1 /*
2  * linux/fs/binfmt_elf.c
3  *
4  * These are the functions used to load ELF format executables as used
5  * on SVr4 machines.  Information on the format may be found in the book
6  * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
7  * Tools".
8  *
9  * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/fs.h>
15 #include <linux/mm.h>
16 #include <linux/mman.h>
17 #include <linux/errno.h>
18 #include <linux/signal.h>
19 #include <linux/binfmts.h>
20 #include <linux/string.h>
21 #include <linux/file.h>
22 #include <linux/slab.h>
23 #include <linux/personality.h>
24 #include <linux/elfcore.h>
25 #include <linux/init.h>
26 #include <linux/highuid.h>
27 #include <linux/compiler.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/vmalloc.h>
31 #include <linux/security.h>
32 #include <linux/random.h>
33 #include <linux/elf.h>
34 #include <linux/elf-randomize.h>
35 #include <linux/utsname.h>
36 #include <linux/coredump.h>
37 #include <linux/sched.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/task_stack.h>
40 #include <linux/sched/cputime.h>
41 #include <linux/cred.h>
42 #include <linux/dax.h>
43 #include <linux/uaccess.h>
44 #include <asm/param.h>
45 #include <asm/page.h>
46 
47 #ifndef user_long_t
48 #define user_long_t long
49 #endif
50 #ifndef user_siginfo_t
51 #define user_siginfo_t siginfo_t
52 #endif
53 
54 /* That's for binfmt_elf_fdpic to deal with */
55 #ifndef elf_check_fdpic
56 #define elf_check_fdpic(ex) false
57 #endif
58 
59 static int load_elf_binary(struct linux_binprm *bprm);
60 static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
61 				int, int, unsigned long);
62 
63 #ifdef CONFIG_USELIB
64 static int load_elf_library(struct file *);
65 #else
66 #define load_elf_library NULL
67 #endif
68 
69 /*
70  * If we don't support core dumping, then supply a NULL so we
71  * don't even try.
72  */
73 #ifdef CONFIG_ELF_CORE
74 static int elf_core_dump(struct coredump_params *cprm);
75 #else
76 #define elf_core_dump	NULL
77 #endif
78 
79 #if ELF_EXEC_PAGESIZE > PAGE_SIZE
80 #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE
81 #else
82 #define ELF_MIN_ALIGN	PAGE_SIZE
83 #endif
84 
85 #ifndef ELF_CORE_EFLAGS
86 #define ELF_CORE_EFLAGS	0
87 #endif
88 
89 #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
90 #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
91 #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
92 
93 static struct linux_binfmt elf_format = {
94 	.module		= THIS_MODULE,
95 	.load_binary	= load_elf_binary,
96 	.load_shlib	= load_elf_library,
97 	.core_dump	= elf_core_dump,
98 	.min_coredump	= ELF_EXEC_PAGESIZE,
99 };
100 
101 #define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
102 
set_brk(unsigned long start,unsigned long end,int prot)103 static int set_brk(unsigned long start, unsigned long end, int prot)
104 {
105 	start = ELF_PAGEALIGN(start);
106 	end = ELF_PAGEALIGN(end);
107 	if (end > start) {
108 		/*
109 		 * Map the last of the bss segment.
110 		 * If the header is requesting these pages to be
111 		 * executable, honour that (ppc32 needs this).
112 		 */
113 		int error = vm_brk_flags(start, end - start,
114 				prot & PROT_EXEC ? VM_EXEC : 0);
115 		if (error)
116 			return error;
117 	}
118 	current->mm->start_brk = current->mm->brk = end;
119 	return 0;
120 }
121 
122 /* We need to explicitly zero any fractional pages
123    after the data section (i.e. bss).  This would
124    contain the junk from the file that should not
125    be in memory
126  */
padzero(unsigned long elf_bss)127 static int padzero(unsigned long elf_bss)
128 {
129 	unsigned long nbyte;
130 
131 	nbyte = ELF_PAGEOFFSET(elf_bss);
132 	if (nbyte) {
133 		nbyte = ELF_MIN_ALIGN - nbyte;
134 		if (clear_user((void __user *) elf_bss, nbyte))
135 			return -EFAULT;
136 	}
137 	return 0;
138 }
139 
140 /* Let's use some macros to make this stack manipulation a little clearer */
141 #ifdef CONFIG_STACK_GROWSUP
142 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
143 #define STACK_ROUND(sp, items) \
144 	((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
145 #define STACK_ALLOC(sp, len) ({ \
146 	elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
147 	old_sp; })
148 #else
149 #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
150 #define STACK_ROUND(sp, items) \
151 	(((unsigned long) (sp - items)) &~ 15UL)
152 #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
153 #endif
154 
155 #ifndef ELF_BASE_PLATFORM
156 /*
157  * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
158  * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
159  * will be copied to the user stack in the same manner as AT_PLATFORM.
160  */
161 #define ELF_BASE_PLATFORM NULL
162 #endif
163 
164 static int
create_elf_tables(struct linux_binprm * bprm,struct elfhdr * exec,unsigned long load_addr,unsigned long interp_load_addr)165 create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
166 		unsigned long load_addr, unsigned long interp_load_addr)
167 {
168 	unsigned long p = bprm->p;
169 	int argc = bprm->argc;
170 	int envc = bprm->envc;
171 	elf_addr_t __user *sp;
172 	elf_addr_t __user *u_platform;
173 	elf_addr_t __user *u_base_platform;
174 	elf_addr_t __user *u_rand_bytes;
175 	const char *k_platform = ELF_PLATFORM;
176 	const char *k_base_platform = ELF_BASE_PLATFORM;
177 	unsigned char k_rand_bytes[16];
178 	int items;
179 	elf_addr_t *elf_info;
180 	int ei_index = 0;
181 	const struct cred *cred = current_cred();
182 	struct vm_area_struct *vma;
183 
184 	/*
185 	 * In some cases (e.g. Hyper-Threading), we want to avoid L1
186 	 * evictions by the processes running on the same package. One
187 	 * thing we can do is to shuffle the initial stack for them.
188 	 */
189 
190 	p = arch_align_stack(p);
191 
192 	/*
193 	 * If this architecture has a platform capability string, copy it
194 	 * to userspace.  In some cases (Sparc), this info is impossible
195 	 * for userspace to get any other way, in others (i386) it is
196 	 * merely difficult.
197 	 */
198 	u_platform = NULL;
199 	if (k_platform) {
200 		size_t len = strlen(k_platform) + 1;
201 
202 		u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
203 		if (__copy_to_user(u_platform, k_platform, len))
204 			return -EFAULT;
205 	}
206 
207 	/*
208 	 * If this architecture has a "base" platform capability
209 	 * string, copy it to userspace.
210 	 */
211 	u_base_platform = NULL;
212 	if (k_base_platform) {
213 		size_t len = strlen(k_base_platform) + 1;
214 
215 		u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
216 		if (__copy_to_user(u_base_platform, k_base_platform, len))
217 			return -EFAULT;
218 	}
219 
220 	/*
221 	 * Generate 16 random bytes for userspace PRNG seeding.
222 	 */
223 	get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
224 	u_rand_bytes = (elf_addr_t __user *)
225 		       STACK_ALLOC(p, sizeof(k_rand_bytes));
226 	if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
227 		return -EFAULT;
228 
229 	/* Create the ELF interpreter info */
230 	elf_info = (elf_addr_t *)current->mm->saved_auxv;
231 	/* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
232 #define NEW_AUX_ENT(id, val) \
233 	do { \
234 		elf_info[ei_index++] = id; \
235 		elf_info[ei_index++] = val; \
236 	} while (0)
237 
238 #ifdef ARCH_DLINFO
239 	/*
240 	 * ARCH_DLINFO must come first so PPC can do its special alignment of
241 	 * AUXV.
242 	 * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
243 	 * ARCH_DLINFO changes
244 	 */
245 	ARCH_DLINFO;
246 #endif
247 	NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
248 	NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
249 	NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
250 	NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
251 	NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
252 	NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
253 	NEW_AUX_ENT(AT_BASE, interp_load_addr);
254 	NEW_AUX_ENT(AT_FLAGS, 0);
255 	NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
256 	NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
257 	NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
258 	NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
259 	NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
260 	NEW_AUX_ENT(AT_SECURE, bprm->secureexec);
261 	NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
262 #ifdef ELF_HWCAP2
263 	NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
264 #endif
265 	NEW_AUX_ENT(AT_EXECFN, bprm->exec);
266 	if (k_platform) {
267 		NEW_AUX_ENT(AT_PLATFORM,
268 			    (elf_addr_t)(unsigned long)u_platform);
269 	}
270 	if (k_base_platform) {
271 		NEW_AUX_ENT(AT_BASE_PLATFORM,
272 			    (elf_addr_t)(unsigned long)u_base_platform);
273 	}
274 	if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
275 		NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
276 	}
277 #undef NEW_AUX_ENT
278 	/* AT_NULL is zero; clear the rest too */
279 	memset(&elf_info[ei_index], 0,
280 	       sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
281 
282 	/* And advance past the AT_NULL entry.  */
283 	ei_index += 2;
284 
285 	sp = STACK_ADD(p, ei_index);
286 
287 	items = (argc + 1) + (envc + 1) + 1;
288 	bprm->p = STACK_ROUND(sp, items);
289 
290 	/* Point sp at the lowest address on the stack */
291 #ifdef CONFIG_STACK_GROWSUP
292 	sp = (elf_addr_t __user *)bprm->p - items - ei_index;
293 	bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
294 #else
295 	sp = (elf_addr_t __user *)bprm->p;
296 #endif
297 
298 
299 	/*
300 	 * Grow the stack manually; some architectures have a limit on how
301 	 * far ahead a user-space access may be in order to grow the stack.
302 	 */
303 	vma = find_extend_vma(current->mm, bprm->p);
304 	if (!vma)
305 		return -EFAULT;
306 
307 	/* Now, let's put argc (and argv, envp if appropriate) on the stack */
308 	if (__put_user(argc, sp++))
309 		return -EFAULT;
310 
311 	/* Populate list of argv pointers back to argv strings. */
312 	p = current->mm->arg_end = current->mm->arg_start;
313 	while (argc-- > 0) {
314 		size_t len;
315 		if (__put_user((elf_addr_t)p, sp++))
316 			return -EFAULT;
317 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
318 		if (!len || len > MAX_ARG_STRLEN)
319 			return -EINVAL;
320 		p += len;
321 	}
322 	if (__put_user(0, sp++))
323 		return -EFAULT;
324 	current->mm->arg_end = p;
325 
326 	/* Populate list of envp pointers back to envp strings. */
327 	current->mm->env_end = current->mm->env_start = p;
328 	while (envc-- > 0) {
329 		size_t len;
330 		if (__put_user((elf_addr_t)p, sp++))
331 			return -EFAULT;
332 		len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
333 		if (!len || len > MAX_ARG_STRLEN)
334 			return -EINVAL;
335 		p += len;
336 	}
337 	if (__put_user(0, sp++))
338 		return -EFAULT;
339 	current->mm->env_end = p;
340 
341 	/* Put the elf_info on the stack in the right place.  */
342 	if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
343 		return -EFAULT;
344 	return 0;
345 }
346 
347 #ifndef elf_map
348 
elf_map(struct file * filep,unsigned long addr,struct elf_phdr * eppnt,int prot,int type,unsigned long total_size)349 static unsigned long elf_map(struct file *filep, unsigned long addr,
350 		struct elf_phdr *eppnt, int prot, int type,
351 		unsigned long total_size)
352 {
353 	unsigned long map_addr;
354 	unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
355 	unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
356 	addr = ELF_PAGESTART(addr);
357 	size = ELF_PAGEALIGN(size);
358 
359 	/* mmap() will return -EINVAL if given a zero size, but a
360 	 * segment with zero filesize is perfectly valid */
361 	if (!size)
362 		return addr;
363 
364 	/*
365 	* total_size is the size of the ELF (interpreter) image.
