include <linux/slab.h>
36 #include <linux/io.h>
37 #include <linux/acpi.h>
38 #include <linux/hpet.h>
39 #include <asm/current.h>
40 #include <asm/irq.h>
41 #include <asm/div64.h>
42 
43 /*
44  * The High Precision Event Timer driver.
45  * This driver is closely modelled after the rtc.c driver.
46  * See HPET spec revision 1.
47  */
48 #define	HPET_USER_FREQ	(64)
49 #define	HPET_DRIFT	(500)
50 
51 #define HPET_RANGE_SIZE		1024	/* from HPET spec */
52 
53 
54 /* WARNING -- don't get confused.  These macros are never used
55  * to write the (single) counter, and rarely to read it.
56  * They're badly named; to fix, someday.
57  */
58 #if BITS_PER_LONG == 64
59 #define	write_counter(V, MC)	writeq(V, MC)
60 #define	read_counter(MC)	readq(MC)
61 #else
62 #define	write_counter(V, MC)	writel(V, MC)
63 #define	read_counter(MC)	readl(MC)
64 #endif
65 
66 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
67 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
68 
69 /* This clocksource driver currently only works on ia64 */
70 #ifdef CONFIG_IA64
71 static void __iomem *hpet_mctr;
72 
read_hpet(struct clocksource * cs)73 static u64 read_hpet(struct clocksource *cs)
74 {
75 	return (u64)read_counter((void __iomem *)hpet_mctr);
76 }
77 
78 static struct clocksource clocksource_hpet = {
79 	.name		= "hpet",
80 	.rating		= 250,
81 	.read		= read_hpet,
82 	.mask		= CLOCKSOURCE_MASK(64),
83 	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
84 };
85 static struct clocksource *hpet_clocksource;
86 #endif
87 
88 /* A lock for concurrent access by app and isr hpet activity. */
89 static DEFINE_SPINLOCK(hpet_lock);
90 
91 #define	HPET_DEV_NAME	(7)
92 
93 struct hpet_dev {
94 	struct hpets *hd_hpets;
95 	struct hpet __iomem *hd_hpet;
96 	struct hpet_timer __iomem *hd_timer;
97 	unsigned long hd_ireqfreq;
98 	unsigned long hd_irqdata;
99 	wait_queue_head_t hd_waitqueue;
100 	struct fasync_struct *hd_async_queue;
101 	unsigned int hd_flags;
102 	unsigned int hd_irq;
103 	unsigned int hd_hdwirq;
104 	char hd_name[HPET_DEV_NAME];
105 };
106 
107 struct hpets {
108 	struct hpets *hp_next;
109 	struct hpet __iomem *hp_hpet;
110 	unsigned long hp_hpet_phys;
111 	struct clocksource *hp_clocksource;
112 	unsigned long long hp_tick_freq;
113 	unsigned long hp_delta;
114 	unsigned int hp_ntimer;
115 	unsigned int hp_which;
116 	struct hpet_dev hp_dev[1];
117 };
118 
119 static struct hpets *hpets;
120 
121 #define	HPET_OPEN		0x0001
122 #define	HPET_IE			0x0002	/* interrupt enabled */
123 #define	HPET_PERIODIC		0x0004
124 #define	HPET_SHARED_IRQ		0x0008
125 
126 
127 #ifndef readq
readq(void __iomem * addr)128 static inline unsigned long long readq(void __iomem *addr)
129 {
130 	return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
131 }
132 #endif
133 
134 #ifndef writeq
writeq(unsigned long long v,void __iomem * addr)135 static inline void writeq(unsigned long long v, void __iomem *addr)
136 {
137 	writel(v & 0xffffffff, addr);
138 	writel(v >> 32, addr + 4);
139 }
140 #endif
141 
hpet_interrupt(int irq,void * data)142 static irqreturn_t hpet_interrupt(int irq, void *data)
143 {
144 	struct hpet_dev *devp;
145 	unsigned long isr;
146 
147 	devp = data;
148 	isr = 1 << (devp - devp->hd_hpets->hp_dev);
149 
150 	if ((devp->hd_flags & HPET_SHARED_IRQ) &&
151 	    !(isr & readl(&devp->hd_hpet->hpet_isr)))
152 		return IRQ_NONE;
153 
154 	spin_lock(&hpet_lock);
155 	devp->hd_irqdata++;
156 
157 	/*
158 	 * For non-periodic timers, increment the accumulator.
