1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_CPUSET_H
3 #define _LINUX_CPUSET_H
4 /*
5 * cpuset interface
6 *
7 * Copyright (C) 2003 BULL SA
8 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
9 *
10 */
11
12 #include <linux/sched.h>
13 #include <linux/sched/topology.h>
14 #include <linux/sched/task.h>
15 #include <linux/cpumask.h>
16 #include <linux/nodemask.h>
17 #include <linux/mm.h>
18 #include <linux/jump_label.h>
19
20 #ifdef CONFIG_CPUSETS
21
22 /*
23 * Static branch rewrites can happen in an arbitrary order for a given
24 * key. In code paths where we need to loop with read_mems_allowed_begin() and
25 * read_mems_allowed_retry() to get a consistent view of mems_allowed, we need
26 * to ensure that begin() always gets rewritten before retry() in the
27 * disabled -> enabled transition. If not, then if local irqs are disabled
28 * around the loop, we can deadlock since retry() would always be
29 * comparing the latest value of the mems_allowed seqcount against 0 as
30 * begin() still would see cpusets_enabled() as false. The enabled -> disabled
31 * transition should happen in reverse order for the same reasons (want to stop
32 * looking at real value of mems_allowed.sequence in retry() first).
33 */
34 extern struct static_key_false cpusets_pre_enable_key;
35 extern struct static_key_false cpusets_enabled_key;
cpusets_enabled(void)36 static inline bool cpusets_enabled(void)
37 {
38 return static_branch_unlikely(&cpusets_enabled_key);
39 }
40
cpuset_inc(void)41 static inline void cpuset_inc(void)
42 {
43 static_branch_inc_cpuslocked(&cpusets_pre_enable_key);
44 static_branch_inc_cpuslocked(&cpusets_enabled_key);
45 }
46
cpuset_dec(void)47 static inline void cpuset_dec(void)
48 {
49 static_branch_dec_cpuslocked(&cpusets_enabled_key);
50 static_branch_dec_cpuslocked(&cpusets_pre_enable_key);
51 }
52
53 extern int cpuset_init(void);
54 extern void cpuset_init_smp(void);
55 extern void cpuset_force_rebuild(void);
56 extern void cpuset_update_active_cpus(void);
57 extern void cpuset_wait_for_hotplug(void);
58 extern void cpuset_cpus_allowed(struct task_struct *p, struct cpumask *mask);
59 extern void cpuset_cpus_allowed_fallback(struct task_struct *p);
60 extern nodemask_t cpuset_mems_allowed(struct task_struct *p);
61 #define cpuset_current_mems_allowed (current->mems_allowed)
62 void cpuset_init_current_mems_allowed(void);
63 int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask);
64
65 extern bool __cpuset_node_allowed(int node, gfp_t gfp_mask);
66
cpuset_node_allowed(int node,gfp_t gfp_mask)67 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
68 {
69 if (cpusets_enabled())
70 return __cpuset_node_allowed(node, gfp_mask);
71 return true;
72 }
73
__cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)74 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
75 {
76 return __cpuset_node_allowed(zone_to_nid(z), gfp_mask);
77 }
78
cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)79 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
80 {
81 if (cpusets_enabled())
82 return __cpuset_zone_allowed(z, gfp_mask);
83 return true;
84 }
85
86 extern int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
87 const struct task_struct *tsk2);
88
89 #define cpuset_memory_pressure_bump() \
90 do { \
91 if (cpuset_memory_pressure_enabled) \
92 __cpuset_memory_pressure_bump(); \
93 } while (0)
94 extern int cpuset_memory_pressure_enabled;
95 extern void __cpuset_memory_pressure_bump(void);
96
97 extern void cpuset_task_status_allowed(struct seq_file *m,
98 struct task_struct *task);
99 extern int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns,
100 struct pid *pid, struct task_struct *tsk);
101
102 extern int cpuset_mem_spread_node(void);
103 extern int cpuset_slab_spread_node(void);
104
cpuset_do_page_mem_spread(void)105 static inline int cpuset_do_page_mem_spread(void)
106 {
107 return task_spread_page(current);
108 }
109
cpuset_do_slab_mem_spread(void)110 static inline int cpuset_do_slab_mem_spread(void)
111 {
112 return task_spread_slab(current);
113 }
114
115 extern bool current_cpuset_is_being_rebound(void);
116
117 extern void rebuild_sched_domains(void);
118
119 extern void cpuset_print_current_mems_allowed(void);
120
121 /*
122 * read_mems_allowed_begin is required when making decisions involving
123 * mems_allowed such as during page allocation. mems_allowed can be updated in
124 * parallel and depending on the new value an operation can fail potentially
125 * causing process failure. A retry loop with read_mems_allowed_begin and
126 * read_mems_allowed_retry prevents these artificial failures.
127 */
read_mems_allowed_begin(void)128 static inline unsigned int read_mems_allowed_begin(void)
129 {
130 if (!static_branch_unlikely(&cpusets_pre_enable_key))
131 return 0;
132
133 return read_seqcount_begin(¤t->mems_allowed_seq);
134 }
135
136 /*
137 * If this returns true, the operation that took place after
138 * read_mems_allowed_begin may have failed artificially due to a concurrent
139 * update of mems_allowed. It is up to the caller to retry the operation if
140 * appropriate.