366 	* The _first_ mmap needs to know the full size, otherwise
367 	* randomization might put this image into an overlapping
368 	* position with the ELF binary image. (since size < total_size)
369 	* So we first map the 'big' image - and unmap the remainder at
370 	* the end. (which unmap is needed for ELF images with holes.)
371 	*/
372 	if (total_size) {
373 		total_size = ELF_PAGEALIGN(total_size);
374 		map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
375 		if (!BAD_ADDR(map_addr))
376 			vm_munmap(map_addr+size, total_size-size);
377 	} else
378 		map_addr = vm_mmap(filep, addr, size, prot, type, off);
379 
380 	if ((type & MAP_FIXED_NOREPLACE) &&
381 	    PTR_ERR((void *)map_addr) == -EEXIST)
382 		pr_info("%d (%s): Uhuuh, elf segment at %px requested but the memory is mapped already\n",
383 			task_pid_nr(current), current->comm, (void *)addr);
384 
385 	return(map_addr);
386 }
387 
388 #endif /* !elf_map */
389 
total_mapping_size(struct elf_phdr * cmds,int nr)390 static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
391 {
392 	int i, first_idx = -1, last_idx = -1;
393 
394 	for (i = 0; i < nr; i++) {
395 		if (cmds[i].p_type == PT_LOAD) {
396 			last_idx = i;
397 			if (first_idx == -1)
398 				first_idx = i;
399 		}
400 	}
401 	if (first_idx == -1)
402 		return 0;
403 
404 	return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
405 				ELF_PAGESTART(cmds[first_idx].p_vaddr);
406 }
407 
408 /**
409  * load_elf_phdrs() - load ELF program headers
410  * @elf_ex:   ELF header of the binary whose program headers should be loaded
411  * @elf_file: the opened ELF binary file
412  *
413  * Loads ELF program headers from the binary file elf_file, which has the ELF
414  * header pointed to by elf_ex, into a newly allocated array. The caller is
415  * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
416  */
load_elf_phdrs(struct elfhdr * elf_ex,struct file * elf_file)417 static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
418 				       struct file *elf_file)
419 {
420 	struct elf_phdr *elf_phdata = NULL;
421 	int retval, size, err = -1;
422 	loff_t pos = elf_ex->e_phoff;
423 
424 	/*
425 	 * If the size of this structure has changed, then punt, since
426 	 * we will be doing the wrong thing.
427 	 */
428 	if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
429 		goto out;
430 
431 	/* Sanity check the number of program headers... */
432 	if (elf_ex->e_phnum < 1 ||
433 		elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
434 		goto out;
435 
436 	/* ...and their total size. */
437 	size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
438 	if (size > ELF_MIN_ALIGN)
439 		goto out;
440 
441 	elf_phdata = kmalloc(size, GFP_KERNEL);
442 	if (!elf_phdata)
443 		goto out;
444 
445 	/* Read in the program headers */
446 	retval = kernel_read(elf_file, elf_phdata, size, &pos);
447 	if (retval != size) {
448 		err = (retval < 0) ? retval : -EIO;
449 		goto out;
450 	}
451 
452 	/* Success! */
453 	err = 0;
454 out:
455 	if (err) {
456 		kfree(elf_phdata);
457 		elf_phdata = NULL;
458 	}
459 	return elf_phdata;
460 }
461 
462 #ifndef CONFIG_ARCH_BINFMT_ELF_STATE
463 
464 /**
465  * struct arch_elf_state - arch-specific ELF loading state
466  *
467  * This structure is used to preserve architecture specific data during
468  * the loading of an ELF file, throughout the checking of architecture
469  * specific ELF headers & through to the point where the ELF load is
470  * known to be proceeding (ie. SET_PERSONALITY).
471  *
472  * This implementation is a dummy for architectures which require no
473  * specific state.
474  */
475 struct arch_elf_state {
476 };
477 
478 #define INIT_ARCH_ELF_STATE {}
479 
480 /**
481  * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
482  * @ehdr:	The main ELF header
483  * @phdr:	The program header to check
484  * @elf:	The open ELF file
485  * @is_interp:	True if the phdr is from the interpreter of the ELF being
486  *		loaded, else false.
487  * @state:	Architecture-specific state preserved throughout the process
488  *		of loading the ELF.
489  *
490  * Inspects the program header phdr to validate its correctness and/or
491  * suitability for the system. Called once per ELF program header in the
492  * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
493  * interpreter.
494  *
495  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
496  *         with that return code.
497  */
arch_elf_pt_proc(struct elfhdr * ehdr,struct elf_phdr * phdr,struct file * elf,bool is_interp,struct arch_elf_state * state)498 static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
499 				   struct elf_phdr *phdr,
500 				   struct file *elf, bool is_interp,
501 				   struct arch_elf_state *state)
502 {
503 	/* Dummy implementation, always proceed */
504 	return 0;
505 }
506 
507 /**
508  * arch_check_elf() - check an ELF executable
509  * @ehdr:	The main ELF header
510  * @has_interp:	True if the ELF has an interpreter, else false.
511  * @interp_ehdr: The interpreter's ELF header
512  * @state:	Architecture-specific state preserved throughout the process
513  *		of loading the ELF.
514  *
515  * Provides a final opportunity for architecture code to reject the loading
516  * of the ELF & cause an exec syscall to return an error. This is called after
517  * all program headers to be checked by arch_elf_pt_proc have been.
518  *
519  * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
520  *         with that return code.
521  */
arch_check_elf(struct elfhdr * ehdr,bool has_interp,struct elfhdr * interp_ehdr,struct arch_elf_state * state)522 static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
523 				 struct elfhdr *interp_ehdr,
524 				 struct arch_elf_state *state)
525 {
526 	/* Dummy implementation, always proceed */
527 	return 0;
528 }
529 
530 #endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
531 
532 /* This is much more generalized than the library routine read function,
533    so we keep this separate.  Technically the library read function
534    is only provided so that we can read a.out libraries that have
535    an ELF header */
536 
load_elf_interp(struct elfhdr * interp_elf_ex,struct file * interpreter,unsigned long * interp_map_addr,unsigned long no_base,struct elf_phdr * interp_elf_phdata)537 static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
538 		struct file *interpreter, unsigned long *interp_map_addr,
539 		unsigned long no_base, struct elf_phdr *interp_elf_phdata)
540 {
541 	struct elf_phdr *eppnt;
542 	unsigned long load_addr = 0;
543 	int load_addr_set = 0;
544 	unsigned long last_bss = 0, elf_bss = 0;
545 	int bss_prot = 0;
546 	unsigned long error = ~0UL;
547 	unsigned long total_size;
548 	int i;
549 
550 	/* First of all, some simple consistency checks */
551 	if (interp_elf_ex->e_type != ET_EXEC &&
552 	    interp_elf_ex->e_type != ET_DYN)
553 		goto out;
554 	if (!elf_check_arch(interp_elf_ex) ||
555 	    elf_check_fdpic(interp_elf_ex))
556 		goto out;
557 	if (!interpreter->f_op->mmap)
558 		goto out;
559 
560 	total_size = total_mapping_size(interp_elf_phdata,
561 					interp_elf_ex->e_phnum);
562 	if (!total_size) {
563 		error = -EINVAL;
564 		goto out;
565 	}
566 
567 	eppnt = interp_elf_phdata;
568 	for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
569 		if (eppnt->p_type == PT_LOAD) {
570 			int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
571 			int elf_prot = 0;
572 			unsigned long vaddr = 0;
573 			unsigned long k, map_addr;
574 
575 			if (eppnt->p_flags & PF_R)
576 		    		elf_prot = PROT_READ;
577 			if (eppnt->p_flags & PF_W)
578 				elf_prot |= PROT_WRITE;
579 			if (eppnt->p_flags & PF_X)
580 				elf_prot |= PROT_EXEC;
581 			vaddr = eppnt->p_vaddr;
582 			if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
583 				elf_type |= MAP_FIXED;
584 			else if (no_base && interp_elf_ex->e_type == ET_DYN)
585 				load_addr = -vaddr;
586 
587 			map_addr = elf_map(interpreter, load_addr + vaddr,
588 					eppnt, elf_prot, elf_type, total_size);
589 			total_size = 0;
590 			if (!*interp_map_addr)
591 				*interp_map_addr = map_addr;
592 			error = map_addr;
593 			if (BAD_ADDR(map_addr))
594 				goto out;
595 
596 			if (!load_addr_set &&
597 			    interp_elf_ex->e_type == ET_DYN) {
598 				load_addr = map_addr - ELF_PAGESTART(vaddr);
599 				load_addr_set = 1;
600 			}
601 
602 			/*
603 			 * Check to see if the section's size will overflow the
604 			 * allowed task size. Note that p_filesz must always be
605 			 * <= p_memsize so it's only necessary to check p_memsz.
606 			 */
607 			k = load_addr + eppnt->p_vaddr;
608 			if (BAD_ADDR(k) ||
609 			    eppnt->p_filesz > eppnt->p_memsz ||
610 			    eppnt->p_memsz > TASK_SIZE ||
611 			    TASK_SIZE - eppnt->p_memsz < k) {
612 				error = -ENOMEM;
613 				goto out;
614 			}
615 
616 			/*
617 			 * Find the end of the file mapping for this phdr, and
618 			 * keep track of the largest address we see for this.
619 			 */
620 			k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
621 			if (k > elf_bss)
622 				elf_bss = k;
623 
624 			/*
625 			 * Do the same thing for the memory mapping - between
626 			 * elf_bss and last_bss is the bss section.
627 			 */
628 			k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
629 			if (k > last_bss) {
630 				last_bss = k;
631 				bss_prot = elf_prot;
632 			}
633 		}
634 	}
635 
636 	/*
637 	 * Now fill out the bss section: first pad the last page from
638 	 * the file up to the page boundary, and zero it from elf_bss
639 	 * up to the end of the page.