159 	 * This has the effect of treating non-periodic like periodic.
160 	 */
161 	if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
162 		unsigned long m, t, mc, base, k;
163 		struct hpet __iomem *hpet = devp->hd_hpet;
164 		struct hpets *hpetp = devp->hd_hpets;
165 
166 		t = devp->hd_ireqfreq;
167 		m = read_counter(&devp->hd_timer->hpet_compare);
168 		mc = read_counter(&hpet->hpet_mc);
169 		/* The time for the next interrupt would logically be t + m,
170 		 * however, if we are very unlucky and the interrupt is delayed
171 		 * for longer than t then we will completely miss the next
172 		 * interrupt if we set t + m and an application will hang.
173 		 * Therefore we need to make a more complex computation assuming
174 		 * that there exists a k for which the following is true:
175 		 * k * t + base < mc + delta
176 		 * (k + 1) * t + base > mc + delta
177 		 * where t is the interval in hpet ticks for the given freq,
178 		 * base is the theoretical start value 0 < base < t,
179 		 * mc is the main counter value at the time of the interrupt,
180 		 * delta is the time it takes to write the a value to the
181 		 * comparator.
182 		 * k may then be computed as (mc - base + delta) / t .
183 		 */
184 		base = mc % t;
185 		k = (mc - base + hpetp->hp_delta) / t;
186 		write_counter(t * (k + 1) + base,
187 			      &devp->hd_timer->hpet_compare);
188 	}
189 
190 	if (devp->hd_flags & HPET_SHARED_IRQ)
191 		writel(isr, &devp->hd_hpet->hpet_isr);
192 	spin_unlock(&hpet_lock);
193 
194 	wake_up_interruptible(&devp->hd_waitqueue);
195 
196 	kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
197 
198 	return IRQ_HANDLED;
199 }
200 
hpet_timer_set_irq(struct hpet_dev * devp)201 static void hpet_timer_set_irq(struct hpet_dev *devp)
202 {
203 	unsigned long v;
204 	int irq, gsi;
205 	struct hpet_timer __iomem *timer;
206 
207 	spin_lock_irq(&hpet_lock);
208 	if (devp->hd_hdwirq) {
209 		spin_unlock_irq(&hpet_lock);
210 		return;
211 	}
212 
213 	timer = devp->hd_timer;
214 
215 	/* we prefer level triggered mode */
216 	v = readl(&timer->hpet_config);
217 	if (!(v & Tn_INT_TYPE_CNF_MASK)) {
218 		v |= Tn_INT_TYPE_CNF_MASK;
219 		writel(v, &timer->hpet_config);
220 	}
221 	spin_unlock_irq(&hpet_lock);
222 
223 	v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
224 				 Tn_INT_ROUTE_CAP_SHIFT;
225 
226 	/*
227 	 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
228 	 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
229 	 */
230 	if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
231 		v &= ~0xf3df;
232 	else
233 		v &= ~0xffff;
234 
235 	for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
236 		if (irq >= nr_irqs) {
237 			irq = HPET_MAX_IRQ;
238 			break;
239 		}
240 
241 		gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
242 					ACPI_ACTIVE_LOW);
243 		if (gsi > 0)
244 			break;
245 
246 		/* FIXME: Setup interrupt source table */
247 	}
248 
249 	if (irq < HPET_MAX_IRQ) {
250 		spin_lock_irq(&hpet_lock);
251 		v = readl(&timer->hpet_config);
252 		v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
253 		writel(v, &timer->hpet_config);
254 		devp->hd_hdwirq = gsi;
255 		spin_unlock_irq(&hpet_lock);
256 	}
257 	return;
258 }
259 
hpet_open(struct inode * inode,struct file * file)260 static int hpet_open(struct inode *inode, struct file *file)
261 {
262 	struct hpet_dev *devp;
263 	struct hpets *hpetp;
264 	int i;
265 
266 	if (file->f_mode & FMODE_WRITE)
267 		return -EINVAL;
268 
269 	mutex_lock(&hpet_mutex);
270 	spin_lock_irq(&hpet_lock);
271 
272 	for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
273 		for (i = 0; i < hpetp->hp_ntimer; i++)
274 			if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
