1 /*
2  *  fs/eventpoll.c (Efficient event retrieval implementation)
3  *  Copyright (C) 2001,...,2009	 Davide Libenzi
4  *
5  *  This program is free software; you can redistribute it and/or modify
6  *  it under the terms of the GNU General Public License as published by
7  *  the Free Software Foundation; either version 2 of the License, or
8  *  (at your option) any later version.
9  *
10  *  Davide Libenzi <davidel@xmailserver.org>
11  *
12  */
13 
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/signal.h>
17 #include <linux/fs.h>
18 #include <linux/file.h>
19 #include <linux/signal.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/slab.h>
23 #include <linux/poll.h>
24 #include <linux/string.h>
25 #include <linux/list.h>
26 #include <linux/hash.h>
27 #include <linux/spinlock.h>
28 #include <linux/syscalls.h>
29 #include <linux/rbtree.h>
30 #include <linux/wait.h>
31 #include <linux/eventpoll.h>
32 #include <linux/mount.h>
33 #include <linux/bitops.h>
34 #include <linux/mutex.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/device.h>
37 #include <linux/uaccess.h>
38 #include <asm/io.h>
39 #include <asm/mman.h>
40 #include <linux/atomic.h>
41 #include <linux/proc_fs.h>
42 #include <linux/seq_file.h>
43 #include <linux/compat.h>
44 #include <linux/rculist.h>
45 #include <net/busy_poll.h>
46 
47 /*
48  * LOCKING:
49  * There are three level of locking required by epoll :
50  *
51  * 1) epmutex (mutex)
52  * 2) ep->mtx (mutex)
53  * 3) ep->wq.lock (spinlock)
54  *
55  * The acquire order is the one listed above, from 1 to 3.
56  * We need a spinlock (ep->wq.lock) because we manipulate objects
57  * from inside the poll callback, that might be triggered from
58  * a wake_up() that in turn might be called from IRQ context.
59  * So we can't sleep inside the poll callback and hence we need
60  * a spinlock. During the event transfer loop (from kernel to
61  * user space) we could end up sleeping due a copy_to_user(), so
62  * we need a lock that will allow us to sleep. This lock is a
63  * mutex (ep->mtx). It is acquired during the event transfer loop,
64  * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
65  * Then we also need a global mutex to serialize eventpoll_release_file()
66  * and ep_free().
67  * This mutex is acquired by ep_free() during the epoll file
68  * cleanup path and it is also acquired by eventpoll_release_file()
69  * if a file has been pushed inside an epoll set and it is then
70  * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
71  * It is also acquired when inserting an epoll fd onto another epoll
72  * fd. We do this so that we walk the epoll tree and ensure that this
73  * insertion does not create a cycle of epoll file descriptors, which
74  * could lead to deadlock. We need a global mutex to prevent two
75  * simultaneous inserts (A into B and B into A) from racing and
76  * constructing a cycle without either insert observing that it is
77  * going to.
78  * It is necessary to acquire multiple "ep->mtx"es at once in the
79  * case when one epoll fd is added to another. In this case, we
80  * always acquire the locks in the order of nesting (i.e. after
81  * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
82  * before e2->mtx). Since we disallow cycles of epoll file
83  * descriptors, this ensures that the mutexes are well-ordered. In
84  * order to communicate this nesting to lockdep, when walking a tree
85  * of epoll file descriptors, we use the current recursion depth as
86  * the lockdep subkey.
87  * It is possible to drop the "ep->mtx" and to use the global
88  * mutex "epmutex" (together with "ep->wq.lock") to have it working,
89  * but having "ep->mtx" will make the interface more scalable.
90  * Events that require holding "epmutex" are very rare, while for
91  * normal operations the epoll private "ep->mtx" will guarantee
92  * a better scalability.
93  */
94 
95 /* Epoll private bits inside the event mask */
96 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
97 
98 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
99 
100 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
101 				EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
102 
103 /* Maximum number of nesting allowed inside epoll sets */
104 #define EP_MAX_NESTS 4
105 
106 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
107 
108 #define EP_UNACTIVE_PTR ((void *) -1L)
109 
110 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
111 
112 struct epoll_filefd {
113 	struct file *file;
114 	int fd;
115 } __packed;
116 
117 /*
118  * Structure used to track possible nested calls, for too deep recursions
119  * and loop cycles.
120  */
121 struct nested_call_node {
122 	struct list_head llink;
123 	void *cookie;
124 	void *ctx;
125 };
126 
127 /*
128  * This structure is used as collector for nested calls, to check for
129  * maximum recursion dept and loop cycles.
130  */
131 struct nested_calls {
132 	struct list_head tasks_call_list;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * Each file descriptor added to the eventpoll interface will
138  * have an entry of this type linked to the "rbr" RB tree.
139  * Avoid increasing the size of this struct, there can be many thousands
140  * of these on a server and we do not want this to take another cache line.
141  */
142 struct epitem {
143 	union {
144 		/* RB tree node links this structure to the eventpoll RB tree */
145 		struct rb_node rbn;
146 		/* Used to free the struct epitem */
147 		struct rcu_head rcu;
148 	};
149 
150 	/* List header used to link this structure to the eventpoll ready list */
151 	struct list_head rdllink;
152 
153 	/*
154 	 * Works together "struct eventpoll"->ovflist in keeping the
155 	 * single linked chain of items.
156 	 */
157 	struct epitem *next;
158 
159 	/* The file descriptor information this item refers to */
160 	struct epoll_filefd ffd;
161 
162 	/* Number of active wait queue attached to poll operations */
163 	int nwait;
164 
165 	/* List containing poll wait queues */
166 	struct list_head pwqlist;
167 
168 	/* The "container" of this item */
169 	struct eventpoll *ep;
170 
171 	/* List header used to link this item to the "struct file" items list */
172 	struct list_head fllink;
173 
174 	/* wakeup_source used when EPOLLWAKEUP is set */
175 	struct wakeup_source __rcu *ws;
176 
177 	/* The structure that describe the interested events and the source fd */
178 	struct epoll_event event;
179 };
180 
181 /*
182  * This structure is stored inside the "private_data" member of the file
183  * structure and represents the main data structure for the eventpoll
184  * interface.
185  *
186  * Access to it is protected by the lock inside wq.
187  */
188 struct eventpoll {
189 	/*
190 	 * This mutex is used to ensure that files are not removed
191 	 * while epoll is using them. This is held during the event
192 	 * collection loop, the file cleanup path, the epoll file exit
193 	 * code and the ctl operations.
194 	 */
195 	struct mutex mtx;
196 
197 	/* Wait queue used by sys_epoll_wait() */
198 	wait_queue_head_t wq;
199 
200 	/* Wait queue used by file->poll() */
201 	wait_queue_head_t poll_wait;
202 
203 	/* List of ready file descriptors */
204 	struct list_head rdllist;
205 
206 	/* RB tree root used to store monitored fd structs */
207 	struct rb_root_cached rbr;
208 
209 	/*
210 	 * This is a single linked list that chains all the "struct epitem" that
211 	 * happened while transferring ready events to userspace w/out
212 	 * holding ->wq.lock.
213 	 */
214 	struct epitem *ovflist;
215 
216 	/* wakeup_source used when ep_scan_ready_list is running */
217 	struct wakeup_source *ws;
218 
219 	/* The user that created the eventpoll descriptor */
220 	struct user_struct *user;
221 
222 	struct file *file;
223 
224 	/* used to optimize loop detection check */
225 	u64 gen;
226 
227 #ifdef CONFIG_NET_RX_BUSY_POLL
228 	/* used to track busy poll napi_id */
229 	unsigned int napi_id;
230 #endif
231 };
232 
233 /* Wait structure used by the poll hooks */
234 struct eppoll_entry {
235 	/* List header used to link this structure to the "struct epitem" */
236 	struct list_head llink;
237 
238 	/* The "base" pointer is set to the container "struct epitem" */
239 	struct epitem *base;
240 
241 	/*
242 	 * Wait queue item that will be linked to the target file wait
243 	 * queue head.
244 	 */
245 	wait_queue_entry_t wait;
246 
247 	/* The wait queue head that linked the "wait" wait queue item */
248 	wait_queue_head_t *whead;
249 };
250 
251 /* Wrapper struct used by poll queueing */
252 struct ep_pqueue {
253 	poll_table pt;
254 	struct epitem *epi;
255 };
256 
257 /* Used by the ep_send_events() function as callback private data */
258 struct ep_send_events_data {
259 	int maxevents;
260 	struct epoll_event __user *events;
261 	int res;
262 };
263 
264 /*
265  * Configuration options available inside /proc/sys/fs/epoll/
266  */
267 /* Maximum number of epoll watched descriptors, per user */
268 static long max_user_watches __read_mostly;
269 
270 /*
271  * This mutex is used to serialize ep_free() and eventpoll_release_file().
272  */
273 static DEFINE_MUTEX(epmutex);
274 
275 static u64 loop_check_gen = 0;
276 
277 /* Used to check for epoll file descriptor inclusion loops */
278 static struct nested_calls poll_loop_ncalls;
279 
280 /* Slab cache used to allocate "struct epitem" */
281 static struct kmem_cache *epi_cache __read_mostly;
282 
283 /* Slab cache used to allocate "struct eppoll_entry" */
284 static struct kmem_cache *pwq_cache __read_mostly;
285 
286 /*
287  * List of files with newly added links, where we may need to limit the number
288  * of emanating paths. Protected by the epmutex.