640 	 */
641 	if (padzero(elf_bss)) {
642 		error = -EFAULT;
643 		goto out;
644 	}
645 	/*
646 	 * Next, align both the file and mem bss up to the page size,
647 	 * since this is where elf_bss was just zeroed up to, and where
648 	 * last_bss will end after the vm_brk_flags() below.
649 	 */
650 	elf_bss = ELF_PAGEALIGN(elf_bss);
651 	last_bss = ELF_PAGEALIGN(last_bss);
652 	/* Finally, if there is still more bss to allocate, do it. */
653 	if (last_bss > elf_bss) {
654 		error = vm_brk_flags(elf_bss, last_bss - elf_bss,
655 				bss_prot & PROT_EXEC ? VM_EXEC : 0);
656 		if (error)
657 			goto out;
658 	}
659 
660 	error = load_addr;
661 out:
662 	return error;
663 }
664 
665 /*
666  * These are the functions used to load ELF style executables and shared
667  * libraries.  There is no binary dependent code anywhere else.
668  */
669 
670 #ifndef STACK_RND_MASK
671 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */
672 #endif
673 
randomize_stack_top(unsigned long stack_top)674 static unsigned long randomize_stack_top(unsigned long stack_top)
675 {
676 	unsigned long random_variable = 0;
677 
678 	if (current->flags & PF_RANDOMIZE) {
679 		random_variable = get_random_long();
680 		random_variable &= STACK_RND_MASK;
681 		random_variable <<= PAGE_SHIFT;
682 	}
683 #ifdef CONFIG_STACK_GROWSUP
684 	return PAGE_ALIGN(stack_top) + random_variable;
685 #else
686 	return PAGE_ALIGN(stack_top) - random_variable;
687 #endif
688 }
689 
load_elf_binary(struct linux_binprm * bprm)690 static int load_elf_binary(struct linux_binprm *bprm)
691 {
692 	struct file *interpreter = NULL; /* to shut gcc up */
693  	unsigned long load_addr = 0, load_bias = 0;
694 	int load_addr_set = 0;
695 	char * elf_interpreter = NULL;
696 	unsigned long error;
697 	struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
698 	unsigned long elf_bss, elf_brk;
699 	int bss_prot = 0;
700 	int retval, i;
701 	unsigned long elf_entry;
702 	unsigned long interp_load_addr = 0;
703 	unsigned long start_code, end_code, start_data, end_data;
704 	unsigned long reloc_func_desc __maybe_unused = 0;
705 	int executable_stack = EXSTACK_DEFAULT;
706 	struct pt_regs *regs = current_pt_regs();
707 	struct {
708 		struct elfhdr elf_ex;
709 		struct elfhdr interp_elf_ex;
710 	} *loc;
711 	struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
712 	loff_t pos;
713 
714 	loc = kmalloc(sizeof(*loc), GFP_KERNEL);
715 	if (!loc) {
716 		retval = -ENOMEM;
717 		goto out_ret;
718 	}
719 
720 	/* Get the exec-header */
721 	loc->elf_ex = *((struct elfhdr *)bprm->buf);
722 
723 	retval = -ENOEXEC;
724 	/* First of all, some simple consistency checks */
725 	if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
726 		goto out;
727 
728 	if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
729 		goto out;
730 	if (!elf_check_arch(&loc->elf_ex))
731 		goto out;
732 	if (elf_check_fdpic(&loc->elf_ex))
733 		goto out;
734 	if (!bprm->file->f_op->mmap)
735 		goto out;
736 
737 	elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
738 	if (!elf_phdata)
739 		goto out;
740 
741 	elf_ppnt = elf_phdata;
742 	elf_bss = 0;
743 	elf_brk = 0;
744 
745 	start_code = ~0UL;
746 	end_code = 0;
747 	start_data = 0;
748 	end_data = 0;
749 
750 	for (i = 0; i < loc->elf_ex.e_phnum; i++) {
751 		if (elf_ppnt->p_type == PT_INTERP) {
752 			/* This is the program interpreter used for
753 			 * shared libraries - for now assume that this
754 			 * is an a.out format binary
755 			 */
756 			retval = -ENOEXEC;
757 			if (elf_ppnt->p_filesz > PATH_MAX ||
758 			    elf_ppnt->p_filesz < 2)
759 				goto out_free_ph;
760 
761 			retval = -ENOMEM;
762 			elf_interpreter = kmalloc(elf_ppnt->p_filesz,
763 						  GFP_KERNEL);
764 			if (!elf_interpreter)
765 				goto out_free_ph;
766 
767 			pos = elf_ppnt->p_offset;
768 			retval = kernel_read(bprm->file, elf_interpreter,
769 					     elf_ppnt->p_filesz, &pos);
770 			if (retval != elf_ppnt->p_filesz) {
771 				if (retval >= 0)
772 					retval = -EIO;
773 				goto out_free_interp;
774 			}
775 			/* make sure path is NULL terminated */
776 			retval = -ENOEXEC;
777 			if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
778 				goto out_free_interp;
779 
780 			interpreter = open_exec(elf_interpreter);
781 			retval = PTR_ERR(interpreter);
782 			if (IS_ERR(interpreter))
783 				goto out_free_interp;
784 
785 			/*
786 			 * If the binary is not readable then enforce
787 			 * mm->dumpable = 0 regardless of the interpreter's
788 			 * permissions.
789 			 */
790 			would_dump(bprm, interpreter);
791 
792 			/* Get the exec headers */
793 			pos = 0;
794 			retval = kernel_read(interpreter, &loc->interp_elf_ex,
795 					     sizeof(loc->interp_elf_ex), &pos);
796 			if (retval != sizeof(loc->interp_elf_ex)) {
797 				if (retval >= 0)
798 					retval = -EIO;
799 				goto out_free_dentry;
800 			}
801 
802 			break;
803 		}
804 		elf_ppnt++;
805 	}
806 
807 	elf_ppnt = elf_phdata;
808 	for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
809 		switch (elf_ppnt->p_type) {
810 		case PT_GNU_STACK:
811 			if (elf_ppnt->p_flags & PF_X)
812 				executable_stack = EXSTACK_ENABLE_X;
813 			else
814 				executable_stack = EXSTACK_DISABLE_X;
815 			break;
816 
817 		case PT_LOPROC ... PT_HIPROC:
818 			retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
819 						  bprm->file, false,
820 						  &arch_state);
821 			if (retval)
822 				goto out_free_dentry;
823 			break;
824 		}
825 
826 	/* Some simple consistency checks for the interpreter */
827 	if (elf_interpreter) {
828 		retval = -ELIBBAD;
829 		/* Not an ELF interpreter */
830 		if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
831 			goto out_free_dentry;
832 		/* Verify the interpreter has a valid arch */
833 		if (!elf_check_arch(&loc->interp_elf_ex) ||
834 		    elf_check_fdpic(&loc->interp_elf_ex))
835 			goto out_free_dentry;
836 
837 		/* Load the interpreter program headers */
838 		interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
839 						   interpreter);
840 		if (!interp_elf_phdata)
841 			goto out_free_dentry;
842 
843 		/* Pass PT_LOPROC..PT_HIPROC headers to arch code */
844 		elf_ppnt = interp_elf_phdata;
845 		for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
846 			switch (elf_ppnt->p_type) {
847 			case PT_LOPROC ... PT_HIPROC:
848 				retval = arch_elf_pt_proc(&loc->interp_elf_ex,
849 							  elf_ppnt, interpreter,
850 							  true, &arch_state);
851 				if (retval)
852 					goto out_free_dentry;
853 				break;
854 			}
855 	}
856 
857 	/*
858 	 * Allow arch code to reject the ELF at this point, whilst it's
859 	 * still possible to return an error to the code that invoked
860 	 * the exec syscall.
861 	 */
862 	retval = arch_check_elf(&loc->elf_ex,
863 				!!interpreter, &loc->interp_elf_ex,
864 				&arch_state);
865 	if (retval)
866 		goto out_free_dentry;
867 
868 	/* Flush all traces of the currently running executable */
869 	retval = flush_old_exec(bprm);
870 	if (retval)
871 		goto out_free_dentry;
872 
873 	/* Do this immediately, since STACK_TOP as used in setup_arg_pages
874 	   may depend on the personality.  */
875 	SET_PERSONALITY2(loc->elf_ex, &arch_state);
876 	if (elf_read_implies_exec(loc->elf_ex, executable_stack))
877 		current->personality |= READ_IMPLIES_EXEC;
878 
879 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
880 		current->flags |= PF_RANDOMIZE;
881 
882 	setup_new_exec(bprm);
883 	install_exec_creds(bprm);
884 
885 	/* Do this so that we can load the interpreter, if need be.  We will
886 	   change some of these later */
887 	retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
888 				 executable_stack);
889 	if (retval < 0)
890 		goto out_free_dentry;
891 
892 	current->mm->start_stack = bprm->p;
893 
894 	/* Now we do a little grungy work by mmapping the ELF image into
895 	   the correct location in memory. */
896 	for(i = 0, elf_ppnt = elf_phdata;
897 	    i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
898 		int elf_prot = 0, elf_flags, elf_fixed = MAP_FIXED_NOREPLACE;
899 		unsigned long k, vaddr;
900 		unsigned long total_size = 0;
901 
902 		if (elf_ppnt->p_type != PT_LOAD)
903 			continue;
904 
905 		if (unlikely (elf_brk > elf_bss)) {
906 			unsigned long nbyte;
907 
908 			/* There was a PT_LOAD segment with p_memsz > p_filesz
909 			   before this one. Map anonymous pages, if needed,
910 			   and clear the area.  */
911 			retval = set_brk(elf_bss + load_bias,
912 					 elf_brk + load_bias,
913 					 bss_prot);
914 			if (retval)
915 				goto out_free_dentry;
916 			nbyte = ELF_PAGEOFFSET(elf_bss);
917 			if (nbyte) {
918 				nbyte = ELF_MIN_ALIGN - nbyte;
919 				if (nbyte > elf_brk - elf_bss)
920 					nbyte = elf_brk - elf_bss;
921 				if (clear_user((void __user *)elf_bss +
922 							load_bias, nbyte)) {
923 					/*
924 					 * This bss-zeroing can fail if the ELF
925 					 * file specifies odd protections. So
926 					 * we don't check the return value
927 					 */
928 				}
929 			}
930 
931 			/*
932 			 * Some binaries have overlapping elf segments and then
933 			 * we have to forcefully map over an existing mapping
934 			 * e.g. over this newly established brk mapping.
935 			 */
936 			elf_fixed = MAP_FIXED;
937 		}
938 
939 		if (elf_ppnt->p_flags & PF_R)
940 			elf_prot |= PROT_READ;
941 		if (elf_ppnt->p_flags & PF_W)
942 			elf_prot |= PROT_WRITE;
943 		if (elf_ppnt->p_flags & PF_X)
944 			elf_prot |= PROT_EXEC;
945 
946 		elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
947 
948 		vaddr = elf_ppnt->p_vaddr;
949 		/*
950 		 * If we are loading ET_EXEC or we have already performed
951 		 * the ET_DYN load_addr calculations, proceed normally.