275 				continue;
276 			else {
277 				devp = &hpetp->hp_dev[i];
278 				break;
279 			}
280 
281 	if (!devp) {
282 		spin_unlock_irq(&hpet_lock);
283 		mutex_unlock(&hpet_mutex);
284 		return -EBUSY;
285 	}
286 
287 	file->private_data = devp;
288 	devp->hd_irqdata = 0;
289 	devp->hd_flags |= HPET_OPEN;
290 	spin_unlock_irq(&hpet_lock);
291 	mutex_unlock(&hpet_mutex);
292 
293 	hpet_timer_set_irq(devp);
294 
295 	return 0;
296 }
297 
298 static ssize_t
hpet_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)299 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
300 {
301 	DECLARE_WAITQUEUE(wait, current);
302 	unsigned long data;
303 	ssize_t retval;
304 	struct hpet_dev *devp;
305 
306 	devp = file->private_data;
307 	if (!devp->hd_ireqfreq)
308 		return -EIO;
309 
310 	if (count < sizeof(unsigned long))
311 		return -EINVAL;
312 
313 	add_wait_queue(&devp->hd_waitqueue, &wait);
314 
315 	for ( ; ; ) {
316 		set_current_state(TASK_INTERRUPTIBLE);
317 
318 		spin_lock_irq(&hpet_lock);
319 		data = devp->hd_irqdata;
320 		devp->hd_irqdata = 0;
321 		spin_unlock_irq(&hpet_lock);
322 
323 		if (data)
324 			break;
325 		else if (file->f_flags & O_NONBLOCK) {
326 			retval = -EAGAIN;
327 			goto out;
328 		} else if (signal_pending(current)) {
329 			retval = -ERESTARTSYS;
330 			goto out;
331 		}
332 		schedule();
333 	}
334 
335 	retval = put_user(data, (unsigned long __user *)buf);
336 	if (!retval)
337 		retval = sizeof(unsigned long);
338 out:
339 	__set_current_state(TASK_RUNNING);
340 	remove_wait_queue(&devp->hd_waitqueue, &wait);
341 
342 	return retval;
343 }
344 
hpet_poll(struct file * file,poll_table * wait)345 static __poll_t hpet_poll(struct file *file, poll_table * wait)
346 {
347 	unsigned long v;
348 	struct hpet_dev *devp;
349 
350 	devp = file->private_data;
351 
352 	if (!devp->hd_ireqfreq)
353 		return 0;
354 
355 	poll_wait(file, &devp->hd_waitqueue, wait);
356 
357 	spin_lock_irq(&hpet_lock);
358 	v = devp->hd_irqdata;
359 	spin_unlock_irq(&hpet_lock);
360 
361 	if (v != 0)
362 		return EPOLLIN | EPOLLRDNORM;
363 
364 	return 0;
365 }
366 
367 #ifdef CONFIG_HPET_MMAP
368 #ifdef CONFIG_HPET_MMAP_DEFAULT
369 static int hpet_mmap_enabled = 1;
370 #else
371 static int hpet_mmap_enabled = 0;
372 #endif
373 
hpet_mmap_enable(char * str)374 static __init int hpet_mmap_enable(char *str)
375 {
376 	get_option(&str, &hpet_mmap_enabled);
377 	pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
378 	return 1;
379 }
380 __setup("hpet_mmap=", hpet_mmap_enable);
381 
hpet_mmap(struct file * file,struct vm_area_struct * vma)382 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
383 {
384 	struct hpet_dev *devp;
385 	unsigned long addr;
386 
387 	if (!hpet_mmap_enabled)
388 		return -EACCES;
389 
390 	devp = file->private_data;
391 	addr = devp->hd_hpets->hp_hpet_phys;
392 
393 	if (addr & (PAGE_SIZE - 1))
394 		return -ENOSYS;
395 
396 	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
397 	return vm_iomap_memory(vma, addr, PAGE_SIZE);
398 }
399 #else
hpet_mmap(struct file * file,struct vm_area_struct * vma)400 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
401 {
402 	return -ENOSYS;
403 }
404 #endif
405 
hpet_fasync(int fd,struct file * file,int on)406 static int hpet_fasync(int fd, struct file *file, int on)
407 {
408 	struct hpet_dev *devp;
409 
410 	devp = file->private_data;
411 
412 	if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
413 		return 0;
414 	else
415 		return -EIO;
416 }
417 
hpet_release(struct inode * inode,struct file * file)418 static int hpet_release(struct inode *inode, struct file *file)
419 {
420 	struct hpet_dev *devp;
421 	struct hpet_timer __iomem *timer;
