1 /*
2  * Copyright (C) 2001 Momchil Velikov
3  * Portions Copyright (C) 2001 Christoph Hellwig
4  * Copyright (C) 2006 Nick Piggin
5  * Copyright (C) 2012 Konstantin Khlebnikov
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License as
9  * published by the Free Software Foundation; either version 2, or (at
10  * your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but
13  * WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 #ifndef _LINUX_RADIX_TREE_H
22 #define _LINUX_RADIX_TREE_H
23 
24 #include <linux/bitops.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/preempt.h>
28 #include <linux/rcupdate.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 
32 /*
33  * The bottom two bits of the slot determine how the remaining bits in the
34  * slot are interpreted:
35  *
36  * 00 - data pointer
37  * 01 - internal entry
38  * 10 - exceptional entry
39  * 11 - this bit combination is currently unused/reserved
40  *
41  * The internal entry may be a pointer to the next level in the tree, a
42  * sibling entry, or an indicator that the entry in this slot has been moved
43  * to another location in the tree and the lookup should be restarted.  While
44  * NULL fits the 'data pointer' pattern, it means that there is no entry in
45  * the tree for this index (no matter what level of the tree it is found at).
46  * This means that you cannot store NULL in the tree as a value for the index.
47  */
48 #define RADIX_TREE_ENTRY_MASK		3UL
49 #define RADIX_TREE_INTERNAL_NODE	1UL
50 
51 /*
52  * Most users of the radix tree store pointers but shmem/tmpfs stores swap
53  * entries in the same tree.  They are marked as exceptional entries to
54  * distinguish them from pointers to struct page.
55  * EXCEPTIONAL_ENTRY tests the bit, EXCEPTIONAL_SHIFT shifts content past it.
56  */
57 #define RADIX_TREE_EXCEPTIONAL_ENTRY	2
58 #define RADIX_TREE_EXCEPTIONAL_SHIFT	2
59 
radix_tree_is_internal_node(void * ptr)60 static inline bool radix_tree_is_internal_node(void *ptr)
61 {
62 	return ((unsigned long)ptr & RADIX_TREE_ENTRY_MASK) ==
63 				RADIX_TREE_INTERNAL_NODE;
64 }
65 
66 /*** radix-tree API starts here ***/
67 
68 #define RADIX_TREE_MAX_TAGS 3
69 
70 #ifndef RADIX_TREE_MAP_SHIFT
71 #define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
72 #endif
73 
74 #define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
75 #define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
76 
77 #define RADIX_TREE_TAG_LONGS	\
78 	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
79 
80 #define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
81 #define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
82 					  RADIX_TREE_MAP_SHIFT))
83 
84 /*
85  * @count is the count of every non-NULL element in the ->slots array
86  * whether that is an exceptional entry, a retry entry, a user pointer,
87  * a sibling entry or a pointer to the next level of the tree.
88  * @exceptional is the count of every element in ->slots which is
89  * either radix_tree_exceptional_entry() or is a sibling entry for an
90  * exceptional entry.
91  */
92 struct radix_tree_node {
93 	unsigned char	shift;		/* Bits remaining in each slot */
94 	unsigned char	offset;		/* Slot offset in parent */
95 	unsigned char	count;		/* Total entry count */
96 	unsigned char	exceptional;	/* Exceptional entry count */
97 	struct radix_tree_node *parent;		/* Used when ascending tree */
98 	struct radix_tree_root *root;		/* The tree we belong to */
99 	union {
100 		struct list_head private_list;	/* For tree user */
101 		struct rcu_head	rcu_head;	/* Used when freeing node */
102 	};
103 	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
104 	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
105 };
106 
107 /* The IDR tag is stored in the low bits of the GFP flags */
108 #define ROOT_IS_IDR	((__force gfp_t)4)
109 /* The top bits of gfp_mask are used to store the root tags */
110 #define ROOT_TAG_SHIFT	(__GFP_BITS_SHIFT)
111 
112 struct radix_tree_root {
113 	spinlock_t		xa_lock;
114 	gfp_t			gfp_mask;
115 	struct radix_tree_node	__rcu *rnode;
116 };
117 
118 #define RADIX_TREE_INIT(name, mask)	{				\
119 	.xa_lock = __SPIN_LOCK_UNLOCKED(name.xa_lock),			\
120 	.gfp_mask = (mask),						\
121 	.rnode = NULL,							\
122 }
123 
124 #define RADIX_TREE(name, mask) \
125 	struct radix_tree_root name = RADIX_TREE_INIT(name, mask)
126 
127 #define INIT_RADIX_TREE(root, mask)					\
128 do {									\
129 	spin_lock_init(&(root)->xa_lock);				\
130 	(root)->gfp_mask = (mask);					\
131 	(root)->rnode = NULL;						\
132 } while (0)
133 
radix_tree_empty(const struct radix_tree_root * root)134 static inline bool radix_tree_empty(const struct radix_tree_root *root)
135 {
136 	return root->rnode == NULL;
137 }
138 
139 /**
140  * struct radix_tree_iter - radix tree iterator state
141  *
142  * @index:	index of current slot
143  * @next_index:	one beyond the last index for this chunk
144  * @tags:	bit-mask for tag-iterating
145  * @node:	node that contains current slot
146  * @shift:	shift for the node that holds our slots
147  *
148  * This radix tree iterator works in terms of "chunks" of slots.  A chunk is a
149  * subinterval of slots contained within one radix tree leaf node.  It is
150  * described by a pointer to its first slot and a struct radix_tree_iter
151  * which holds the chunk's position in the tree and its size.  For tagged
152  * iteration radix_tree_iter also holds the slots' bit-mask for one chosen
153  * radix tree tag.