952 		 */
953 		if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
954 			elf_flags |= elf_fixed;
955 		} else if (loc->elf_ex.e_type == ET_DYN) {
956 			/*
957 			 * This logic is run once for the first LOAD Program
958 			 * Header for ET_DYN binaries to calculate the
959 			 * randomization (load_bias) for all the LOAD
960 			 * Program Headers, and to calculate the entire
961 			 * size of the ELF mapping (total_size). (Note that
962 			 * load_addr_set is set to true later once the
963 			 * initial mapping is performed.)
964 			 *
965 			 * There are effectively two types of ET_DYN
966 			 * binaries: programs (i.e. PIE: ET_DYN with INTERP)
967 			 * and loaders (ET_DYN without INTERP, since they
968 			 * _are_ the ELF interpreter). The loaders must
969 			 * be loaded away from programs since the program
970 			 * may otherwise collide with the loader (especially
971 			 * for ET_EXEC which does not have a randomized
972 			 * position). For example to handle invocations of
973 			 * "./ld.so someprog" to test out a new version of
974 			 * the loader, the subsequent program that the
975 			 * loader loads must avoid the loader itself, so
976 			 * they cannot share the same load range. Sufficient
977 			 * room for the brk must be allocated with the
978 			 * loader as well, since brk must be available with
979 			 * the loader.
980 			 *
981 			 * Therefore, programs are loaded offset from
982 			 * ELF_ET_DYN_BASE and loaders are loaded into the
983 			 * independently randomized mmap region (0 load_bias
984 			 * without MAP_FIXED).
985 			 */
986 			if (elf_interpreter) {
987 				load_bias = ELF_ET_DYN_BASE;
988 				if (current->flags & PF_RANDOMIZE)
989 					load_bias += arch_mmap_rnd();
990 				elf_flags |= elf_fixed;
991 			} else
992 				load_bias = 0;
993 
994 			/*
995 			 * Since load_bias is used for all subsequent loading
996 			 * calculations, we must lower it by the first vaddr
997 			 * so that the remaining calculations based on the
998 			 * ELF vaddrs will be correctly offset. The result
999 			 * is then page aligned.
1000 			 */
1001 			load_bias = ELF_PAGESTART(load_bias - vaddr);
1002 
1003 			total_size = total_mapping_size(elf_phdata,
1004 							loc->elf_ex.e_phnum);
1005 			if (!total_size) {
1006 				retval = -EINVAL;
1007 				goto out_free_dentry;
1008 			}
1009 		}
1010 
1011 		error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
1012 				elf_prot, elf_flags, total_size);
1013 		if (BAD_ADDR(error)) {
1014 			retval = IS_ERR((void *)error) ?
1015 				PTR_ERR((void*)error) : -EINVAL;
1016 			goto out_free_dentry;
1017 		}
1018 
1019 		if (!load_addr_set) {
1020 			load_addr_set = 1;
1021 			load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
1022 			if (loc->elf_ex.e_type == ET_DYN) {
1023 				load_bias += error -
1024 				             ELF_PAGESTART(load_bias + vaddr);
1025 				load_addr += load_bias;
1026 				reloc_func_desc = load_bias;
1027 			}
1028 		}
1029 		k = elf_ppnt->p_vaddr;
1030 		if (k < start_code)
1031 			start_code = k;
1032 		if (start_data < k)
1033 			start_data = k;
1034 
1035 		/*
1036 		 * Check to see if the section's size will overflow the
1037 		 * allowed task size. Note that p_filesz must always be
1038 		 * <= p_memsz so it is only necessary to check p_memsz.
1039 		 */
1040 		if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
1041 		    elf_ppnt->p_memsz > TASK_SIZE ||
1042 		    TASK_SIZE - elf_ppnt->p_memsz < k) {
1043 			/* set_brk can never work. Avoid overflows. */
1044 			retval = -EINVAL;
1045 			goto out_free_dentry;
1046 		}
1047 
1048 		k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
1049 
1050 		if (k > elf_bss)
1051 			elf_bss = k;
1052 		if ((elf_ppnt->p_flags & PF_X) && end_code < k)
1053 			end_code = k;
1054 		if (end_data < k)
1055 			end_data = k;
1056 		k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
1057 		if (k > elf_brk) {
1058 			bss_prot = elf_prot;
1059 			elf_brk = k;
1060 		}
1061 	}
1062 
1063 	loc->elf_ex.e_entry += load_bias;
1064 	elf_bss += load_bias;
1065 	elf_brk += load_bias;
1066 	start_code += load_bias;
1067 	end_code += load_bias;
1068 	start_data += load_bias;
1069 	end_data += load_bias;
1070 
1071 	/* Calling set_brk effectively mmaps the pages that we need
1072 	 * for the bss and break sections.  We must do this before
1073 	 * mapping in the interpreter, to make sure it doesn't wind
1074 	 * up getting placed where the bss needs to go.
1075 	 */
1076 	retval = set_brk(elf_bss, elf_brk, bss_prot);
1077 	if (retval)
1078 		goto out_free_dentry;
1079 	if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1080 		retval = -EFAULT; /* Nobody gets to see this, but.. */
1081 		goto out_free_dentry;
1082 	}
1083 
1084 	if (elf_interpreter) {
1085 		unsigned long interp_map_addr = 0;
1086 
1087 		elf_entry = load_elf_interp(&loc->interp_elf_ex,
1088 					    interpreter,
1089 					    &interp_map_addr,
1090 					    load_bias, interp_elf_phdata);
1091 		if (!IS_ERR((void *)elf_entry)) {
1092 			/*
1093 			 * load_elf_interp() returns relocation
1094 			 * adjustment
1095 			 */
1096 			interp_load_addr = elf_entry;
1097 			elf_entry += loc->interp_elf_ex.e_entry;
1098 		}
1099 		if (BAD_ADDR(elf_entry)) {
1100 			retval = IS_ERR((void *)elf_entry) ?
1101 					(int)elf_entry : -EINVAL;
1102 			goto out_free_dentry;
1103 		}
1104 		reloc_func_desc = interp_load_addr;
1105 
1106 		allow_write_access(interpreter);
1107 		fput(interpreter);
1108 		kfree(elf_interpreter);
1109 	} else {
1110 		elf_entry = loc->elf_ex.e_entry;
1111 		if (BAD_ADDR(elf_entry)) {
1112 			retval = -EINVAL;
1113 			goto out_free_dentry;
1114 		}
1115 	}
1116 
1117 	kfree(interp_elf_phdata);
1118 	kfree(elf_phdata);
1119 
1120 	set_binfmt(&elf_format);
1121 
1122 #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1123 	retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1124 	if (retval < 0)
1125 		goto out;
1126 #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1127 
1128 	retval = create_elf_tables(bprm, &loc->elf_ex,
1129 			  load_addr, interp_load_addr);
1130 	if (retval < 0)
1131 		goto out;
1132 	/* N.B. passed_fileno might not be initialized? */
1133 	current->mm->end_code = end_code;
1134 	current->mm->start_code = start_code;
1135 	current->mm->start_data = start_data;
1136 	current->mm->end_data = end_data;
1137 	current->mm->start_stack = bprm->p;
1138 
1139 	if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1140 		/*
1141 		 * For architectures with ELF randomization, when executing
1142 		 * a loader directly (i.e. no interpreter listed in ELF
1143 		 * headers), move the brk area out of the mmap region
1144 		 * (since it grows up, and may collide early with the stack
1145 		 * growing down), and into the unused ELF_ET_DYN_BASE region.
1146 		 */
1147 		if (IS_ENABLED(CONFIG_ARCH_HAS_ELF_RANDOMIZE) &&
1148 		    loc->elf_ex.e_type == ET_DYN && !interpreter)
1149 			current->mm->brk = current->mm->start_brk =
1150 				ELF_ET_DYN_BASE;
1151 
1152 		current->mm->brk = current->mm->start_brk =
1153 			arch_randomize_brk(current->mm);
1154 #ifdef compat_brk_randomized
1155 		current->brk_randomized = 1;
1156 #endif
1157 	}
1158 
1159 	if (current->personality & MMAP_PAGE_ZERO) {
1160 		/* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1161 		   and some applications "depend" upon this behavior.
1162 		   Since we do not have the power to recompile these, we
1163 		   emulate the SVr4 behavior. Sigh. */
1164 		error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1165 				MAP_FIXED | MAP_PRIVATE, 0);
1166 	}
1167 
1168 #ifdef ELF_PLAT_INIT
1169 	/*
1170 	 * The ABI may specify that certain registers be set up in special
1171 	 * ways (on i386 %edx is the address of a DT_FINI function, for
1172 	 * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1173 	 * that the e_entry field is the address of the function descriptor
1174 	 * for the startup routine, rather than the address of the startup
1175 	 * routine itself.  This macro performs whatever initialization to
1176 	 * the regs structure is required as well as any relocations to the
1177 	 * function descriptor entries when executing dynamically links apps.