289  */
290 static LIST_HEAD(tfile_check_list);
291 
292 #ifdef CONFIG_SYSCTL
293 
294 #include <linux/sysctl.h>
295 
296 static long zero;
297 static long long_max = LONG_MAX;
298 
299 struct ctl_table epoll_table[] = {
300 	{
301 		.procname	= "max_user_watches",
302 		.data		= &max_user_watches,
303 		.maxlen		= sizeof(max_user_watches),
304 		.mode		= 0644,
305 		.proc_handler	= proc_doulongvec_minmax,
306 		.extra1		= &zero,
307 		.extra2		= &long_max,
308 	},
309 	{ }
310 };
311 #endif /* CONFIG_SYSCTL */
312 
313 static const struct file_operations eventpoll_fops;
314 
is_file_epoll(struct file * f)315 static inline int is_file_epoll(struct file *f)
316 {
317 	return f->f_op == &eventpoll_fops;
318 }
319 
320 /* Setup the structure that is used as key for the RB tree */
ep_set_ffd(struct epoll_filefd * ffd,struct file * file,int fd)321 static inline void ep_set_ffd(struct epoll_filefd *ffd,
322 			      struct file *file, int fd)
323 {
324 	ffd->file = file;
325 	ffd->fd = fd;
326 }
327 
328 /* Compare RB tree keys */
ep_cmp_ffd(struct epoll_filefd * p1,struct epoll_filefd * p2)329 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
330 			     struct epoll_filefd *p2)
331 {
332 	return (p1->file > p2->file ? +1:
333 	        (p1->file < p2->file ? -1 : p1->fd - p2->fd));
334 }
335 
336 /* Tells us if the item is currently linked */
ep_is_linked(struct epitem * epi)337 static inline int ep_is_linked(struct epitem *epi)
338 {
339 	return !list_empty(&epi->rdllink);
340 }
341 
ep_pwq_from_wait(wait_queue_entry_t * p)342 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
343 {
344 	return container_of(p, struct eppoll_entry, wait);
345 }
346 
347 /* Get the "struct epitem" from a wait queue pointer */
ep_item_from_wait(wait_queue_entry_t * p)348 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
349 {
350 	return container_of(p, struct eppoll_entry, wait)->base;
351 }
352 
353 /* Get the "struct epitem" from an epoll queue wrapper */
ep_item_from_epqueue(poll_table * p)354 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
355 {
356 	return container_of(p, struct ep_pqueue, pt)->epi;
357 }
358 
359 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
ep_op_has_event(int op)360 static inline int ep_op_has_event(int op)
361 {
362 	return op != EPOLL_CTL_DEL;
363 }
364 
365 /* Initialize the poll safe wake up structure */
ep_nested_calls_init(struct nested_calls * ncalls)366 static void ep_nested_calls_init(struct nested_calls *ncalls)
367 {
368 	INIT_LIST_HEAD(&ncalls->tasks_call_list);
369 	spin_lock_init(&ncalls->lock);
370 }
371 
372 /**
373  * ep_events_available - Checks if ready events might be available.
374  *
375  * @ep: Pointer to the eventpoll context.
376  *
377  * Returns: Returns a value different than zero if ready events are available,
378  *          or zero otherwise.
379  */
ep_events_available(struct eventpoll * ep)380 static inline int ep_events_available(struct eventpoll *ep)
381 {
382 	return !list_empty(&ep->rdllist) || ep->ovflist != EP_UNACTIVE_PTR;
383 }
384 
385 #ifdef CONFIG_NET_RX_BUSY_POLL
ep_busy_loop_end(void * p,unsigned long start_time)386 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 {
388 	struct eventpoll *ep = p;
389 
390 	return ep_events_available(ep) || busy_loop_timeout(start_time);
391 }
392 
393 /*
394  * Busy poll if globally on and supporting sockets found && no events,
395  * busy loop will return if need_resched or ep_events_available.
396  *
397  * we must do our busy polling with irqs enabled
398  */
ep_busy_loop(struct eventpoll * ep,int nonblock)399 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
400 {
401 	unsigned int napi_id = READ_ONCE(ep->napi_id);
402 
403 	if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
404 		napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
405 }
406 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)407 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
408 {
409 	if (ep->napi_id)
410 		ep->napi_id = 0;
411 }
412 
413 /*
414  * Set epoll busy poll NAPI ID from sk.
415  */
ep_set_busy_poll_napi_id(struct epitem * epi)416 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
417 {
418 	struct eventpoll *ep;
419 	unsigned int napi_id;
420 	struct socket *sock;
421 	struct sock *sk;
422 	int err;
423 
424 	if (!net_busy_loop_on())
425 		return;
426 
427 	sock = sock_from_file(epi->ffd.file, &err);
428 	if (!sock)
429 		return;
430 
431 	sk = sock->sk;
432 	if (!sk)
433 		return;
434 
435 	napi_id = READ_ONCE(sk->sk_napi_id);
436 	ep = epi->ep;
437 
438 	/* Non-NAPI IDs can be rejected
439 	 *	or
440 	 * Nothing to do if we already have this ID
441 	 */
442 	if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
443 		return;
444 
445 	/* record NAPI ID for use in next busy poll */
446 	ep->napi_id = napi_id;
447 }
448 
449 #else
450 
ep_busy_loop(struct eventpoll * ep,int nonblock)451 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
452 {
453 }
454 
ep_reset_busy_poll_napi_id(struct eventpoll * ep)455 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
456 {
457 }
458 
ep_set_busy_poll_napi_id(struct epitem * epi)459 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
460 {
461 }
462 
463 #endif /* CONFIG_NET_RX_BUSY_POLL */
464 
465 /**
466  * ep_call_nested - Perform a bound (possibly) nested call, by checking
467  *                  that the recursion limit is not exceeded, and that
468  *                  the same nested call (by the meaning of same cookie) is
469  *                  no re-entered.
470  *
471  * @ncalls: Pointer to the nested_calls structure to be used for this call.
472  * @max_nests: Maximum number of allowed nesting calls.
473  * @nproc: Nested call core function pointer.
474  * @priv: Opaque data to be passed to the @nproc callback.
475  * @cookie: Cookie to be used to identify this nested call.
476  * @ctx: This instance context.
477  *
478  * Returns: Returns the code returned by the @nproc callback, or -1 if
479  *          the maximum recursion limit has been exceeded.
480  */
ep_call_nested(struct nested_calls * ncalls,int max_nests,int (* nproc)(void *,void *,int),void * priv,void * cookie,void * ctx)481 static int ep_call_nested(struct nested_calls *ncalls, int max_nests,
482 			  int (*nproc)(void *, void *, int), void *priv,
483 			  void *cookie, void *ctx)
484 {
485 	int error, call_nests = 0;
486 	unsigned long flags;
487 	struct list_head *lsthead = &ncalls->tasks_call_list;
488 	struct nested_call_node *tncur;
489 	struct nested_call_node tnode;
490 
491 	spin_lock_irqsave(&ncalls->lock, flags);
492 
493 	/*
494 	 * Try to see if the current task is already inside this wakeup call.
495 	 * We use a list here, since the population inside this set is always
496 	 * very much limited.
497 	 */
498 	list_for_each_entry(tncur, lsthead, llink) {
499 		if (tncur->ctx == ctx &&
500 		    (tncur->cookie == cookie || ++call_nests > max_nests)) {
501 			/*
502 			 * Ops ... loop detected or maximum nest level reached.
503 			 * We abort this wake by breaking the cycle itself.
504 			 */
505 			error = -1;
506 			goto out_unlock;
507 		}
508 	}
509 
510 	/* Add the current task and cookie to the list */
511 	tnode.ctx = ctx;
512 	tnode.cookie = cookie;
513 	list_add(&tnode.llink, lsthead);
514 
515 	spin_unlock_irqrestore(&ncalls->lock, flags);
516 
517 	/* Call the nested function */
518 	error = (*nproc)(priv, cookie, call_nests);
519 
520 	/* Remove the current task from the list */
521 	spin_lock_irqsave(&ncalls->lock, flags);
522 	list_del(&tnode.llink);
523 out_unlock:
524 	spin_unlock_irqrestore(&ncalls->lock, flags);
525 
526 	return error;
527 }
528 
529 /*
530  * As described in commit 0ccf831cb lockdep: annotate epoll
531  * the use of wait queues used by epoll is done in a very controlled
532  * manner. Wake ups can nest inside each other, but are never done
533  * with the same locking. For example:
534  *
535  *   dfd = socket(...);
536  *   efd1 = epoll_create();
537  *   efd2 = epoll_create();
538  *   epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
539  *   epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
540  *
541  * When a packet arrives to the device underneath "dfd", the net code will
542  * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
543  * callback wakeup entry on that queue, and the wake_up() performed by the
544  * "dfd" net code will end up in ep_poll_callback(). At this point epoll
545  * (efd1) notices that it may have some event ready, so it needs to wake up
546  * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
547  * that ends up in another wake_up(), after having checked about the
548  * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
549  * avoid stack blasting.
550  *
551  * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
552  * this special case of epoll.
553  */
554 #ifdef CONFIG_DEBUG_LOCK_ALLOC
555 
556 static struct nested_calls poll_safewake_ncalls;
557 
ep_poll_wakeup_proc(void * priv,void * cookie,int call_nests)558 static int ep_poll_wakeup_proc(void *priv, void *cookie, int call_nests)
559 {
560 	unsigned long flags;
561 	wait_queue_head_t *wqueue = (wait_queue_head_t *)cookie;
562 
563 	spin_lock_irqsave_nested(&wqueue->lock, flags, call_nests + 1);
564 	wake_up_locked_poll(wqueue, EPOLLIN);
565 	spin_unlock_irqrestore(&wqueue->lock, flags);
566 
567 	return 0;
568 }
569 
ep_poll_safewake(wait_queue_head_t * wq)570 static void ep_poll_safewake(wait_queue_head_t *wq)
571 {
572 	int this_cpu = get_cpu();
573 
574 	ep_call_nested(&poll_safewake_ncalls, EP_MAX_NESTS,
575 		       ep_poll_wakeup_proc, NULL, wq, (void *) (long) this_cpu);
576 
577 	put_cpu();
578 }
579 
580 #else
581 
ep_poll_safewake(wait_queue_head_t * wq)582 static void ep_poll_safewake(wait_queue_head_t *wq)
583 {
584 	wake_up_poll(wq, EPOLLIN);
585 }
586 
587 #endif
588 
ep_remove_wait_queue(struct eppoll_entry * pwq)589 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
590 {
591 	wait_queue_head_t *whead;
592 
593 	rcu_read_lock();
594 	/*
595 	 * If it is cleared by POLLFREE, it should be rcu-safe.
596 	 * If we read NULL we need a barrier paired with
597 	 * smp_store_release() in ep_poll_callback(), otherwise
598 	 * we rely on whead->lock.
599 	 */
600 	whead = smp_load_acquire(&pwq->whead);
601 	if (whead)
602 		remove_wait_queue(whead, &pwq->wait);
603 	rcu_read_unlock();
604 }
605 
606 /*
607  * This function unregisters poll callbacks from the associated file
608  * descriptor.  Must be called with "mtx" held (or "epmutex" if called from
609  * ep_free).