154  */
155 struct radix_tree_iter {
156 	unsigned long	index;
157 	unsigned long	next_index;
158 	unsigned long	tags;
159 	struct radix_tree_node *node;
160 #ifdef CONFIG_RADIX_TREE_MULTIORDER
161 	unsigned int	shift;
162 #endif
163 };
164 
iter_shift(const struct radix_tree_iter * iter)165 static inline unsigned int iter_shift(const struct radix_tree_iter *iter)
166 {
167 #ifdef CONFIG_RADIX_TREE_MULTIORDER
168 	return iter->shift;
169 #else
170 	return 0;
171 #endif
172 }
173 
174 /**
175  * Radix-tree synchronization
176  *
177  * The radix-tree API requires that users provide all synchronisation (with
178  * specific exceptions, noted below).
179  *
180  * Synchronization of access to the data items being stored in the tree, and
181  * management of their lifetimes must be completely managed by API users.
182  *
183  * For API usage, in general,
184  * - any function _modifying_ the tree or tags (inserting or deleting
185  *   items, setting or clearing tags) must exclude other modifications, and
186  *   exclude any functions reading the tree.
187  * - any function _reading_ the tree or tags (looking up items or tags,
188  *   gang lookups) must exclude modifications to the tree, but may occur
189  *   concurrently with other readers.
190  *
191  * The notable exceptions to this rule are the following functions:
192  * __radix_tree_lookup
193  * radix_tree_lookup
194  * radix_tree_lookup_slot
195  * radix_tree_tag_get
196  * radix_tree_gang_lookup
197  * radix_tree_gang_lookup_slot
198  * radix_tree_gang_lookup_tag
199  * radix_tree_gang_lookup_tag_slot
200  * radix_tree_tagged
201  *
202  * The first 8 functions are able to be called locklessly, using RCU. The
203  * caller must ensure calls to these functions are made within rcu_read_lock()
204  * regions. Other readers (lock-free or otherwise) and modifications may be
205  * running concurrently.
206  *
207  * It is still required that the caller manage the synchronization and lifetimes
208  * of the items. So if RCU lock-free lookups are used, typically this would mean
209  * that the items have their own locks, or are amenable to lock-free access; and
210  * that the items are freed by RCU (or only freed after having been deleted from
211  * the radix tree *and* a synchronize_rcu() grace period).
212  *
213  * (Note, rcu_assign_pointer and rcu_dereference are not needed to control
214  * access to data items when inserting into or looking up from the radix tree)
215  *
216  * Note that the value returned by radix_tree_tag_get() may not be relied upon
217  * if only the RCU read lock is held.  Functions to set/clear tags and to
218  * delete nodes running concurrently with it may affect its result such that
219  * two consecutive reads in the same locked section may return different
220  * values.  If reliability is required, modification functions must also be
221  * excluded from concurrency.
222  *
223  * radix_tree_tagged is able to be called without locking or RCU.
224  */
225 
226 /**
227  * radix_tree_deref_slot - dereference a slot
228  * @slot: slot pointer, returned by radix_tree_lookup_slot
229  *
230  * For use with radix_tree_lookup_slot().  Caller must hold tree at least read
231  * locked across slot lookup and dereference. Not required if write lock is
232  * held (ie. items cannot be concurrently inserted).
