1 /*
2  * fs/crypto/hooks.c
3  *
4  * Encryption hooks for higher-level filesystem operations.
5  */
6 
7 #include <linux/ratelimit.h>
8 #include "fscrypt_private.h"
9 
10 /**
11  * fscrypt_file_open - prepare to open a possibly-encrypted regular file
12  * @inode: the inode being opened
13  * @filp: the struct file being set up
14  *
15  * Currently, an encrypted regular file can only be opened if its encryption key
16  * is available; access to the raw encrypted contents is not supported.
17  * Therefore, we first set up the inode's encryption key (if not already done)
18  * and return an error if it's unavailable.
19  *
20  * We also verify that if the parent directory (from the path via which the file
21  * is being opened) is encrypted, then the inode being opened uses the same
22  * encryption policy.  This is needed as part of the enforcement that all files
23  * in an encrypted directory tree use the same encryption policy, as a
24  * protection against certain types of offline attacks.  Note that this check is
25  * needed even when opening an *unencrypted* file, since it's forbidden to have
26  * an unencrypted file in an encrypted directory.
27  *
28  * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
29  */
fscrypt_file_open(struct inode * inode,struct file * filp)30 int fscrypt_file_open(struct inode *inode, struct file *filp)
31 {
32 	int err;
33 	struct dentry *dir;
34 
35 	err = fscrypt_require_key(inode);
36 	if (err)
37 		return err;
38 
39 	dir = dget_parent(file_dentry(filp));
40 	if (IS_ENCRYPTED(d_inode(dir)) &&
41 	    !fscrypt_has_permitted_context(d_inode(dir), inode)) {
42 		fscrypt_warn(inode->i_sb,
43 			     "inconsistent encryption contexts: %lu/%lu",
44 			     d_inode(dir)->i_ino, inode->i_ino);
45 		err = -EPERM;
46 	}
47 	dput(dir);
48 	return err;
49 }
50 EXPORT_SYMBOL_GPL(fscrypt_file_open);
51 
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)52 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
53 			   struct dentry *dentry)
54 {
55 	int err;
56 
57 	err = fscrypt_require_key(dir);
58 	if (err)
59 		return err;
60 
61 	/* ... in case we looked up no-key name before key was added */
62 	if (fscrypt_is_nokey_name(dentry))
63 		return -ENOKEY;
64 
65 	if (!fscrypt_has_permitted_context(dir, inode))
66 		return -EXDEV;
67 
68 	return 0;
69 }
70 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
71 
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)72 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
73 			     struct inode *new_dir, struct dentry *new_dentry,
74 			     unsigned int flags)
75 {
76 	int err;
77 
78 	err = fscrypt_require_key(old_dir);
79 	if (err)
80 		return err;
81 
82 	err = fscrypt_require_key(new_dir);
83 	if (err)
84 		return err;
85 
86 	/* ... in case we looked up no-key name(s) before key was added */
87 	if (fscrypt_is_nokey_name(old_dentry) ||
88 	    fscrypt_is_nokey_name(new_dentry))
89 		return -ENOKEY;
90 
91 	if (old_dir != new_dir) {
92 		if (IS_ENCRYPTED(new_dir) &&
93 		    !fscrypt_has_permitted_context(new_dir,
94 						   d_inode(old_dentry)))
95 			return -EXDEV;
96 
97 		if ((flags & RENAME_EXCHANGE) &&
98 		    IS_ENCRYPTED(old_dir) &&
99 		    !fscrypt_has_permitted_context(old_dir,
100 						   d_inode(new_dentry)))
101 			return -EXDEV;
102 	}
103 	return 0;
104 }
105 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
106 
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)107 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
108 			     struct fscrypt_name *fname)
109 {
110 	int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
111 
112 	if (err && err != -ENOENT)
113 		return err;
114 
115 	if (fname->is_ciphertext_name) {
116 		spin_lock(&dentry->d_lock);
117 		dentry->d_flags |= DCACHE_ENCRYPTED_NAME;
118 		spin_unlock(&dentry->d_lock);
119 		d_set_d_op(dentry, &fscrypt_d_ops);
120 	}
121 	return err;
122 }
123 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
124 
__fscrypt_prepare_symlink(struct inode * dir,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)125 int __fscrypt_prepare_symlink(struct inode *dir, unsigned int len,
126 			      unsigned int max_len,
127 			      struct fscrypt_str *disk_link)
128 {
129 	int err;
130 
131 	/*
132 	 * To calculate the size of the encrypted symlink target we need to know
133 	 * the amount of NUL padding, which is determined by the flags set in
134 	 * the encryption policy which will be inherited from the directory.