610  */
ep_unregister_pollwait(struct eventpoll * ep,struct epitem * epi)611 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
612 {
613 	struct list_head *lsthead = &epi->pwqlist;
614 	struct eppoll_entry *pwq;
615 
616 	while (!list_empty(lsthead)) {
617 		pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
618 
619 		list_del(&pwq->llink);
620 		ep_remove_wait_queue(pwq);
621 		kmem_cache_free(pwq_cache, pwq);
622 	}
623 }
624 
625 /* call only when ep->mtx is held */
ep_wakeup_source(struct epitem * epi)626 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
627 {
628 	return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
629 }
630 
631 /* call only when ep->mtx is held */
ep_pm_stay_awake(struct epitem * epi)632 static inline void ep_pm_stay_awake(struct epitem *epi)
633 {
634 	struct wakeup_source *ws = ep_wakeup_source(epi);
635 
636 	if (ws)
637 		__pm_stay_awake(ws);
638 }
639 
ep_has_wakeup_source(struct epitem * epi)640 static inline bool ep_has_wakeup_source(struct epitem *epi)
641 {
642 	return rcu_access_pointer(epi->ws) ? true : false;
643 }
644 
645 /* call when ep->mtx cannot be held (ep_poll_callback) */
ep_pm_stay_awake_rcu(struct epitem * epi)646 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
647 {
648 	struct wakeup_source *ws;
649 
650 	rcu_read_lock();
651 	ws = rcu_dereference(epi->ws);
652 	if (ws)
653 		__pm_stay_awake(ws);
654 	rcu_read_unlock();
655 }
656 
657 /**
658  * ep_scan_ready_list - Scans the ready list in a way that makes possible for
659  *                      the scan code, to call f_op->poll(). Also allows for
660  *                      O(NumReady) performance.
661  *
662  * @ep: Pointer to the epoll private data structure.
663  * @sproc: Pointer to the scan callback.
664  * @priv: Private opaque data passed to the @sproc callback.
665  * @depth: The current depth of recursive f_op->poll calls.
666  * @ep_locked: caller already holds ep->mtx
667  *
668  * Returns: The same integer error code returned by the @sproc callback.
669  */
ep_scan_ready_list(struct eventpoll * ep,__poll_t (* sproc)(struct eventpoll *,struct list_head *,void *),void * priv,int depth,bool ep_locked)670 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
671 			      __poll_t (*sproc)(struct eventpoll *,
672 					   struct list_head *, void *),
673 			      void *priv, int depth, bool ep_locked)
674 {
675 	__poll_t res;
676 	int pwake = 0;
677 	struct epitem *epi, *nepi;
678 	LIST_HEAD(txlist);
679 
680 	lockdep_assert_irqs_enabled();
681 
682 	/*
683 	 * We need to lock this because we could be hit by
684 	 * eventpoll_release_file() and epoll_ctl().
685 	 */
686 
687 	if (!ep_locked)
688 		mutex_lock_nested(&ep->mtx, depth);
689 
690 	/*
691 	 * Steal the ready list, and re-init the original one to the
692 	 * empty list. Also, set ep->ovflist to NULL so that events
693 	 * happening while looping w/out locks, are not lost. We cannot
694 	 * have the poll callback to queue directly on ep->rdllist,
695 	 * because we want the "sproc" callback to be able to do it
696 	 * in a lockless way.
697 	 */
698 	spin_lock_irq(&ep->wq.lock);
699 	list_splice_init(&ep->rdllist, &txlist);
700 	ep->ovflist = NULL;
701 	spin_unlock_irq(&ep->wq.lock);
702 
703 	/*
704 	 * Now call the callback function.
705 	 */
706 	res = (*sproc)(ep, &txlist, priv);
707 
708 	spin_lock_irq(&ep->wq.lock);
709 	/*
710 	 * During the time we spent inside the "sproc" callback, some
711 	 * other events might have been queued by the poll callback.
712 	 * We re-insert them inside the main ready-list here.
713 	 */
714 	for (nepi = ep->ovflist; (epi = nepi) != NULL;
715 	     nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
716 		/*
717 		 * We need to check if the item is already in the list.
718 		 * During the "sproc" callback execution time, items are
719 		 * queued into ->ovflist but the "txlist" might already
720 		 * contain them, and the list_splice() below takes care of them.
721 		 */
722 		if (!ep_is_linked(epi)) {
723 			list_add_tail(&epi->rdllink, &ep->rdllist);
724 			ep_pm_stay_awake(epi);
725 		}
726 	}
727 	/*
728 	 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
729 	 * releasing the lock, events will be queued in the normal way inside
730 	 * ep->rdllist.
731 	 */
732 	ep->ovflist = EP_UNACTIVE_PTR;
733 
734 	/*
735 	 * Quickly re-inject items left on "txlist".
736 	 */
737 	list_splice(&txlist, &ep->rdllist);
738 	__pm_relax(ep->ws);
739 
740 	if (!list_empty(&ep->rdllist)) {
741 		/*
742 		 * Wake up (if active) both the eventpoll wait list and
743 		 * the ->poll() wait list (delayed after we release the lock).
744 		 */
745 		if (waitqueue_active(&ep->wq))
746 			wake_up_locked(&ep->wq);
747 		if (waitqueue_active(&ep->poll_wait))
748 			pwake++;
749 	}
750 	spin_unlock_irq(&ep->wq.lock);
751 
752 	if (!ep_locked)
753 		mutex_unlock(&ep->mtx);
754 
755 	/* We have to call this outside the lock */
756 	if (pwake)
757 		ep_poll_safewake(&ep->poll_wait);
758 
759 	return res;
760 }
761 
epi_rcu_free(struct rcu_head * head)762 static void epi_rcu_free(struct rcu_head *head)
763 {
764 	struct epitem *epi = container_of(head, struct epitem, rcu);
765 	kmem_cache_free(epi_cache, epi);
766 }
767 
768 /*
769  * Removes a "struct epitem" from the eventpoll RB tree and deallocates
770  * all the associated resources. Must be called with "mtx" held.
771  */
ep_remove(struct eventpoll * ep,struct epitem * epi)772 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
773 {
774 	struct file *file = epi->ffd.file;
775 
776 	lockdep_assert_irqs_enabled();
777 
778 	/*
779 	 * Removes poll wait queue hooks.
780 	 */
781 	ep_unregister_pollwait(ep, epi);
782 
783 	/* Remove the current item from the list of epoll hooks */
784 	spin_lock(&file->f_lock);
785 	list_del_rcu(&epi->fllink);
786 	spin_unlock(&file->f_lock);
787 
788 	rb_erase_cached(&epi->rbn, &ep->rbr);
789 
790 	spin_lock_irq(&ep->wq.lock);
791 	if (ep_is_linked(epi))
792 		list_del_init(&epi->rdllink);
793 	spin_unlock_irq(&ep->wq.lock);
794 
795 	wakeup_source_unregister(ep_wakeup_source(epi));
796 	/*
797 	 * At this point it is safe to free the eventpoll item. Use the union
798 	 * field epi->rcu, since we are trying to minimize the size of
799 	 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
800 	 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
801 	 * use of the rbn field.
802 	 */
803 	call_rcu(&epi->rcu, epi_rcu_free);
804 
805 	atomic_long_dec(&ep->user->epoll_watches);
806 
807 	return 0;
808 }
809 
ep_free(struct eventpoll * ep)810 static void ep_free(struct eventpoll *ep)
811 {
812 	struct rb_node *rbp;
813 	struct epitem *epi;
814 
815 	/* We need to release all tasks waiting for these file */
816 	if (waitqueue_active(&ep->poll_wait))
817 		ep_poll_safewake(&ep->poll_wait);
818 
819 	/*
820 	 * We need to lock this because we could be hit by
821 	 * eventpoll_release_file() while we're freeing the "struct eventpoll".
822 	 * We do not need to hold "ep->mtx" here because the epoll file
823 	 * is on the way to be removed and no one has references to it
824 	 * anymore. The only hit might come from eventpoll_release_file() but
825 	 * holding "epmutex" is sufficient here.
826 	 */
827 	mutex_lock(&epmutex);
828 
829 	/*
830 	 * Walks through the whole tree by unregistering poll callbacks.
831 	 */
832 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
833 		epi = rb_entry(rbp, struct epitem, rbn);
834 
835 		ep_unregister_pollwait(ep, epi);
836 		cond_resched();
837 	}
838 
839 	/*
840 	 * Walks through the whole tree by freeing each "struct epitem". At this
841 	 * point we are sure no poll callbacks will be lingering around, and also by
842 	 * holding "epmutex" we can be sure that no file cleanup code will hit
843 	 * us during this operation. So we can avoid the lock on "ep->wq.lock".
844 	 * We do not need to lock ep->mtx, either, we only do it to prevent
845 	 * a lockdep warning.
846 	 */
847 	mutex_lock(&ep->mtx);
848 	while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
849 		epi = rb_entry(rbp, struct epitem, rbn);
850 		ep_remove(ep, epi);
851 		cond_resched();
852 	}
853 	mutex_unlock(&ep->mtx);
854 
855 	mutex_unlock(&epmutex);
856 	mutex_destroy(&ep->mtx);
857 	free_uid(ep->user);
858 	wakeup_source_unregister(ep->ws);
859 	kfree(ep);
860 }
861 
ep_eventpoll_release(struct inode * inode,struct file * file)862 static int ep_eventpoll_release(struct inode *inode, struct file *file)
863 {
864 	struct eventpoll *ep = file->private_data;
865 
866 	if (ep)
867 		ep_free(ep);
868 
869 	return 0;
870 }
871 
872 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
873 			       void *priv);
874 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
875 				 poll_table *pt);
876 
877 /*
878  * Differs from ep_eventpoll_poll() in that internal callers already have
879  * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
880  * is correctly annotated.
881  */
ep_item_poll(const struct epitem * epi,poll_table * pt,int depth)882 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
883 				 int depth)
884 {
885 	struct eventpoll *ep;
886 	bool locked;
887 
888 	pt->_key = epi->event.events;
889 	if (!is_file_epoll(epi->ffd.file))
890 		return vfs_poll(epi->ffd.file, pt) & epi->event.events;
891 
892 	ep = epi->ffd.file->private_data;
893 	poll_wait(epi->ffd.file, &ep->poll_wait, pt);
894 	locked = pt && (pt->_qproc == ep_ptable_queue_proc);
895 
896 	return ep_scan_ready_list(epi->ffd.file->private_data,
897 				  ep_read_events_proc, &depth, depth,
898 				  locked) & epi->event.events;
899 }
900 
ep_read_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)901 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
902 			       void *priv)
903 {
904 	struct epitem *epi, *tmp;
905 	poll_table pt;
906 	int depth = *(int *)priv;
907 
908 	init_poll_funcptr(&pt, NULL);
909 	depth++;
910 
911 	list_for_each_entry_safe(epi, tmp, head, rdllink) {
912 		if (ep_item_poll(epi, &pt, depth)) {
913 			return EPOLLIN | EPOLLRDNORM;
914 		} else {
915 			/*
916 			 * Item has been dropped into the ready list by the poll
917 			 * callback, but it's not actually ready, as far as
918 			 * caller requested events goes. We can remove it here.