233  *
234  * radix_tree_deref_retry must be used to confirm validity of the pointer if
235  * only the read lock is held.
236  *
237  * Return: entry stored in that slot.
238  */
radix_tree_deref_slot(void __rcu ** slot)239 static inline void *radix_tree_deref_slot(void __rcu **slot)
240 {
241 	return rcu_dereference(*slot);
242 }
243 
244 /**
245  * radix_tree_deref_slot_protected - dereference a slot with tree lock held
246  * @slot: slot pointer, returned by radix_tree_lookup_slot
247  *
248  * Similar to radix_tree_deref_slot.  The caller does not hold the RCU read
249  * lock but it must hold the tree lock to prevent parallel updates.
250  *
251  * Return: entry stored in that slot.
252  */
radix_tree_deref_slot_protected(void __rcu ** slot,spinlock_t * treelock)253 static inline void *radix_tree_deref_slot_protected(void __rcu **slot,
254 							spinlock_t *treelock)
255 {
256 	return rcu_dereference_protected(*slot, lockdep_is_held(treelock));
257 }
258 
259 /**
260  * radix_tree_deref_retry	- check radix_tree_deref_slot
261  * @arg:	pointer returned by radix_tree_deref_slot
262  * Returns:	0 if retry is not required, otherwise retry is required
263  *
264  * radix_tree_deref_retry must be used with radix_tree_deref_slot.
265  */
radix_tree_deref_retry(void * arg)266 static inline int radix_tree_deref_retry(void *arg)
267 {
268 	return unlikely(radix_tree_is_internal_node(arg));
269 }
270 
271 /**
272  * radix_tree_exceptional_entry	- radix_tree_deref_slot gave exceptional entry?
273  * @arg:	value returned by radix_tree_deref_slot
274  * Returns:	0 if well-aligned pointer, non-0 if exceptional entry.
275  */
radix_tree_exceptional_entry(void * arg)276 static inline int radix_tree_exceptional_entry(void *arg)
277 {
278 	/* Not unlikely because radix_tree_exception often tested first */
279 	return (unsigned long)arg & RADIX_TREE_EXCEPTIONAL_ENTRY;
280 }
281 
282 /**
283  * radix_tree_exception	- radix_tree_deref_slot returned either exception?
284  * @arg:	value returned by radix_tree_deref_slot
285  * Returns:	0 if well-aligned pointer, non-0 if either kind of exception.
286  */
radix_tree_exception(void * arg)287 static inline int radix_tree_exception(void *arg)
288 {
289 	return unlikely((unsigned long)arg & RADIX_TREE_ENTRY_MASK);
290 }
291 
292 int __radix_tree_create(struct radix_tree_root *, unsigned long index,
293 			unsigned order, struct radix_tree_node **nodep,
294 			void __rcu ***slotp);
295 int __radix_tree_insert(struct radix_tree_root *, unsigned long index,
296 			unsigned order, void *);
radix_tree_insert(struct radix_tree_root * root,unsigned long index,void * entry)297 static inline int radix_tree_insert(struct radix_tree_root *root,
298 			unsigned long index, void *entry)
299 {
300 	return __radix_tree_insert(root, index, 0, entry);
301 }
302 void *__radix_tree_lookup(const struct radix_tree_root *, unsigned long index,
303 			  struct radix_tree_node **nodep, void __rcu ***slotp);
304 void *radix_tree_lookup(const struct radix_tree_root *, unsigned long);
305 void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *,
306 					unsigned long index);
307 typedef void (*radix_tree_update_node_t)(struct radix_tree_node *);
308 void __radix_tree_replace(struct radix_tree_root *, struct radix_tree_node *,
309 			  void __rcu **slot, void *entry,
310 			  radix_tree_update_node_t update_node);
311 void radix_tree_iter_replace(struct radix_tree_root *,
312 		const struct radix_tree_iter *, void __rcu **slot, void *entry);
313 void radix_tree_replace_slot(struct radix_tree_root *,
314 			     void __rcu **slot, void *entry);
315 void __radix_tree_delete_node(struct radix_tree_root *,
316 			      struct radix_tree_node *,
317 			      radix_tree_update_node_t update_node);
318 void radix_tree_iter_delete(struct radix_tree_root *,
319 			struct radix_tree_iter *iter, void __rcu **slot);
320 void *radix_tree_delete_item(struct radix_tree_root *, unsigned long, void *);