1178 	 */
1179 	ELF_PLAT_INIT(regs, reloc_func_desc);
1180 #endif
1181 
1182 	finalize_exec(bprm);
1183 	start_thread(regs, elf_entry, bprm->p);
1184 	retval = 0;
1185 out:
1186 	kfree(loc);
1187 out_ret:
1188 	return retval;
1189 
1190 	/* error cleanup */
1191 out_free_dentry:
1192 	kfree(interp_elf_phdata);
1193 	allow_write_access(interpreter);
1194 	if (interpreter)
1195 		fput(interpreter);
1196 out_free_interp:
1197 	kfree(elf_interpreter);
1198 out_free_ph:
1199 	kfree(elf_phdata);
1200 	goto out;
1201 }
1202 
1203 #ifdef CONFIG_USELIB
1204 /* This is really simpleminded and specialized - we are loading an
1205    a.out library that is given an ELF header. */
load_elf_library(struct file * file)1206 static int load_elf_library(struct file *file)
1207 {
1208 	struct elf_phdr *elf_phdata;
1209 	struct elf_phdr *eppnt;
1210 	unsigned long elf_bss, bss, len;
1211 	int retval, error, i, j;
1212 	struct elfhdr elf_ex;
1213 	loff_t pos = 0;
1214 
1215 	error = -ENOEXEC;
1216 	retval = kernel_read(file, &elf_ex, sizeof(elf_ex), &pos);
1217 	if (retval != sizeof(elf_ex))
1218 		goto out;
1219 
1220 	if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1221 		goto out;
1222 
1223 	/* First of all, some simple consistency checks */
1224 	if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1225 	    !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1226 		goto out;
1227 	if (elf_check_fdpic(&elf_ex))
1228 		goto out;
1229 
1230 	/* Now read in all of the header information */
1231 
1232 	j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1233 	/* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1234 
1235 	error = -ENOMEM;
1236 	elf_phdata = kmalloc(j, GFP_KERNEL);
1237 	if (!elf_phdata)
1238 		goto out;
1239 
1240 	eppnt = elf_phdata;
1241 	error = -ENOEXEC;
1242 	pos =  elf_ex.e_phoff;
1243 	retval = kernel_read(file, eppnt, j, &pos);
1244 	if (retval != j)
1245 		goto out_free_ph;
1246 
1247 	for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1248 		if ((eppnt + i)->p_type == PT_LOAD)
1249 			j++;
1250 	if (j != 1)
1251 		goto out_free_ph;
1252 
1253 	while (eppnt->p_type != PT_LOAD)
1254 		eppnt++;
1255 
1256 	/* Now use mmap to map the library into memory. */
1257 	error = vm_mmap(file,
1258 			ELF_PAGESTART(eppnt->p_vaddr),
1259 			(eppnt->p_filesz +
1260 			 ELF_PAGEOFFSET(eppnt->p_vaddr)),
1261 			PROT_READ | PROT_WRITE | PROT_EXEC,
1262 			MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_DENYWRITE,
1263 			(eppnt->p_offset -
1264 			 ELF_PAGEOFFSET(eppnt->p_vaddr)));
1265 	if (error != ELF_PAGESTART(eppnt->p_vaddr))
1266 		goto out_free_ph;
1267 
1268 	elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1269 	if (padzero(elf_bss)) {
1270 		error = -EFAULT;
1271 		goto out_free_ph;
1272 	}
1273 
1274 	len = ELF_PAGEALIGN(eppnt->p_filesz + eppnt->p_vaddr);
1275 	bss = ELF_PAGEALIGN(eppnt->p_memsz + eppnt->p_vaddr);
1276 	if (bss > len) {
1277 		error = vm_brk(len, bss - len);
1278 		if (error)
1279 			goto out_free_ph;
1280 	}
1281 	error = 0;
1282 
1283 out_free_ph:
1284 	kfree(elf_phdata);
1285 out:
1286 	return error;
1287 }
1288 #endif /* #ifdef CONFIG_USELIB */
1289 
1290 #ifdef CONFIG_ELF_CORE
1291 /*
1292  * ELF core dumper
1293  *
1294  * Modelled on fs/exec.c:aout_core_dump()
1295  * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1296  */
1297 
1298 /*
1299  * The purpose of always_dump_vma() is to make sure that special kernel mappings
1300  * that are useful for post-mortem analysis are included in every core dump.
1301  * In that way we ensure that the core dump is fully interpretable later
1302  * without matching up the same kernel and hardware config to see what PC values
1303  * meant. These special mappings include - vDSO, vsyscall, and other
1304  * architecture specific mappings
1305  */
always_dump_vma(struct vm_area_struct * vma)1306 static bool always_dump_vma(struct vm_area_struct *vma)
1307 {
1308 	/* Any vsyscall mappings? */
1309 	if (vma == get_gate_vma(vma->vm_mm))
1310 		return true;
1311 
1312 	/*
1313 	 * Assume that all vmas with a .name op should always be dumped.
1314 	 * If this changes, a new vm_ops field can easily be added.
1315 	 */
1316 	if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1317 		return true;
1318 
1319 	/*
1320 	 * arch_vma_name() returns non-NULL for special architecture mappings,
1321 	 * such as vDSO sections.
1322 	 */
1323 	if (arch_vma_name(vma))
1324 		return true;
1325 
1326 	return false;
1327 }
1328 
1329 /*
1330  * Decide what to dump of a segment, part, all or none.
1331  */
vma_dump_size(struct vm_area_struct * vma,unsigned long mm_flags)1332 static unsigned long vma_dump_size(struct vm_area_struct *vma,
1333 				   unsigned long mm_flags)
1334 {
1335 #define FILTER(type)	(mm_flags & (1UL << MMF_DUMP_##type))
1336 
1337 	/* always dump the vdso and vsyscall sections */
1338 	if (always_dump_vma(vma))
1339 		goto whole;
1340 
1341 	if (vma->vm_flags & VM_DONTDUMP)
1342 		return 0;
1343 
1344 	/* support for DAX */
1345 	if (vma_is_dax(vma)) {
1346 		if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1347 			goto whole;
1348 		if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1349 			goto whole;
1350 		return 0;
1351 	}
1352 
1353 	/* Hugetlb memory check */
1354 	if (vma->vm_flags & VM_HUGETLB) {
1355 		if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1356 			goto whole;
1357 		if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1358 			goto whole;
1359 		return 0;
1360 	}
1361 
1362 	/* Do not dump I/O mapped devices or special mappings */
1363 	if (vma->vm_flags & VM_IO)
1364 		return 0;
1365 
1366 	/* By default, dump shared memory if mapped from an anonymous file. */
1367 	if (vma->vm_flags & VM_SHARED) {
1368 		if (file_inode(vma->vm_file)->i_nlink == 0 ?
1369 		    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1370 			goto whole;
1371 		return 0;
1372 	}
1373 
1374 	/* Dump segments that have been written to.  */
1375 	if (vma->anon_vma && FILTER(ANON_PRIVATE))
1376 		goto whole;
1377 	if (vma->vm_file == NULL)
1378 		return 0;
1379 
1380 	if (FILTER(MAPPED_PRIVATE))
1381 		goto whole;
1382 
1383 	/*
1384 	 * If this looks like the beginning of a DSO or executable mapping,
1385 	 * check for an ELF header.  If we find one, dump the first page to
1386 	 * aid in determining what was mapped here.
1387 	 */
1388 	if (FILTER(ELF_HEADERS) &&
1389 	    vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1390 		u32 __user *header = (u32 __user *) vma->vm_start;
1391 		u32 word;
1392 		mm_segment_t fs = get_fs();
1393 		/*
1394 		 * Doing it this way gets the constant folded by GCC.
1395 		 */
1396 		union {
1397 			u32 cmp;
1398 			char elfmag[SELFMAG];
1399 		} magic;
1400 		BUILD_BUG_ON(SELFMAG != sizeof word);
1401 		magic.elfmag[EI_MAG0] = ELFMAG0;
1402 		magic.elfmag[EI_MAG1] = ELFMAG1;
1403 		magic.elfmag[EI_MAG2] = ELFMAG2;
1404 		magic.elfmag[EI_MAG3] = ELFMAG3;
1405 		/*
1406 		 * Switch to the user "segment" for get_user(),
1407 		 * then put back what elf_core_dump() had in place.
1408 		 */
1409 		set_fs(USER_DS);
1410 		if (unlikely(get_user(word, header)))
1411 			word = 0;
1412 		set_fs(fs);
1413 		if (word == magic.cmp)
1414 			return PAGE_SIZE;
1415 	}
1416 
1417 #undef	FILTER
1418 
1419 	return 0;
1420 
1421 whole:
1422 	return vma->vm_end - vma->vm_start;
1423 }
1424 
1425 /* An ELF note in memory */
1426 struct memelfnote
1427 {
1428 	const char *name;
1429 	int type;
1430 	unsigned int datasz;
1431 	void *data;
1432 };
1433 
notesize(struct memelfnote * en)1434 static int notesize(struct memelfnote *en)
1435 {
1436 	int sz;
1437 
1438 	sz = sizeof(struct elf_note);
1439 	sz += roundup(strlen(en->name) + 1, 4);
1440 	sz += roundup(en->datasz, 4);
1441 
1442 	return sz;
1443 }
1444 
writenote(struct memelfnote * men,struct coredump_params * cprm)1445 static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1446 {
1447 	struct elf_note en;
1448 	en.n_namesz = strlen(men->name) + 1;
1449 	en.n_descsz = men->datasz;
1450 	en.n_type = men->type;
1451 
1452 	return dump_emit(cprm, &en, sizeof(en)) &&
1453 	    dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1454 	    dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1455 }
1456 
fill_elf_header(struct elfhdr * elf,int segs,u16 machine,u32 flags)1457 static void fill_elf_header(struct elfhdr *elf, int segs,
1458 			    u16 machine, u32 flags)
1459 {
1460 	memset(elf, 0, sizeof(*elf));
1461 
1462 	memcpy(elf->e_ident, ELFMAG, SELFMAG);
1463 	elf->e_ident[EI_CLASS] = ELF_CLASS;
1464 	elf->e_ident[EI_DATA] = ELF_DATA;
1465 	elf->e_ident[EI_VERSION] = EV_CURRENT;
1466 	elf->e_ident[EI_OSABI] = ELF_OSABI;
1467 
1468 	elf->e_type = ET_CORE;
1469 	elf->e_machine = machine;
1470 	elf->e_version = EV_CURRENT;
1471 	elf->e_phoff = sizeof(struct elfhdr);
1472 	elf->e_flags = flags;
1473 	elf->e_ehsize = sizeof(struct elfhdr);
1474 	elf->e_phentsize = sizeof(struct elf_phdr);
1475 	elf->e_phnum = segs;
1476 
1477 	return;
1478 }
1479 
fill_elf_note_phdr(struct elf_phdr * phdr,int sz,loff_t offset)1480 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1481 {
1482 	phdr->p_type = PT_NOTE;
1483 	phdr->p_offset = offset;
1484 	phdr->p_vaddr = 0;
1485 	phdr->p_paddr = 0;
1486 	phdr->p_filesz = sz;
1487 	phdr->p_memsz = 0;
1488 	phdr->p_flags = 0;
1489 	phdr->p_align = 0;
1490 	return;
1491 }
1492 
fill_note(struct memelfnote * note,const char * name,int type,unsigned int sz,void * data)1493 static void fill_note(struct memelfnote *note, const char *name, int type,
1494 		unsigned int sz, void *data)
1495 {
1496 	note->name = name;
1497 	note->type = type;
1498 	note->datasz = sz;
1499 	note->data = data;
1500 	return;
1501 }
1502 
1503 /*
1504  * fill up all the fields in prstatus from the given task struct, except
1505  * registers which need to be filled up separately.
1506  */
fill_prstatus(struct elf_prstatus * prstatus,struct task_struct * p,long signr)1507 static void fill_prstatus(struct elf_prstatus *prstatus,
1508 		struct task_struct *p, long signr)
1509 {
1510 	prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1511 	prstatus->pr_sigpend = p->pending.signal.sig[0];
1512 	prstatus->pr_sighold = p->blocked.sig[0];
1513 	rcu_read_lock();
1514 	prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1515 	rcu_read_unlock();
1516 	prstatus->pr_pid = task_pid_vnr(p);
1517 	prstatus->pr_pgrp = task_pgrp_vnr(p);
1518 	prstatus->pr_sid = task_session_vnr(p);
1519 	if (thread_group_leader(p)) {
1520 		struct task_cputime cputime;
1521 
1522 		/*
1523 		 * This is the record for the group leader.  It shows the
1524 		 * group-wide total, not its individual thread total.