919 			 */
920 			__pm_relax(ep_wakeup_source(epi));
921 			list_del_init(&epi->rdllink);
922 		}
923 	}
924 
925 	return 0;
926 }
927 
ep_eventpoll_poll(struct file * file,poll_table * wait)928 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
929 {
930 	struct eventpoll *ep = file->private_data;
931 	int depth = 0;
932 
933 	/* Insert inside our poll wait queue */
934 	poll_wait(file, &ep->poll_wait, wait);
935 
936 	/*
937 	 * Proceed to find out if wanted events are really available inside
938 	 * the ready list.
939 	 */
940 	return ep_scan_ready_list(ep, ep_read_events_proc,
941 				  &depth, depth, false);
942 }
943 
944 #ifdef CONFIG_PROC_FS
ep_show_fdinfo(struct seq_file * m,struct file * f)945 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
946 {
947 	struct eventpoll *ep = f->private_data;
948 	struct rb_node *rbp;
949 
950 	mutex_lock(&ep->mtx);
951 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
952 		struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
953 		struct inode *inode = file_inode(epi->ffd.file);
954 
955 		seq_printf(m, "tfd: %8d events: %8x data: %16llx "
956 			   " pos:%lli ino:%lx sdev:%x\n",
957 			   epi->ffd.fd, epi->event.events,
958 			   (long long)epi->event.data,
959 			   (long long)epi->ffd.file->f_pos,
960 			   inode->i_ino, inode->i_sb->s_dev);
961 		if (seq_has_overflowed(m))
962 			break;
963 	}
964 	mutex_unlock(&ep->mtx);
965 }
966 #endif
967 
968 /* File callbacks that implement the eventpoll file behaviour */
969 static const struct file_operations eventpoll_fops = {
970 #ifdef CONFIG_PROC_FS
971 	.show_fdinfo	= ep_show_fdinfo,
972 #endif
973 	.release	= ep_eventpoll_release,
974 	.poll		= ep_eventpoll_poll,
975 	.llseek		= noop_llseek,
976 };
977 
978 /*
979  * This is called from eventpoll_release() to unlink files from the eventpoll
980  * interface. We need to have this facility to cleanup correctly files that are
981  * closed without being removed from the eventpoll interface.
982  */
eventpoll_release_file(struct file * file)983 void eventpoll_release_file(struct file *file)
984 {
985 	struct eventpoll *ep;
986 	struct epitem *epi, *next;
987 
988 	/*
989 	 * We don't want to get "file->f_lock" because it is not
990 	 * necessary. It is not necessary because we're in the "struct file"
991 	 * cleanup path, and this means that no one is using this file anymore.
992 	 * So, for example, epoll_ctl() cannot hit here since if we reach this
993 	 * point, the file counter already went to zero and fget() would fail.
994 	 * The only hit might come from ep_free() but by holding the mutex
995 	 * will correctly serialize the operation. We do need to acquire
996 	 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
997 	 * from anywhere but ep_free().
998 	 *
999 	 * Besides, ep_remove() acquires the lock, so we can't hold it here.
1000 	 */
1001 	mutex_lock(&epmutex);
1002 	list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
1003 		ep = epi->ep;
1004 		mutex_lock_nested(&ep->mtx, 0);
1005 		ep_remove(ep, epi);
1006 		mutex_unlock(&ep->mtx);
1007 	}
1008 	mutex_unlock(&epmutex);
1009 }
1010 
ep_alloc(struct eventpoll ** pep)1011 static int ep_alloc(struct eventpoll **pep)
1012 {
1013 	int error;
1014 	struct user_struct *user;
1015 	struct eventpoll *ep;
1016 
1017 	user = get_current_user();
1018 	error = -ENOMEM;
1019 	ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1020 	if (unlikely(!ep))
1021 		goto free_uid;
1022 
1023 	mutex_init(&ep->mtx);
1024 	init_waitqueue_head(&ep->wq);
1025 	init_waitqueue_head(&ep->poll_wait);
1026 	INIT_LIST_HEAD(&ep->rdllist);
1027 	ep->rbr = RB_ROOT_CACHED;
1028 	ep->ovflist = EP_UNACTIVE_PTR;
1029 	ep->user = user;
1030 
1031 	*pep = ep;
1032 
1033 	return 0;
1034 
1035 free_uid:
1036 	free_uid(user);
1037 	return error;
1038 }
1039 
1040 /*
1041  * Search the file inside the eventpoll tree. The RB tree operations
1042  * are protected by the "mtx" mutex, and ep_find() must be called with
1043  * "mtx" held.
1044  */
ep_find(struct eventpoll * ep,struct file * file,int fd)1045 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1046 {
1047 	int kcmp;
1048 	struct rb_node *rbp;
1049 	struct epitem *epi, *epir = NULL;
1050 	struct epoll_filefd ffd;
1051 
1052 	ep_set_ffd(&ffd, file, fd);
1053 	for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1054 		epi = rb_entry(rbp, struct epitem, rbn);
1055 		kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1056 		if (kcmp > 0)
1057 			rbp = rbp->rb_right;
1058 		else if (kcmp < 0)
1059 			rbp = rbp->rb_left;
1060 		else {
1061 			epir = epi;
1062 			break;
1063 		}
1064 	}
1065 
1066 	return epir;
1067 }
1068 
1069 #ifdef CONFIG_CHECKPOINT_RESTORE
ep_find_tfd(struct eventpoll * ep,int tfd,unsigned long toff)1070 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1071 {
1072 	struct rb_node *rbp;
1073 	struct epitem *epi;
1074 
1075 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1076 		epi = rb_entry(rbp, struct epitem, rbn);
1077 		if (epi->ffd.fd == tfd) {
1078 			if (toff == 0)
1079 				return epi;
1080 			else
1081 				toff--;
1082 		}
1083 		cond_resched();
1084 	}
1085 
1086 	return NULL;
1087 }
1088 
get_epoll_tfile_raw_ptr(struct file * file,int tfd,unsigned long toff)1089 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1090 				     unsigned long toff)
1091 {
1092 	struct file *file_raw;
1093 	struct eventpoll *ep;
1094 	struct epitem *epi;
1095 
1096 	if (!is_file_epoll(file))
1097 		return ERR_PTR(-EINVAL);
1098 
1099 	ep = file->private_data;
1100 
1101 	mutex_lock(&ep->mtx);
1102 	epi = ep_find_tfd(ep, tfd, toff);
1103 	if (epi)
1104 		file_raw = epi->ffd.file;
1105 	else
1106 		file_raw = ERR_PTR(-ENOENT);
1107 	mutex_unlock(&ep->mtx);
1108 
1109 	return file_raw;
1110 }
1111 #endif /* CONFIG_CHECKPOINT_RESTORE */
1112 
1113 /*
1114  * This is the callback that is passed to the wait queue wakeup
1115  * mechanism. It is called by the stored file descriptors when they
1116  * have events to report.
1117  */
ep_poll_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1118 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1119 {
1120 	int pwake = 0;
1121 	unsigned long flags;
1122 	struct epitem *epi = ep_item_from_wait(wait);
1123 	struct eventpoll *ep = epi->ep;
1124 	__poll_t pollflags = key_to_poll(key);
1125 	int ewake = 0;
1126 
1127 	spin_lock_irqsave(&ep->wq.lock, flags);
1128 
1129 	ep_set_busy_poll_napi_id(epi);
1130 
1131 	/*
1132 	 * If the event mask does not contain any poll(2) event, we consider the
1133 	 * descriptor to be disabled. This condition is likely the effect of the
1134 	 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1135 	 * until the next EPOLL_CTL_MOD will be issued.
1136 	 */
1137 	if (!(epi->event.events & ~EP_PRIVATE_BITS))
1138 		goto out_unlock;
1139 
1140 	/*
1141 	 * Check the events coming with the callback. At this stage, not
1142 	 * every device reports the events in the "key" parameter of the
1143 	 * callback. We need to be able to handle both cases here, hence the
1144 	 * test for "key" != NULL before the event match test.
1145 	 */
1146 	if (pollflags && !(pollflags & epi->event.events))
1147 		goto out_unlock;
1148 
1149 	/*
1150 	 * If we are transferring events to userspace, we can hold no locks
1151 	 * (because we're accessing user memory, and because of linux f_op->poll()
1152 	 * semantics). All the events that happen during that period of time are
1153 	 * chained in ep->ovflist and requeued later on.
1154 	 */
1155 	if (ep->ovflist != EP_UNACTIVE_PTR) {
1156 		if (epi->next == EP_UNACTIVE_PTR) {
1157 			epi->next = ep->ovflist;
1158 			ep->ovflist = epi;
1159 			if (epi->ws) {
1160 				/*
1161 				 * Activate ep->ws since epi->ws may get
1162 				 * deactivated at any time.
1163 				 */
1164 				__pm_stay_awake(ep->ws);
1165 			}
1166 
1167 		}
1168 		goto out_unlock;
1169 	}
1170 
1171 	/* If this file is already in the ready list we exit soon */
1172 	if (!ep_is_linked(epi)) {
1173 		list_add_tail(&epi->rdllink, &ep->rdllist);
1174 		ep_pm_stay_awake_rcu(epi);
1175 	}
1176 
1177 	/*
1178 	 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1179 	 * wait list.