321 void *radix_tree_delete(struct radix_tree_root *, unsigned long);
322 void radix_tree_clear_tags(struct radix_tree_root *, struct radix_tree_node *,
323 			   void __rcu **slot);
324 unsigned int radix_tree_gang_lookup(const struct radix_tree_root *,
325 			void **results, unsigned long first_index,
326 			unsigned int max_items);
327 unsigned int radix_tree_gang_lookup_slot(const struct radix_tree_root *,
328 			void __rcu ***results, unsigned long *indices,
329 			unsigned long first_index, unsigned int max_items);
330 int radix_tree_preload(gfp_t gfp_mask);
331 int radix_tree_maybe_preload(gfp_t gfp_mask);
332 int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order);
333 void radix_tree_init(void);
334 void *radix_tree_tag_set(struct radix_tree_root *,
335 			unsigned long index, unsigned int tag);
336 void *radix_tree_tag_clear(struct radix_tree_root *,
337 			unsigned long index, unsigned int tag);
338 int radix_tree_tag_get(const struct radix_tree_root *,
339 			unsigned long index, unsigned int tag);
340 void radix_tree_iter_tag_set(struct radix_tree_root *,
341 		const struct radix_tree_iter *iter, unsigned int tag);
342 void radix_tree_iter_tag_clear(struct radix_tree_root *,
343 		const struct radix_tree_iter *iter, unsigned int tag);
344 unsigned int radix_tree_gang_lookup_tag(const struct radix_tree_root *,
345 		void **results, unsigned long first_index,
346 		unsigned int max_items, unsigned int tag);
347 unsigned int radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *,
348 		void __rcu ***results, unsigned long first_index,
349 		unsigned int max_items, unsigned int tag);
350 int radix_tree_tagged(const struct radix_tree_root *, unsigned int tag);
351 
radix_tree_preload_end(void)352 static inline void radix_tree_preload_end(void)
353 {
354 	preempt_enable();
355 }
356 
357 int radix_tree_split_preload(unsigned old_order, unsigned new_order, gfp_t);
358 int radix_tree_split(struct radix_tree_root *, unsigned long index,
359 			unsigned new_order);
360 int radix_tree_join(struct radix_tree_root *, unsigned long index,
361 			unsigned new_order, void *);
362 
363 void __rcu **idr_get_free(struct radix_tree_root *root,
364 			      struct radix_tree_iter *iter, gfp_t gfp,
365 			      unsigned long max);
366 
367 enum {
368 	RADIX_TREE_ITER_TAG_MASK = 0x0f,	/* tag index in lower nybble */
369 	RADIX_TREE_ITER_TAGGED   = 0x10,	/* lookup tagged slots */
370 	RADIX_TREE_ITER_CONTIG   = 0x20,	/* stop at first hole */
371 };
372 
373 /**
374  * radix_tree_iter_init - initialize radix tree iterator
375  *
376  * @iter:	pointer to iterator state
377  * @start:	iteration starting index
378  * Returns:	NULL
379  */
380 static __always_inline void __rcu **
radix_tree_iter_init(struct radix_tree_iter * iter,unsigned long start)381 radix_tree_iter_init(struct radix_tree_iter *iter, unsigned long start)
382 {
383 	/*
384 	 * Leave iter->tags uninitialized. radix_tree_next_chunk() will fill it
385 	 * in the case of a successful tagged chunk lookup.  If the lookup was
386 	 * unsuccessful or non-tagged then nobody cares about ->tags.
387 	 *
388 	 * Set index to zero to bypass next_index overflow protection.
389 	 * See the comment in radix_tree_next_chunk() for details.
390 	 */
391 	iter->index = 0;
392 	iter->next_index = start;
393 	return NULL;
394 }
395 
396 /**
397  * radix_tree_next_chunk - find next chunk of slots for iteration
398  *
399  * @root:	radix tree root
400  * @iter:	iterator state
401  * @flags:	RADIX_TREE_ITER_* flags and tag index
402  * Returns:	pointer to chunk first slot, or NULL if there no more left
403  *
404  * This function looks up the next chunk in the radix tree starting from
405  * @iter->next_index.  It returns a pointer to the chunk's first slot.
406  * Also it fills @iter with data about chunk: position in the tree (index),
407  * its end (next_index), and constructs a bit mask for tagged iterating (tags).