135 	 * The easiest way to get access to this is to just load the directory's
136 	 * fscrypt_info, since we'll need it to create the dir_entry anyway.
137 	 *
138 	 * Note: in test_dummy_encryption mode, @dir may be unencrypted.
139 	 */
140 	err = fscrypt_get_encryption_info(dir);
141 	if (err)
142 		return err;
143 	if (!fscrypt_has_encryption_key(dir))
144 		return -ENOKEY;
145 
146 	/*
147 	 * Calculate the size of the encrypted symlink and verify it won't
148 	 * exceed max_len.  Note that for historical reasons, encrypted symlink
149 	 * targets are prefixed with the ciphertext length, despite this
150 	 * actually being redundant with i_size.  This decreases by 2 bytes the
151 	 * longest symlink target we can accept.
152 	 *
153 	 * We could recover 1 byte by not counting a null terminator, but
154 	 * counting it (even though it is meaningless for ciphertext) is simpler
155 	 * for now since filesystems will assume it is there and subtract it.
156 	 */
157 	if (!fscrypt_fname_encrypted_size(dir, len,
158 					  max_len - sizeof(struct fscrypt_symlink_data),
159 					  &disk_link->len))
160 		return -ENAMETOOLONG;
161 	disk_link->len += sizeof(struct fscrypt_symlink_data);
162 
163 	disk_link->name = NULL;
164 	return 0;
165 }
166 EXPORT_SYMBOL_GPL(__fscrypt_prepare_symlink);
167 
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)168 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
169 			      unsigned int len, struct fscrypt_str *disk_link)
170 {
171 	int err;
172 	struct qstr iname = QSTR_INIT(target, len);
173 	struct fscrypt_symlink_data *sd;
174 	unsigned int ciphertext_len;
175 
176 	err = fscrypt_require_key(inode);
177 	if (err)
178 		return err;
179 
180 	if (disk_link->name) {
181 		/* filesystem-provided buffer */
182 		sd = (struct fscrypt_symlink_data *)disk_link->name;
183 	} else {
184 		sd = kmalloc(disk_link->len, GFP_NOFS);
185 		if (!sd)
186 			return -ENOMEM;
187 	}
188 	ciphertext_len = disk_link->len - sizeof(*sd);
189 	sd->len = cpu_to_le16(ciphertext_len);
190 
191 	err = fname_encrypt(inode, &iname, sd->encrypted_path, ciphertext_len);
192 	if (err) {
193 		if (!disk_link->name)
194 			kfree(sd);
195 		return err;
196 	}
197 	/*
198 	 * Null-terminating the ciphertext doesn't make sense, but we still
199 	 * count the null terminator in the length, so we might as well
200 	 * initialize it just in case the filesystem writes it out.
201 	 */
202 	sd->encrypted_path[ciphertext_len] = '\0';
203 
204 	if (!disk_link->name)
205 		disk_link->name = (unsigned char *)sd;
206 	return 0;
207 }
208 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
209 
210 /**
211  * fscrypt_get_symlink - get the target of an encrypted symlink
212  * @inode: the symlink inode
213  * @caddr: the on-disk contents of the symlink
214  * @max_size: size of @caddr buffer
215  * @done: if successful, will be set up to free the returned target
216  *
217  * If the symlink's encryption key is available, we decrypt its target.