1180 	 */
1181 	if (waitqueue_active(&ep->wq)) {
1182 		if ((epi->event.events & EPOLLEXCLUSIVE) &&
1183 					!(pollflags & POLLFREE)) {
1184 			switch (pollflags & EPOLLINOUT_BITS) {
1185 			case EPOLLIN:
1186 				if (epi->event.events & EPOLLIN)
1187 					ewake = 1;
1188 				break;
1189 			case EPOLLOUT:
1190 				if (epi->event.events & EPOLLOUT)
1191 					ewake = 1;
1192 				break;
1193 			case 0:
1194 				ewake = 1;
1195 				break;
1196 			}
1197 		}
1198 		wake_up_locked(&ep->wq);
1199 	}
1200 	if (waitqueue_active(&ep->poll_wait))
1201 		pwake++;
1202 
1203 out_unlock:
1204 	spin_unlock_irqrestore(&ep->wq.lock, flags);
1205 
1206 	/* We have to call this outside the lock */
1207 	if (pwake)
1208 		ep_poll_safewake(&ep->poll_wait);
1209 
1210 	if (!(epi->event.events & EPOLLEXCLUSIVE))
1211 		ewake = 1;
1212 
1213 	if (pollflags & POLLFREE) {
1214 		/*
1215 		 * If we race with ep_remove_wait_queue() it can miss
1216 		 * ->whead = NULL and do another remove_wait_queue() after
1217 		 * us, so we can't use __remove_wait_queue().
1218 		 */
1219 		list_del_init(&wait->entry);
1220 		/*
1221 		 * ->whead != NULL protects us from the race with ep_free()
1222 		 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1223 		 * held by the caller. Once we nullify it, nothing protects
1224 		 * ep/epi or even wait.
1225 		 */
1226 		smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1227 	}
1228 
1229 	return ewake;
1230 }
1231 
1232 /*
1233  * This is the callback that is used to add our wait queue to the
1234  * target file wakeup lists.
1235  */
ep_ptable_queue_proc(struct file * file,wait_queue_head_t * whead,poll_table * pt)1236 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1237 				 poll_table *pt)
1238 {
1239 	struct epitem *epi = ep_item_from_epqueue(pt);
1240 	struct eppoll_entry *pwq;
1241 
1242 	if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1243 		init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1244 		pwq->whead = whead;
1245 		pwq->base = epi;
1246 		if (epi->event.events & EPOLLEXCLUSIVE)
1247 			add_wait_queue_exclusive(whead, &pwq->wait);
1248 		else
1249 			add_wait_queue(whead, &pwq->wait);
1250 		list_add_tail(&pwq->llink, &epi->pwqlist);
1251 		epi->nwait++;
1252 	} else {
1253 		/* We have to signal that an error occurred */
1254 		epi->nwait = -1;
1255 	}
1256 }
1257 
ep_rbtree_insert(struct eventpoll * ep,struct epitem * epi)1258 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1259 {
1260 	int kcmp;
1261 	struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1262 	struct epitem *epic;
1263 	bool leftmost = true;
1264 
1265 	while (*p) {
1266 		parent = *p;
1267 		epic = rb_entry(parent, struct epitem, rbn);
1268 		kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1269 		if (kcmp > 0) {
1270 			p = &parent->rb_right;
1271 			leftmost = false;
1272 		} else
1273 			p = &parent->rb_left;
1274 	}
1275 	rb_link_node(&epi->rbn, parent, p);
1276 	rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1277 }
1278 
1279 
1280 
1281 #define PATH_ARR_SIZE 5
1282 /*
1283  * These are the number paths of length 1 to 5, that we are allowing to emanate
1284  * from a single file of interest. For example, we allow 1000 paths of length
1285  * 1, to emanate from each file of interest. This essentially represents the
1286  * potential wakeup paths, which need to be limited in order to avoid massive
1287  * uncontrolled wakeup storms. The common use case should be a single ep which
1288  * is connected to n file sources. In this case each file source has 1 path
1289  * of length 1. Thus, the numbers below should be more than sufficient. These
1290  * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1291  * and delete can't add additional paths. Protected by the epmutex.
1292  */
1293 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1294 static int path_count[PATH_ARR_SIZE];
1295 
path_count_inc(int nests)1296 static int path_count_inc(int nests)
1297 {
1298 	/* Allow an arbitrary number of depth 1 paths */
1299 	if (nests == 0)
1300 		return 0;
1301 
1302 	if (++path_count[nests] > path_limits[nests])
1303 		return -1;
1304 	return 0;
1305 }
1306 
path_count_init(void)1307 static void path_count_init(void)
1308 {
1309 	int i;
1310 
1311 	for (i = 0; i < PATH_ARR_SIZE; i++)
1312 		path_count[i] = 0;
1313 }
1314 
reverse_path_check_proc(void * priv,void * cookie,int call_nests)1315 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1316 {
1317 	int error = 0;
1318 	struct file *file = priv;
1319 	struct file *child_file;
1320 	struct epitem *epi;
1321 
1322 	/* CTL_DEL can remove links here, but that can't increase our count */
1323 	rcu_read_lock();
1324 	list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1325 		child_file = epi->ep->file;
1326 		if (is_file_epoll(child_file)) {
1327 			if (list_empty(&child_file->f_ep_links)) {
1328 				if (path_count_inc(call_nests)) {
1329 					error = -1;
1330 					break;
1331 				}
1332 			} else {
1333 				error = ep_call_nested(&poll_loop_ncalls,
1334 							EP_MAX_NESTS,
1335 							reverse_path_check_proc,
1336 							child_file, child_file,
1337 							current);
1338 			}
1339 			if (error != 0)
1340 				break;
1341 		} else {
1342 			printk(KERN_ERR "reverse_path_check_proc: "
1343 				"file is not an ep!\n");
1344 		}
1345 	}
1346 	rcu_read_unlock();
1347 	return error;
1348 }
1349 
1350 /**
1351  * reverse_path_check - The tfile_check_list is list of file *, which have
1352  *                      links that are proposed to be newly added. We need to
1353  *                      make sure that those added links don't add too many
1354  *                      paths such that we will spend all our time waking up
1355  *                      eventpoll objects.
1356  *
1357  * Returns: Returns zero if the proposed links don't create too many paths,
1358  *	    -1 otherwise.
1359  */
reverse_path_check(void)1360 static int reverse_path_check(void)
1361 {
1362 	int error = 0;
1363 	struct file *current_file;
1364 
1365 	/* let's call this for all tfiles */
1366 	list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1367 		path_count_init();
1368 		error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1369 					reverse_path_check_proc, current_file,
1370 					current_file, current);
1371 		if (error)
1372 			break;
1373 	}
1374 	return error;
1375 }
1376 
ep_create_wakeup_source(struct epitem * epi)1377 static int ep_create_wakeup_source(struct epitem *epi)
1378 {
1379 	struct name_snapshot n;
1380 	struct wakeup_source *ws;
1381 
1382 	if (!epi->ep->ws) {
1383 		epi->ep->ws = wakeup_source_register("eventpoll");
1384 		if (!epi->ep->ws)
1385 			return -ENOMEM;
1386 	}
1387 
1388 	take_dentry_name_snapshot(&n, epi->ffd.file->f_path.dentry);
1389 	ws = wakeup_source_register(n.name);
1390 	release_dentry_name_snapshot(&n);
1391 
1392 	if (!ws)
1393 		return -ENOMEM;
1394 	rcu_assign_pointer(epi->ws, ws);
1395 
1396 	return 0;
1397 }
1398 
1399 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
ep_destroy_wakeup_source(struct epitem * epi)1400 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1401 {
1402 	struct wakeup_source *ws = ep_wakeup_source(epi);
1403 
1404 	RCU_INIT_POINTER(epi->ws, NULL);
1405 
1406 	/*
1407 	 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1408 	 * used internally by wakeup_source_remove, too (called by
1409 	 * wakeup_source_unregister), so we cannot use call_rcu
1410 	 */
1411 	synchronize_rcu();
1412 	wakeup_source_unregister(ws);
1413 }
1414 
1415 /*
1416  * Must be called with "mtx" held.
1417  */
ep_insert(struct eventpoll * ep,const struct epoll_event * event,struct file * tfile,int fd,int full_check)1418 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1419 		     struct file *tfile, int fd, int full_check)
1420 {
1421 	int error, pwake = 0;
1422 	__poll_t revents;
1423 	long user_watches;
1424 	struct epitem *epi;
1425 	struct ep_pqueue epq;
1426 
1427 	lockdep_assert_irqs_enabled();
1428 
1429 	user_watches = atomic_long_read(&ep->user->epoll_watches);
1430 	if (unlikely(user_watches >= max_user_watches))
1431 		return -ENOSPC;
1432 	if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1433 		return -ENOMEM;
1434 
1435 	/* Item initialization follow here ... */
1436 	INIT_LIST_HEAD(&epi->rdllink);
1437 	INIT_LIST_HEAD(&epi->fllink);
1438 	INIT_LIST_HEAD(&epi->pwqlist);
1439 	epi->ep = ep;
1440 	ep_set_ffd(&epi->ffd, tfile, fd);
1441 	epi->event = *event;
1442 	epi->nwait = 0;
1443 	epi->next = EP_UNACTIVE_PTR;
1444 	if (epi->event.events & EPOLLWAKEUP) {
1445 		error = ep_create_wakeup_source(epi);
1446 		if (error)
1447 			goto error_create_wakeup_source;
1448 	} else {
1449 		RCU_INIT_POINTER(epi->ws, NULL);
1450 	}
1451 
1452 	/* Add the current item to the list of active epoll hook for this file */
1453 	spin_lock(&tfile->f_lock);
1454 	list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1455 	spin_unlock(&tfile->f_lock);
1456 
1457 	/*
1458 	 * Add the current item to the RB tree. All RB tree operations are
1459 	 * protected by "mtx", and ep_insert() is called with "mtx" held.
1460 	 */
1461 	ep_rbtree_insert(ep, epi);
1462 
1463 	/* now check if we've created too many backpaths */
1464 	error = -EINVAL;
1465 	if (full_check && reverse_path_check())
1466 		goto error_remove_epi;
1467 
1468 	/* Initialize the poll table using the queue callback */
1469 	epq.epi = epi;
1470 	init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1471 
1472 	/*
1473 	 * Attach the item to the poll hooks and get current event bits.
1474 	 * We can safely use the file* here because its usage count has
1475 	 * been increased by the caller of this function. Note that after
1476 	 * this operation completes, the poll callback can start hitting
1477 	 * the new item.
1478 	 */
1479 	revents = ep_item_poll(epi, &epq.pt, 1);
1480 
1481 	/*
1482 	 * We have to check if something went wrong during the poll wait queue
1483 	 * install process. Namely an allocation for a wait queue failed due
1484 	 * high memory pressure.