1525 		 */
1526 		thread_group_cputime(p, &cputime);
1527 		prstatus->pr_utime = ns_to_timeval(cputime.utime);
1528 		prstatus->pr_stime = ns_to_timeval(cputime.stime);
1529 	} else {
1530 		u64 utime, stime;
1531 
1532 		task_cputime(p, &utime, &stime);
1533 		prstatus->pr_utime = ns_to_timeval(utime);
1534 		prstatus->pr_stime = ns_to_timeval(stime);
1535 	}
1536 
1537 	prstatus->pr_cutime = ns_to_timeval(p->signal->cutime);
1538 	prstatus->pr_cstime = ns_to_timeval(p->signal->cstime);
1539 }
1540 
fill_psinfo(struct elf_prpsinfo * psinfo,struct task_struct * p,struct mm_struct * mm)1541 static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1542 		       struct mm_struct *mm)
1543 {
1544 	const struct cred *cred;
1545 	unsigned int i, len;
1546 
1547 	/* first copy the parameters from user space */
1548 	memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1549 
1550 	len = mm->arg_end - mm->arg_start;
1551 	if (len >= ELF_PRARGSZ)
1552 		len = ELF_PRARGSZ-1;
1553 	if (copy_from_user(&psinfo->pr_psargs,
1554 		           (const char __user *)mm->arg_start, len))
1555 		return -EFAULT;
1556 	for(i = 0; i < len; i++)
1557 		if (psinfo->pr_psargs[i] == 0)
1558 			psinfo->pr_psargs[i] = ' ';
1559 	psinfo->pr_psargs[len] = 0;
1560 
1561 	rcu_read_lock();
1562 	psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1563 	rcu_read_unlock();
1564 	psinfo->pr_pid = task_pid_vnr(p);
1565 	psinfo->pr_pgrp = task_pgrp_vnr(p);
1566 	psinfo->pr_sid = task_session_vnr(p);
1567 
1568 	i = p->state ? ffz(~p->state) + 1 : 0;
1569 	psinfo->pr_state = i;
1570 	psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1571 	psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1572 	psinfo->pr_nice = task_nice(p);
1573 	psinfo->pr_flag = p->flags;
1574 	rcu_read_lock();
1575 	cred = __task_cred(p);
1576 	SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1577 	SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1578 	rcu_read_unlock();
1579 	strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1580 
1581 	return 0;
1582 }
1583 
fill_auxv_note(struct memelfnote * note,struct mm_struct * mm)1584 static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1585 {
1586 	elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1587 	int i = 0;
1588 	do
1589 		i += 2;
1590 	while (auxv[i - 2] != AT_NULL);
1591 	fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1592 }
1593 
fill_siginfo_note(struct memelfnote * note,user_siginfo_t * csigdata,const siginfo_t * siginfo)1594 static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1595 		const siginfo_t *siginfo)
1596 {
1597 	mm_segment_t old_fs = get_fs();
1598 	set_fs(KERNEL_DS);
1599 	copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1600 	set_fs(old_fs);
1601 	fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1602 }
1603 
1604 #define MAX_FILE_NOTE_SIZE (4*1024*1024)
1605 /*
1606  * Format of NT_FILE note:
1607  *
1608  * long count     -- how many files are mapped
1609  * long page_size -- units for file_ofs
1610  * array of [COUNT] elements of
1611  *   long start
1612  *   long end
1613  *   long file_ofs
1614  * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1615  */
fill_files_note(struct memelfnote * note)1616 static int fill_files_note(struct memelfnote *note)
1617 {
1618 	struct vm_area_struct *vma;
1619 	unsigned count, size, names_ofs, remaining, n;
1620 	user_long_t *data;
1621 	user_long_t *start_end_ofs;
1622 	char *name_base, *name_curpos;
1623 
1624 	/* *Estimated* file count and total data size needed */
1625 	count = current->mm->map_count;
1626 	if (count > UINT_MAX / 64)
1627 		return -EINVAL;
1628 	size = count * 64;
1629 
1630 	names_ofs = (2 + 3 * count) * sizeof(data[0]);
1631  alloc:
1632 	if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1633 		return -EINVAL;
1634 	size = round_up(size, PAGE_SIZE);
1635 	data = kvmalloc(size, GFP_KERNEL);
1636 	if (ZERO_OR_NULL_PTR(data))
1637 		return -ENOMEM;
1638 
1639 	start_end_ofs = data + 2;
1640 	name_base = name_curpos = ((char *)data) + names_ofs;
1641 	remaining = size - names_ofs;
1642 	count = 0;
1643 	for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1644 		struct file *file;
1645 		const char *filename;
1646 
1647 		file = vma->vm_file;
1648 		if (!file)
1649 			continue;
1650 		filename = file_path(file, name_curpos, remaining);
1651 		if (IS_ERR(filename)) {
1652 			if (PTR_ERR(filename) == -ENAMETOOLONG) {
1653 				kvfree(data);
1654 				size = size * 5 / 4;
1655 				goto alloc;
1656 			}
1657 			continue;
1658 		}
1659 
1660 		/* file_path() fills at the end, move name down */
1661 		/* n = strlen(filename) + 1: */
1662 		n = (name_curpos + remaining) - filename;
1663 		remaining = filename - name_curpos;
1664 		memmove(name_curpos, filename, n);
1665 		name_curpos += n;
1666 
1667 		*start_end_ofs++ = vma->vm_start;
1668 		*start_end_ofs++ = vma->vm_end;
1669 		*start_end_ofs++ = vma->vm_pgoff;
1670 		count++;
1671 	}
1672 
1673 	/* Now we know exact count of files, can store it */
1674 	data[0] = count;
1675 	data[1] = PAGE_SIZE;
1676 	/*
1677 	 * Count usually is less than current->mm->map_count,
1678 	 * we need to move filenames down.
1679 	 */
1680 	n = current->mm->map_count - count;
1681 	if (n != 0) {
1682 		unsigned shift_bytes = n * 3 * sizeof(data[0]);
1683 		memmove(name_base - shift_bytes, name_base,
1684 			name_curpos - name_base);
1685 		name_curpos -= shift_bytes;
1686 	}
1687 
1688 	size = name_curpos - (char *)data;
1689 	fill_note(note, "CORE", NT_FILE, size, data);
1690 	return 0;
1691 }
1692 
1693 #ifdef CORE_DUMP_USE_REGSET
1694 #include <linux/regset.h>
1695 
1696 struct elf_thread_core_info {
1697 	struct elf_thread_core_info *next;
1698 	struct task_struct *task;
1699 	struct elf_prstatus prstatus;
1700 	struct memelfnote notes[0];
1701 };
1702 
1703 struct elf_note_info {
1704 	struct elf_thread_core_info *thread;
1705 	struct memelfnote psinfo;
1706 	struct memelfnote signote;
1707 	struct memelfnote auxv;
1708 	struct memelfnote files;
1709 	user_siginfo_t csigdata;
1710 	size_t size;
1711 	int thread_notes;
1712 };
1713 
1714 /*
1715  * When a regset has a writeback hook, we call it on each thread before
1716  * dumping user memory.  On register window machines, this makes sure the
1717  * user memory backing the register data is up to date before we read it.
1718  */
do_thread_regset_writeback(struct task_struct * task,const struct user_regset * regset)1719 static void do_thread_regset_writeback(struct task_struct *task,
1720 				       const struct user_regset *regset)
1721 {
1722 	if (regset->writeback)
1723 		regset->writeback(task, regset, 1);
1724 }
1725 
1726 #ifndef PRSTATUS_SIZE
1727 #define PRSTATUS_SIZE(S, R) sizeof(S)
1728 #endif
1729 
1730 #ifndef SET_PR_FPVALID
1731 #define SET_PR_FPVALID(S, V, R) ((S)->pr_fpvalid = (V))
1732 #endif
1733 
fill_thread_core_info(struct elf_thread_core_info * t,const struct user_regset_view * view,long signr,size_t * total)1734 static int fill_thread_core_info(struct elf_thread_core_info *t,
1735 				 const struct user_regset_view *view,
1736 				 long signr, size_t *total)
1737 {
1738 	unsigned int i;
1739 	unsigned int regset0_size = regset_size(t->task, &view->regsets[0]);
1740 
1741 	/*
1742 	 * NT_PRSTATUS is the one special case, because the regset data
1743 	 * goes into the pr_reg field inside the note contents, rather
1744 	 * than being the whole note contents.  We fill the reset in here.
1745 	 * We assume that regset 0 is NT_PRSTATUS.
1746 	 */
1747 	fill_prstatus(&t->prstatus, t->task, signr);
1748 	(void) view->regsets[0].get(t->task, &view->regsets[0], 0, regset0_size,
1749 				    &t->prstatus.pr_reg, NULL);
1750 
1751 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1752 		  PRSTATUS_SIZE(t->prstatus, regset0_size), &t->prstatus);
1753 	*total += notesize(&t->notes[0]);
1754 
1755 	do_thread_regset_writeback(t->task, &view->regsets[0]);
1756 
1757 	/*
1758 	 * Each other regset might generate a note too.  For each regset
1759 	 * that has no core_note_type or is inactive, we leave t->notes[i]
1760 	 * all zero and we'll know to skip writing it later.
1761 	 */
1762 	for (i = 1; i < view->n; ++i) {
1763 		const struct user_regset *regset = &view->regsets[i];
1764 		do_thread_regset_writeback(t->task, regset);
1765 		if (regset->core_note_type && regset->get &&
1766 		    (!regset->active || regset->active(t->task, regset) > 0)) {
1767 			int ret;
1768 			size_t size = regset_size(t->task, regset);
1769 			void *data = kzalloc(size, GFP_KERNEL);
1770 			if (unlikely(!data))
1771 				return 0;
1772 			ret = regset->get(t->task, regset,
1773 					  0, size, data, NULL);
1774 			if (unlikely(ret))
1775 				kfree(data);
1776 			else {
1777 				if (regset->core_note_type != NT_PRFPREG)
1778 					fill_note(&t->notes[i], "LINUX",
1779 						  regset->core_note_type,
1780 						  size, data);
1781 				else {
1782 					SET_PR_FPVALID(&t->prstatus,
1783 							1, regset0_size);
1784 					fill_note(&t->notes[i], "CORE",
1785 						  NT_PRFPREG, size, data);
1786 				}
1787 				*total += notesize(&t->notes[i]);
1788 			}
1789 		}
1790 	}
1791 
1792 	return 1;
1793 }
1794 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)1795 static int fill_note_info(struct elfhdr *elf, int phdrs,
1796 			  struct elf_note_info *info,
1797 			  const siginfo_t *siginfo, struct pt_regs *regs)
1798 {
1799 	struct task_struct *dump_task = current;
1800 	const struct user_regset_view *view = task_user_regset_view(dump_task);
1801 	struct elf_thread_core_info *t;
1802 	struct elf_prpsinfo *psinfo;
1803 	struct core_thread *ct;
1804 	unsigned int i;
1805 
1806 	info->size = 0;
1807 	info->thread = NULL;
1808 
1809 	psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1810 	if (psinfo == NULL) {
1811 		info->psinfo.data = NULL; /* So we don't free this wrongly */
1812 		return 0;
1813 	}
1814 
1815 	fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1816 
1817 	/*
1818 	 * Figure out how many notes we're going to need for each thread.