422 	int irq = 0;
423 
424 	devp = file->private_data;
425 	timer = devp->hd_timer;
426 
427 	spin_lock_irq(&hpet_lock);
428 
429 	writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
430 	       &timer->hpet_config);
431 
432 	irq = devp->hd_irq;
433 	devp->hd_irq = 0;
434 
435 	devp->hd_ireqfreq = 0;
436 
437 	if (devp->hd_flags & HPET_PERIODIC
438 	    && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
439 		unsigned long v;
440 
441 		v = readq(&timer->hpet_config);
442 		v ^= Tn_TYPE_CNF_MASK;
443 		writeq(v, &timer->hpet_config);
444 	}
445 
446 	devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
447 	spin_unlock_irq(&hpet_lock);
448 
449 	if (irq)
450 		free_irq(irq, devp);
451 
452 	file->private_data = NULL;
453 	return 0;
454 }
455 
hpet_ioctl_ieon(struct hpet_dev * devp)456 static int hpet_ioctl_ieon(struct hpet_dev *devp)
457 {
458 	struct hpet_timer __iomem *timer;
459 	struct hpet __iomem *hpet;
460 	struct hpets *hpetp;
461 	int irq;
462 	unsigned long g, v, t, m;
463 	unsigned long flags, isr;
464 
465 	timer = devp->hd_timer;
466 	hpet = devp->hd_hpet;
467 	hpetp = devp->hd_hpets;
468 
469 	if (!devp->hd_ireqfreq)
470 		return -EIO;
471 
472 	spin_lock_irq(&hpet_lock);
473 
474 	if (devp->hd_flags & HPET_IE) {
475 		spin_unlock_irq(&hpet_lock);
476 		return -EBUSY;
477 	}
478 
479 	devp->hd_flags |= HPET_IE;
480 
481 	if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
482 		devp->hd_flags |= HPET_SHARED_IRQ;
483 	spin_unlock_irq(&hpet_lock);
484 
485 	irq = devp->hd_hdwirq;
486 
487 	if (irq) {
488 		unsigned long irq_flags;
489 
490 		if (devp->hd_flags & HPET_SHARED_IRQ) {
491 			/*
492 			 * To prevent the interrupt handler from seeing an
493 			 * unwanted interrupt status bit, program the timer
494 			 * so that it will not fire in the near future ...
495 			 */
496 			writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
497 			       &timer->hpet_config);
498 			write_counter(read_counter(&hpet->hpet_mc),
499 				      &timer->hpet_compare);
500 			/* ... and clear any left-over status. */
501 			isr = 1 << (devp - devp->hd_hpets->hp_dev);
502 			writel(isr, &hpet->hpet_isr);
503 		}
504 
505 		sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
506 		irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
507 		if (request_irq(irq, hpet_interrupt, irq_flags,
508 				devp->hd_name, (void *)devp)) {
509 			printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
510 			irq = 0;
511 		}
512 	}
513 
514 	if (irq == 0) {
515 		spin_lock_irq(&hpet_lock);
516 		devp->hd_flags ^= HPET_IE;
517 		spin_unlock_irq(&hpet_lock);
518 		return -EIO;
519 	}
520 
521 	devp->hd_irq = irq;
522 	t = devp->hd_ireqfreq;
523 	v = readq(&timer->hpet_config);
524 
525 	/* 64-bit comparators are not yet supported through the ioctls,
526 	 * so force this into 32-bit mode if it supports both modes
527 	 */
528 	g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
529 
530 	if (devp->hd_flags & HPET_PERIODIC) {
531 		g |= Tn_TYPE_CNF_MASK;
532 		v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
533 		writeq(v, &timer->hpet_config);
534 		local_irq_save(flags);
535 
536 		/*
537 		 * NOTE: First we modify the hidden accumulator
538 		 * register supported by periodic-capable comparators.
539 		 * We never want to modify the (single) counter; that
540 		 * would affect all the comparators. The value written
541 		 * is the counter value when the first interrupt is due.
542 		 */
543 		m = read_counter(&hpet->hpet_mc);
544 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
545 		/*
546 		 * Then we modify the comparator, indicating the period
547 		 * for subsequent interrupt.