1485 	 */
1486 	error = -ENOMEM;
1487 	if (epi->nwait < 0)
1488 		goto error_unregister;
1489 
1490 	/* We have to drop the new item inside our item list to keep track of it */
1491 	spin_lock_irq(&ep->wq.lock);
1492 
1493 	/* record NAPI ID of new item if present */
1494 	ep_set_busy_poll_napi_id(epi);
1495 
1496 	/* If the file is already "ready" we drop it inside the ready list */
1497 	if (revents && !ep_is_linked(epi)) {
1498 		list_add_tail(&epi->rdllink, &ep->rdllist);
1499 		ep_pm_stay_awake(epi);
1500 
1501 		/* Notify waiting tasks that events are available */
1502 		if (waitqueue_active(&ep->wq))
1503 			wake_up_locked(&ep->wq);
1504 		if (waitqueue_active(&ep->poll_wait))
1505 			pwake++;
1506 	}
1507 
1508 	spin_unlock_irq(&ep->wq.lock);
1509 
1510 	atomic_long_inc(&ep->user->epoll_watches);
1511 
1512 	/* We have to call this outside the lock */
1513 	if (pwake)
1514 		ep_poll_safewake(&ep->poll_wait);
1515 
1516 	return 0;
1517 
1518 error_unregister:
1519 	ep_unregister_pollwait(ep, epi);
1520 error_remove_epi:
1521 	spin_lock(&tfile->f_lock);
1522 	list_del_rcu(&epi->fllink);
1523 	spin_unlock(&tfile->f_lock);
1524 
1525 	rb_erase_cached(&epi->rbn, &ep->rbr);
1526 
1527 	/*
1528 	 * We need to do this because an event could have been arrived on some
1529 	 * allocated wait queue. Note that we don't care about the ep->ovflist
1530 	 * list, since that is used/cleaned only inside a section bound by "mtx".
1531 	 * And ep_insert() is called with "mtx" held.
1532 	 */
1533 	spin_lock_irq(&ep->wq.lock);
1534 	if (ep_is_linked(epi))
1535 		list_del_init(&epi->rdllink);
1536 	spin_unlock_irq(&ep->wq.lock);
1537 
1538 	wakeup_source_unregister(ep_wakeup_source(epi));
1539 
1540 error_create_wakeup_source:
1541 	kmem_cache_free(epi_cache, epi);
1542 
1543 	return error;
1544 }
1545 
1546 /*
1547  * Modify the interest event mask by dropping an event if the new mask
1548  * has a match in the current file status. Must be called with "mtx" held.
1549  */
ep_modify(struct eventpoll * ep,struct epitem * epi,const struct epoll_event * event)1550 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1551 		     const struct epoll_event *event)
1552 {
1553 	int pwake = 0;
1554 	poll_table pt;
1555 
1556 	lockdep_assert_irqs_enabled();
1557 
1558 	init_poll_funcptr(&pt, NULL);
1559 
1560 	/*
1561 	 * Set the new event interest mask before calling f_op->poll();
1562 	 * otherwise we might miss an event that happens between the
1563 	 * f_op->poll() call and the new event set registering.
1564 	 */
1565 	epi->event.events = event->events; /* need barrier below */
1566 	epi->event.data = event->data; /* protected by mtx */
1567 	if (epi->event.events & EPOLLWAKEUP) {
1568 		if (!ep_has_wakeup_source(epi))
1569 			ep_create_wakeup_source(epi);
1570 	} else if (ep_has_wakeup_source(epi)) {
1571 		ep_destroy_wakeup_source(epi);
1572 	}
1573 
1574 	/*
1575 	 * The following barrier has two effects:
1576 	 *
1577 	 * 1) Flush epi changes above to other CPUs.  This ensures
1578 	 *    we do not miss events from ep_poll_callback if an
1579 	 *    event occurs immediately after we call f_op->poll().
1580 	 *    We need this because we did not take ep->wq.lock while
1581 	 *    changing epi above (but ep_poll_callback does take
1582 	 *    ep->wq.lock).
1583 	 *
1584 	 * 2) We also need to ensure we do not miss _past_ events
1585 	 *    when calling f_op->poll().  This barrier also
1586 	 *    pairs with the barrier in wq_has_sleeper (see
1587 	 *    comments for wq_has_sleeper).
1588 	 *
1589 	 * This barrier will now guarantee ep_poll_callback or f_op->poll
1590 	 * (or both) will notice the readiness of an item.
1591 	 */
1592 	smp_mb();
1593 
1594 	/*
1595 	 * Get current event bits. We can safely use the file* here because
1596 	 * its usage count has been increased by the caller of this function.
1597 	 * If the item is "hot" and it is not registered inside the ready
1598 	 * list, push it inside.
1599 	 */
1600 	if (ep_item_poll(epi, &pt, 1)) {
1601 		spin_lock_irq(&ep->wq.lock);
1602 		if (!ep_is_linked(epi)) {
1603 			list_add_tail(&epi->rdllink, &ep->rdllist);
1604 			ep_pm_stay_awake(epi);
1605 
1606 			/* Notify waiting tasks that events are available */
1607 			if (waitqueue_active(&ep->wq))
1608 				wake_up_locked(&ep->wq);
1609 			if (waitqueue_active(&ep->poll_wait))
1610 				pwake++;
1611 		}
1612 		spin_unlock_irq(&ep->wq.lock);
1613 	}
1614 
1615 	/* We have to call this outside the lock */
1616 	if (pwake)
1617 		ep_poll_safewake(&ep->poll_wait);
1618 
1619 	return 0;
1620 }
1621 
ep_send_events_proc(struct eventpoll * ep,struct list_head * head,void * priv)1622 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1623 			       void *priv)
1624 {
1625 	struct ep_send_events_data *esed = priv;
1626 	__poll_t revents;
1627 	struct epitem *epi;
1628 	struct epoll_event __user *uevent;
1629 	struct wakeup_source *ws;
1630 	poll_table pt;
1631 
1632 	init_poll_funcptr(&pt, NULL);
1633 
1634 	/*
1635 	 * We can loop without lock because we are passed a task private list.
1636 	 * Items cannot vanish during the loop because ep_scan_ready_list() is
1637 	 * holding "mtx" during this call.
1638 	 */
1639 	for (esed->res = 0, uevent = esed->events;
1640 	     !list_empty(head) && esed->res < esed->maxevents;) {
1641 		epi = list_first_entry(head, struct epitem, rdllink);
1642 
1643 		/*
1644 		 * Activate ep->ws before deactivating epi->ws to prevent
1645 		 * triggering auto-suspend here (in case we reactive epi->ws
1646 		 * below).
1647 		 *
1648 		 * This could be rearranged to delay the deactivation of epi->ws
1649 		 * instead, but then epi->ws would temporarily be out of sync
1650 		 * with ep_is_linked().
1651 		 */
1652 		ws = ep_wakeup_source(epi);
1653 		if (ws) {
1654 			if (ws->active)
1655 				__pm_stay_awake(ep->ws);
1656 			__pm_relax(ws);
1657 		}
1658 
1659 		list_del_init(&epi->rdllink);
1660 
1661 		revents = ep_item_poll(epi, &pt, 1);
1662 
1663 		/*
1664 		 * If the event mask intersect the caller-requested one,
1665 		 * deliver the event to userspace. Again, ep_scan_ready_list()
1666 		 * is holding "mtx", so no operations coming from userspace
1667 		 * can change the item.
1668 		 */
1669 		if (revents) {
1670 			if (__put_user(revents, &uevent->events) ||
1671 			    __put_user(epi->event.data, &uevent->data)) {
1672 				list_add(&epi->rdllink, head);
1673 				ep_pm_stay_awake(epi);
1674 				if (!esed->res)
1675 					esed->res = -EFAULT;
1676 				return 0;
1677 			}
1678 			esed->res++;
1679 			uevent++;
1680 			if (epi->event.events & EPOLLONESHOT)
1681 				epi->event.events &= EP_PRIVATE_BITS;
1682 			else if (!(epi->event.events & EPOLLET)) {
1683 				/*
1684 				 * If this file has been added with Level
1685 				 * Trigger mode, we need to insert back inside
1686 				 * the ready list, so that the next call to
1687 				 * epoll_wait() will check again the events
1688 				 * availability. At this point, no one can insert
1689 				 * into ep->rdllist besides us. The epoll_ctl()
1690 				 * callers are locked out by
1691 				 * ep_scan_ready_list() holding "mtx" and the
1692 				 * poll callback will queue them in ep->ovflist.
1693 				 */
1694 				list_add_tail(&epi->rdllink, &ep->rdllist);
1695 				ep_pm_stay_awake(epi);
1696 			}
1697 		}
1698 	}
1699 
1700 	return 0;
1701 }
1702 
ep_send_events(struct eventpoll * ep,struct epoll_event __user * events,int maxevents)1703 static int ep_send_events(struct eventpoll *ep,
1704 			  struct epoll_event __user *events, int maxevents)
1705 {
1706 	struct ep_send_events_data esed;
1707 
1708 	esed.maxevents = maxevents;
1709 	esed.events = events;
1710 
1711 	ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1712 	return esed.res;
1713 }
1714 
ep_set_mstimeout(long ms)1715 static inline struct timespec64 ep_set_mstimeout(long ms)
1716 {
1717 	struct timespec64 now, ts = {
1718 		.tv_sec = ms / MSEC_PER_SEC,
1719 		.tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1720 	};
1721 
1722 	ktime_get_ts64(&now);
1723 	return timespec64_add_safe(now, ts);
1724 }
1725 
1726 /**
1727  * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1728  *           event buffer.
1729  *
1730  * @ep: Pointer to the eventpoll context.
1731  * @events: Pointer to the userspace buffer where the ready events should be
1732  *          stored.
1733  * @maxevents: Size (in terms of number of events) of the caller event buffer.
1734  * @timeout: Maximum timeout for the ready events fetch operation, in
1735  *           milliseconds. If the @timeout is zero, the function will not block,
1736  *           while if the @timeout is less than zero, the function will block
1737  *           until at least one event has been retrieved (or an error
1738  *           occurred).
1739  *
1740  * Returns: Returns the number of ready events which have been fetched, or an
1741  *          error code, in case of error.
1742  */
ep_poll(struct eventpoll * ep,struct epoll_event __user * events,int maxevents,long timeout)1743 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1744 		   int maxevents, long timeout)
1745 {
1746 	int res = 0, eavail, timed_out = 0;
1747 	u64 slack = 0;
1748 	wait_queue_entry_t wait;
1749 	ktime_t expires, *to = NULL;
1750 
1751 	lockdep_assert_irqs_enabled();
1752 
1753 	if (timeout > 0) {
1754 		struct timespec64 end_time = ep_set_mstimeout(timeout);
1755 
1756 		slack = select_estimate_accuracy(&end_time);
1757 		to = &expires;
1758 		*to = timespec64_to_ktime(end_time);
1759 	} else if (timeout == 0) {
1760 		/*
1761 		 * Avoid the unnecessary trip to the wait queue loop, if the
1762 		 * caller specified a non blocking operation.