1819 	 */
1820 	info->thread_notes = 0;
1821 	for (i = 0; i < view->n; ++i)
1822 		if (view->regsets[i].core_note_type != 0)
1823 			++info->thread_notes;
1824 
1825 	/*
1826 	 * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1827 	 * since it is our one special case.
1828 	 */
1829 	if (unlikely(info->thread_notes == 0) ||
1830 	    unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1831 		WARN_ON(1);
1832 		return 0;
1833 	}
1834 
1835 	/*
1836 	 * Initialize the ELF file header.
1837 	 */
1838 	fill_elf_header(elf, phdrs,
1839 			view->e_machine, view->e_flags);
1840 
1841 	/*
1842 	 * Allocate a structure for each thread.
1843 	 */
1844 	for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1845 		t = kzalloc(offsetof(struct elf_thread_core_info,
1846 				     notes[info->thread_notes]),
1847 			    GFP_KERNEL);
1848 		if (unlikely(!t))
1849 			return 0;
1850 
1851 		t->task = ct->task;
1852 		if (ct->task == dump_task || !info->thread) {
1853 			t->next = info->thread;
1854 			info->thread = t;
1855 		} else {
1856 			/*
1857 			 * Make sure to keep the original task at
1858 			 * the head of the list.
1859 			 */
1860 			t->next = info->thread->next;
1861 			info->thread->next = t;
1862 		}
1863 	}
1864 
1865 	/*
1866 	 * Now fill in each thread's information.
1867 	 */
1868 	for (t = info->thread; t != NULL; t = t->next)
1869 		if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1870 			return 0;
1871 
1872 	/*
1873 	 * Fill in the two process-wide notes.
1874 	 */
1875 	fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1876 	info->size += notesize(&info->psinfo);
1877 
1878 	fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1879 	info->size += notesize(&info->signote);
1880 
1881 	fill_auxv_note(&info->auxv, current->mm);
1882 	info->size += notesize(&info->auxv);
1883 
1884 	if (fill_files_note(&info->files) == 0)
1885 		info->size += notesize(&info->files);
1886 
1887 	return 1;
1888 }
1889 
get_note_info_size(struct elf_note_info * info)1890 static size_t get_note_info_size(struct elf_note_info *info)
1891 {
1892 	return info->size;
1893 }
1894 
1895 /*
1896  * Write all the notes for each thread.  When writing the first thread, the
1897  * process-wide notes are interleaved after the first thread-specific note.
1898  */
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)1899 static int write_note_info(struct elf_note_info *info,
1900 			   struct coredump_params *cprm)
1901 {
1902 	bool first = true;
1903 	struct elf_thread_core_info *t = info->thread;
1904 
1905 	do {
1906 		int i;
1907 
1908 		if (!writenote(&t->notes[0], cprm))
1909 			return 0;
1910 
1911 		if (first && !writenote(&info->psinfo, cprm))
1912 			return 0;
1913 		if (first && !writenote(&info->signote, cprm))
1914 			return 0;
1915 		if (first && !writenote(&info->auxv, cprm))
1916 			return 0;
1917 		if (first && info->files.data &&
1918 				!writenote(&info->files, cprm))
1919 			return 0;
1920 
1921 		for (i = 1; i < info->thread_notes; ++i)
1922 			if (t->notes[i].data &&
1923 			    !writenote(&t->notes[i], cprm))
1924 				return 0;
1925 
1926 		first = false;
1927 		t = t->next;
1928 	} while (t);
1929 
1930 	return 1;
1931 }
1932 
free_note_info(struct elf_note_info * info)1933 static void free_note_info(struct elf_note_info *info)
1934 {
1935 	struct elf_thread_core_info *threads = info->thread;
1936 	while (threads) {
1937 		unsigned int i;
1938 		struct elf_thread_core_info *t = threads;
1939 		threads = t->next;
1940 		WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1941 		for (i = 1; i < info->thread_notes; ++i)
1942 			kfree(t->notes[i].data);
1943 		kfree(t);
1944 	}
1945 	kfree(info->psinfo.data);
1946 	kvfree(info->files.data);
1947 }
1948 
1949 #else
1950 
1951 /* Here is the structure in which status of each thread is captured. */
1952 struct elf_thread_status
1953 {
1954 	struct list_head list;
1955 	struct elf_prstatus prstatus;	/* NT_PRSTATUS */
1956 	elf_fpregset_t fpu;		/* NT_PRFPREG */
1957 	struct task_struct *thread;
1958 #ifdef ELF_CORE_COPY_XFPREGS
1959 	elf_fpxregset_t xfpu;		/* ELF_CORE_XFPREG_TYPE */
1960 #endif
1961 	struct memelfnote notes[3];
1962 	int num_notes;
1963 };
1964 
1965 /*
1966  * In order to add the specific thread information for the elf file format,
1967  * we need to keep a linked list of every threads pr_status and then create
1968  * a single section for them in the final core file.
1969  */
elf_dump_thread_status(long signr,struct elf_thread_status * t)1970 static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1971 {
1972 	int sz = 0;
1973 	struct task_struct *p = t->thread;
1974 	t->num_notes = 0;
1975 
1976 	fill_prstatus(&t->prstatus, p, signr);
1977 	elf_core_copy_task_regs(p, &t->prstatus.pr_reg);
1978 
1979 	fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1980 		  &(t->prstatus));
1981 	t->num_notes++;
1982 	sz += notesize(&t->notes[0]);
1983 
1984 	if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1985 								&t->fpu))) {
1986 		fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1987 			  &(t->fpu));
1988 		t->num_notes++;
1989 		sz += notesize(&t->notes[1]);
1990 	}
1991 
1992 #ifdef ELF_CORE_COPY_XFPREGS
1993 	if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1994 		fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1995 			  sizeof(t->xfpu), &t->xfpu);
1996 		t->num_notes++;
1997 		sz += notesize(&t->notes[2]);
1998 	}
1999 #endif
2000 	return sz;
2001 }
2002 
2003 struct elf_note_info {
2004 	struct memelfnote *notes;
2005 	struct memelfnote *notes_files;
2006 	struct elf_prstatus *prstatus;	/* NT_PRSTATUS */
2007 	struct elf_prpsinfo *psinfo;	/* NT_PRPSINFO */
2008 	struct list_head thread_list;
2009 	elf_fpregset_t *fpu;
2010 #ifdef ELF_CORE_COPY_XFPREGS
2011 	elf_fpxregset_t *xfpu;
2012 #endif
2013 	user_siginfo_t csigdata;
2014 	int thread_status_size;
2015 	int numnote;
2016 };
2017 
elf_note_info_init(struct elf_note_info * info)2018 static int elf_note_info_init(struct elf_note_info *info)
2019 {
2020 	memset(info, 0, sizeof(*info));
2021 	INIT_LIST_HEAD(&info->thread_list);
2022 
2023 	/* Allocate space for ELF notes */
2024 	info->notes = kmalloc_array(8, sizeof(struct memelfnote), GFP_KERNEL);
2025 	if (!info->notes)
2026 		return 0;
2027 	info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
2028 	if (!info->psinfo)
2029 		return 0;
2030 	info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
2031 	if (!info->prstatus)
2032 		return 0;
2033 	info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
2034 	if (!info->fpu)
2035 		return 0;
2036 #ifdef ELF_CORE_COPY_XFPREGS
2037 	info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
2038 	if (!info->xfpu)
2039 		return 0;
2040 #endif
2041 	return 1;
2042 }
2043 
fill_note_info(struct elfhdr * elf,int phdrs,struct elf_note_info * info,const siginfo_t * siginfo,struct pt_regs * regs)2044 static int fill_note_info(struct elfhdr *elf, int phdrs,
2045 			  struct elf_note_info *info,
2046 			  const siginfo_t *siginfo, struct pt_regs *regs)
2047 {
2048 	struct list_head *t;
2049 	struct core_thread *ct;
2050 	struct elf_thread_status *ets;
2051 
2052 	if (!elf_note_info_init(info))
2053 		return 0;
2054 
2055 	for (ct = current->mm->core_state->dumper.next;
2056 					ct; ct = ct->next) {
2057 		ets = kzalloc(sizeof(*ets), GFP_KERNEL);
2058 		if (!ets)
2059 			return 0;
2060 
2061 		ets->thread = ct->task;
2062 		list_add(&ets->list, &info->thread_list);
2063 	}
2064 
2065 	list_for_each(t, &info->thread_list) {
2066 		int sz;
2067 
2068 		ets = list_entry(t, struct elf_thread_status, list);
2069 		sz = elf_dump_thread_status(siginfo->si_signo, ets);
2070 		info->thread_status_size += sz;
2071 	}
2072 	/* now collect the dump for the current */
2073 	memset(info->prstatus, 0, sizeof(*info->prstatus));
2074 	fill_prstatus(info->prstatus, current, siginfo->si_signo);
2075 	elf_core_copy_regs(&info->prstatus->pr_reg, regs);
2076 
2077 	/* Set up header */
2078 	fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
2079 
2080 	/*
2081 	 * Set up the notes in similar form to SVR4 core dumps made
2082 	 * with info from their /proc.