548 		 */
549 		write_counter(t, &timer->hpet_compare);
550 	} else {
551 		local_irq_save(flags);
552 		m = read_counter(&hpet->hpet_mc);
553 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
554 	}
555 
556 	if (devp->hd_flags & HPET_SHARED_IRQ) {
557 		isr = 1 << (devp - devp->hd_hpets->hp_dev);
558 		writel(isr, &hpet->hpet_isr);
559 	}
560 	writeq(g, &timer->hpet_config);
561 	local_irq_restore(flags);
562 
563 	return 0;
564 }
565 
566 /* converts Hz to number of timer ticks */
hpet_time_div(struct hpets * hpets,unsigned long dis)567 static inline unsigned long hpet_time_div(struct hpets *hpets,
568 					  unsigned long dis)
569 {
570 	unsigned long long m;
571 
572 	m = hpets->hp_tick_freq + (dis >> 1);
573 	return div64_ul(m, dis);
574 }
575 
576 static int
hpet_ioctl_common(struct hpet_dev * devp,unsigned int cmd,unsigned long arg,struct hpet_info * info)577 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
578 		  struct hpet_info *info)
579 {
580 	struct hpet_timer __iomem *timer;
581 	struct hpets *hpetp;
582 	int err;
583 	unsigned long v;
584 
585 	switch (cmd) {
586 	case HPET_IE_OFF:
587 	case HPET_INFO:
588 	case HPET_EPI:
589 	case HPET_DPI:
590 	case HPET_IRQFREQ:
591 		timer = devp->hd_timer;
592 		hpetp = devp->hd_hpets;
593 		break;
594 	case HPET_IE_ON:
595 		return hpet_ioctl_ieon(devp);
596 	default:
597 		return -EINVAL;
598 	}
599 
600 	err = 0;
601 
602 	switch (cmd) {
603 	case HPET_IE_OFF:
604 		if ((devp->hd_flags & HPET_IE) == 0)
605 			break;
606 		v = readq(&timer->hpet_config);
607 		v &= ~Tn_INT_ENB_CNF_MASK;
608 		writeq(v, &timer->hpet_config);
609 		if (devp->hd_irq) {
610 			free_irq(devp->hd_irq, devp);
611 			devp->hd_irq = 0;
612 		}
613 		devp->hd_flags ^= HPET_IE;
614 		break;
615 	case HPET_INFO:
616 		{
617 			memset(info, 0, sizeof(*info));
618 			if (devp->hd_ireqfreq)
619 				info->hi_ireqfreq =
620 					hpet_time_div(hpetp, devp->hd_ireqfreq);
621 			info->hi_flags =
622 			    readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
623 			info->hi_hpet = hpetp->hp_which;
624 			info->hi_timer = devp - hpetp->hp_dev;
625 			break;
626 		}
627 	case HPET_EPI:
628 		v = readq(&timer->hpet_config);
629 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
630 			err = -ENXIO;
631 			break;
632 		}
633 		devp->hd_flags |= HPET_PERIODIC;
634 		break;
635 	case HPET_DPI:
636 		v = readq(&timer->hpet_config);
637 		if ((v & Tn_PER_INT_CAP_MASK) == 0) {
638 			err = -ENXIO;
639 			break;
640 		}
641 		if (devp->hd_flags & HPET_PERIODIC &&
642 		    readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
643 			v = readq(&timer->hpet_config);
644 			v ^= Tn_TYPE_CNF_MASK;
645 			writeq(v, &timer->hpet_config);
646 		}
647 		devp->hd_flags &= ~HPET_PERIODIC;
648 		break;
649 	case HPET_IRQFREQ:
650 		if ((arg > hpet_max_freq) &&
651 		    !capable(CAP_SYS_RESOURCE)) {
652 			err = -EACCES;
653 			break;
654 		}
655 
656 		if (!arg) {
657 			err = -EINVAL;
658 			break;
659 		}
660 
661 		devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
662 	}
663 
664 	return err;
665 }
666 
667 static long
hpet_ioctl(struct file * file,unsigned int cmd,unsigned long arg)668 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
669 {
670 	struct hpet_info info;
671 	int err;
672 
673 	mutex_lock(&hpet_mutex);
674 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
675 	mutex_unlock(&hpet_mutex);
676 
677 	if ((cmd == HPET_INFO) && !err &&
678 	    (copy_to_user((void __user *)arg, &info, sizeof(info))))
679 		err = -EFAULT;
680 
681 	return err;
682 }
683 
684 #ifdef CONFIG_COMPAT