1763 		 */
1764 		timed_out = 1;
1765 		spin_lock_irq(&ep->wq.lock);
1766 		goto check_events;
1767 	}
1768 
1769 fetch_events:
1770 
1771 	if (!ep_events_available(ep))
1772 		ep_busy_loop(ep, timed_out);
1773 
1774 	spin_lock_irq(&ep->wq.lock);
1775 
1776 	if (!ep_events_available(ep)) {
1777 		/*
1778 		 * Busy poll timed out.  Drop NAPI ID for now, we can add
1779 		 * it back in when we have moved a socket with a valid NAPI
1780 		 * ID onto the ready list.
1781 		 */
1782 		ep_reset_busy_poll_napi_id(ep);
1783 
1784 		/*
1785 		 * We don't have any available event to return to the caller.
1786 		 * We need to sleep here, and we will be wake up by
1787 		 * ep_poll_callback() when events will become available.
1788 		 */
1789 		init_waitqueue_entry(&wait, current);
1790 		__add_wait_queue_exclusive(&ep->wq, &wait);
1791 
1792 		for (;;) {
1793 			/*
1794 			 * We don't want to sleep if the ep_poll_callback() sends us
1795 			 * a wakeup in between. That's why we set the task state
1796 			 * to TASK_INTERRUPTIBLE before doing the checks.
1797 			 */
1798 			set_current_state(TASK_INTERRUPTIBLE);
1799 			/*
1800 			 * Always short-circuit for fatal signals to allow
1801 			 * threads to make a timely exit without the chance of
1802 			 * finding more events available and fetching
1803 			 * repeatedly.
1804 			 */
1805 			if (fatal_signal_pending(current)) {
1806 				res = -EINTR;
1807 				break;
1808 			}
1809 			if (ep_events_available(ep) || timed_out)
1810 				break;
1811 			if (signal_pending(current)) {
1812 				res = -EINTR;
1813 				break;
1814 			}
1815 
1816 			spin_unlock_irq(&ep->wq.lock);
1817 			if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS))
1818 				timed_out = 1;
1819 
1820 			spin_lock_irq(&ep->wq.lock);
1821 		}
1822 
1823 		__remove_wait_queue(&ep->wq, &wait);
1824 		__set_current_state(TASK_RUNNING);
1825 	}
1826 check_events:
1827 	/* Is it worth to try to dig for events ? */
1828 	eavail = ep_events_available(ep);
1829 
1830 	spin_unlock_irq(&ep->wq.lock);
1831 
1832 	/*
1833 	 * Try to transfer events to user space. In case we get 0 events and
1834 	 * there's still timeout left over, we go trying again in search of
1835 	 * more luck.
1836 	 */
1837 	if (!res && eavail &&
1838 	    !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1839 		goto fetch_events;
1840 
1841 	return res;
1842 }
1843 
1844 /**
1845  * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1846  *                      API, to verify that adding an epoll file inside another
1847  *                      epoll structure, does not violate the constraints, in
1848  *                      terms of closed loops, or too deep chains (which can
1849  *                      result in excessive stack usage).
1850  *
1851  * @priv: Pointer to the epoll file to be currently checked.
1852  * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1853  *          data structure pointer.
1854  * @call_nests: Current dept of the @ep_call_nested() call stack.
1855  *
1856  * Returns: Returns zero if adding the epoll @file inside current epoll
1857  *          structure @ep does not violate the constraints, or -1 otherwise.
1858  */
ep_loop_check_proc(void * priv,void * cookie,int call_nests)1859 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1860 {
1861 	int error = 0;
1862 	struct file *file = priv;
1863 	struct eventpoll *ep = file->private_data;
1864 	struct eventpoll *ep_tovisit;
1865 	struct rb_node *rbp;
1866 	struct epitem *epi;
1867 
1868 	mutex_lock_nested(&ep->mtx, call_nests + 1);
1869 	ep->gen = loop_check_gen;
1870 	for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1871 		epi = rb_entry(rbp, struct epitem, rbn);
1872 		if (unlikely(is_file_epoll(epi->ffd.file))) {
1873 			ep_tovisit = epi->ffd.file->private_data;
1874 			if (ep_tovisit->gen == loop_check_gen)
1875 				continue;
1876 			error = ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1877 					ep_loop_check_proc, epi->ffd.file,
1878 					ep_tovisit, current);
1879 			if (error != 0)
1880 				break;
1881 		} else {
1882 			/*
1883 			 * If we've reached a file that is not associated with
1884 			 * an ep, then we need to check if the newly added
1885 			 * links are going to add too many wakeup paths. We do
1886 			 * this by adding it to the tfile_check_list, if it's
1887 			 * not already there, and calling reverse_path_check()
1888 			 * during ep_insert().
1889 			 */
1890 			if (list_empty(&epi->ffd.file->f_tfile_llink)) {
1891 				if (get_file_rcu(epi->ffd.file))
1892 					list_add(&epi->ffd.file->f_tfile_llink,
1893 						 &tfile_check_list);
1894 			}
1895 		}
1896 	}
1897 	mutex_unlock(&ep->mtx);
1898 
1899 	return error;
1900 }
1901 
1902 /**
1903  * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1904  *                 another epoll file (represented by @ep) does not create
1905  *                 closed loops or too deep chains.
1906  *
1907  * @ep: Pointer to the epoll private data structure.
1908  * @file: Pointer to the epoll file to be checked.
1909  *
1910  * Returns: Returns zero if adding the epoll @file inside current epoll
1911  *          structure @ep does not violate the constraints, or -1 otherwise.
1912  */
ep_loop_check(struct eventpoll * ep,struct file * file)1913 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1914 {
1915 	return ep_call_nested(&poll_loop_ncalls, EP_MAX_NESTS,
1916 			      ep_loop_check_proc, file, ep, current);
1917 }
1918 
clear_tfile_check_list(void)1919 static void clear_tfile_check_list(void)
1920 {
1921 	struct file *file;
1922 
1923 	/* first clear the tfile_check_list */
1924 	while (!list_empty(&tfile_check_list)) {
1925 		file = list_first_entry(&tfile_check_list, struct file,
1926 					f_tfile_llink);
1927 		list_del_init(&file->f_tfile_llink);
1928 		fput(file);
1929 	}
1930 	INIT_LIST_HEAD(&tfile_check_list);
1931 }
1932 
1933 /*
1934  * Open an eventpoll file descriptor.
1935  */
do_epoll_create(int flags)1936 static int do_epoll_create(int flags)
1937 {
1938 	int error, fd;
1939 	struct eventpoll *ep = NULL;
1940 	struct file *file;
1941 
1942 	/* Check the EPOLL_* constant for consistency.  */
1943 	BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
1944 
1945 	if (flags & ~EPOLL_CLOEXEC)
1946 		return -EINVAL;
1947 	/*
1948 	 * Create the internal data structure ("struct eventpoll").
1949 	 */
1950 	error = ep_alloc(&ep);
1951 	if (error < 0)
1952 		return error;
1953 	/*
1954 	 * Creates all the items needed to setup an eventpoll file. That is,
1955 	 * a file structure and a free file descriptor.
1956 	 */
1957 	fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
1958 	if (fd < 0) {
1959 		error = fd;
1960 		goto out_free_ep;
1961 	}
1962 	file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
1963 				 O_RDWR | (flags & O_CLOEXEC));
1964 	if (IS_ERR(file)) {
1965 		error = PTR_ERR(file);
1966 		goto out_free_fd;
1967 	}
1968 	ep->file = file;
1969 	fd_install(fd, file);
1970 	return fd;
1971 
1972 out_free_fd:
1973 	put_unused_fd(fd);
1974 out_free_ep:
1975 	ep_free(ep);
1976 	return error;
1977 }
1978 
SYSCALL_DEFINE1(epoll_create1,int,flags)1979 SYSCALL_DEFINE1(epoll_create1, int, flags)
1980 {
1981 	return do_epoll_create(flags);
1982 }
1983 
SYSCALL_DEFINE1(epoll_create,int,size)1984 SYSCALL_DEFINE1(epoll_create, int, size)
1985 {
1986 	if (size <= 0)
1987 		return -EINVAL;
1988 
1989 	return do_epoll_create(0);
1990 }
1991 
1992 /*
1993  * The following function implements the controller interface for
1994  * the eventpoll file that enables the insertion/removal/change of
1995  * file descriptors inside the interest set.
1996  */
SYSCALL_DEFINE4(epoll_ctl,int,epfd,int,op,int,fd,struct epoll_event __user *,event)1997 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
1998 		struct epoll_event __user *, event)
1999 {
2000 	int error;
2001 	int full_check = 0;
2002 	struct fd f, tf;
2003 	struct eventpoll *ep;
2004 	struct epitem *epi;
2005 	struct epoll_event epds;
2006 	struct eventpoll *tep = NULL;
2007 
2008 	error = -EFAULT;
2009 	if (ep_op_has_event(op) &&
2010 	    copy_from_user(&epds, event, sizeof(struct epoll_event)))
2011 		goto error_return;
2012 
2013 	error = -EBADF;
2014 	f = fdget(epfd);
2015 	if (!f.file)
2016 		goto error_return;
2017 
2018 	/* Get the "struct file *" for the target file */
2019 	tf = fdget(fd);
2020 	if (!tf.file)
2021 		goto error_fput;
2022 
2023 	/* The target file descriptor must support poll */
2024 	error = -EPERM;
2025 	if (!file_can_poll(tf.file))
2026 		goto error_tgt_fput;
2027 
2028 	/* Check if EPOLLWAKEUP is allowed */
2029 	if (ep_op_has_event(op))
2030 		ep_take_care_of_epollwakeup(&epds);
2031 
2032 	/*
2033 	 * We have to check that the file structure underneath the file descriptor
2034 	 * the user passed to us _is_ an eventpoll file. And also we do not permit
2035 	 * adding an epoll file descriptor inside itself.