141 */
read_mems_allowed_retry(unsigned int seq)142 static inline bool read_mems_allowed_retry(unsigned int seq)
143 {
144 if (!static_branch_unlikely(&cpusets_enabled_key))
145 return false;
146
147 return read_seqcount_retry(¤t->mems_allowed_seq, seq);
148 }
149
set_mems_allowed(nodemask_t nodemask)150 static inline void set_mems_allowed(nodemask_t nodemask)
151 {
152 unsigned long flags;
153
154 task_lock(current);
155 local_irq_save(flags);
156 write_seqcount_begin(¤t->mems_allowed_seq);
157 current->mems_allowed = nodemask;
158 write_seqcount_end(¤t->mems_allowed_seq);
159 local_irq_restore(flags);
160 task_unlock(current);
161 }
162
163 #else /* !CONFIG_CPUSETS */
164
cpusets_enabled(void)165 static inline bool cpusets_enabled(void) { return false; }
166
cpuset_init(void)167 static inline int cpuset_init(void) { return 0; }
cpuset_init_smp(void)168 static inline void cpuset_init_smp(void) {}
169
cpuset_force_rebuild(void)170 static inline void cpuset_force_rebuild(void) { }
171
cpuset_update_active_cpus(void)172 static inline void cpuset_update_active_cpus(void)
173 {
174 partition_sched_domains(1, NULL, NULL);
175 }
176
cpuset_wait_for_hotplug(void)177 static inline void cpuset_wait_for_hotplug(void) { }
178
cpuset_cpus_allowed(struct task_struct * p,struct cpumask * mask)179 static inline void cpuset_cpus_allowed(struct task_struct *p,
180 struct cpumask *mask)
181 {
182 cpumask_copy(mask, cpu_possible_mask);
183 }
184
cpuset_cpus_allowed_fallback(struct task_struct * p)185 static inline void cpuset_cpus_allowed_fallback(struct task_struct *p)
186 {
187 }
188
cpuset_mems_allowed(struct task_struct * p)189 static inline nodemask_t cpuset_mems_allowed(struct task_struct *p)
190 {
191 return node_possible_map;
192 }
193
194 #define cpuset_current_mems_allowed (node_states[N_MEMORY])
cpuset_init_current_mems_allowed(void)195 static inline void cpuset_init_current_mems_allowed(void) {}
196
cpuset_nodemask_valid_mems_allowed(nodemask_t * nodemask)197 static inline int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
198 {
199 return 1;
200 }
201
cpuset_node_allowed(int node,gfp_t gfp_mask)202 static inline bool cpuset_node_allowed(int node, gfp_t gfp_mask)
203 {
204 return true;
205 }
206
__cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)207 static inline bool __cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
208 {
209 return true;
210 }
211
cpuset_zone_allowed(struct zone * z,gfp_t gfp_mask)212 static inline bool cpuset_zone_allowed(struct zone *z, gfp_t gfp_mask)
213 {
214 return true;
215 }
216
cpuset_mems_allowed_intersects(const struct task_struct * tsk1,const struct task_struct * tsk2)217 static inline int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
218 const struct task_struct *tsk2)
219 {
220 return 1;
221 }
222
cpuset_memory_pressure_bump(void)223 static inline void cpuset_memory_pressure_bump(void) {}
224
cpuset_task_status_allowed(struct seq_file * m,struct task_struct * task)225 static inline void cpuset_task_status_allowed(struct seq_file *m,
226 struct task_struct *task)
227 {
228 }
229
cpuset_mem_spread_node(void)230 static inline int cpuset_mem_spread_node(void)
231 {
232 return 0;
233 }
234
cpuset_slab_spread_node(void)235 static inline int cpuset_slab_spread_node(void)
236 {
237 return 0;
238 }
239
cpuset_do_page_mem_spread(void)240 static inline int cpuset_do_page_mem_spread(void)
241 {
242 return 0;
243 }
244
cpuset_do_slab_mem_spread(void)245 static inline int cpuset_do_slab_mem_spread(void)
246 {
247 return 0;
248 }
249
current_cpuset_is_being_rebound(void)250 static inline bool current_cpuset_is_being_rebound(void)
251 {
252 return false;
253 }
254
rebuild_sched_domains(void)255 static inline void rebuild_sched_domains(void)
256 {
257 partition_sched_domains(1, NULL, NULL);
258 }
259
cpuset_print_current_mems_allowed(void)260 static inline void cpuset_print_current_mems_allowed(void)
261 {
262 }
263
set_mems_allowed(nodemask_t nodemask)264 static inline void set_mems_allowed(nodemask_t nodemask)
265 {
266 }
267
read_mems_allowed_begin(void)268 static inline unsigned int read_mems_allowed_begin(void)
269 {
270 return 0;
271 }
272
read_mems_allowed_retry(unsigned int seq)273 static inline bool read_mems_allowed_retry(unsigned int seq)
274 {
275 return false;
276 }
277
278 #endif /* !CONFIG_CPUSETS */
279
280 #endif /* _LINUX_CPUSET_H */
281