685 struct compat_hpet_info {
686 	compat_ulong_t hi_ireqfreq;	/* Hz */
687 	compat_ulong_t hi_flags;	/* information */
688 	unsigned short hi_hpet;
689 	unsigned short hi_timer;
690 };
691 
692 static long
hpet_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)693 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
694 {
695 	struct hpet_info info;
696 	int err;
697 
698 	mutex_lock(&hpet_mutex);
699 	err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
700 	mutex_unlock(&hpet_mutex);
701 
702 	if ((cmd == HPET_INFO) && !err) {
703 		struct compat_hpet_info __user *u = compat_ptr(arg);
704 		if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
705 		    put_user(info.hi_flags, &u->hi_flags) ||
706 		    put_user(info.hi_hpet, &u->hi_hpet) ||
707 		    put_user(info.hi_timer, &u->hi_timer))
708 			err = -EFAULT;
709 	}
710 
711 	return err;
712 }
713 #endif
714 
715 static const struct file_operations hpet_fops = {
716 	.owner = THIS_MODULE,
717 	.llseek = no_llseek,
718 	.read = hpet_read,
719 	.poll = hpet_poll,
720 	.unlocked_ioctl = hpet_ioctl,
721 #ifdef CONFIG_COMPAT
722 	.compat_ioctl = hpet_compat_ioctl,
723 #endif
724 	.open = hpet_open,
725 	.release = hpet_release,
726 	.fasync = hpet_fasync,
727 	.mmap = hpet_mmap,
728 };
729 
hpet_is_known(struct hpet_data * hdp)730 static int hpet_is_known(struct hpet_data *hdp)
731 {
732 	struct hpets *hpetp;
733 
734 	for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
735 		if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
736 			return 1;
737 
738 	return 0;
739 }
740 
741 static struct ctl_table hpet_table[] = {
742 	{
743 	 .procname = "max-user-freq",
744 	 .data = &hpet_max_freq,
745 	 .maxlen = sizeof(int),
746 	 .mode = 0644,
747 	 .proc_handler = proc_dointvec,
748 	 },
749 	{}
750 };
751 
752 static struct ctl_table hpet_root[] = {
753 	{
754 	 .procname = "hpet",
755 	 .maxlen = 0,
756 	 .mode = 0555,
757 	 .child = hpet_table,
758 	 },
759 	{}
760 };
761 
762 static struct ctl_table dev_root[] = {
763 	{
764 	 .procname = "dev",
765 	 .maxlen = 0,
766 	 .mode = 0555,
767 	 .child = hpet_root,
768 	 },
769 	{}
770 };
771 
772 static struct ctl_table_header *sysctl_header;
773 
774 /*
775  * Adjustment for when arming the timer with
776  * initial conditions.  That is, main counter
777  * ticks expired before interrupts are enabled.
778  */
779 #define	TICK_CALIBRATE	(1000UL)
780 
__hpet_calibrate(struct hpets * hpetp)781 static unsigned long __hpet_calibrate(struct hpets *hpetp)
782 {
783 	struct hpet_timer __iomem *timer = NULL;
784 	unsigned long t, m, count, i, flags, start;
785 	struct hpet_dev *devp;
786 	int j;
787 	struct hpet __iomem *hpet;
788 
789 	for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
790 		if ((devp->hd_flags & HPET_OPEN) == 0) {
791 			timer = devp->hd_timer;
792 			break;
793 		}
794 
795 	if (!timer)
796 		return 0;
797 
798 	hpet = hpetp->hp_hpet;
799 	t = read_counter(&timer->hpet_compare);
800 
801 	i = 0;
802 	count = hpet_time_div(hpetp, TICK_CALIBRATE);
803 
804 	local_irq_save(flags);
805 
806 	start = read_counter(&hpet->hpet_mc);
807 
808 	do {
809 		m = read_counter(&hpet->hpet_mc);
810 		write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
811 	} while (i++, (m - start) < count);
812 
813 	local_irq_restore(flags);
814 
815 	return (m - start) / i;
816 }
817 
hpet_calibrate(struct hpets * hpetp)818 static unsigned long hpet_calibrate(struct hpets *hpetp)
819 {
820 	unsigned long ret = ~0UL;
821 	unsigned long tmp;
822 
823 	/*
824 	 * Try to calibrate until return value becomes stable small value.