2036 	 */
2037 	error = -EINVAL;
2038 	if (f.file == tf.file || !is_file_epoll(f.file))
2039 		goto error_tgt_fput;
2040 
2041 	/*
2042 	 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2043 	 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2044 	 * Also, we do not currently supported nested exclusive wakeups.
2045 	 */
2046 	if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2047 		if (op == EPOLL_CTL_MOD)
2048 			goto error_tgt_fput;
2049 		if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2050 				(epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2051 			goto error_tgt_fput;
2052 	}
2053 
2054 	/*
2055 	 * At this point it is safe to assume that the "private_data" contains
2056 	 * our own data structure.
2057 	 */
2058 	ep = f.file->private_data;
2059 
2060 	/*
2061 	 * When we insert an epoll file descriptor, inside another epoll file
2062 	 * descriptor, there is the change of creating closed loops, which are
2063 	 * better be handled here, than in more critical paths. While we are
2064 	 * checking for loops we also determine the list of files reachable
2065 	 * and hang them on the tfile_check_list, so we can check that we
2066 	 * haven't created too many possible wakeup paths.
2067 	 *
2068 	 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2069 	 * the epoll file descriptor is attaching directly to a wakeup source,
2070 	 * unless the epoll file descriptor is nested. The purpose of taking the
2071 	 * 'epmutex' on add is to prevent complex toplogies such as loops and
2072 	 * deep wakeup paths from forming in parallel through multiple
2073 	 * EPOLL_CTL_ADD operations.
2074 	 */
2075 	mutex_lock_nested(&ep->mtx, 0);
2076 	if (op == EPOLL_CTL_ADD) {
2077 		if (!list_empty(&f.file->f_ep_links) ||
2078 				ep->gen == loop_check_gen ||
2079 						is_file_epoll(tf.file)) {
2080 			full_check = 1;
2081 			mutex_unlock(&ep->mtx);
2082 			mutex_lock(&epmutex);
2083 			if (is_file_epoll(tf.file)) {
2084 				error = -ELOOP;
2085 				if (ep_loop_check(ep, tf.file) != 0)
2086 					goto error_tgt_fput;
2087 			} else {
2088 				get_file(tf.file);
2089 				list_add(&tf.file->f_tfile_llink,
2090 							&tfile_check_list);
2091 			}
2092 			mutex_lock_nested(&ep->mtx, 0);
2093 			if (is_file_epoll(tf.file)) {
2094 				tep = tf.file->private_data;
2095 				mutex_lock_nested(&tep->mtx, 1);
2096 			}
2097 		}
2098 	}
2099 
2100 	/*
2101 	 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2102 	 * above, we can be sure to be able to use the item looked up by
2103 	 * ep_find() till we release the mutex.
2104 	 */
2105 	epi = ep_find(ep, tf.file, fd);
2106 
2107 	error = -EINVAL;
2108 	switch (op) {
2109 	case EPOLL_CTL_ADD:
2110 		if (!epi) {
2111 			epds.events |= EPOLLERR | EPOLLHUP;
2112 			error = ep_insert(ep, &epds, tf.file, fd, full_check);
2113 		} else
2114 			error = -EEXIST;
2115 		break;
2116 	case EPOLL_CTL_DEL:
2117 		if (epi)
2118 			error = ep_remove(ep, epi);
2119 		else
2120 			error = -ENOENT;
2121 		break;
2122 	case EPOLL_CTL_MOD:
2123 		if (epi) {
2124 			if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2125 				epds.events |= EPOLLERR | EPOLLHUP;
2126 				error = ep_modify(ep, epi, &epds);
2127 			}
2128 		} else
2129 			error = -ENOENT;
2130 		break;
2131 	}
2132 	if (tep != NULL)
2133 		mutex_unlock(&tep->mtx);
2134 	mutex_unlock(&ep->mtx);
2135 
2136 error_tgt_fput:
2137 	if (full_check) {
2138 		clear_tfile_check_list();
2139 		loop_check_gen++;
2140 		mutex_unlock(&epmutex);
2141 	}
2142 
2143 	fdput(tf);
2144 error_fput:
2145 	fdput(f);
2146 error_return:
2147 
2148 	return error;
2149 }
2150 
2151 /*
2152  * Implement the event wait interface for the eventpoll file. It is the kernel
2153  * part of the user space epoll_wait(2).
2154  */
do_epoll_wait(int epfd,struct epoll_event __user * events,int maxevents,int timeout)2155 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2156 			 int maxevents, int timeout)
2157 {
2158 	int error;
2159 	struct fd f;
2160 	struct eventpoll *ep;
2161 
2162 	/* The maximum number of event must be greater than zero */
2163 	if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2164 		return -EINVAL;
2165 
2166 	/* Verify that the area passed by the user is writeable */
2167 	if (!access_ok(VERIFY_WRITE, events, maxevents * sizeof(struct epoll_event)))
2168 		return -EFAULT;
2169 
2170 	/* Get the "struct file *" for the eventpoll file */
2171 	f = fdget(epfd);
2172 	if (!f.file)
2173 		return -EBADF;
2174 
2175 	/*
2176 	 * We have to check that the file structure underneath the fd
2177 	 * the user passed to us _is_ an eventpoll file.
2178 	 */
2179 	error = -EINVAL;
2180 	if (!is_file_epoll(f.file))
2181 		goto error_fput;
2182 
2183 	/*
2184 	 * At this point it is safe to assume that the "private_data" contains
2185 	 * our own data structure.
2186 	 */
2187 	ep = f.file->private_data;
2188 
2189 	/* Time to fish for events ... */
2190 	error = ep_poll(ep, events, maxevents, timeout);
2191 
2192 error_fput:
2193 	fdput(f);
2194 	return error;
2195 }
2196 
SYSCALL_DEFINE4(epoll_wait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout)2197 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2198 		int, maxevents, int, timeout)
2199 {
2200 	return do_epoll_wait(epfd, events, maxevents, timeout);
2201 }
2202 
2203 /*
2204  * Implement the event wait interface for the eventpoll file. It is the kernel
2205  * part of the user space epoll_pwait(2).
2206  */
SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const sigset_t __user *,sigmask,size_t,sigsetsize)2207 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2208 		int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2209 		size_t, sigsetsize)
2210 {
2211 	int error;
2212 	sigset_t ksigmask, sigsaved;
2213 
2214 	/*
2215 	 * If the caller wants a certain signal mask to be set during the wait,
2216 	 * we apply it here.
2217 	 */
2218 	if (sigmask) {
2219 		if (sigsetsize != sizeof(sigset_t))
2220 			return -EINVAL;
2221 		if (copy_from_user(&ksigmask, sigmask, sizeof(ksigmask)))
2222 			return -EFAULT;
2223 		sigsaved = current->blocked;
2224 		set_current_blocked(&ksigmask);
2225 	}
2226 
2227 	error = do_epoll_wait(epfd, events, maxevents, timeout);
2228 
2229 	/*
2230 	 * If we changed the signal mask, we need to restore the original one.
2231 	 * In case we've got a signal while waiting, we do not restore the
2232 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2233 	 * the way back to userspace, before the signal mask is restored.
2234 	 */
2235 	if (sigmask) {
2236 		if (error == -EINTR) {
2237 			memcpy(&current->saved_sigmask, &sigsaved,
2238 			       sizeof(sigsaved));
2239 			set_restore_sigmask();
2240 		} else
2241 			set_current_blocked(&sigsaved);
2242 	}
2243 
2244 	return error;
2245 }
2246 
2247 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE6(epoll_pwait,int,epfd,struct epoll_event __user *,events,int,maxevents,int,timeout,const compat_sigset_t __user *,sigmask,compat_size_t,sigsetsize)2248 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2249 			struct epoll_event __user *, events,
2250 			int, maxevents, int, timeout,
2251 			const compat_sigset_t __user *, sigmask,
2252 			compat_size_t, sigsetsize)
2253 {
2254 	long err;
2255 	sigset_t ksigmask, sigsaved;
2256 
2257 	/*
2258 	 * If the caller wants a certain signal mask to be set during the wait,
2259 	 * we apply it here.
2260 	 */
2261 	if (sigmask) {
2262 		if (sigsetsize != sizeof(compat_sigset_t))
2263 			return -EINVAL;
2264 		if (get_compat_sigset(&ksigmask, sigmask))
2265 			return -EFAULT;
2266 		sigsaved = current->blocked;
2267 		set_current_blocked(&ksigmask);
2268 	}
2269 
2270 	err = do_epoll_wait(epfd, events, maxevents, timeout);
2271 
2272 	/*
2273 	 * If we changed the signal mask, we need to restore the original one.
2274 	 * In case we've got a signal while waiting, we do not restore the
2275 	 * signal mask yet, and we allow do_signal() to deliver the signal on
2276 	 * the way back to userspace, before the signal mask is restored.
2277 	 */
2278 	if (sigmask) {
2279 		if (err == -EINTR) {
2280 			memcpy(&current->saved_sigmask, &sigsaved,
2281 			       sizeof(sigsaved));
2282 			set_restore_sigmask();
2283 		} else
2284 			set_current_blocked(&sigsaved);
2285 	}
2286 
2287 	return err;
2288 }
2289 #endif
2290 
eventpoll_init(void)2291 static int __init eventpoll_init(void)
2292 {
2293 	struct sysinfo si;
2294 
2295 	si_meminfo(&si);
2296 	/*
2297 	 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2298 	 */
2299 	max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2300 		EP_ITEM_COST;
2301 	BUG_ON(max_user_watches < 0);
2302 
2303 	/*
2304 	 * Initialize the structure used to perform epoll file descriptor
2305 	 * inclusion loops checks.
2306 	 */
2307 	ep_nested_calls_init(&poll_loop_ncalls);
2308 
2309 #ifdef CONFIG_DEBUG_LOCK_ALLOC
2310 	/* Initialize the structure used to perform safe poll wait head wake ups */
2311 	ep_nested_calls_init(&poll_safewake_ncalls);
2312 #endif
2313 
2314 	/*
2315 	 * We can have many thousands of epitems, so prevent this from
2316 	 * using an extra cache line on 64-bit (and smaller) CPUs
2317 	 */
2318 	BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2319 
2320 	/* Allocates slab cache used to allocate "struct epitem" items */
2321 	epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2322 			0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2323 
2324 	/* Allocates slab cache used to allocate "struct eppoll_entry" */
2325 	pwq_cache = kmem_cache_create("eventpoll_pwq",
2326 		sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2327 
2328 	return 0;
2329 }
2330 fs_initcall(eventpoll_init);
2331