408  */
409 void __rcu **radix_tree_next_chunk(const struct radix_tree_root *,
410 			     struct radix_tree_iter *iter, unsigned flags);
411 
412 /**
413  * radix_tree_iter_lookup - look up an index in the radix tree
414  * @root: radix tree root
415  * @iter: iterator state
416  * @index: key to look up
417  *
418  * If @index is present in the radix tree, this function returns the slot
419  * containing it and updates @iter to describe the entry.  If @index is not
420  * present, it returns NULL.
421  */
422 static inline void __rcu **
radix_tree_iter_lookup(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned long index)423 radix_tree_iter_lookup(const struct radix_tree_root *root,
424 			struct radix_tree_iter *iter, unsigned long index)
425 {
426 	radix_tree_iter_init(iter, index);
427 	return radix_tree_next_chunk(root, iter, RADIX_TREE_ITER_CONTIG);
428 }
429 
430 /**
431  * radix_tree_iter_find - find a present entry
432  * @root: radix tree root
433  * @iter: iterator state
434  * @index: start location
435  *
436  * This function returns the slot containing the entry with the lowest index
437  * which is at least @index.  If @index is larger than any present entry, this
438  * function returns NULL.  The @iter is updated to describe the entry found.
439  */
440 static inline void __rcu **
radix_tree_iter_find(const struct radix_tree_root * root,struct radix_tree_iter * iter,unsigned long index)441 radix_tree_iter_find(const struct radix_tree_root *root,
442 			struct radix_tree_iter *iter, unsigned long index)
443 {
444 	radix_tree_iter_init(iter, index);
445 	return radix_tree_next_chunk(root, iter, 0);
446 }
447 
448 /**
449  * radix_tree_iter_retry - retry this chunk of the iteration
450  * @iter:	iterator state
451  *
452  * If we iterate over a tree protected only by the RCU lock, a race
453  * against deletion or creation may result in seeing a slot for which
454  * radix_tree_deref_retry() returns true.  If so, call this function
455  * and continue the iteration.
456  */
457 static inline __must_check
radix_tree_iter_retry(struct radix_tree_iter * iter)458 void __rcu **radix_tree_iter_retry(struct radix_tree_iter *iter)
459 {
460 	iter->next_index = iter->index;
461 	iter->tags = 0;
462 	return NULL;
463 }
464 
465 static inline unsigned long
__radix_tree_iter_add(struct radix_tree_iter * iter,unsigned long slots)466 __radix_tree_iter_add(struct radix_tree_iter *iter, unsigned long slots)
467 {
468 	return iter->index + (slots << iter_shift(iter));
469 }
470 
471 /**
472  * radix_tree_iter_resume - resume iterating when the chunk may be invalid
473  * @slot: pointer to current slot
474  * @iter: iterator state
475  * Returns: New slot pointer
476  *
477  * If the iterator needs to release then reacquire a lock, the chunk may
478  * have been invalidated by an insertion or deletion.  Call this function
479  * before releasing the lock to continue the iteration from the next index.
480  */
481 void __rcu **__must_check radix_tree_iter_resume(void __rcu **slot,
482 					struct radix_tree_iter *iter);
483 
484 /**
485  * radix_tree_chunk_size - get current chunk size
486  *
487  * @iter:	pointer to radix tree iterator
488  * Returns:	current chunk size
489  */
490 static __always_inline long
radix_tree_chunk_size(struct radix_tree_iter * iter)491 radix_tree_chunk_size(struct radix_tree_iter *iter)
492 {
493 	return (iter->next_index - iter->index) >> iter_shift(iter);
494 }
495 
496 #ifdef CONFIG_RADIX_TREE_MULTIORDER
497 void __rcu **__radix_tree_next_slot(void __rcu **slot,
498 				struct radix_tree_iter *iter, unsigned flags);
499 #else
500 /* Can't happen without sibling entries, but the compiler can't tell that */
__radix_tree_next_slot(void __rcu ** slot,struct radix_tree_iter * iter,unsigned flags)501 static inline void __rcu **__radix_tree_next_slot(void __rcu **slot,
502 				struct radix_tree_iter *iter, unsigned flags)
503 {
504 	return slot;
505 }
506 #endif
507 
508 /**
509  * radix_tree_next_slot - find next slot in chunk
510  *
511  * @slot:	pointer to current slot
512  * @iter:	pointer to interator state
513  * @flags:	RADIX_TREE_ITER_*, should be constant
514  * Returns:	pointer to next slot, or NULL if there no more left
515  *
516  * This function updates @iter->index in the case of a successful lookup.
517  * For tagged lookup it also eats @iter->tags.