2083 	 */
2084 
2085 	fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
2086 		  sizeof(*info->prstatus), info->prstatus);
2087 	fill_psinfo(info->psinfo, current->group_leader, current->mm);
2088 	fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
2089 		  sizeof(*info->psinfo), info->psinfo);
2090 
2091 	fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2092 	fill_auxv_note(info->notes + 3, current->mm);
2093 	info->numnote = 4;
2094 
2095 	if (fill_files_note(info->notes + info->numnote) == 0) {
2096 		info->notes_files = info->notes + info->numnote;
2097 		info->numnote++;
2098 	}
2099 
2100 	/* Try to dump the FPU. */
2101 	info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2102 							       info->fpu);
2103 	if (info->prstatus->pr_fpvalid)
2104 		fill_note(info->notes + info->numnote++,
2105 			  "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2106 #ifdef ELF_CORE_COPY_XFPREGS
2107 	if (elf_core_copy_task_xfpregs(current, info->xfpu))
2108 		fill_note(info->notes + info->numnote++,
2109 			  "LINUX", ELF_CORE_XFPREG_TYPE,
2110 			  sizeof(*info->xfpu), info->xfpu);
2111 #endif
2112 
2113 	return 1;
2114 }
2115 
get_note_info_size(struct elf_note_info * info)2116 static size_t get_note_info_size(struct elf_note_info *info)
2117 {
2118 	int sz = 0;
2119 	int i;
2120 
2121 	for (i = 0; i < info->numnote; i++)
2122 		sz += notesize(info->notes + i);
2123 
2124 	sz += info->thread_status_size;
2125 
2126 	return sz;
2127 }
2128 
write_note_info(struct elf_note_info * info,struct coredump_params * cprm)2129 static int write_note_info(struct elf_note_info *info,
2130 			   struct coredump_params *cprm)
2131 {
2132 	int i;
2133 	struct list_head *t;
2134 
2135 	for (i = 0; i < info->numnote; i++)
2136 		if (!writenote(info->notes + i, cprm))
2137 			return 0;
2138 
2139 	/* write out the thread status notes section */
2140 	list_for_each(t, &info->thread_list) {
2141 		struct elf_thread_status *tmp =
2142 				list_entry(t, struct elf_thread_status, list);
2143 
2144 		for (i = 0; i < tmp->num_notes; i++)
2145 			if (!writenote(&tmp->notes[i], cprm))
2146 				return 0;
2147 	}
2148 
2149 	return 1;
2150 }
2151 
free_note_info(struct elf_note_info * info)2152 static void free_note_info(struct elf_note_info *info)
2153 {
2154 	while (!list_empty(&info->thread_list)) {
2155 		struct list_head *tmp = info->thread_list.next;
2156 		list_del(tmp);
2157 		kfree(list_entry(tmp, struct elf_thread_status, list));
2158 	}
2159 
2160 	/* Free data possibly allocated by fill_files_note(): */
2161 	if (info->notes_files)
2162 		kvfree(info->notes_files->data);
2163 
2164 	kfree(info->prstatus);
2165 	kfree(info->psinfo);
2166 	kfree(info->notes);
2167 	kfree(info->fpu);
2168 #ifdef ELF_CORE_COPY_XFPREGS
2169 	kfree(info->xfpu);
2170 #endif
2171 }
2172 
2173 #endif
2174 
first_vma(struct task_struct * tsk,struct vm_area_struct * gate_vma)2175 static struct vm_area_struct *first_vma(struct task_struct *tsk,
2176 					struct vm_area_struct *gate_vma)
2177 {
2178 	struct vm_area_struct *ret = tsk->mm->mmap;
2179 
2180 	if (ret)
2181 		return ret;
2182 	return gate_vma;
2183 }
2184 /*
2185  * Helper function for iterating across a vma list.  It ensures that the caller
2186  * will visit `gate_vma' prior to terminating the search.
2187  */
next_vma(struct vm_area_struct * this_vma,struct vm_area_struct * gate_vma)2188 static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2189 					struct vm_area_struct *gate_vma)
2190 {
2191 	struct vm_area_struct *ret;
2192 
2193 	ret = this_vma->vm_next;
2194 	if (ret)
2195 		return ret;
2196 	if (this_vma == gate_vma)
2197 		return NULL;
2198 	return gate_vma;
2199 }
2200 
fill_extnum_info(struct elfhdr * elf,struct elf_shdr * shdr4extnum,elf_addr_t e_shoff,int segs)2201 static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2202 			     elf_addr_t e_shoff, int segs)
2203 {
2204 	elf->e_shoff = e_shoff;
2205 	elf->e_shentsize = sizeof(*shdr4extnum);
2206 	elf->e_shnum = 1;
2207 	elf->e_shstrndx = SHN_UNDEF;
2208 
2209 	memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2210 
2211 	shdr4extnum->sh_type = SHT_NULL;
2212 	shdr4extnum->sh_size = elf->e_shnum;
2213 	shdr4extnum->sh_link = elf->e_shstrndx;
2214 	shdr4extnum->sh_info = segs;
2215 }
2216 
2217 /*
2218  * Actual dumper
2219  *
2220  * This is a two-pass process; first we find the offsets of the bits,
2221  * and then they are actually written out.  If we run out of core limit
2222  * we just truncate.
2223  */
elf_core_dump(struct coredump_params * cprm)2224 static int elf_core_dump(struct coredump_params *cprm)
2225 {
2226 	int has_dumped = 0;
2227 	mm_segment_t fs;
2228 	int segs, i;
2229 	size_t vma_data_size = 0;
2230 	struct vm_area_struct *vma, *gate_vma;
2231 	struct elfhdr *elf = NULL;
2232 	loff_t offset = 0, dataoff;
2233 	struct elf_note_info info = { };
2234 	struct elf_phdr *phdr4note = NULL;
2235 	struct elf_shdr *shdr4extnum = NULL;
2236 	Elf_Half e_phnum;
2237 	elf_addr_t e_shoff;
2238 	elf_addr_t *vma_filesz = NULL;
2239 
2240 	/*
2241 	 * We no longer stop all VM operations.
2242 	 *
2243 	 * This is because those proceses that could possibly change map_count
2244 	 * or the mmap / vma pages are now blocked in do_exit on current
2245 	 * finishing this core dump.
2246 	 *
2247 	 * Only ptrace can touch these memory addresses, but it doesn't change
2248 	 * the map_count or the pages allocated. So no possibility of crashing
2249 	 * exists while dumping the mm->vm_next areas to the core file.
2250 	 */
2251 
2252 	/* alloc memory for large data structures: too large to be on stack */
2253 	elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2254 	if (!elf)
2255 		goto out;
2256 	/*
2257 	 * The number of segs are recored into ELF header as 16bit value.
2258 	 * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2259 	 */
2260 	segs = current->mm->map_count;
2261 	segs += elf_core_extra_phdrs();
2262 
2263 	gate_vma = get_gate_vma(current->mm);
2264 	if (gate_vma != NULL)
2265 		segs++;
2266 
2267 	/* for notes section */
2268 	segs++;
2269 
2270 	/* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2271 	 * this, kernel supports extended numbering. Have a look at
2272 	 * include/linux/elf.h for further information. */
2273 	e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2274 
2275 	/*
2276 	 * Collect all the non-memory information about the process for the
2277 	 * notes.  This also sets up the file header.
2278 	 */
2279 	if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2280 		goto cleanup;
2281 
2282 	has_dumped = 1;
2283 
2284 	fs = get_fs();
2285 	set_fs(KERNEL_DS);
2286 
2287 	offset += sizeof(*elf);				/* Elf header */
2288 	offset += segs * sizeof(struct elf_phdr);	/* Program headers */
2289 
2290 	/* Write notes phdr entry */
2291 	{
2292 		size_t sz = get_note_info_size(&info);
2293 
2294 		sz += elf_coredump_extra_notes_size();
2295 
2296 		phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2297 		if (!phdr4note)
2298 			goto end_coredump;
2299 
2300 		fill_elf_note_phdr(phdr4note, sz, offset);
2301 		offset += sz;
2302 	}
2303 
2304 	dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2305 
2306 	if (segs - 1 > ULONG_MAX / sizeof(*vma_filesz))
2307 		goto end_coredump;
2308 	vma_filesz = kvmalloc(array_size(sizeof(*vma_filesz), (segs - 1)),
2309 			      GFP_KERNEL);
2310 	if (ZERO_OR_NULL_PTR(vma_filesz))
2311 		goto end_coredump;
2312 
2313 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2314 			vma = next_vma(vma, gate_vma)) {
2315 		unsigned long dump_size;
2316 
2317 		dump_size = vma_dump_size(vma, cprm->mm_flags);
2318 		vma_filesz[i++] = dump_size;
2319 		vma_data_size += dump_size;
2320 	}
2321 
2322 	offset += vma_data_size;
2323 	offset += elf_core_extra_data_size();
2324 	e_shoff = offset;
2325 
2326 	if (e_phnum == PN_XNUM) {
2327 		shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2328 		if (!shdr4extnum)
2329 			goto end_coredump;
2330 		fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2331 	}
2332 
2333 	offset = dataoff;
2334 
2335 	if (!dump_emit(cprm, elf, sizeof(*elf)))
2336 		goto end_coredump;
2337 
2338 	if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2339 		goto end_coredump;
2340 
2341 	/* Write program headers for segments dump */
2342 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2343 			vma = next_vma(vma, gate_vma)) {
2344 		struct elf_phdr phdr;
2345 
2346 		phdr.p_type = PT_LOAD;
2347 		phdr.p_offset = offset;
2348 		phdr.p_vaddr = vma->vm_start;
2349 		phdr.p_paddr = 0;
2350 		phdr.p_filesz = vma_filesz[i++];
2351 		phdr.p_memsz = vma->vm_end - vma->vm_start;
2352 		offset += phdr.p_filesz;
2353 		phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2354 		if (vma->vm_flags & VM_WRITE)
2355 			phdr.p_flags |= PF_W;
2356 		if (vma->vm_flags & VM_EXEC)
2357 			phdr.p_flags |= PF_X;
2358 		phdr.p_align = ELF_EXEC_PAGESIZE;
2359 
2360 		if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2361 			goto end_coredump;
2362 	}
2363 
2364 	if (!elf_core_write_extra_phdrs(cprm, offset))
2365 		goto end_coredump;
2366 
2367  	/* write out the notes section */
2368 	if (!write_note_info(&info, cprm))
2369 		goto end_coredump;
2370 
2371 	if (elf_coredump_extra_notes_write(cprm))
2372 		goto end_coredump;
2373 
2374 	/* Align to page */
2375 	if (!dump_skip(cprm, dataoff - cprm->pos))
2376 		goto end_coredump;
2377 
2378 	for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2379 			vma = next_vma(vma, gate_vma)) {
2380 		unsigned long addr;
2381 		unsigned long end;
2382 
2383 		end = vma->vm_start + vma_filesz[i++];
2384 
2385 		for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2386 			struct page *page;
2387 			int stop;
2388 
2389 			page = get_dump_page(addr);
2390 			if (page) {
2391 				void *kaddr = kmap(page);
2392 				stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2393 				kunmap(page);
2394 				put_page(page);
2395 			} else
2396 				stop = !dump_skip(cprm, PAGE_SIZE);
2397 			if (stop)
2398 				goto end_coredump;
2399 		}
2400 	}
2401 	dump_truncate(cprm);
2402 
2403 	if (!elf_core_write_extra_data(cprm))
2404 		goto end_coredump;
2405 
2406 	if (e_phnum == PN_XNUM) {
2407 		if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2408 			goto end_coredump;
2409 	}
2410 
2411 end_coredump:
2412 	set_fs(fs);
2413 
2414 cleanup:
2415 	free_note_info(&info);
2416 	kfree(shdr4extnum);
2417 	kvfree(vma_filesz);
2418 	kfree(phdr4note);
2419 	kfree(elf);
2420 out:
2421 	return has_dumped;
2422 }
2423 
2424 #endif		/* CONFIG_ELF_CORE */
2425 
init_elf_binfmt(void)2426 static int __init init_elf_binfmt(void)
2427 {
2428 	register_binfmt(&elf_format);
2429 	return 0;
2430 }
2431 
exit_elf_binfmt(void)2432 static void __exit exit_elf_binfmt(void)
2433 {
2434 	/* Remove the COFF and ELF loaders. */
2435 	unregister_binfmt(&elf_format);
2436 }
2437 
2438 core_initcall(init_elf_binfmt);
2439 module_exit(exit_elf_binfmt);
2440 MODULE_LICENSE("GPL");
2441