825 	 * If SMI interruption occurs in calibration loop, the return value
826 	 * will be big. This avoids its impact.
827 	 */
828 	for ( ; ; ) {
829 		tmp = __hpet_calibrate(hpetp);
830 		if (ret <= tmp)
831 			break;
832 		ret = tmp;
833 	}
834 
835 	return ret;
836 }
837 
hpet_alloc(struct hpet_data * hdp)838 int hpet_alloc(struct hpet_data *hdp)
839 {
840 	u64 cap, mcfg;
841 	struct hpet_dev *devp;
842 	u32 i, ntimer;
843 	struct hpets *hpetp;
844 	size_t siz;
845 	struct hpet __iomem *hpet;
846 	static struct hpets *last;
847 	unsigned long period;
848 	unsigned long long temp;
849 	u32 remainder;
850 
851 	/*
852 	 * hpet_alloc can be called by platform dependent code.
853 	 * If platform dependent code has allocated the hpet that
854 	 * ACPI has also reported, then we catch it here.
855 	 */
856 	if (hpet_is_known(hdp)) {
857 		printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
858 			__func__);
859 		return 0;
860 	}
861 
862 	siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
863 				      sizeof(struct hpet_dev));
864 
865 	hpetp = kzalloc(siz, GFP_KERNEL);
866 
867 	if (!hpetp)
868 		return -ENOMEM;
869 
870 	hpetp->hp_which = hpet_nhpet++;
871 	hpetp->hp_hpet = hdp->hd_address;
872 	hpetp->hp_hpet_phys = hdp->hd_phys_address;
873 
874 	hpetp->hp_ntimer = hdp->hd_nirqs;
875 
876 	for (i = 0; i < hdp->hd_nirqs; i++)
877 		hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
878 
879 	hpet = hpetp->hp_hpet;
880 
881 	cap = readq(&hpet->hpet_cap);
882 
883 	ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
884 
885 	if (hpetp->hp_ntimer != ntimer) {
886 		printk(KERN_WARNING "hpet: number irqs doesn't agree"
887 		       " with number of timers\n");
888 		kfree(hpetp);
889 		return -ENODEV;
890 	}
891 
892 	if (last)
893 		last->hp_next = hpetp;
894 	else
895 		hpets = hpetp;
896 
897 	last = hpetp;
898 
899 	period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
900 		HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
901 	temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
902 	temp += period >> 1; /* round */
903 	do_div(temp, period);
904 	hpetp->hp_tick_freq = temp; /* ticks per second */
905 
906 	printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
907 		hpetp->hp_which, hdp->hd_phys_address,
908 		hpetp->hp_ntimer > 1 ? "s" : "");
909 	for (i = 0; i < hpetp->hp_ntimer; i++)
910 		printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
911 	printk(KERN_CONT "\n");
912 
913 	temp = hpetp->hp_tick_freq;
914 	remainder = do_div(temp, 1000000);
915 	printk(KERN_INFO
916 		"hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
917 		hpetp->hp_which, hpetp->hp_ntimer,
918 		cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
919 		(unsigned) temp, remainder);
920 
921 	mcfg = readq(&hpet->hpet_config);
922 	if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
923 		write_counter(0L, &hpet->hpet_mc);
924 		mcfg |= HPET_ENABLE_CNF_MASK;
925 		writeq(mcfg, &hpet->hpet_config);
926 	}
927 
928 	for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
929 		struct hpet_timer __iomem *timer;
930 
931 		timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
932 
933 		devp->hd_hpets = hpetp;
934 		devp->hd_hpet = hpet;
935 		devp->hd_timer = timer;
936 
937 		/*
938 		 * If the timer was reserved by platform code,
939 		 * then make timer unavailable for opens.