518  *
519  * There are several cases where 'slot' can be passed in as NULL to this
520  * function.  These cases result from the use of radix_tree_iter_resume() or
521  * radix_tree_iter_retry().  In these cases we don't end up dereferencing
522  * 'slot' because either:
523  * a) we are doing tagged iteration and iter->tags has been set to 0, or
524  * b) we are doing non-tagged iteration, and iter->index and iter->next_index
525  *    have been set up so that radix_tree_chunk_size() returns 1 or 0.
526  */
radix_tree_next_slot(void __rcu ** slot,struct radix_tree_iter * iter,unsigned flags)527 static __always_inline void __rcu **radix_tree_next_slot(void __rcu **slot,
528 				struct radix_tree_iter *iter, unsigned flags)
529 {
530 	if (flags & RADIX_TREE_ITER_TAGGED) {
531 		iter->tags >>= 1;
532 		if (unlikely(!iter->tags))
533 			return NULL;
534 		if (likely(iter->tags & 1ul)) {
535 			iter->index = __radix_tree_iter_add(iter, 1);
536 			slot++;
537 			goto found;
538 		}
539 		if (!(flags & RADIX_TREE_ITER_CONTIG)) {
540 			unsigned offset = __ffs(iter->tags);
541 
542 			iter->tags >>= offset++;
543 			iter->index = __radix_tree_iter_add(iter, offset);
544 			slot += offset;
545 			goto found;
546 		}
547 	} else {
548 		long count = radix_tree_chunk_size(iter);
549 
550 		while (--count > 0) {
551 			slot++;
552 			iter->index = __radix_tree_iter_add(iter, 1);
553 
554 			if (likely(*slot))
555 				goto found;
556 			if (flags & RADIX_TREE_ITER_CONTIG) {
557 				/* forbid switching to the next chunk */
558 				iter->next_index = 0;
559 				break;
560 			}
561 		}
562 	}
563 	return NULL;
564 
565  found:
566 	if (unlikely(radix_tree_is_internal_node(rcu_dereference_raw(*slot))))
567 		return __radix_tree_next_slot(slot, iter, flags);
568 	return slot;
569 }
570 
571 /**
572  * radix_tree_for_each_slot - iterate over non-empty slots
573  *
574  * @slot:	the void** variable for pointer to slot
575  * @root:	the struct radix_tree_root pointer
576  * @iter:	the struct radix_tree_iter pointer
577  * @start:	iteration starting index
578  *
579  * @slot points to radix tree slot, @iter->index contains its index.
580  */
581 #define radix_tree_for_each_slot(slot, root, iter, start)		\
582 	for (slot = radix_tree_iter_init(iter, start) ;			\
583 	     slot || (slot = radix_tree_next_chunk(root, iter, 0)) ;	\
584 	     slot = radix_tree_next_slot(slot, iter, 0))
585 
586 /**
587  * radix_tree_for_each_contig - iterate over contiguous slots
588  *
589  * @slot:	the void** variable for pointer to slot
590  * @root:	the struct radix_tree_root pointer
591  * @iter:	the struct radix_tree_iter pointer
592  * @start:	iteration starting index
593  *
594  * @slot points to radix tree slot, @iter->index contains its index.
595  */
596 #define radix_tree_for_each_contig(slot, root, iter, start)		\
597 	for (slot = radix_tree_iter_init(iter, start) ;			\
598 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
599 				RADIX_TREE_ITER_CONTIG)) ;		\
600 	     slot = radix_tree_next_slot(slot, iter,			\
601 				RADIX_TREE_ITER_CONTIG))
602 
603 /**
604  * radix_tree_for_each_tagged - iterate over tagged slots
605  *
606  * @slot:	the void** variable for pointer to slot
607  * @root:	the struct radix_tree_root pointer
608  * @iter:	the struct radix_tree_iter pointer
609  * @start:	iteration starting index
610  * @tag:	tag index
611  *
612  * @slot points to radix tree slot, @iter->index contains its index.
613  */
614 #define radix_tree_for_each_tagged(slot, root, iter, start, tag)	\
615 	for (slot = radix_tree_iter_init(iter, start) ;			\
616 	     slot || (slot = radix_tree_next_chunk(root, iter,		\
617 			      RADIX_TREE_ITER_TAGGED | tag)) ;		\
618 	     slot = radix_tree_next_slot(slot, iter,			\
619 				RADIX_TREE_ITER_TAGGED | tag))
620 
621 #endif /* _LINUX_RADIX_TREE_H */
622