218  * Otherwise, we encode its target for presentation.
219  *
220  * This may sleep, so the filesystem must have dropped out of RCU mode already.
221  *
222  * Return: the presentable symlink target or an ERR_PTR()
223  */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)224 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
225 				unsigned int max_size,
226 				struct delayed_call *done)
227 {
228 	const struct fscrypt_symlink_data *sd;
229 	struct fscrypt_str cstr, pstr;
230 	int err;
231 
232 	/* This is for encrypted symlinks only */
233 	if (WARN_ON(!IS_ENCRYPTED(inode)))
234 		return ERR_PTR(-EINVAL);
235 
236 	/*
237 	 * Try to set up the symlink's encryption key, but we can continue
238 	 * regardless of whether the key is available or not.
239 	 */
240 	err = fscrypt_get_encryption_info(inode);
241 	if (err)
242 		return ERR_PTR(err);
243 
244 	/*
245 	 * For historical reasons, encrypted symlink targets are prefixed with
246 	 * the ciphertext length, even though this is redundant with i_size.
247 	 */
248 
249 	if (max_size < sizeof(*sd))
250 		return ERR_PTR(-EUCLEAN);
251 	sd = caddr;
252 	cstr.name = (unsigned char *)sd->encrypted_path;
253 	cstr.len = le16_to_cpu(sd->len);
254 
255 	if (cstr.len == 0)
256 		return ERR_PTR(-EUCLEAN);
257 
258 	if (cstr.len + sizeof(*sd) - 1 > max_size)
259 		return ERR_PTR(-EUCLEAN);
260 
261 	err = fscrypt_fname_alloc_buffer(inode, cstr.len, &pstr);
262 	if (err)
263 		return ERR_PTR(err);
264 
265 	err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
266 	if (err)
267 		goto err_kfree;
268 
269 	err = -EUCLEAN;
270 	if (pstr.name[0] == '\0')
271 		goto err_kfree;
272 
273 	pstr.name[pstr.len] = '\0';
274 	set_delayed_call(done, kfree_link, pstr.name);
275 	return pstr.name;
276 
277 err_kfree:
278 	kfree(pstr.name);
279 	return ERR_PTR(err);
280 }
281 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
282 
283 /**
284  * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
285  * @path: the path for the encrypted symlink being queried
286  * @stat: the struct being filled with the symlink's attributes
287  *
288  * Override st_size of encrypted symlinks to be the length of the decrypted
289  * symlink target (or the no-key encoded symlink target, if the key is
290  * unavailable) rather than the length of the encrypted symlink target.  This is
291  * necessary for st_size to match the symlink target that userspace actually
292  * sees.  POSIX requires this, and some userspace programs depend on it.
293  *
294  * This requires reading the symlink target from disk if needed, setting up the
295  * inode's encryption key if possible, and then decrypting or encoding the
296  * symlink target.  This makes lstat() more heavyweight than is normally the
297  * case.  However, decrypted symlink targets will be cached in ->i_link, so
298  * usually the symlink won't have to be read and decrypted again later if/when
299  * it is actually followed, readlink() is called, or lstat() is called again.
300  *
301  * Return: 0 on success, -errno on failure
302  */
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)303 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
304 {
305 	struct dentry *dentry = path->dentry;
306 	struct inode *inode = d_inode(dentry);
307 	const char *link;
308 	DEFINE_DELAYED_CALL(done);
309 
310 	/*
311 	 * To get the symlink target that userspace will see (whether it's the
312 	 * decrypted target or the no-key encoded target), we can just get it in
313 	 * the same way the VFS does during path resolution and readlink().
314 	 */
315 	link = READ_ONCE(inode->i_link);
316 	if (!link) {
317 		link = inode->i_op->get_link(dentry, inode, &done);
318 		if (IS_ERR(link))
319 			return PTR_ERR(link);
320 	}
321 	stat->size = strlen(link);
322 	do_delayed_call(&done);
323 	return 0;
324 }
325 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
326