940 		 */
941 		if (hdp->hd_state & (1 << i)) {
942 			devp->hd_flags = HPET_OPEN;
943 			continue;
944 		}
945 
946 		init_waitqueue_head(&devp->hd_waitqueue);
947 	}
948 
949 	hpetp->hp_delta = hpet_calibrate(hpetp);
950 
951 /* This clocksource driver currently only works on ia64 */
952 #ifdef CONFIG_IA64
953 	if (!hpet_clocksource) {
954 		hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
955 		clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
956 		clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
957 		hpetp->hp_clocksource = &clocksource_hpet;
958 		hpet_clocksource = &clocksource_hpet;
959 	}
960 #endif
961 
962 	return 0;
963 }
964 
hpet_resources(struct acpi_resource * res,void * data)965 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
966 {
967 	struct hpet_data *hdp;
968 	acpi_status status;
969 	struct acpi_resource_address64 addr;
970 
971 	hdp = data;
972 
973 	status = acpi_resource_to_address64(res, &addr);
974 
975 	if (ACPI_SUCCESS(status)) {
976 		hdp->hd_phys_address = addr.address.minimum;
977 		hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
978 		if (!hdp->hd_address)
979 			return AE_ERROR;
980 
981 		if (hpet_is_known(hdp)) {
982 			iounmap(hdp->hd_address);
983 			return AE_ALREADY_EXISTS;
984 		}
985 	} else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
986 		struct acpi_resource_fixed_memory32 *fixmem32;
987 
988 		fixmem32 = &res->data.fixed_memory32;
989 
990 		hdp->hd_phys_address = fixmem32->address;
991 		hdp->hd_address = ioremap(fixmem32->address,
992 						HPET_RANGE_SIZE);
993 		if (!hdp->hd_address)
994 			return AE_ERROR;
995 
996 		if (hpet_is_known(hdp)) {
997 			iounmap(hdp->hd_address);
998 			return AE_ALREADY_EXISTS;
999 		}
1000 	} else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
1001 		struct acpi_resource_extended_irq *irqp;
1002 		int i, irq;
1003 
1004 		irqp = &res->data.extended_irq;
1005 
1006 		for (i = 0; i < irqp->interrupt_count; i++) {
1007 			if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1008 				break;
1009 
1010 			irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1011 				      irqp->triggering, irqp->polarity);
1012 			if (irq < 0)
1013 				return AE_ERROR;
1014 
1015 			hdp->hd_irq[hdp->hd_nirqs] = irq;
1016 			hdp->hd_nirqs++;
1017 		}
1018 	}
1019 
1020 	return AE_OK;
1021 }
1022 
hpet_acpi_add(struct acpi_device * device)1023 static int hpet_acpi_add(struct acpi_device *device)
1024 {
1025 	acpi_status result;
1026 	struct hpet_data data;
1027 
1028 	memset(&data, 0, sizeof(data));
1029 
1030 	result =
1031 	    acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1032 				hpet_resources, &data);
1033 
1034 	if (ACPI_FAILURE(result))
1035 		return -ENODEV;
1036 
1037 	if (!data.hd_address || !data.hd_nirqs) {
1038 		if (data.hd_address)
1039 			iounmap(data.hd_address);
1040 		printk("%s: no address or irqs in _CRS\n", __func__);
1041 		return -ENODEV;
1042 	}
1043 
1044 	return hpet_alloc(&data);
1045 }
1046 
1047 static const struct acpi_device_id hpet_device_ids[] = {
1048 	{"PNP0103", 0},
1049 	{"", 0},
1050 };
1051 
1052 static struct acpi_driver hpet_acpi_driver = {
1053 	.name = "hpet",
1054 	.ids = hpet_device_ids,
1055 	.ops = {
1056 		.add = hpet_acpi_add,
1057 		},
1058 };
1059 
1060 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1061 
hpet_init(void)1062 static int __init hpet_init(void)
1063 {
1064 	int result;
1065 
1066 	result = misc_register(&hpet_misc);
1067 	if (result < 0)
1068 		return -ENODEV;
1069 
1070 	sysctl_header = register_sysctl_table(dev_root);
1071 
1072 	result = acpi_bus_register_driver(&hpet_acpi_driver);
1073 	if (result < 0) {
1074 		if (sysctl_header)
1075 			unregister_sysctl_table(sysctl_header);
1076 		misc_deregister(&hpet_misc);
1077 		return result;
1078 	}
1079 
1080 	return 0;
1081 }
1082 device_initcall(hpet_init);
1083 
1084 /*
1085 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1086 MODULE_LICENSE("GPL");
1087 */
1088